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Surprisingly, general estimators for nonlinear continuous time models
based on stochastic differential equations are yet lacking. The likelihood
functions for discretely observed nonlinear continuous time models based
on stochastic differential equations are not available except for a few cases.
Various parameter estimation techniques have been proposed, each with ad-
vantages, disadvantages, and limitations depending on the application. Most
applications still use the Euler-Maruyama discretization, despite many proofs
of its bias. More sophisticated methods, such as Kessler’s Gaussian approx-
imation, Ozaki’s Local Linearization, Aït-Sahalia’s Hermite expansions, or
MCMC methods, lack a straightforward implementation, might be complex
to implement, do not scale well with increasing model dimension or can
be numerically unstable. We propose two efficient and easy-to-implement
likelihood-based estimators based on the Lie-Trotter (LT) and the Strang (S)
splitting schemes. We prove that S has Lp convergence rate of order 1, a
property already known for LT. We show that the estimators are consistent
and asymptotically efficient under the less restrictive one-sided Lipschitz as-
sumption. A numerical study on the 3-dimensional stochastic Lorenz system
complements our theoretical findings. The simulation shows that the S estima-
tor performs the best when measured on precision and computational speed
compared to the state-of-the-art.

1. Introduction. Stochastic differential equations (SDEs) are popular models for phys-
ical, biological, and socio-economic processes. Some recent applications include tipping
points in the climate (Ditlevsen and Ditlevsen, 2023), the spread of COVID-19 (Arnst et al.,
2022; Kareem and Al-Azzawi, 2021), animal movements (Michelot et al., 2019, 2021) and
cryptocurrency rates (Dipple et al., 2020). The advantage of SDEs is their ability to capture
and quantify the randomness of the underlying dynamics. They are especially applicable when
the dynamics are not entirely understood, and the unknown parts act as random. The following
parametric form is common for an SDE model with additive noise:

dXt =F (Xt;β)dt+ΣdWt, X0 = x0.(1)

We want to estimate the underlying drift parameter β and diffusion parameter Σ based on
discrete observations of Xt. The transition density is necessary for likelihood-based estimators
and, thus, a closed-form solution to (1). However, the transition density is only available
for a few SDEs, including the Ornstein-Uhlenbeck (OU) process, which has a linear drift
function F. Extensive literature exists on MCMC methods for the nonlinear case (Fuchs,
2013; Chopin and Papaspiliopoulos, 2020) however, these are often computationally intensive
and do not always converge to the correct values for complex models. Thus, we need a valid
approximation of the transition density to perform likelihood-based statistical inference.

Keywords and phrases: Asymptotic normality, Consistency, Lp convergence, Splitting schemes, Stochastic
differential equations, Stochastic Lorenz system.
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The most straightforward discretization scheme is the Euler-Maruyama (EM) (Kloeden and
Platen, 1992). Its main advantage is the easy-to-implement and intuitive Gaussian transition
density. Both frequentist and Bayesian approaches extensively employ EM across theoretical
and applied studies. However, the EM-based estimator has many disadvantages. First, it
exhibits pronounced bias as the discretization step increases (see Florens-Zmirou (1989) for
a theoretical study, or Gloaguen, Etienne and Le Corff (2018), Gu, Wu and Xue (2020) for
applied studies). Second, Hutzenthaler, Jentzen and Kloeden (2011) showed that it is not mean-
square convergent when the drift function F of (1) grows super-linearly. Consequently, we
should avoid EM for models with polynomial drift. Third, it often fails to preserve important
structural properties, such as hypoellipticity, geometric ergodicity, and amplitudes, frequencies,
and phases of oscillatory processes (Buckwar et al., 2022).

Some pioneering papers on likelihood-based SDE estimators are Dacunha-Castelle and
Florens-Zmirou (1986); Dohnal (1987); Florens-Zmirou (1989); Genon-Catalot and Jacod
(1993); Kessler (1997). The first two only estimate the diffusion parameter. Florens-Zmirou
(1989) used EM to estimate both parameters and derived asymptotic properties. Genon-Catalot
and Jacod (1993) generalized to higher dimensions, non-equidistant discretization step, and
a generic form of the objective function, however only estimating the diffusion parameter.
Kessler (1997) proposed an estimator (denoted K) approximating the unknown transition
density with a Gaussian density using the true conditional mean and covariance, or approx-
imations thereof using the infinitesimal generator. He proved consistency and asymptotic
normality under the commonly used, but too restrictive, global Lipschitz assumption on the
drift function F.

A competitive likelihood-based approach relies on local linearization (LL), initially pro-
posed by Ozaki (1985) and later extended by Ozaki (1992); Shoji and Ozaki (1998). They
approximated the drift between two consecutive observations using a linear function. In the
case of additive noise, this corresponds to an OU process with a known Gaussian transition
density. Thus, the likelihood approximation is a product of Gaussian densities. Shoji (1998)
proved that LL discretization is one-step consistent and Lp convergent with order 1.5. Shoji
(2011), Jimenez, Mora and Selva (2017) extended the theory of LL for SDEs with multiplica-
tive noise. Simulation studies show the superiority of the LL estimator compared to other
estimators (Shoji and Ozaki, 1998; Hurn, Jeisman and Lindsay, 2007; Gloaguen, Etienne and
Le Corff, 2018; Gu, Wu and Xue, 2020). Until recently, the implementation of the LL estimator
was numerically ill-conditioned due to the possible singularity of the Jacobian matrix of the
drift function F. However, Gu, Wu and Xue (2020) proposed an efficient implementation that
overcomes this. The main disadvantage of the LL method is its slow computational speed.

Aït-Sahalia (2002) proposed Hermite expansions (HE) to approximate the transition density,
focusing on univariate time-homogeneous diffusions. This method, widely utilized in finance,
was later extended to both reducible and irreducible multivariate diffusions (Aït-Sahalia,
2008). Chang and Chen (2011) found conditions under which the HE estimator has the same
asymptotic distribution as the exact maximum likelihood estimator (MLE). Choi (2013, 2015)
further broadened the technique to time-inhomogeneous settings. Picchini and Ditlevsen
(2011) used the method for multidimensional diffusions with random effects. When an SDE
is irreducible, Aït-Sahalia (2008) applied Kolmogorov’s backward and forward equations to
develop a small-time expansion of the diffusion probability densities. Yang, Chen and Wan
(2019) introduced a delta expansion method, using Itô-Taylor expansions to derive analytical
approximations of the transition densities of multivariate diffusions inspired by Aït-Sahalia
(2002). While Aït-Sahalia’s approach allows for a broad class of drift and diffusion functions,
the implementation can be complex. To our knowledge, there have not been any applications to
models with more than four dimensions. Furthermore, computing coefficients even up to order
two can be challenging, while higher-order approximations are often necessary for non-linear
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models. Hurn, Jeisman and Lindsay (2007) implemented HE up to third order in univariate
cases, emphasizing the importance of symbolic computation tools like Mathematica or
Maple. Their survey concluded that while LL is the best among discrete maximum likelihood
estimators, HE is the preferred overall choice. They highlighted that the HE proposed by
Aït-Sahalia (2002) has the best trade-off between speed and accuracy, proving more feasible
than LL in most financial applications. This finding aligns with the newer review study from
López-Pérez, Febrero-Bande and González-Manteiga (2021). Similar results are found in
Jensen and Poulsen (2002); López-Pérez, Febrero-Bande and González-Manteiga (2021).
However, LL’s broad applicability contrasts with the limitations of Hermite expansions,
particularly for high-dimensional multivariate models exceeding three dimensions.

Apart from the above-mentioned general methods, there are some specific setups. Sørensen
and Uchida (2003) investigated a small-diffusion estimator, Ditlevsen and Sørensen (2004);
Gloter (2006) worked with integrated diffusion, and Uchida and Yoshida (2012) used adaptive
maximum likelihood estimation. Bibby and Sørensen (1995) and Forman and Sørensen (2008)
explored martingale estimation functions (EF) in one-dimensional diffusions, but they are
difficult to extend to multidimensional SDEs. Ditlevsen and Samson (2019) used the 1.5
scheme to solve the problem of hypoellipticity when the diffusion matrix is not of full rank.

