N
N

N

HAL

open science

Wordlength Optimization for Custom Floating-point
Systems
Quentin Milot, Mickaél Dardaillon, Justine Bonnot, Daniel Menard

» To cite this version:

Quentin Milot, Mickaél Dardaillon, Justine Bonnot, Daniel Menard. Wordlength Optimization for
Custom Floating-point Systems. Proceedings of the 2024 Conference on Design & Architectures for
Signal & Image Processing (DASIP), inPress.

hal-04457903

HAL Id: hal-04457903
https://hal.science/hal-04457903
Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04457903
https://hal.archives-ouvertes.fr

Wordlength Optimization for Custom
Floating-point Systems

Quentin Milot![0009-0008—9165-0821] "\fickag] Dardaillon! [0000—0001-6862-2090]
Justine Bonnot2[0000—0003—4975— 8659] and Daniel Menard![0000-0002—5416— 2393)]

! Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
first.last@insa-rennes.fr
2 WedoLow, F-35510, Cesson-Sévigné, France
jbonnot@wedolow.com

Abstract. Algorithm complexity and problem size explosion during the
last few years brought new challenges for hardware implementation of
data-oriented applications. In particular, they have caused a large in-
crease in memory, execution time, and power needed. One solution to
address those challenges is to reduce data sizes. Custom floating-point is
a good candidate that brings a large dynamic range in a compact repre-
sentation. Thanks to improvement in floating-point units, it is more and
more explored as an alternative to fixed-point.

This paper proposes an automatic optimization flow to optimize floating-
point wordlength for a given quality metric. This flow is generic and can
be used for any C or C++ algorithm. Different strategies are proposed to
optimize the exponent and mantissa wordlengths. These strategies take
advantages of analyzing the data dynamic range to reduce the optimiza-
tion time. The obtained results show that better implementation cost
can be obtained compared to 16-bit floating-point for a same quality.

Keywords: Custom floating-point - Wordlength - Optimization

1 Introduction

During the last years, with the technological progress in the semiconductor in-
dustry, digital platforms have integrated more and more transistors and have
become faster and more energy efficient. With this evolution, numerous smarter
systems are designed based on data-oriented applications. This technological
progress leads to a significant improvement of the logical elements through the
reduction of latency and dynamic energy. The energy to transport the data can
now be higher than the energy to process the data by up to two to four orders
of magnitude [4]. Memory access and data transportation became the new bot-
tleneck for computation optimization. One way to face this issue is to optimize
the data wordlength [6].

Two finite precision arithmetics are mainly used inside digital platforms to
implement data-oriented applications: fixed-point and floating-point. The fixed-
point arithmetic was favored in energy-efficient systems thanks to its lower cost.

2 Q. Milot et al.

Even if shift operations must be inserted between operations for scaling or align-
ing data, the processing part of fixed-point is less complex in terms of logical
elements compared to floating-point. For fixed-point arithmetic, the quantiza-
tion step (distance between two consecutive values) is constant due to the fixed
implicit scaling factor. For floating-point arithmetic, the quantization step is
adapted to the value to represent thanks to the explicit scaling factor embedded
in the floating-point data. Thus, floating-point arithmetic can better compress
data than fixed-point i.e. for a similar quantization error, fewer bits are required
for encoding a floating-point data than for a fixed-point data.

However, with the reduction of floating-point’s computing energy, especially
compared to memory access energy [6], custom floating-point data types be-
comes a new contender for energy-efficient systems integrating data-oriented
applications. In contrast to 64, 32 and 16-bit standard floating-point data types,
customizing floating-point data requires an in-depth knowledge of the data dy-
namic range and application accuracy to adapt the wordlength to the need of
each data. To obtain an optimized cost, the wordlength of the mantissa and the
exponent must be adapted for each data inside an application. To face the com-
plexity of modern applications, and to limit the development time, automatic
frameworks to convert an application using standard floating-point data types
to custom floating-point data types are mandatory.

