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ABSTRACT

Surprisingly, general estimators for nonlinear continuous time models based on stochastic differential
equations are yet lacking. Most applications still use the Euler-Maruyama discretization, despite many
proofs of its bias. More sophisticated methods, such as Kessler’s Gaussian approximation, Ozak’s
Local Linearization, Aït-Sahalia’s Hermite expansions, or MCMC methods, lack a straightforward
implementation, do not scale well with increasing model dimension or can be numerically unstable.
We propose two efficient and easy-to-implement likelihood-based estimators based on the Lie-Trotter
(LT) and the Strang (S) splitting schemes. We prove that S has Lp convergence rate of order 1, a
property already known for LT. We show that the estimators are consistent and asymptotically efficient
under the less restrictive one-sided Lipschitz assumption. A numerical study on the 3-dimensional
stochastic Lorenz system complements our theoretical findings. The simulation shows that the S
estimator performs the best when measured on precision and computational speed compared to the
state-of-the-art.

Keywords Asymptotic normality · Consistency · Lp convergence · Splitting schemes · Stochastic differential equations ·
Stochastic Lorenz system

1 Introduction

Stochastic differential equations (SDEs) are popular models for physical, biological, and socio-economic processes.
Some recent applications include tipping points in the climate (Ditlevsen and Ditlevsen, 2023), the spread of COVID-19
(Arnst et al., 2022; Kareem and Al-Azzawi, 2021), animal movements (Michelot et al., 2019, 2021) and cryptocurrency
rates (Dipple et al., 2020). The advantage of SDEs is their ability to capture and quantify the randomness of the
underlying dynamics. They are especially applicable when the dynamics are not entirely understood, and the unknown
parts act as random. The following parametric form is common for an SDE model with additive noise:

dXt = F (Xt;β) dt+ΣdWt, X0 = x0. (1)
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We want to estimate the underlying drift parameter β and diffusion parameter Σ based on discrete observations of Xt.
The transition density is necessary for likelihood-based estimators and, thus, a closed-form solution to (1). However,
the transition density is only available for a few SDEs, including the Ornstein-Uhlenbeck (OU) process, which has a
linear drift function F. Extensive literature exists on MCMC methods for the nonlinear case (Fuchs, 2013; Chopin and
Papaspiliopoulos, 2020) however, these are often computationally intensive and do not always converge to the correct
values for complex models. Thus, we need a valid approximation of the transition density to perform likelihood-based
statistical inference.

The most straightforward discretization scheme is the Euler-Maruyama (EM) (Kloeden and Platen, 1992). Its main
advantage is the easy-to-implement and intuitive Gaussian transition density. Both frequentist and Bayesian approaches
extensively employ EM across theoretical and applied studies. However, the EM-based estimator has many disadvan-
tages. First, it exhibits pronounced bias as the discretization step increases (see Florens-Zmirou (1989) for a theoretical
study, or Gloaguen et al. (2018), Gu et al. (2020) for applied studies). Second, Hutzenthaler et al. (2011) showed that it
is not mean-square convergent when the drift function F of (1) grows super-linearly. Consequently, we should avoid EM
for models with polynomial drift. Third, it often fails to preserve important structural properties, such as hypoellipticity,
geometric ergodicity, and amplitudes, frequencies, and phases of oscillatory processes (Buckwar et al., 2022).

Some pioneering papers on likelihood-based SDE estimators are Dacunha-Castelle and Florens-Zmirou (1986); Dohnal
(1987); Florens-Zmirou (1989); Genon-Catalot and Jacod (1993); Kessler (1997). The first two only estimate the
diffusion parameter. Florens-Zmirou (1989) used EM to estimate both parameters and derived asymptotic properties.
Genon-Catalot and Jacod (1993) generalized to higher dimensions, non-equidistant discretization step, and a generic
form of the objective function, however only estimating the diffusion parameter. Kessler (1997) proposed an estimator
(denoted K) approximating the unknown transition density with a Gaussian density using the true conditional mean
and covariance, or approximations thereof using the infinitesimal generator. He proved consistency and asymptotic
normality under the commonly used, but too restrictive, global Lipschitz assumption on the drift function F.