More recently, contributions from Gloter and Yoshida (2020, 2021) have extended the
research of Uchida and Yoshida (2012). Gloter and Yoshida (2020) introduced a non-adaptive
approach and offered similar analytic asymptotic results as Ditlevsen and Samson (2019)
without imposing strict limitations on the model class. Iguchi, Beskos and Graham (2022)
proposed sampling schemes for elliptic and hypoelliptic models that often result in condition-
ally non-Gaussian integrals, distinguishing their approach from prior works. As the transition
density of their new scheme is typically complex, Iguchi, Beskos and Graham (2022) created
a closed-form density expansion using Malliavin calculus. They recommended a transition
density scheme that retained second-order precision through prudent truncation of the ex-
pansion. This closed-form expansion aligns with the works of Aït-Sahalia (2002, 2008) and
Li (2013) on elliptic SDEs, although with a different approach. Iguchi, Beskos and Graham
(2022) deliver asymptotic results with analytically available rates, beneficial for both elliptic
and hypoelliptic models.

Table 1 provides a comprehensive overview of estimator properties, finite sample perfor-
mance, and required model assumptions for the most prominent state-of-the-art methods.
While asymptotic properties might be similar in most cases, the finite sample properties are
often different. The table also includes the Lie-Trotter (LT) and the Strang (S) splitting estima-
tors, which we propose in this paper. The comparison encompasses four key characteristics: (1)
Diffusion coefficient allowed in the model class, distinguishing between additive and general
noise; (2) Asymptotic regime, the conditions needed to prove the asymptotic properties; (3)
Implementation, assessing the complexity of implementation, dependence on model dimension
and parameter optimization time; and (4) Finite sample properties, evaluating performance for
fixed sample size N and discretization step size h.

An essential aspect of any estimator is the practical execution in real-world applications.
Although the previously mentioned research contributes significantly to the theoretical devel-
opment and broadens our understanding of inference for SDEs, its practical implementations
tend not to be user-friendly. Except for precomputed models, applications by non-specialists
can be challenging. Our main contribution is proposing estimators that are intuitive, easy
to implement, computationally efficient, and scalable with increasing dimensions. These
characteristics make the estimators accessible to researchers in various applied sciences while
maintaining desirable statistical properties. Moreover, these estimators remain competitive
with the best state-of-the-art methods, particularly concerning estimation bias and variance.

We propose to use the LT or the S splitting schemes for statistical inference. These numerical
approximations were first suggested for ordinary differential equations (ODEs) (see for
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example, McLachlan and Quispel (2002); Blanes, Casas and Murua (2009)), but their extension
to SDEs is straightforward. A few studies have investigated numerical properties (Bensoussan,
Glowinski and Răşcanu, 1992; Ableidinger, Buckwar and Hinterleitner, 2017; Ableidinger and
Buckwar, 2016; Buckwar et al., 2022). Barbu (1988) applied LT splitting on nonlinear optimal
control problems, while Hopkins and Wong (1986) used it for nonlinear filtering. Bou-Rabee
and Owhadi (2010); Abdulle, Vilmart and Zygalakis (2015) used LT splitting to investigate
conditions for preserving the measure of the ergodic nonlinear Langevin equations. Recently,
Bréhier, Cohen and Ulander (2023) showed that LT splitting successfully preserved positivity
for a class of nonlinear stochastic heat equations with multiplicative space-time white noise.
Additional studies on the application of splitting schemes to SDEs include those by Misawa
(2001); Milstein and Tretyakov (2003); Leimkuhler and Matthews (2015); Alamo and Sanz-
Serna (2016); Bréhier and Goudenège (2019). Regarding statistical applications, to the best
of our knowledge, only Buckwar, Tamborrino and Tubikanec (2020); Ditlevsen, Tamborrino
and Tubikanec (2023) used splitting schemes for parametric inference in combination with
Approximate Bayesian Computation, and Ditlevsen and Ditlevsen (2023) used it for prediction
of a forthcoming collapse in the climate.

This paper presents five main contributions:

1. We introduce two new efficient, easy-to-implement, and computationally fast estimators
for multidimensional nonlinear SDEs.

2. We establish Lp convergence of the S splitting scheme.
3. We prove consistency and asymptotic normality of the new estimators under the less

restrictive assumption of one-sided Lipschitz. This proof requires innovative approaches.
4. We demonstrate the estimators’ performance in a stochastic version of the chaotic Lorenz

system, in contrast to prior studies that primarily addressed the deterministic Lorenz system.
5. We compare the new estimators to three four discrete maximum likelihood estimators from

the literature in a simulation study, comparing the accuracy and computational speed.

The rest of this paper is structured as follows. In Section 2 we introduce the SDE model
class and define the splitting schemes and the estimators. In Section 3, we show that the S
splitting has better one-step predictions than the LT, and we prove that the S splitting is Lp

consistent with order 1.5 and Lp convergent with order 1. To the best of our knowledge, this
is a new result. Sections 4 and 5 establish the estimator asymptotics under the less restrictive
one-sided global Lipschitz assumption. We illustrate in Section 6 the theoretical results in
a simulation study on a model that is not globally Lipschitz, the 3-dimensional stochastic
Lorenz systems. Since the objective functions based on pseudo-likelihoods are multivariate in
both data and parameters, we use automatic differentiation (AD) to get faster and more reliable
estimators. We compare the precision and speed of the EM, K, LL, HE, LT, and S estimators.
We show that the EM and LT estimators become biased before the others with increasing
discretization step h, HE (of order 2) works only for the smallest h in the simulation study,
and the LL and S perform the best. However, S is much faster than LL because LL calculates
a new covariance matrix for each combination of data points and parameter values.

Notation. We use capital bold letters for random vectors, vector-valued functions, and
matrices, while lowercase bold letters denote deterministic vectors. ∥ · ∥ denotes both the L2

vector norm in Rd and the matrix norm induced by the L2 norm, defined as the square root
of the largest eigenvalue. Superscript (i) on a vector denotes the i-th component, while on
a matrix it denotes the i-th row. Double subscript ij on a matrix denotes the component in
the i-th row and j-th column. If a matrix is a product of more matrices, square brackets with
subscripts denote a component inside the matrix. The transpose is denoted by ⊤. Operator
Tr(·) returns the trace of a matrix and det(·) the determinant. Sometimes, we denote by [ai]

d
i=1

a vector with coordinates ai, and by [bij ]
d
i,j=1 a matrix with coordinates bij , for i, j = 1, . . . , d.
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We denote with ∂ig(x) the partial derivative of a generic function g : Rd → R with respect
to x(i) and ∂2

ijg(x) the second partial derivative. The nabla operator ∇ denotes the gradient
vector of a function g, ∇g(x) = [∂ig(x)]

d
i=1. The differential operator D denotes the Jacobian

matrix DF(x) = [∂iF
(j)(x)]di,j=1, for a vector-valued function F : Rd → Rd. H denotes

the Hessian matrix of a real-valued function g, Hg(x) = [∂ijg(x)]
d
i,j=1. Let R represent a

vector (or a matrix) valued function defined on (0,1)×Rd, such that, for some constant C ,
∥R(a,x)∥< aC(1 + ∥x∥)C for all a,x. When denoted R, it is a scalar.

The Kronecker delta function is denoted by δji . For an open set A, the bar A indicates

closure. We use θ
= to indicate equality up to an additive constant that does not depend on θ.

We write P−→, d−→ and P−a.s.−−−−→ for convergence in probability, distribution, and almost surely,
respectively. Id denotes the d-dimensional identity matrix, while 0d×d is a d-dimensional zero
square matrix. For an event E ∈ F , we denote by 1E the indicator function.

2. Problem setup. Let X in (1) be defined on a complete probability space (Ω,F ,Pθ)
with a complete right-continuous filtration (Ft)t≥0, and let the d-dimensional Wiener pro-
cess W = (Wt)t≥0 be adapted to Ft. The probability measure Pθ is parameterized by the
parameter θ = (β,Σ). Rewrite equation (1) as follows:

dXt =A(β)(Xt − b(β))dt+N (Xt;β)dt+ΣdWt, X0 = x0,(2)

such that F(x;β) =A(β)(x− b(β)) +N (x;β). Let Θ=Θβ ×ΘΣ be the parameter space
with Θβ and ΘΣ being two open convex bounded subsets of Rr and Rd×d, respectively.