Different methodologies and frameworks [2] have been proposed for fixed-
point conversion. This conversion is composed of two main steps. First, the
number of bits for the integer part is determined from the dynamic range analy-
sis. Secondly, the number of bits for the fractional part is determined. The total
number of bits is optimized such as the implementation cost is minimized subject
to a quality criterion on the application output. In floating-point arithmetic, the
problem is more complex because the accuracy depends on the mantissa word-
length but also of the exponent wordlength. Wordlength optimization for custom
floating-point arithmetic has been proposed for specific applications like deep
learning [13, 10, 8]. Generic approaches have been proposed for custom floating-
point system design [3,12]. However, the strategy to optimize the wordlength of
both the exponent and mantissa is not considered in these approaches.

In this paper, a new method for custom floating-point refinement is pro-
posed. Different strategies are proposed to optimize the exponent and mantissa
wordlengths. These strategies take advantage of analyzing the data dynamic
range to reduce the optimization time. The obtained results show that better
implementation costs can be obtained compared to standard 16-bit floating-point
for a same quality.

The rest of the paper is organized as follows. Section 2 presents previous
works on finite precision conversion. The proposed finite precision conversion
flow is then described in Section 3. The determination of the exponent word-
length from dynamic range analysis is presented in Section 4. The optimization
strategies specified for custom floating-point are detailed in Section 5. Section 6
presents the experiment results on different use cases.

Wordlength Optimization for Custom Floating-point Systems 3

2 Background and State of the art

2.1 Finite precision arithmetic

Two finite precision arithmetics are mainly used to implement data-oriented
applications: fixed-point and floating-point. Fixed-point arithmetic allows repre-
senting real values with the help of integer arithmetic. A fixed-point value xpypy
is composed of two parts corresponding to the integer and the fractional part.
Trxpt 1S obtained by multiplying an integer xi,: by a constant scaling factor 27",
where n corresponds to the fractional part wordlength.

Contrary to fixed-point arithmetic, for which the scaling factor is implicit
and not embedded in the data, in floating-point arithmetic, the scaling factor is
explicit and defined through the exponent field e. A normalized floating-point
value xpipt is composed of three parts corresponding to the sign s, the exponent
e and the mantissa m. This exponent e is embedded in the encoded data and
allows selecting the range by representing the log, of the number x to represent.
Thus, with floating-point data types, very small and very high values can be
represented with a good relative accuracy. The mantissa part m refines the value
inside the considered range.

To avoid multiple representations of a given value and to allow interoperabil-
ity between digital platforms, standards, like the IEEE 754 norm have been pro-
posed for defining floating-point data type for 64, 32 and 16 bits. A normalized
floating-point data type is under discussion for 8-bit data [11,7]. This standard
defines the exponent and mantissa wordlengths, wg and wys respectively [5].

The exponent e, embedded in the floating-point data is an unsigned integer
value. To consider negative exponents to represent small values, a bias A equal
to half of the exponent range is defined with the following expression:

e=e,— A with A=2owe~l_1

where wg corresponds to the number of bits to represent the exponent. The
minimal and maximal exponent values are used to represent specific values (0,
denormalized values, +00, NaN).

In hardware design, like for fixed-point arithmetic, optimizing the data word-
length and using its own wordlength for each data will reduce the implementa-
tion cost (area, energy, latency). For custom floating-point data, reducing the
exponent wordlength will impact the range of the data that can be represented.
Reducing the mantissa wordlength will impact the accuracy [10]. The challenge
is to provide automated design tools to convert a C source code into a C++ code
using custom floating-point data types. The data wordlength search space must
be explored efficiently in order to reduce the implementation cost for a maximal
application quality degradation.

2.2 State of the art

The challenge of creating design tools for custom floating-point data type has
been explored through multiple point of view in the literature.