A competitive likelihood-based approach relies on local linearization (LL), initially proposed by Ozaki (1985) and
later extended by Ozaki (1992); Shoji and Ozaki (1998). They approximated the drift between two consecutive
observations by a linear function. In the case of additive noise, this corresponds to an OU process with a known
Gaussian transition density. Thus, the likelihood approximation is a product of Gaussian densities. Shoji (1998) proved
that LL discretization is one-step consistent and Lp convergent with order 1.5. Shoji (2011), Jimenez et al. (2017)
extended the theory of LL for SDEs with multiplicative noise. Simulation studies show the superiority of the LL
estimator compared to other estimators (Shoji and Ozaki, 1998; Hurn et al., 2007; Gloaguen et al., 2018; Gu et al., 2020).
Until recently, the implementation of the LL estimator was numerically ill-conditioned due to the possible singularity
of the Jacobian matrix of the drift function F. However, Gu et al. (2020) proposed an efficient implementation that
overcomes this. The main disadvantage of the LL method is its slow computational speed.

Aït-Sahalia (2002) proposed Hermite expansions (HE) to approximate the transition density, focusing on univariate
time-homogeneous diffusions. This method, widely utilized in finance, was later extended to both reducible and
irreducible multivariate diffusions (Aït-Sahalia, 2008). Chang and Chen (2011) found conditions under which the HE
estimator has the same asymptotic distribution as the exact maximum likelihood estimator (MLE). Choi (2013, 2015)
further broadened the technique to time-inhomogeneous settings. Picchini and Ditlevsen (2011) used the method for
multidimensional diffusions with random effects. When an SDE is irreducible, Aït-Sahalia (2008) applied Kolmogorov’s
backward and forward equations to develop a small-time expansion of the diffusion probability densities. Yang et al.
(2019) introduced a delta expansion method, using Itô-Taylor expansions to derive analytical approximations of the
transition densities of multivariate diffusions inspired by Aït-Sahalia (2002). While Aït-Sahalia’s approach allows for a
broad class of drift and diffusion functions, the implementation can be complex. To our knowledge, there have not been
any applications to models with more than four dimensions. Furthermore, computing coefficients even up to order two
can be challenging, while higher-order approximations are often necessary for non-linear models. Hurn et al. (2007)
implemented HE up to third order in univariate cases, emphasizing the importance of symbolic computation tools
like Mathematica or Maple. Their survey concluded that while LL is the best among discrete maximum likelihood
estimators, HE is the preferred overall choice. They highlighted that the HE proposed by Aït-Sahalia (2002) has the
best trade-off between speed and accuracy, proving more feasible than LL in most financial applications. This finding
aligns with the newer review study from López-Pérez et al. (2021). However, LL’s broad applicability contrasts with the
limitations of Hermite expansions, particularly for high-dimensional multivariate models exceeding three dimensions.

Apart from the above-mentioned general methods, there are some specific setups. Sørensen and Uchida (2003)
investigated a small-diffusion estimator, Ditlevsen and Sørensen (2004); Gloter (2006) worked with integrated diffusion,
and Uchida and Yoshida (2012) used adaptive maximum likelihood estimation. Bibby and Sørensen (1995) and Forman
and Sørensen (2008) explored martingale estimation functions (EF) in one-dimensional diffusions, but they are difficult
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to extend to multidimensional SDEs. Ditlevsen and Samson (2019) used the 1.5 scheme to solve the problem of
hypoellipticity when the diffusion matrix is not of full rank.

More recently, contributions from Gloter and Yoshida (2020, 2021) have extended the research of Uchida and Yoshida
(2012). Gloter and Yoshida (2020) introduced a non-adaptive approach and offered similar analytic asymptotic
results as Ditlevsen and Samson (2019) without imposing strict limitations on the model class. Iguchi et al. (2022)
proposed sampling schemes for elliptic and hypoelliptic models that often result in conditionally non-Gaussian integrals,
distinguishing their approach from prior works. As the transition density of their new scheme is typically complex,
Iguchi et al. (2022) created a closed-form density expansion using Malliavin calculus. They recommended a transition
density scheme that retained second-order precision through prudent truncation of the expansion. This closed-form
expansion aligns with the works of Aït-Sahalia (2002, 2008) and Li (2013) on elliptic SDEs, although with a different
approach. Iguchi et al. (2022) deliver asymptotic results with analytically available rates, beneficial for both elliptic and
hypoelliptic models.