Functions F,N : Rd ×Θβ → Rd are locally Lipschitz, and A, b are defined on Θβ and
take values in Rd×d and Rd, respectively. Parameter matrix Σ takes values in Rd×d. The
matrix ΣΣ⊤ is assumed to be positive definite and determines the variance of the process.
Since any square root of ΣΣ⊤ induces the same distribution, Σ is only identifiable up to
equivalence classes. Thus, instead of estimating Σ, we estimate ΣΣ⊤. The drift function F
in (1) is split up into a linear part given by matrix A and vector b and a nonlinear part given
by N. This decomposition is essential for defining the splitting schemes and the objective
functions used for estimating θ.

We denote the true parameter value by θ0 = (β0,Σ0) and assume that θ0 ∈ Θ. Some-
times we write A0, b0, N0(x) and ΣΣ⊤

0 instead of A(β0), b(β0), N(x;β0) and Σ0Σ
⊤
0 ,

when referring to the true parameters. We write A, b, N(x) and ΣΣ⊤ for any parameter θ.
Sometimes we suppress the parameter to simplify notation, e.g., E implicitly refers to Eθ .

REMARK 1. The drift function F(x) can always be rewritten as A(x− b) +N(x) for
any A,b by setting N(x) =F(x)−A(x− b), including choosing A and b to be zero. The
splitting proposed below will then result in a Brownian motion (3) and a nonlinear ODE (4).

REMARK 2. We assume additive noise, sometimes referred to as constant volatility, mean-
ing that the diffusion matrix does not depend on the current state. While this assumption is
natural in some applications, it can be restrictive in others. This assumption can be restric-
tive and even rejected by the data in some applications. The proposed methodology could
potentially be extended to can be extended if the diffusion is reducible diffusions (Definition 1
in (Aït-Sahalia, 2008)) by applying the Lamperti transform to obtain a unit diffusion coefficient.
, as demonstrated by Aït-Sahalia, (2008). However, if the transform depends on the parameter,
estimation is not straightforward. In this paper, we only consider additive noise.
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2.1. Assumptions. The main assumption is that (2) has a unique strong solution
X= (Xt)t∈[0,T ], adapted to (Ft)t∈[0,T ], which follows from the following first two assump-
tions (Theorem 2 in Alyushina (1988), Theorem 1 in Krylov (1991), Theorem 3.5 in Mao
(2007)). We need the last three assumptions to prove the properties of the estimators.

(A1) Function N is twice continuously differentiable with respect to x and θ, i.e., N ∈C2.
Additionally, it is one-sided globally Lipschitz continuous with respect to x on Rd ×Θβ ,
i.e., there exists a constant C > 0 such that:

(x− y)⊤ (N(x;β)−N(y;β))≤C∥x− y∥2, ∀x,y ∈Rd.

(A2) Function N grows at most polynomially in x, uniformly in θ, i.e., there exist constants
C > 0 and χ≥ 1 such that:

∥N (x;β)−N (y;β)∥2 ≤C
(
1 + ∥x∥2χ−2 + ∥y∥2χ−2

)
∥x− y∥2, ∀x,y ∈Rd.

Additionally, its derivatives are of polynomial growth in x, uniformly in θ.
(A3) The solution X of SDE (1) has invariant probability ν0(dx).
(A4) ΣΣ⊤ is invertible on ΘΣ.
(A5) Function F is identifiable in β, i.e., if F(x,β1) =F(x,β2) for all x ∈Rd, then β1 = β2.

Assumption (A3) is required for the ergodic theorem to ensure convergence in distribution.
Assumption (A4) implies that model (1) is elliptic, which is not needed for the S estimator,
whereas the EM estimator breaks down in hypoelliptic models. We will treat the hypoelliptic
case in a separate paper where the proofs are more involved. Assumption (A5) ensures the
identifiability of the parameter.

Assume a sample (Xtk)
N
k=0 ≡X0:tN from (2) at time steps 0 = t0 < t1 < · · · < tN = T .

For notational simplicity, we assume equidistant step size h= tk − tk−1.

2.2. Moments. Assumption (A1) ensures finiteness of the moments of the solution X
(Tretyakov and Zhang, 2013), i.e.,

E[ sup
t∈[0,T ]

∥Xt∥2p]<C(1 + ∥x0∥2p), ∀p≥ 1.

The infinitesimal generator L of (1) is defined on sufficiently smooth functions g :Rd×Θ→R
given by:

Lθ0
g (x;θ) =F (x;β0)

⊤∇g (x;θ) +
1

2
Tr(ΣΣ⊤

0 Hg(x;θ)).

The moments of (1) are expanded using the following lemma (Lemma 1.10 in Sørensen
(2012)).

LEMMA 2.1. Let Assumptions (A1)-(A2) hold. Let X be a solution of (1). Let g ∈C(2l+2)

be of polynomial growth and p≥ 2. Then

Eθ0
[g(Xtk ;θ) | Ftk−1

] =

l∑
j=0

hj

j!
Lj
θ0
g(Xtk−1

;θ) +R(hl+1,Xtk−1
).

We need terms up to order R(h3,Xtk−1
). Applying Lθ on g(x) = x(i), Lemma 2.1 yields:

E[X(i)
tk |Xtk−1

= x] = x(i) + hF (i)(x) +
h2

2
(F(x)⊤∇F (i)(x) +

1

2
Tr(ΣΣ⊤HF (i)(x))) +R(h3,x).
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2.3. Splitting Schemes. Consider the following splitting of (2):

dX
[1]
t =A(X

[1]
t −b)dt+ΣdWt, X

[1]
0 = x0,(3)

dX
[2]
t =N(X

[2]
t )dt, X

[2]
0 = x0.(4)

The solution of equation (3) is an OU process given by the following h-flow:

(5) X
[1]
tk =Φ

[1]
h (X

[1]
tk−1

) = eAhX
[1]
tk−1

+(I− eAh)b+ ξh,k,

where ξh,k
i.i.d∼ Nd(0,Ωh) for k = 1, . . . ,N (Vatiwutipong and Phewchean, 2019). The co-

variance matrix Ωh and the conditional mean of the OU process (5) are provided by:

Ωh =

∫ h

0
eA(h−u)ΣΣ⊤eA

⊤(h−u) du= hΣΣ⊤+
h2

2
(AΣΣ⊤+ΣΣ⊤A⊤) +R(h,x0),(6)

µh(x;β) := eA(β)hx+ (I− eA(β)h)b(β).(7)

Assumptions (A1) and (A2) ensure the existence and uniqueness of the solution of (4)
(Theorem 1.2.17 in Humphries and Stuart (2002)). Thus, there exists a unique function
fh :Rd ×Θβ →Rd, for h≥ 0, such that:

(8) X
[2]
tk =Φ

[2]
h (X

[2]
tk−1

) = fh(X
[2]
tk−1

;β).

For all β ∈Θβ , the time flow fh fulfills the following semi-group properties:

f0(x;β) = x, ft+s(x;β) = ft(fs(x;β);β), t, s≥ 0.(9)

REMARK 3. Since only one-sided Lipschitz continuity is assumed, the solution to (4)
might not exist for all h < 0 and all x0 ∈Rd, implying that the inverse f−1

h might not exist. If
it exists, then f−1

h = f−h. For the S estimator, we need a well-defined inverse. This is not an
issue when N is globally Lipschitz.

We, therefore, introduce the following and last assumption.

(A6) Function f−1
h (x;β) is defined asymptotically, for all x ∈Rd,β ∈Θβ , when h→ 0.

Before defining the splitting schemes, we present a useful proposition for expanding the
nonlinear solution fh (Section 1.8 in (Hairer, Nørsett and Wanner, 1993)).

PROPOSITION 2.2. Let Assumptions (A1)-(A2) hold. When h→ 0, the h-flow of (4) is

fh(x) = x+ hN(x) +
h2

2
(DN(x))N(x) +R(h3,x).

Now, we introduce the two most common splitting approximations, which serve as the main
building blocks for the proposed estimators.