4 Q. Milot et al.

Domain-specific quantization Domain-specific quantization takes advantage
of domain particularities to improve quantization. Neural network quantization
is a good example, with current interest in machine learning driving a lot of
works in both quantization-aware training and post-training quantization. In
quantization-aware training, data wordlengths are added as parameters to opti-
mize during training [8]. It improves quantization robustness by taking into ac-
count quantization noise during training, but the method is specific to machine-
learning. Post-training quantization is more generic as it can be applied outside
of the domain of machine learning. It relies on the algorithm designer to set
an objective. These approaches usually optimize a wordlength per layer, and
use standard floating-point data types based on the targeted architecture [13].
In [10], custom floating-point data types are used. The exponent and mantissa
wordlength are optimized.

Bitsize [3] The Bitsize framework aims at optimizing the wordlength for fixed-
point and floating-point data types. This framework uses an analytical approach
for quantization error evaluation. The error model is efficient in terms of error
evaluation time but limited to smooth operations. An operation is considered as
smooth if the output is a continuous and differentiable function of the inputs.

Minibit+ [12] Minibit+ is an increment of Minibit approach [9] dedicated
to fixed-point optimization. The transformation focuses on non-uniform opti-
mization and floating-point optimization. The flow is based on a C++ program
input. It starts with a range analysis using affine arithmetic. It then performs
a coarse-grained accuracy analysis followed by a fine-grained accuracy analysis
to determine the data wordlength. The main limitation is its lack of support for
control structures such as conditions and loops.

In the Bitsize and Minibit+, the strategy to optimize the wordlength of both
the exponent and mantissa is not detailed.

3 Finite Precision Conversion Flow

The proposed framework aims at converting automatically a C or C++ code
with standard floating-point data types (float or double) to a C++ source code
with custom floating-point data types for which the data wordlength has been
optimized according to an application quality criterion. This output source code
can then be used with high-level synthesis tools such as Vitis or Catapult for
hardware implementation.

To optimize applications described with C/C++ floating-point code, the pro-
posed framework in Figure 1 starts with a source-to-source compiler [15]. This
step analyzes the application source code to determine which variables in the
application source code may have their precision optimized i.e., all the variables
involved in the application output computation. This first step also determines
if some data types are set up by other ones, so as to reduce the design space

Wordlength Optimization for Custom Floating-point Systems 5

Ll

Fixed-point steps

DProposed

floating-point steps

Fig. 1: Proposed framework for custom floating refinement.

to explore. Let V be a set grouping the N, variables v; to be optimized. At
the output of this compiling step, the application source code is generated with
generic data types that will be modified during the optimization process. This
version of the application is then automatically instrumented by the framework
to derive information on the variables belonging to the set V.

The next step is a dynamic range analysis of each variable belonging to
the set V. Ranges are extracted based on a simulation running the testbench
provided by the developer. The generic data types introduced in the first step
are instrumented to collect all the values taken by a variable v during the source
code execution and to build the histogram of log,(v). To illustrate, an example
of a histogram is given in Figure 2.

4 Exponent wordlength determination

The dynamic range associated with standard floating-point data types is prede-
fined and depends on the exponent wordlength. Since this range is not custom
for standard floating-point data types, several bits in the exponent field can be
left unused, leading to supplementary implementation cost.

To obtain a suitable exponent wordlength, the data range needs to match
with the representation for any mantissa wordlength wj;. A floating-point data
having wg bits for the exponent fields with standard bias A allows representing
values in the range indicated in Equation 1 in the extreme case of mantissa

6 Q. Milot et al.

2000 ; ; ;

'REV

Range IEEE 754 half
Range method 2 Rev E

1800 -

1600 ; Tey : B

>

1400 Range method 1 and 3

N
o
S

1000

Number of iterations
©
o
o

@
=1
I=3

400

200

log2(x)

Fig. 2: Example of an histogram obtained from dynamic range analysis. Ranges
for different floating-point data types are illustrated based on methods presented
in Section 5.2.

wordlength wys = 0.