Table 1 provides a comprehensive overview of estimator properties, finite sample performance, and required model
assumptions for the most prominent state-of-the-art methods. While asymptotic properties might be similar in most
cases, the finite sample properties are often different. The table also includes the Lie-Trotter (LT) and the Strang
(S) splitting estimators, which we propose in this paper. The comparison encompasses four key characteristics: (1)
Diffusion coefficient allowed in the model class, distinguishing between additive and general noise; (2) Asymptotic
regime, the conditions needed to prove the asymptotic properties; (3) Implementation, assessing the complexity of
implementation, dependence on model dimension and parameter optimization time; and (4) Finite sample properties,
evaluating performance for fixed sample size N and discretization step size h.

An essential aspect of any estimator is the practical execution in real-world applications. Although the previously
mentioned research contributes significantly to the theoretical development and broadens our understanding of inference
for SDEs, its practical implementations tend not to be user-friendly. Except for precomputed models, applications by
non-specialists can be challenging. Our main contribution is proposing estimators that are intuitive, easy to implement,
computationally efficient, and scalable with increasing dimensions. These characteristics make the estimators accessible
to researchers in various applied sciences while maintaining desirable statistical properties. Moreover, these estimators
remain competitive with the best state-of-the-art methods, particularly concerning estimation bias and variance.

We propose to use the LT or the S splitting schemes for statistical inference. These numerical approximations were
first suggested for ordinary differential equations (ODEs) (see for example, McLachlan and Quispel (2002); Blanes
et al. (2009)), but their extension to SDEs is straightforward. A few studies have investigated numerical properties
(Bensoussan et al., 1992; Ableidinger et al., 2017; Ableidinger and Buckwar, 2016; Buckwar et al., 2022). Barbu (1988)
applied LT splitting on nonlinear optimal control problems, while Hopkins and Wong (1986) used it for nonlinear
filtering. Bou-Rabee and Owhadi (2010); Abdulle et al. (2015) used LT splitting to investigate conditions for preserving
the measure of the ergodic nonlinear Langevin equations. Recently, Bréhier et al. (2023) showed that LT splitting
successfully preserved positivity for a class of nonlinear stochastic heat equations with multiplicative space-time white
noise. Additional studies on the application of splitting schemes to SDEs include those by Misawa (2001); Milstein and
Tretyakov (2003); Leimkuhler and Matthews (2015); Alamo and Sanz-Serna (2016); Bréhier and Goudenège (2019).
Regarding statistical applications, to the best of our knowledge, only Buckwar et al. (2020); Ditlevsen et al. (2023) used
splitting schemes for parametric inference in combination with Approximate Bayesian Computation, and Ditlevsen and
Ditlevsen (2023) used it for prediction of a forthcoming collapse in the climate.

This paper presents five main contributions:

1. We introduce two new efficient, easy-to-implement, and computationally fast estimators for multidimensional
nonlinear SDEs.

2. We establish Lp convergence of the S splitting scheme.
3. We prove consistency and asymptotic normality of the new estimators under the less restrictive assumption of

one-sided Lipschitz. This proof requires innovative approaches.
4. We demonstrate the estimators’ performance in a stochastic version of the chaotic Lorenz system, in contrast

to prior studies that primarily addressed the deterministic Lorenz system.
5. We compare the new estimators to three discrete maximum likelihood estimators from the literature in a

simulation study, comparing the accuracy and computational speed.