DEFINITION 2.3. Let Assumptions (A1) and (A2) hold. The Lie-Trotter and Strang splitting
approximations of the solution of (2) are given by:

X
[LT]
tk

:= Φ
[LT]
h (X

[LT]
tk−1

) = (Φ
[1]
h ◦Φ[2]

h )(X
[LT]
tk−1

) =µh(fh(X
[LT]
tk−1

)) + ξh,k,(10)

X
[S]
tk

:= Φ
[S]
h (X

[S]
tk−1

) = (Φ
[2]
h/2 ◦Φ

[1]
h ◦Φ[2]

h/2)(X
[S]
tk−1

) = fh/2(µh(fh/2(X
[S]
tk−1

)) + ξh,k).(11)
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REMARK 4. The order of composition in the splitting schemes is not unique. Changing
the order in the S splitting leads to a sum of 2 independent random variables, one Gaussian
and one non-Gaussian, whose likelihood is not trivial. Thus, we only use the splitting (11).
The reversed order in the LT splitting can be treated the same way as the S splitting.

REMARK 5. Splitting the drift F(x) into a linear and a nonlinear part is not unique.
However, all theorems and properties, particularly consistency and asymptotic normality
of the estimators, hold for any splitting choice. Yet, for fixed step size h and sample size
N , certain splittings perform better than others. In this paper, we present two general and
intuitive strategies. The first applies when the system has a fixed point; here, the linear part of
the splitting is the linearization around the fixed point. The linear OU performs accurately
near the fixed point, with the nonlinear part correcting for nonlinear deviations. Simulations
consistently show this approach to perform best. Another strategy is to linearize around the
measured average value for each coordinate. An in-depth analysis of the splitting strategies
for a specific example is provided in Section 2.5.

REMARK 6. Trajectories of S and LT splittings coincide up to the first h/2 and the last
h/2 steps of the flow Φ[2]

h/2. Indeed, when applied k times, the S splitting can be written as:

(Φ[S]
h )k(x0) = (Φ[2]

h/2 ◦ (Φ
[LT]
h )k ◦Φ[2]

−h/2)(x0).

Thus, it is natural that LT and S have the same order of Lp convergence. We prove this in
Section 3. However, the LT and S trajectories differ in their output points (10) and (11). Strang
splitting outputs the middle points of the smooth steps of the deterministic flow (8), while LT
splitting outputs the stochastic increments in the rough steps. We conjecture that this is one of
the reasons why the S splitting has superior statistical properties.

2.4. Estimators. In this section, we first introduce two new estimators, LT and S, given a
sample X0:tN . Subsequently, we provide a brief overview of the estimators EM, K, and LL
and HE, which will be compared in the simulation study.

2.4.1. Splitting estimators. The LT scheme (10) follows a Gaussian distribution. Conse-
quently, the objective function corresponds to (twice) the negative pseudo-log-likelihood:

L[LT](X0:tN ;θ)
θ
=N log(detΩh(θ))

+

N∑
k=1

(Xtk −µh(fh(Xtk−1
;β);β))⊤Ωh(θ)

−1(Xtk −µh(fh(Xtk−1
;β);β)).(12)

The S splitting (11) is a nonlinear transformation of the Gaussian random variable
µh(fh/2(Xtk−1

;β);β) + ξh,k. We first define:

Ztk(β) := f−1
h/2(Xtk ;β)−µh(fh/2(Xtk−1

;β);β).(13)

Afterwards, we apply a change of variables to derive the following objective function:
(14)

L[S](X0:tN ;θ)
θ
=N log(detΩh(θ)) +

N∑
k=1

Ztk(β)
⊤Ωh(θ)

−1Ztk(β)− 2

N∑
k=1

log |detDf−1
h/2(Xtk ;β)|.

The last term is due to the nonlinear transformation and is an extra term that does not appear
in commonly used pseudo-likelihoods.
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The inverse function f−1
h may not exist for all parameters in the search domain of the

optimization algorithm. However, this problem can often be solved numerically. When f−1
h is

well defined, we use the identity − log |detDf−1
h (x;β) |= log |detDfh (x;β) | in (14) to

increase the speed and numerical stability.
Finally, we define the estimators as:

(15) θ̂
[k]
N := argmin

θ
L[k] (X0:tN ;θ) , k ∈ {LT,S}.

2.4.2. Euler-Maruyama. The EM method uses first-order Taylor expansion of (1):

X
[EM]
tk

:=X
[EM]
tk−1

+ hF(X
[EM]
tk−1

;β) + ξ
[EM]
h,k ,(16)

where ξ
[EM]
h,k

i.i.d.∼ Nd(0, hΣΣ⊤) for k = 1, . . . ,N (Kloeden and Platen, 1992). The transition
density p[EM](Xtk |Xtk−1

;θ) is Gaussian, so the pseudo-likelihood follows trivially.

2.4.3. Kessler’s Gaussian approximation. The K estimator uses Gaussian transition densi-
ties p[K](Xtk |Xtk−1

;θ) with the true mean and covariance of the solution X (Kessler, 1997).
When the moments are unknown, they are approximated using the infinitesimal generator
(Lemma 2.1). We implement the estimator K based on the 2nd-order approximation:

(17)
X

[K]
tk

:=X
[K]
tk−1

+ hF(X
[K]
tk−1

;β) + ξ
[K]
h,k(X

[K]
tk−1

)

+
h2

2

(
DF(X

[K]
tk−1

;β)F(X
[K]
tk−1

;β) +
1

2
[Tr(ΣΣ⊤HF (i)(X

[K]
tk−1

;β))]di=1

)
,

where ξ
[K]
h,k(X

[K]
tk−1

) ∼ Nd(0,Ω
[K]
h,k(θ)), and Ω[K]

h,k(θ) = hΣΣ⊤ + h2

2 (DF(X
[K]
tk−1

;β)ΣΣ⊤ +

ΣΣ⊤D⊤F(X
[K]
tk−1

;β)). The covariance matrix is not constant which makes the algorithm
slower for a larger sample size.

2.4.4. Ozaki’s local linearization. Ozaki’s LL method approximates the drift of (1) be-
tween consecutive observations by a linear function (Jimenez, Shoji and Ozaki, 1999). The
LL method consists of the following steps:

(1) Perform LL of the drift F in each time interval [t, t+ h) by the Itô-Taylor series;
(2) Compute the analytic solution of the resulting linear SDE.

The approximation becomes:

X
[LL]
tk

:=X
[LL]
tk−1

+Φ[LL]
h (X

[LL]
tk−1

;θ) + ξ
[LL]
h,k (X

[LL]
tk−1

),(18)

where ξ
[LL]
h,k (X

[LL]
tk−1

)∼Nd(0,Ω
[LL]
h,k (θ)), and

Ω
[LL]
h,k (θ) :=

∫ h

0
eDF(X

[LL]
tk−1

;β)(h−u)ΣΣ⊤eDF(X
[LL]
tk−1

;β)⊤(h−u) du,

Φ[LL]
h (x;θ) :=Rh,0(DF(x;β))F(x;β) + (hRh,0(DF(x;β))−Rh,1(DF(x;β)))M(x;θ),

Rh,i(DF(x;β)) :=

∫ h

0
exp(DF(x;β)u)ui du, i= 0,1,

M(x;θ) :=
1

2
(TrH1(x;θ), . . . ,TrHd(x;θ))

⊤, Hk(x;θ) :=

[
[ΣΣ⊤]ij

∂2F (k)

∂x(i)∂x(j)
(x)

]d
i,j=1

.
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We can efficiently compute Rh,i and Ω
[LL]
h,k (θ) using formulas from (Van Loan, 1978), see

(Gu, Wu and Xue, 2020). For more details, see Supplementary Material (Pilipovic, Samson
and Ditlevsen, 2023).

Thus, p[LL](Xtk |Xtk−1
;θ) is Gaussian and standard likelihood inference applies. Similarly

to K, Ω[LL]
h,k (θ) depends on the previous state X

[LL]
tk−1

, which is a major downside since it is
harder to implement and slower to run due to the computation of N − 1 covariance matrices.
Unlike K, LL does not Taylor expand the approximated drift and covariance matrix, so the
influence of sample size N on computational times is much larger.

2.4.5. Aït-Sahalia’s Infinite Hermite Expansion. The HE method (Aït-Sahalia, 2002,
2008) approximates the likelihood using two transformations to make data resemble a normal
distribution, facilitating corrections for finite samples. First, Xt is transformed to unit diffusion
Yt, using the Lamperti transform. Then, Yt is transformed into a more normal-like Zt. Finally,
the objective function is a Hermite expansion in terms of convergent power series in h, around
this normal density before reverting back to Xt. The Lamperti transform can be omitted for
non-reducible diffusions (Aït-Sahalia, 2008). For additive noise, the HE objective function of
order J is given as:

L[HE](X0:tN ;θ)
θ
=N log(detΣΣ⊤)

− 2

N∑
k=1

C
(−1)
Y (γ(Xtk) | γ(Xtk−1

))

h
+

J∑
j=0

hj

j!
C

(j)
Y (γ(Xtk) | γ(Xtk−1

))

 .(19)

Function γ is the Lamperti transform, and functions C(j)
Y , for j =−1,0,1, . . . , J are calculated

recursively according to Theorem 1 in (Aït-Sahalia, 2008).