[_22“’E*1—1; _2—(2“’E*1—2)] U [2—(2“%*1—2)_ 22’“E*1—1] (1)

b

Let v and ¥ be respectively the minimal and maximal values taken by the
variable |v| without considering the value 0. The exponent range I, represents
the values that the exponent needs to reach to handle all the values of v. Since
the exponent part needs to be symmetrical with standard bias A and reach
both values of Iy, , the maximal range distance Rp, determines the maximal
wordlength wyz®*. The maximal wordlength wg®* needs to represent the value

Rg, and —Rg, and can be determined with the following expression:

Ip, = [logy(v),10g,(v)], R, = max (|[g,[) , wp™ = [log, (Rg,)| +1 (2)
max max

Let wiy** = [w%‘f", CwgptL .wENU_J be a N,-length vector storing for each

variable v; of V, the maximal number of bits wg® for the exponent.

5 Wordlength optimization for custom floating-point

5.1 Wordlength optimization problem definition

Worldlength optimization aims at obtaining a minimal cost C' satisfying a user-
defined quality constraint Ap,in.

m“lln(CA'(w)) subject to A(W) > Amin (3)

With w being the concatenation of the vectors wg and wy; representing the
exponent and mantissa wordlengths respectively for each variable of the set V.

Wordlength Optimization for Custom Floating-point Systems 7

Cost evaluation Different metrics like architecture area, energy consumption
or memory space can be considered for the implementation cost C. For this
study, an energy consumption and a memory space models are considered.

The dynamic energy of an operation depends on its type (addition, multipli-
cation, memory transfer, ...) and the input and output wordlengths. For a given
technology node for ASIC or for a given chip for FPGA, a library is obtained
from a characterization process in which the operation costs are evaluated for
different combinations of exponent and mantissa wordlengths. The energy con-
sumption of the complete system is the sum of all the operation costs used in
the system. For this study, a library for 28nm FDSOI technology is used [1].
This library provides the implementation cost for arithmetic operations but not
for memory transfer, limiting the cost model to processing, excluding on-chip
and off-chip memory. The memory cost aims at estimating the memory space to
store the application variables. To do so, the number of allocations of a variable
is determined and multiplied to the total wordlength of the variable.

Quality evaluation Simulation-based and analytical approaches can be consid-
ered to evaluate the quality metric A at the output of an application according to
the data wordlength w. Analytical approaches aim at providing a mathematical
expression of the quality metric. With this mathematical expression, the quality
evaluation time is low but the supported applications are limited to those having
only smooth operations.

Simulation-based techniques are more generic and support any application.
The quality metric is statistically evaluated from data collected with a Monte-
Carlo simulation carried out on the testbench input data. The source code
is modified to integrate the custom floating-point data types. In this work,
ac_type [14] are used. The confidence in the statistical estimation of the quality
metric depends on the number of input samples used for the Monte-Carlo simu-
lation. Thus, a huge number of samples can be required, leading to high quality
evaluation time.

Optimization algorithm The space to explore being a subspace of natural
numbers, the optimization needs to be heuristic. Numerous heuristic methods
have been proposed to optimize wordlengths and especially in the context of
fixed-point systems [2].

In this paper, the min+1 algorithm [2] has been adapted for wordlength
optimization problem in the context of custom floating-point. This algorithm
is composed of two steps. First, an initial solution is found to start the greedy
algorithm deployed in the second step. All the variables of vector w are set to
their maximal value and one variable w; is decreased until the quality constraint
is no more fulfilled. The minimal value fulfilling the constraint is recorded in the
vector Wiin. This process is repeated for each variable of vector w. In the second
step, a mildest-ascent greedy algorithm is applied to increment by one bit one
of the variables of vector w at each iteration. This second step starts with the
initial solution wy,,, for which the quality constraint is not fulfilled. At each

8 Q. Milot et al.

iteration a gradient is computed for each variable to find the best direction i.e.
the variable for which a one-bit wordlength increment lead to the best quality
improvement. The optimization algorithm stops when the quality constraint is
fulfilled.