The rest of this paper is structured as follows. In Section 2 we introduce the SDE model class and define the splitting
schemes and the estimators. In Section 3, we show that the S splitting has better one-step predictions than the LT,
and we prove that the S splitting is Lp consistent with order 1.5 and Lp convergent with order 1. To the best of
our knowledge, this is a new result. Sections 4 and 5 establish the estimator asymptotics under the less restrictive
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one-sided global Lipschitz assumption. We illustrate in Section 6 the theoretical results in a simulation study on a
model that is not globally Lipschitz, the 3-dimensional stochastic Lorenz systems. Since the objective functions based
on pseudo-likelihoods are multivariate in both data and parameters, we use automatic differentiation (AD) to get faster
and more reliable estimators. We compare the precision and speed of the EM, K, LL, LT, and S estimators. We show
that the EM and LT estimators become biased before the others with increasing discretization step h and that the LL
and S perform the best. However, S is much faster than LL because LL calculates a new covariance matrix for each
combination of data points and parameter values.

Notation. We use capital bold letters for random vectors, vector-valued functions, and matrices, while lowercase bold
letters denote deterministic vectors. ∥ · ∥ denotes both the L2 vector norm in Rd and the matrix norm induced by the L2

norm, defined as the square root of the largest eigenvalue. Superscript (i) on a vector denotes the i-th component, while
on a matrix it denotes the i-th row. Double subscript ij on a matrix denotes the component in the i-th row and j-th
column. If a matrix is a product of more matrices, square brackets with subscripts denote a component inside the matrix.
The transpose is denoted by ⊤. Operator Tr(·) returns the trace of a matrix and det(·) the determinant. Sometimes,
we denote by [ai]

d
i=1 a vector with coordinates ai, and by [bij ]

d
i,j=1 a matrix with coordinates bij , for i, j = 1, . . . , d.

We denote with ∂ig(x) the partial derivative of a generic function g : Rd → R with respect to x(i) and ∂2
ijg(x) the

second partial derivative. The nabla operator ∇ denotes the gradient vector of a function g, ∇g(x) = [∂ig(x)]
d
i=1.

The differential operator D denotes the Jacobian matrix DF(x) = [∂iF
(j)(x)]di,j=1, for a vector-valued function

F : Rd → Rd. H denotes the Hessian matrix of a real-valued function g, Hg(x) = [∂ijg(x)]
d
i,j=1. Let R represent a

vector (or a matrix) valued function defined on (0, 1)×Rd, such that, for some constant C, ∥R(a,x)∥ < aC(1+∥x∥)C
for all a,x. When denoted R, it is a scalar.

The Kronecker delta function is denoted by δji . For an open set A, the bar A indicates closure. We use θ
= to indicate

equality up to an additive constant that does not depend on θ. We write P−→, d−→ and P−a.s.−−−−→ for convergence in
probability, distribution, and almost surely, respectively. Id denotes the d-dimensional identity matrix, while 0d×d is a
d-dimensional zero square matrix. For an event E ∈ F , we denote by ⊮E the indicator function.

2 Problem setup

Let X in (1) be defined on a complete probability space (Ω,F ,Pθ) with a complete right-continuous filtration (Ft)t≥0,
and let the d-dimensional Wiener process W = (Wt)t≥0 be adapted to Ft. The probability measure Pθ is parameterized
by the parameter θ = (β,Σ). Rewrite equation (1) as follows:

dXt = A(β)(Xt − b(β)) dt+N (Xt;β) dt+ΣdWt, X0 = x0, (2)

such that F(x;β) = A(β)(x− b(β)) +N (x;β). Let Θ = Θβ ×ΘΣ be the parameter space with Θβ and ΘΣ being
two open convex bounded subsets of Rr and Rd×d, respectively.

Functions F,N : Rd × Θβ → Rd are locally Lipschitz, and A, b are defined on Θβ and take values in Rd×d and
Rd, respectively. Parameter matrix Σ takes values in Rd×d. The matrix ΣΣ⊤ is assumed to be positive definite
and determines the variance of the process. Since any square root of ΣΣ⊤ induces the same distribution, Σ is only
identifiable up to equivalence classes. Thus, instead of estimating Σ, we estimate ΣΣ⊤. The drift function F in (1)
is split up into a linear part given by matrix A and vector b and a nonlinear part given by N. This decomposition is
essential for defining the splitting schemes and the objective functions used for estimating θ.