2.5. An example: the stochastic Lorenz system. The Lorenz system is a 3D system in-
troduced by Lorenz (1963) to model atmospheric convection. The model is originally de-
terministic exhibiting deterministic chaos, i.e., tiny differences in initial conditions lead to
unpredictable and widely diverging trajectories. The Lorenz system evolves around two strange
attractors, implying that trajectories remain within some bounded region, while points that
start in close proximity may eventually separate by arbitrary distances as time progresses
(Hilborn and Hilborn, 2000). We add noise to include unmodelled forces and randomness.
The stochastic Lorenz system is given by:

dXt = p(Yt −Xt)dt+ σ1 dW
(1)
t ,

dYt = (rXt − Yt −XtZt)dt+ σ2 dW
(2)
t ,

dZt = (XtYt − cZt)dt+ σ3 dW
(3)
t .

(20)

The variables Xt, Yt, and Zt represent convective intensity, and horizontal and vertical
temperature differences, respectively. Parameters p, r, and c denote the Prandtl number, the
Rayleigh number, and a geometric factor, respectively (Tabor, 1989). Lorenz (1963) used the
values p= 10, r = 28 and c= 8/3, yielding chaotic behavior.

The system does not fulfill the global or the one-sided Lipschitz condition because it is
a second-order polynomial (Humphries and Stuart, 1994). However, it has a unique global
solution and an invariant probability (Keller, 1996). Thus, all assumptions (A2)-(A5), except
(A1) hold. Even so, we show in Section 6 that the estimators work.

Different approaches for estimating parameters in the Lorenz system have been proposed,
mostly in the deterministic case. Zhuang et al. (2020) and Lazzús, Rivera and López-Caraballo
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Fig 1: An example trajectory of the stochastic Lorenz system (20) starting at (0,1,0) for
N = 10000 and h= 0.005. The first row shows the evolution of the individual components
X,Y , and Z . The second row shows the evolution of component pairs: (Y,Z), (X,Z) and
(X,Y ). Parameters are p= 10, r = 28, c= 8/3, σ2

1 = 1, σ2
2 = 2 and σ2

3 = 1.5.

(2016) used sophisticated optimization algorithms to achieve better precision. Dubois et al.
(2020) and Ann et al. (2022) used deep neural networks in combination with other machine
learning algorithms. Ozaki, Jimenez and Haggan-Ozaki (2000) used Kalman filtering based
on LL on the stochastic Lorenz system.

Figure 1 shows an example trajectory of the stochastic Lorenz system. The trajectory was
generated by subsampling from an EM simulation, such that N = 10000 and h= 0.05, with
parameter values p= 10, r = 28, c= 8/3, σ2

1 = 1, σ2
2 = 2 and σ2

3 = 1.5. Even if the trajectory
had not been stochastic, the unpredictable jumps in the first row of Figure 1 would still have
been there due to the chaotic behavior .

We suggest to split SDE (20) by choosing the OU part (3) as the linearization around
one of the two fixed points (x⋆, y⋆, z⋆) = (±

√
c(r− 1),±

√
c(r− 1), r − 1). For sim-

plicity, we exclude the fixed point (0,0,0) since X and Y spend little time around this
point, see Figure 1. Specifically, we apply a mixture of two splittings, linearizing around
(
√

c(r− 1),
√

c(r− 1), r − 1) when X > 0 and around (−
√

c(r− 1),−
√

c(r− 1), r − 1)
when X < 0. We denote these estimators by LTmix and Smix. The splitting is given by:

Amix =

−p p 0
1 −1−x⋆

y⋆ x⋆ −c

 , bmix =

x⋆y⋆
z⋆

 , Nmix(x, y, z) =

 0
−(x− x⋆)(z − z⋆)
(x− x⋆)(y− y⋆)

 .
The OU process is mean-reverting towards bmix = (x⋆, y⋆, z⋆). The nonlinear solution is

fmix,h(x, y, z) =

 x
(y− y⋆) cos(h(x− x⋆))− (z − z⋆) sin(h(x− x⋆)) + y⋆

(y− y⋆) sin(h(x− x⋆)) + (z − z⋆) cos(h(x− x⋆)) + z⋆

 .
The solution is a composition of a 3D rotation and translation of (y, z) around the fixed point.
The inverse always exists, and thus, Assumption (A6) holds. Moreover, detDf−1

mix,h(·) = 1.
The mixing strategy does not increase the complexity of the implementation significantly,

and it is straightforward to incorporate into the existing framework. Thus, this splitting strategy
is convenient when the model has several fixed points.
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An alternative splitting linearizes around the average of the observations. Let (µx, µx, µz)
be the average of the data, where we put µx = µy since the difference of their averages is
small, around 10−3. We denote these estimators by LTavg and Savg.The splitting is given by:

Aavg=

 −p p 0
r− µz −1−µx

µx µx −c

 ,bavg =

µx

µx

µz

 ,Navg(x, y, z)=

 0
−(x− µx)(z − µz) + (r− 1− µz)µx

(x− µx)(y− µx) + µ2
x − cµz

 .
The nonlinear solution is:

favg,h(x, y, z) =

 µx

µx +
cµz−µ2

x

x−µx

µz +
µx(r−1−µz)

x−µx



+

 x− µx

(y− µx − cµz−µ2
x

x−µx
) cos(h(x− µx))− (z − µz − µx(r−1−µz)

x−µx
) sin(h(x− µx))

(y− µx − cµz−µ2
x

x−µx
) sin(h(x− µx)) + (z − µz − µx(r−1−µz)

x−µx
) cos(h(x− µx))

 ,
where favg,h(µx, y, z) := (µx, y+hµx(r−1−µz), z+hµ2

x− cµz)
⊤ and detDf−1

avg,h(·) = 1.

3. Order of one-step predictions and Lp convergence. In this Section, we investigate
Lp convergence of the splitting schemes and the order of the one-step predictions. Theorem 2.1
in Tretyakov and Zhang (2013) extends Milstein’s fundamental theorem on Lp convergence
for global Lipschitz coefficients (Milstein, 1988) to Assumptions (A1) and (A2). This theorem
provides the theoretical underpinning for our approach, drawing on the key concepts of Lp

consistency and boundedness of moments.

DEFINITION 3.1 (Lp consistency of a numerical scheme). The one-step approximation
Φ̃h of the solution X is Lp consistent, p≥ 1, of order q2 − 1/2≥ 0, if for k = 1, . . . ,N , and
some q1 ≥ q2 + 1/2:

∥E[Xtk − Φ̃h(Xtk−1
) |Xtk−1

= x]∥=R(hq1 ,x),

(E[∥Xtk − Φ̃h(Xtk−1
)∥2p |Xtk−1

= x])
1

2p =R(hq2 ,x).

DEFINITION 3.2 (Bounded moments of a numerical scheme). A numerical approximation
X̃ of the solution X has bounded moments, if for all p≥ 1,there exists constant C > 0, such
that, for k = 1, . . . ,N :

E[∥X̃tk∥2p]≤C(1 + ∥x0∥2p).

The following theorem (Theorem 2.1 in Tretyakov and Zhang (2013)) gives sufficient
conditions for Lp convergence of a numerical scheme in a one-sided Lipschitz framework.

THEOREM 3.3 (Lp convergence of a numerical scheme). Let Assumptions (A1) and (A2)
hold, and let X̃tk be a numerical approximation of the solution Xtk of (1) at time tk. If

(1) The one-step approximation X̃tk = Φ̃h(X̃tk−1
) is Lp consistent of order q2 − 1/2; and

(2) X̃ has bounded moments,

then X̃ is Lp convergent, p≥ 1, of order q2 − 1/2, i.e., for k = 1, . . . ,N , it holds:

(E[∥Xtk − X̃tk∥2p])
1

2p =R(hq2−1/2,x0).
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3.1. Lie-Trotter splitting. We first show that the one-step LT approximation is of order
R(h2,x0) in mean. The following proposition is proved in the Supplementary Material
(Pilipovic, Samson and Ditlevsen, 2023) for scheme (10), as well as for the reversed order of
composition. We demonstrate that the order of one-step prediction can not be improved unless
the drift F is linear.