This optimization method needs to test numerous configurations. Let nc be
the number of tested configurations to obtain the final solution. Let ng be the
number of input samples required to obtain a quality evaluation with a given
confidence interval. The time to,: required for this global optimization process
can be determined with Equation 4. In this equation, ts and ?comp represent the
execution time for one sample and the compilation time of the modified source
code to evaluate the quality.

tOpt =nc * (tcomp +ng * tS) (4)

5.2 Global wordlength optimization strategies

In this section, the proposed strategies to optimize the wordlength of both the
exponent and mantissa are detailed. As shown in Equation 4, the optimization
time is proportional to the number of tested configurations. This latter depends
on the optimization search space. The search space is linked to three parameters,
N, the number of variables to optimize, E, = {x € NV : 1 < z; < w}’iax} the
search space for exponent wordlength and M = {x € NV : 1 < z; < W,,} the
search space for the mantissa wordlength W, represent the mantissa wordlength
of the reference type (24 for single precision, 53 for double precision) and w**
the maximal number of bits required for the i*" variable according to the range
analysis.

Exponent and mantissa wordlength simultaneous optimization This
approach optimizes the wordlengths of the exponent and mantissa simultane-
ously. The maximal exponent wordlength is defined in vector wi** computed
with Equation 2 with the help of the range analysis step. The variable for the
optimization process is a 2.NV,-length vector w composed of the exponent word-
length wg, and the mantissa wordlength wy, for each variable v; of the set V.
The domain to explore is then E, * M. The number of elements n,, of the search

space can be expressed with the following expression:

N,
ny = Mo HwIEnfLX (5>
=0

By considering the exponent wordlength as a variable to optimize, compared
to the approaches described in following sections , this approach provides more
degrees of freedom to find an optimized solution. Indeed, values with a small ex-
ponent can potentially be approximated without degrading too much the appli-
cation quality A. Furthermore, for these values, the unnormalized representation
can help to represent a part of the smallest values. To optimize this unnormalized
representation, both the mantissa and exponent need to be taken into account.

Wordlength Optimization for Custom Floating-point Systems 9

The use of the reduced space E,, instead of a space composed of the maximal
exponent wordlength jallows reducing the optimization time. Indeed, the values
higher than wi™ will lead to the same quality results for a superior cost and are
irrelevant. Nevertheless, this approach leads to the largest number of possibilities

and thus tends to the highest optimization time of the three proposed methods.

Mantissa wordlength only optimization This approach aims at optimiz-
ing only the mantissa wordlength. The exponent wordlength is set to the value
obtained with Equation 2 (w, = w**). The variable for the optimization pro-
cess is a IV,-length vector w composed only of the mantissa wordlength wj, for
each variable v; of the set V. This a priori information allows limiting the search
space to the set M. Compared to the first approach, the number of variables in
the optimization process has been divided by two. Thus, the number of tested
configurations during the optimization process and the optimization time are
reduced. The number of elements n, of the search space can be expressed with
the following expression:

ny = MM (6)

Nevertheless, this approach can lead to a solution less optimized compared
to the one obtained with the first approach. This approach does not explore the
potential benefit of reducing slightly the exponent wordlentgh in relation to the
value obtained with Equation 2.

Exponent and mantissa wordlength sequential optimization This ap-
proach is a middle ground between the other two. The optimization problem
is divided into two optimization processes carried-out one after the other. First
the exponent wordlengths are optimized and then the mantissa. The variable for
the first optimization process is a N,-length vector w composed of the exponent
wordlength wg, for each variable v; of the set V. The variable for the second
optimization process is a IN,-length vector w composed of the mantissa word-
length wyy, for each variable v; of the set V. The optimization is performed on
a subset of the search space E, * M. The number of elements n, of the search
space can be expressed with the following expression:

N,
ny = MY+ [T (7)
=0

Since this approach is a middle ground between the two other methods in terms
of exploration space, the number of configurations required tends to be a middle
ground. However, optimizing with a sequential optimization algorithm such as
min+1 can lead for high \,,;, to the exploration of more configurations.

This solution brings a new hyperparameter to the optimization process. The
quality degradation due to finite precision must be budgeted between the two
independent optimization processes. In this work, the goal Ag,,,, for the first
optimization process was set to equal the quality of the original system.

10 Q. Milot et al.

1 * 1 *

" iom
° °
R U S — g
'©0.95 * & 'T0.95 #
o el
© <)
PG [CO—: g
8 L[] EReference g [] \@Reference
‘g /AStrategy 1 5 |AStrategy 1
S 0.9 trategy 2 § 0.9 W Strategy 2
T - ° *Strategy 3 = A ® *Strategy 3
< . -+ Amin h= " -~ Amin
= * - Parreto front - * -Parreto front
0.85 - . - : 0.85 . . .
0.3 0.35 0.4 0.45 0.5 0.45 0.5 0.55 0.6 0.65

Relative power estimation

(a) Pareto chart of relative energy con-
sumption (processing part) and final ac-
curacy obtained according to the strategy

Relative memory estimation

(b) Pareto chart of relative memory space
and final accuracy obtained according to
the strategy and the minimal quality Ay,in

and the minimal quality Apin.
700

mStrategy 1
mStrategy 2
mStrategy 3

@
=}
s}

Number of configuation tested
w
o
o

o

0.85 0.9
Amin

0.95

(¢) Number of configurations tested for
each optimization process according to
the strategy and Anin.

Fig. 3: Results for the squeezenet application.
6 Experiments and results

The results are presented for two applications corresponding to a Linear Time-
Invariant (LTT) system and a Convolutional Neural Network (CNN). The LTI
system is an Infinite Impulse Response filter composed of four cascaded biquad
cells. The optimization process is defined with N, = 7. The quality evaluation
metric is based on the Signal to Quantization Noise Ratio (SQNR), considering
as a reference the single-precision floating-point data types (FP32). The second
application is the Squeezenet CNN used for image classification. The network is
composed of 14 layers. The optimization process is defined with N, = 15. The
CNN structure is complex due to pooling layers that add unsmooth operations.
The quality evaluation metric is based on the top 1 accuracy, considering as a
reference the FP32 implementation.

Firstly, the efficiency of our approach for finding an efficient solution in terms
of tradeoff between cost and quality is evaluated for different quality metric
constraints. For the Squeezenet, the tradeoff between the implementation cost
and the quality metric is depicted in Figure 3a and Figure 3b respectively for
the energy consumption and for the memory size. The x-axis represents the

Wordlength Optimization for Custom Floating-point Systems 11

Table 1: Optimization results of an IIR filter for different strategies and A, ip.-

Strategy Relative power|Relative memory SQNR Number of
estimation estimation |obtained (db)|configuration tested
Amin| FP16 0.40 0.50 51.26 .
1 0.39 0.32 50.35 233
50 2 0.42 0.45 51.18 154
3 0.39 0.33 50.28 185
1 0.51 0.42 70.72 197
70 2 0.54 0.55 70.10 125
3 0.50 0.44 70.09 156
1 0.86 0.74 90.14 749
90 2 0.87 0.81 90.956 112
3 0.64 0.56 90.13 161

implementation cost normalized with the cost obtained for the reference solution
with FP32. The y-axis represents the quality metric. The results are presented
with the three proposed strategies and for three values of A,,;,. The Pareto
front is shown with the dotted line. These solutions can be compared with the
one obtained for the IEEE 754 half-precision floating-point data type (FP16).
These results show that the solutions located in the Pareto front and obtained
with our approach are better than the FP16 solution. For a similar quality
metric value, a difference of 7% and 3% for the relative energy consumption are
measured. Indeed, FP16 is a generic data type that can not take advantage of the
specificities and the limited variable dynamic range of the considered application.
Moreover, customizing mantissa and exponent wordlength allows obtaining more
flexibility in terms of cost and quality compared to standard data types.

When comparing the three proposed strategies, the second strategy is always
less efficient than the two others. This shows that reducing the exponent word-
length compared to wi™ provides gain. Decreasing the exponent wordlength
of one or two bits can be acceptable in terms of quality degradation. This is
illustrated in Figure 2, where the small values located in the left distribution tail
will be approximated with unnormalized numbers. Even, a reduction of one bit
is not negligible when the exponent wordlength is small.