PROPOSITION 3.4 (One-step prediction of LT splitting). Assume (A1)-(A2), let X be the
solution to (1) and let Φ[LT]

h be the LT approximation (10). Then, for k = 1, . . . ,N , it holds:

∥E[Xtk −Φ
[LT]
h (Xtk−1

) |Xtk−1
= x]∥=R(h2,Xtk−1

).

Lp convergence of the LT splitting scheme is established in Theorem 2 in Buckwar et al.
(2022), which we repeat here for convenience.

THEOREM 3.5 (Lp convergence of the LT splitting). Assume (A1)-(A2), let X[LT] be the
LT approximation defined in (10), and let X be the solution of (1). Then, there exists C ≥ 1
such that for all p≥ 2, and k = 1, . . . ,N , it holds:

(E[∥Xtk −X
[LT]
tk ∥p])

1

p =R(h,x0).

Now, we investigate the same properties for the S splitting.

3.2. Strang splitting. The following proposition states that the S splitting (11) has higher
order one-step predictions than the LT splitting (10). The proof can be found in Supplementary
Material (Pilipovic, Samson and Ditlevsen, 2023).

PROPOSITION 3.6. Assume (A1)-(A2), let X be the solution to (1), and let Φ[S]
h be the S

splitting approximation (11). Then, for k = 1, . . . ,N , it holds:

∥E[Xtk −Φ
[S]
h (Xtk−1

) |Xtk−1
= x]∥=R(h3,Xtk−1

).(21)

REMARK 7. Even though LT and S have the same order of Lp convergence, the crucial
difference is in the one-step prediction. The approximated transition density between two
consecutive data points depends on the one-step approximation. Thus, the objective function
based on pseudo-likelihood from the S splitting is more precise than the one from the LT.

To prove Lp convergence of the S splitting scheme for (1) with one-sided Lipschitz drift,
we follow the same procedure as in Buckwar et al. (2022). The proof of the following theorem
is in Supplementary Material (Pilipovic, Samson and Ditlevsen, 2023).

THEOREM 3.7 (Lp convergence of S splitting). Assume (A1), (A2) and (A6), let X[S] be
the S splitting defined in (11), and let X be the solution of (1). Then, there exists C ≥ 1 such
that for all p≥ 2 and k = 1, . . . ,N , it holds:

(E[∥Xtk −X
[S]
tk ∥

p])
1

p =R(h,x0).

Before we move to parameter estimation, we prove a useful corollary.

COROLLARY 3.8. Let all assumptions from Theorem 3.7 hold. Then, (E[∥Ztk −
ξh,k∥p])1/p =R(h,x0).
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PROOF. From the definition of Ztk in (13), it is enough to prove that:

(E[∥f−1
h/2(Xtk)−µh(fh/2(Xtk−1

))− ξh,k∥p])1/p =R(h,x0).

From (11) we have that ξh,k = f−1
h/2(X

[S]
tk )−µh(fh/2(X

[S]
tk−1

)). Then,

E[∥f−1
h/2(Xtk)−µh(fh/2(Xtk−1

))− ξh,k∥p]1/p

≤C(E[∥f−1
h/2(Xtk)− f−1

h/2(X
[S]
tk )∥

p] + E[∥fh/2(Xtk−1
)− fh/2(X

[S]
tk−1

)∥p])1/p

≤C(E[∥Xtk −X
[S]
tk ∥

p] + E[∥Xtk−1
−X

[S]
tk−1

∥p])1/p +R(h,x0).

We used Proposition 2.2, that X, X[S] have finite moments and fh/2, f−1
h/2 grow polynomially.

The result follows from Lp convergence of the S splitting scheme, Theorem 3.7.

4. Auxiliary properties. This paper centers around proving the properties of the S
estimator. There are two reasons for this. First, most numerical properties in the literature
are proved only for LT splitting because proofs for S splitting are more involved. Here, we
establish both the numerical properties of the S splitting as well as the properties of the
estimator. Second, the S splitting introduces a new pseudo-likelihood that differs from the
standard Gaussian pseudo-likelihoods. Consequently, standard tools, like those proposed by
Kessler (1997), do not directly apply.

The asymptotic properties of the LT estimator are the same as for the S estimator. However,
the following auxiliary properties will be stated and proved only for the S estimator. They can
be reformulated for the LT estimator following the same logic.

Before presenting the central results for the estimator, we establish the groundwork with two
essential lemmas that rely on the model assumptions. Lemma 4.1 (Lemma 6 in Kessler (1997))
deals with the p-th moments of the SDE increments and also provides a moment bound of a
polynomial map of the solution. The proof of this lemma in Supplementary Material (Pilipovic,
Samson and Ditlevsen, 2023) differs from that in Kessler (1997) due to our relaxation of the
global Lipschitz assumption of the drift F. Instead, we use a one-sided Lipschitz condition in
conjunction with the generalized Grönwall’s inequality (Lemma 2.3 in Tian and Fan (2020) to
establish the result, see Supplementary Material (Pilipovic, Samson and Ditlevsen, 2023)).

Lemma 4.2 (Lemma 8 in Kessler (1997), Lemma 2 in Sørensen and Uchida (2003))
constitutes a central ergodic property that is essential for establishing the asymptotic behavior
of the estimator. The proof when the drift F is one-sided Lipschitz is identical to the one
presented in Kessler (1997), particularly when combined with Lemma 4.1.

LEMMA 4.1. Assume (A1)-(A2). Let X be the solution of (1). For tk ≥ t≥ tk−1, where
h= tk − tk−1 < 1, the following two statements hold.

(1) For p≥ 1, there exists Cp > 0 that depends on p, such that:

E[∥Xt −Xtk−1
∥p | Ftk−1

]≤Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp .

(2) If g :Rd ×Θ→R is of polynomial growth in x uniformly in θ, then there exist constants
C and Ct−tk−1

that depends on t− ttk−1
, such that:

E[|g(Xt;θ)| | Ftk−1
]≤Ct−tk−1

(1 + ∥Xtk−1
∥)C .
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LEMMA 4.2. Assume (A1), (A2), (A3), and let X be the solution to (1). Let g :Rd×Θ→R
be a differentiable function with respect to x and θ with derivative of polynomial growth in x,
uniformly in θ. If h→ 0 and Nh→∞, then,

1

N

N∑
k=1

g (Xtk ,θ)
Pθ0−−−−−→

Nh→∞
h→0

∫
g (x,θ)dν0(x),

uniformly in θ.

Lastly, we state the moment bounds needed for the estimator asymptotics. The proof is in
Supplementary Material (Pilipovic, Samson and Ditlevsen, 2023).

PROPOSITION 4.3 (Moment Bounds). Assume (A1), (A2), (A6). Let X be the solution
of (1), and Ztk as defined in (13). Let g(x;β) be a generic function with derivatives of
polynomial growth, and β ∈Θβ . Then, for k = 1, . . . ,N , the following moment bounds hold:

(i) Eθ0
[Ztk(β0) |Xtk−1

= x] =R(h3,Xtk−1
)

(ii) Eθ0
[Ztk(β0)g(Xtk ;β)

⊤ |Xtk= x] = h
2 (ΣΣ⊤

0 D
⊤g(x;β)+Dg(x;β)ΣΣ⊤

0 )+R(h2,Xtk−1
);

(iii) Eθ0
[Ztk(β0)Ztk(β0)

⊤ |Xtk−1
= x] = hΣΣ⊤

0 +R(h2,Xtk−1
).

5. Asymptotics. The estimators θ̂N are defined in (15). However, the full objective
functions (12) and (14) are not needed to prove consistency and asymptotic normality. It is
enough to approximate Ωh up to the second order by hΣΣ⊤ + h2

2 (AΣΣ⊤ +ΣΣ⊤A⊤) (see
equation (6)). Indeed, after applying Taylor series on the inverse of Ωh, we get:

Ωh(θ)
−1=

1

h
(ΣΣ⊤)−1(I+

h

2
(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1)−1) +R(h,x0)

=
1

h
(ΣΣ⊤)−1(I− h

2
(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1) +R(h,x0)

=
1

h
(ΣΣ⊤)−1 − 1

2
((ΣΣ⊤)−1A(β) +A(β)⊤(ΣΣ⊤)−1) +R(h,x0).