The results obtained for the IIR filter are summarized in Table 1. The solution
with FP16 and our solutions obtained for A,,;;, = 50 dB are close. The dynamic
range of the variables inside the filter is very high and the five bits of the exponent
are required to represent these values. As for Squeezenet, the second strategy
always leads to a more conservative solution. By considering the two applications,
both the first and third strategies can provide the best solution.

The number of configurations nc tested during the optimization process
are depicted in Figure 3c for the Squeezenet and summarized in Table 1 for
the IIR filter. By optimizing only the mantissa wordlength the second strategy
always requires testing fewer configurations compared to the two others. Then,
by using a sequential process, the third solution always requires half as much
configurations compared to the first solution.

12

7

Q. Milot et al.

Conclusion

This paper proposes a new method for custom floating-point refinement. Three
strategies were established to optimize the exponent and mantissa wordlengths
according to a user-defined quality constraint. These strategies are based on data
dynamic range analysis to adapt the exponent wordlength. The results show an
improvement in terms of power and memory consumption compared to a generic
solution with FP16 data types. Our approaches allow obtaining different trade-
offs between cost and quality.

References

1.

o

10.

11.
12.

13.

14.
15.

Barrois, B., et al.: Customizing fixed-point and floating-point arithmetic — A
case study in K-means clustering. In: International Workshop on Signal Processing
Systems (SiPS). pp. 1-6 (Oct 2017). https://doi.org/10.1109/SiPS.2017.8109980
Caffarena, G.: Wordlength optimization of fixed-point algorithms. In: Approxi-
mate Computing Techniques: From Component-to Application-Level, pp. 261-284.
Springer (2022)

Gaffar, A., et al.: Unifying bit-width optimisation for fixed-point and floating-point
designs. In: Symposium on Field-Programmable Custom Computing Machines. pp.
79-88 (Apr 2004). https://doi.org/10.1109/FCCM.2004.59

Horowitz, M.: Computing’s energy problem (and what we can do about it). In:
International Solid-State Circuits Conference (ISSCC) (2014)

IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic (Aug 2008)
Jouppi, N., et al.. Ten Lessons From Three Generations Shaped Google’s
TPUv4i : Industrial Product. In: International Symposium on Com-
puter Architecture (ISCA). pp. 1-14. Valencia, Spain (Jun 2021).
https://doi.org/10.1109/ISCA52012.2021.00010

Kuzmin, A., Van Baalen, M., Ren, Y., Nagel, M., Peters, J., Blankevoort, T.:
Fp8 quantization: The power of the exponent. Advances in Neural Information
Processing Systems 35, 14651-14662 (2022)

Kwak, J., et al.: Quantization Aware Training with Order Strategy for CNN.
In: International Conference on Consumer Electronics-Asia. pp. 1-3 (Oct 2022).
https://doi.org/10.1109/ICCE-Asia57006.2022.9954693

Lee, D., et al.. MiniBit: bit-width optimization via affine arith-
metic. In: Conference on Design automation (DAC). p. 837 (2005).
https://doi.org/10.1145/1065579.1065799

Liu, F., et al.: Improving Neural Network Efficiency via Post-training
Quantization with Adaptive Floating-Point. In: International Conference on
Computer Vision (ICCV). pp. 5261-5270. Montreal, Canada (Oct 2021).
https://doi.org/10.1109/ICCVA48922.2021.00523

Micikevicius, P., et al.: FP8 Formats for Deep Learning (Sep 2022)

Osborne, W., et al.: Automatic Accuracy-Guaranteed Bit-Width Optimiza-
tion for Fixed and Floating-Point Systems. In: International Conference
on Field Programmable Logic and Applications. pp. 617-620 (Aug 2007).
https://doi.org/10.1109/FPL.2007.4380730

Shah, H., et al.: KD-Lib: A PyTorch library for Knowledge Distillation, Pruning
and Quantization. ArXiv (Nov 2020). https://doi.org/10.48550/arXiv.2011.14691
SIEMENS EDA: Algorithmic C Datatypes reference manual (Aug 2022)
WedoLow: Software engineering, wedolow.com