Similarly, we approximate the log-determinant as:

log detΩh(θ)= logdet(hΣΣ⊤ +
h2

2
(A(β)ΣΣ⊤ +ΣΣ⊤A(β)⊤)) +R(h2,x0)

θ
= logdetΣΣ⊤+logdet(I+

h

2
(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1)) +R(h2,x0)

= logdetΣΣ⊤ +
h

2
Tr(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1) +R(h2,x0)

= logdetΣΣ⊤ + hTrA(β) +R(h2,x0).

Using the same approximation we obtain:

2 log |detDfh/2 (x;β) |= 2 log |det(I+ h

2
DN(x;β))|

= 2 log |1 + h

2
TrDN(x;β)|+R(h,x)

= hTrDN(x;β) +R(h2,x0).
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Retaining terms up to order R(Nh2,x0) from (12) and (14), we establish the approximate
objective functions:

L[LT]
N (θ) :=N log detΣΣ⊤+NhTrA(β)

+
1

h

N∑
k=1

(Xtk −µh(fh(Xtk−1
;β);β))⊤(ΣΣ⊤)−1(Xtk −µh(fh(Xtk−1

;β);β))(22)

−
N∑
k=1

(Xtk −µh(fh(Xtk−1
;β);β))⊤(ΣΣ⊤)−1A(β)(Xtk −µh(fh(Xtk−1

;β);β))

L[S]
N (θ) :=N log detΣΣ⊤+NhTrA(β) +

1

h

N∑
k=1

Ztk(β)
⊤(ΣΣ⊤)−1Ztk(β)

−
N∑
k=1

Ztk(β)
⊤(ΣΣ⊤)−1A(β)Ztk(β) + h

N∑
k=1

TrDN(Xtk ;β).(23)

Unlike other likelihood-based methods, such as Kessler (1997), Aït-Sahalia (2002, 2008),
Choi (2013, 2015), Yang, Chen and Wan (2019), our estimators do not involve expansions.
The objective functions are formulated in simple terms without hyperparameters, such as
the order of the expansions. Hence, our approach is robust and user-friendly, as we directly
employ (12) and (14). The approximations (22) and (23) are only used for the proofs.

5.1. Consistency. Now, we state the consistency of β̂N and Σ̂Σ
⊤
N . The proof of Theorem

5.1 is in Supplementary Material (Pilipovic, Samson and Ditlevsen, 2023).

THEOREM 5.1. Assume (A1)-(A6). Let X be the solution of (1) and θ̂N = (β̂N , Σ̂Σ
⊤
N )

be the estimator that minimizes either (22) or (23). If h→ 0 and Nh→∞, then,

β̂N
Pθ0−−→ β0, Σ̂Σ

⊤
N

Pθ0−−→ΣΣ⊤
0 .

5.2. Asymptotic normality. First, we need some preliminaries. Let ρ > 0 and Bρ (θ0) =
{θ ∈ Θ | ∥θ− θ0∥ ≤ ρ} be a ball around θ0. Since θ0 ∈ Θ, for sufficiently small ρ > 0,
Bρ(θ0) ∈Θ. Let LN be either (22) or (23). For θ̂N ∈ Bρ (θ0), the mean value theorem yields:

(24)
(∫ 1

0
HLN

(θ0 + t(θ̂N − θ0))dt

)
(θ̂N − θ0) =−∇LN (θ0) .

With ς := vech(ΣΣ⊤) = ([ΣΣ⊤]11, [ΣΣ⊤]12, [ΣΣ⊤]22, ..., [ΣΣ⊤]1d, ..., [ΣΣ⊤]dd), we
half-vectorize ΣΣ⊤ to avoid working with tensors when computing derivatives with re-
spect to ΣΣ⊤. Since ΣΣ⊤ is a symmetric d× d matrix, ς is of dimension s= d(d+ 1)/2.
For a diagonal matrix, instead of a half-vectorization, we use ς := diag(ΣΣ⊤). Define:

CN (θ) :=

[
1

Nh∂ββLN (θ) 1
N
√
h
∂βςLN (θ)

1
N
√
h
∂βςLN (θ) 1

N ∂ςςLN (θ)

]
,(25)

sN :=

[√
Nh(β̂N −β0)
√
N(ς̂N − ς0)

]
, λN :=

−
1√
Nh

∂βLN (θ0)

− 1√
N

∂ςLN (θ0)

 ,(26)
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and DN :=
∫ 1
0 CN (θ0 + t(θ̂N − θ0))dt. Then, (24) is equivalent to DNsN = λN . Let:

C(θ0) :=

[
Cβ(θ0) 0r×s

0s×r Cς(θ0)

]
,(27)

where:

[Cβ(θ0)]i1,i2 :=

∫
(∂βi1

F0(x))
⊤(ΣΣ⊤

0 )
−1(∂βi2

F0(x))dν0(x), 1≤ i1, i2 ≤ r,

[Cς(θ0)]j1,j2 :=
1

2
Tr((∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1(∂ςj2ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1), 1≤ j1, j2 ≤ s.

Now, we state the theorem for asymptotic normality, the proof is in Supplementary Material
(Pilipovic, Samson and Ditlevsen, 2023).

THEOREM 5.2. Assume (A1)-(A6). Let X be the solution of (1), and θ̂N = (β̂N , ς̂N ) be
the estimator that minimizes either (22) or (23). If θ0 ∈Θ, C(θ0) is positive definite, h→ 0,
Nh→∞, and Nh2 → 0, then, under Pθ0

,[√
Nh(β̂N −β0)√
N(ς̂N − ς0)

]
d−→N (0,C−1(θ0)).(28)

The estimator of the diffusion parameter converges faster than the estimator of the drift
parameter. Gobet (2002) showed that for a discretely sampled SDE model, the optimal
convergence rates for the drift and diffusion parameters are 1/

√
Nh and 1/

√
N , respectively.

Thus, our estimators reach optimal rates. Moreover, the estimators are asymptotically efficient
since C is the Fisher information matrix for the corresponding continuous-time diffusion (see
Kessler (1997), Gobet (2002)). Finally, since the asymptotic correlation is zero between the
drift and diffusion estimators, they are asymptotically independent.

6. Simulation study. This Section presents the simulation study of the Lorenz system,
illustrating the theory and comparing the proposed estimators with other likelihood-based esti-
mators. We briefly recall the estimators, describe the simulation process and the optimization
in the programming language R (R Core Team, 2022), and present and analyze the results.

6.1. Estimators used in the study. The EM transition distribution (16) for the Lorenz
system (20) is:Xtk

Ytk
Ztk

 |

Xtk−1

Ytk−1

Ztk−1

=

xy
z

∼N

 x+ hp(y− x)
y+ h(rx− y− xz)
z + h(xy− cz)

 ,
hσ2

1 0 0
0 hσ2

2 0
0 0 hσ2

3

 .

We do not write the closed-form distributions for K (17), LL (18) and HE (19), but we use
the corresponding formulas to implement the likelihoods. We implement the two splitting
strategies proposed in Section 2.5, leading to four estimators: LTmix,LTavg,Smix, and Savg.
To further speed up computation time, we use the same trick for calculating Ωh in (6) as for
calculating Ω[LL]

h , see Supplementary Material (Pilipovic, Samson and Ditlevsen, 2023).

6.2. Trajectory simulation. To simulate sample paths, we use the EM discretization with
a step size of hsim = 0.0001, which is small enough for the EM discretization to perform well.
Then, we sub-sample the trajectory to get a larger time step h, decreasing discretization errors.
We perform M = 1000 Monte Carlo repetitions.
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6.3. Optimization in R. To optimize the objective functions we use the R package torch
(Falbel and Luraschi, 2022), which uses AD instead of the traditional finite differentiation used
in optim. The two main advantages of AD are precision and speed. Finite differentiation is
subject to floating point precision errors and is slow in high dimensions (Baydin et al., 2017).
Conversely, AD is exact and fast and thus used in numerous applications, such as MLE or
training neural networks.

We tried all available optimizers in the torch package and chose the resilient backpropa-
gation algorithm optim_rprop based on Riedmiller and Braun (1992). It performed faster
than the rest and was more precise in finding the global minimum. We used the default hyper-
parameters and set the optimization iterations to 200. We chose the precision of 10−5 between
the updated and the parameters from the previous iteration as the convergence criteria. For
starting values, we used (0.1,0.1,0.1,0.1,0.1,0.1). All estimators except HE converged after
approximately 80 iterations. The HE estimator only converged with the smallest time step,
h= 0.005, achieving convergence in 43%−72% of cases across various sample sizes N . This
probably occurs due to a polynomial approximation of the likelihood that can be unstable at
the boundaries, especially for larger h. Incorporating higher-order approximations and adding
constraints in the optimization step might improve performance. For further analysis, see the
Supplementary Material (Pilipovic, Samson and Ditlevsen, 2023).

6.4. Comparing criteria. We compare eight estimators based on their precision and speed.
We compute the absolute relative error (ARE) for each component θ̂(i)N of the estimator θ̂N :

ARE(θ̂
(i)
N ) =

1

M

M∑
r=1

|θ̂(i)N,r − θ
(i)
0,r|

θ
(i)
0,r

.

For S and LL, we compare the distributions of θ̂N − θ0 more closely.
The running times are calculated using the tictoc package in R, measured from the

start of the optimization step until the convergence criterion is met. To avoid the influence of
running time outliers, we compute the median over M repetitions.

6.5. Results. In Figure 2, AREs are shown on log scale as a function of h. While most
estimators work well for a step size no greater than 0.01, only LL, Smix, and Savg perform
well for h = 0.05. The LTavg is not competitive even for h = 0.005. The performance of
LTmix varies, sometimes approaching the performance of K, while other times performing
similarly to EM. Thus, LTmix is not a good choice for this specific model. The bias of EM
starts to show for h= 0.01 escalating for h= 0.05. The largest bias appears in the diffusion
parameters due to the poor approximation of ΩEM

h . K is less biased than EM except for p and
r when h= 0.05. The HE estimator converged only for h= 0.005. The ARE is calculated
from the 601 simulations out of a total of 1000 in which convergence was achieved. For these,
the performance of HE in estimating drift parameters is comparable to the best estimators.
However, the diffusion parameters are not well estimated, with the estimation of σ2

3 being the
least accurate. Drift parameters are generally estimated better for larger h for fixed N due to a
longer observation interval T =Nh, reflecting the

√
Nh rate of convergence.

We zoom in on the distributions of Smix, Savg, LL in Figure 3. We also include HE for
h = 0.005, based on the 60% converged estimates. For clarity, we removed some outliers
for σ2

1 and σ2
2 . This did not change the shape of the distributions, it only truncated the tails.

Estimators Smix, Savg and LL perform similarly, especially for the smallest h, where HE
performs slightly worse, particularly for p, σ2

2 , and σ2
3 . For h= 0.05, the drift parameters are

underestimated by approximately 5− 10%, while the diffusion parameters are overestimated
by up to 20%. Both S estimators performed better than LL, except for p and σ2

1 .
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Fig 2: Comparing the absolute relative error (ARE) as a function of increasing discretization
step h for eight estimators in the stochastic Lorenz system. The sample size is N = 10000.
The y-axis is on log scale. The HE estimator (purple dot) converged only for h= 0.005, and
only for 60% of the simulated data sets.

Fig 3: Comparing the normalized distributions of (θ̂N −θ0)⊘θ0 (where ⊘ is the element-wise
division) of the Lorenz system for the Smix, Savg, LL and HE estimators for N = 10000. Each
column represents one parameter, and each row represents one value of the discretization step
h. The black dot with a vertical bar in each violin plot represents the mean and the standard
deviation. The HE estimator (purple) converged only for h= 0.005, and only for 60% of the
simulated data sets.
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While the LL and S estimators perform similarly in terms of precision, Figure 4 shows the
superiority of the S estimators over LL in computational costs. The LL becomes increasingly
computationally expensive for increasing N because it calculates N covariance matrices
for each parameter value. The next slowest estimators are Smix and HE, followed by LTmix,
Savg, K, LTavg, and, finally, EM is the fastest. The speed of EM is almost constant in N.
Additionally, it seems that the running times do not depend on h. Thus, we recommend using
the S estimators, especially for large N .

Fig 4: Running times as a function of N for different estimators of the Lorenz system. Each
column shows one value of h. On the x-axis is the sample size N , and on the y-axis is the
running time in seconds. The HE estimator (purple) achieved convergence only for h= 0.005,
and only in 43%− 72% of cases across various sample sizes N .

Figures 5 and 6 show that the theoretical results hold for Smix and LTmix. We compare how
the distributions of θ̂N − θ0 change with sample size N and step size h. With increasing N ,
the variance decreases, whereas the mean does not change. For that, we need smaller h. To
obtain negligible bias for LTmix, we need a step size smaller than h= 0.005 . However, Smix

is practically unbiased up to h= 0.01. This shows that LT estimators might not be a good
choice in practice, while S estimators are.

Fig 5: Comparing distributions of θ̂N − θ0 for the Smix estimator with theoretical asymptotic
distributions (28) for each parameter (columns), for h= 0.01 and N ∈ {1000,5000,10000}
(colors). The black lines correspond to the theoretical asymptotic distributions computed from
data and true parameters for N = 10000 and h= 0.01.
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Fig 6: Comparing distributions of θ̂N − θ0 for the LTmix estimator with theoretical asymp-
totic distributions (28) for each parameter (columns), for h ∈ {0.005,0.01} (rows) and
N ∈ {1000,5000,10000} (colors). The black lines correspond to the theoretical asymptotic
distributions computed from data and true parameters for N = 10000 and corresponding h.

The solid black lines in Figures 5 and 6 represent the theoretical asymptotic distributions
computed from (28). For the Lorenz system (20), the precision matrix (27) is given by:

C(θ0) = diag

(∫
(y− x)2

σ2
1,0

dν0(x),

∫
x2

σ2
2,0

dν0(x),

∫
z2

σ2
3,0

dν0(x),
1

2σ4
1,0

,
1

2σ4
2,0

,
1

2σ4
3,0

)
.

The integrals are approximated by taking the mean over all data points and all Monte Carlo
repetitions.

Some outliers of σ̂2
2 are removed from Figures 5 and 6 by truncating the tails.

7. Conclusion. We proposed two new estimators for nonlinear multivariate SDEs. They
are based on splitting schemes, a numerical approximation that preserves all important prop-
erties of the model. It was known that the LT splitting scheme has Lp convergence rate of
order 1. We proved that the same holds for the S splitting. This result was expected because
the overall trajectories of the S and LT splittings coincide up to the first h/2 and the last
h/2 move of the flow Φ[2]

h/2. Nonetheless, S splitting is more precise in one-step predictions,
which is crucial for the estimators because the objective function consists of densities between
consecutive data points. Therefore, the obtained S estimator is less biased than the LT.

We proved that both estimators have optimal convergence rates for discrete observations of
the SDEs. These rates are

√
N for the diffusion parameter and

√
Nh for the drift parameter.

We also showed that the asymptotic variance of the estimators is the inverse of the Fisher
information for the continuous time model. Thus, the estimators are efficient.

In the simulation study of the stochastic Lorenz system, we show the superior performance
of the S estimators. We compared eight estimators based on different discretization schemes.
Estimators based on Ozaki’s LL and the S splitting schemes demonstrated the highest precision.
However, the running time of LL is notably influenced by the sample size N , unlike the S
estimator, which experiences a more gradual increase in runtime with larger N . This makes
the S estimator more appropriate for large sample sizes. The LT, EM, K and HE estimators
perform well for small h, but for larger h the bias increases.

While the proposed estimators are versatile, they come with certain limitations. These
include assumptions like additive noise and equidistant observations. However, under specific
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conditions, the Lamperti transformation can relax the constraint of additive noise. Equidistant
observations can easily be relaxed due to the continuous-time formulation. Furthermore, we
assumed that the diffusion parameter ΣΣ⊤ is invertible. However, there are applications
where models with degenerate noise naturally arise, like second-order differential equations.
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SUPPLEMENTARY MATERIAL

Supplement to "Parameter Estimation in Nonlinear Multivariate Stochastic Differen-
tial Equations Based on Splitting Schemes"
This supplement provides proofs of all the propositions, lemmas, and theorems from the paper
that are not proved in the main text.
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