We denote the true parameter value by θ0 = (β0,Σ0) and assume that θ0 ∈ Θ. Sometimes we write A0, b0, N0(x)
and ΣΣ⊤

0 instead of A(β0), b(β0), N(x;β0) and Σ0Σ
⊤
0 , when referring to the true parameters. We write A, b, N(x)

and ΣΣ⊤ for any parameter θ. Sometimes, we suppress the parameter to simplify notation. For example, E implicitly
refers to Eθ.

Remark The drift function F(x) can always be rewritten as A(x − b) + N(x) for any A,b by setting N(x) =
F(x)−A(x− b), including choosing A and b to be zero. In this case, the splitting proposed below will result in a
Brownian motion (3) and a nonlinear ODE (4).

Remark We assume additive noise, meaning that the diffusion matrix does not depend on the current state. While
this assumption is natural in some applications, it can be restrictive in others. The proposed methodology could
potentially be extended to reducible diffusions by applying the Lamperti transform to obtain a unit diffusion coefficient,
as demonstrated by Aït-Sahalia (2008). However, if the transform depends on the parameter, estimation is not
straightforward. In this paper, we only consider additive noise.
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2.1 Assumptions

The main assumption is that (2) has a unique strong solution X= (Xt)t∈[0,T ], adapted to (Ft)t∈[0,T ], which follows
from the following first two assumptions (Theorem 2 in Alyushina (1988), Theorem 1 in Krylov (1991), Theorem 3.5
in Mao (2007)). We need the last three assumptions to prove the properties of the estimators.

(A1) Function N is twice continuously differentiable with respect to x and θ, i.e., N ∈ C2. Additionally, it is
one-sided globally Lipschitz continuous with respect to x on Rd ×Θβ , i.e., there exists a constant C > 0 such
that:

(x− y)
⊤
(N(x;β)−N(y;β)) ≤ C∥x− y∥2, ∀x,y ∈ Rd.

(A2) Function N grows at most polynomially in x, uniformly in θ, i.e., there exist constants C > 0 and χ ≥ 1 such
that:

∥N (x;β)−N (y;β) ∥2 ≤ C
(
1 + ∥x∥2χ−2 + ∥y∥2χ−2

)
∥x− y∥2, ∀x,y ∈ Rd.

Additionally, its derivatives are of polynomial growth in x, uniformly in θ.

(A3) The solution X of SDE (1) has invariant probability ν0(dx).

(A4) ΣΣ⊤ is invertible on ΘΣ.

(A5) Function F is identifiable in β, i.e., if F(x,β1) = F(x,β2) for all x ∈ Rd, then β1 = β2.

Assumption (A3) is required for the ergodic theorem to ensure convergence in distribution. Assumption (A4) implies
the ellipticity of model (1), which is not needed for the S estimator. On the contrary, the EM estimator breaks down
in hypoelliptic models. We will treat the hypoelliptic case in a separate paper where the proofs are more involved.
Assumption (A5) ensures the identifiability of the parameter.

Assume a sample (Xtk)
N
k=0 ≡ X0:tN from (2) at time steps 0 = t0 < t1 < · · · < tN = T , which we, for notational

simplicity, assume equidistant with step size h = tk − tk−1.

2.2 Moments

Assumption (A1) ensures finiteness of the moments of the solution X (Tretyakov and Zhang, 2013), i.e.,

E[ sup
t∈[0,T ]

∥Xt∥2p] < C(1 + ∥x0∥2p), ∀ p ≥ 1.

Furthermore, we need the infinitesimal generator L of (1) defined on sufficiently smooth functions g : Rd ×Θ → R
given by:

Lθ0
g (x;θ) = F (x;β0)

⊤ ∇g (x;θ) +
1

2
Tr(ΣΣ⊤

0 Hg(x;θ)).

The moments of SDE (1) are expanded using the following lemma (Lemma 1.10 in Sørensen (2012)).

Lemma 2.1 Let Assumptions (A1)-(A2) hold. Let X be a solution of (1). Let g ∈ C(2l+2) be of polynomial growth and
p ≥ 2. Then,

Eθ0
[g(Xtk ;θ) | Ftk−1

] =

l∑
j=0

hj

j!
Lj
θ0
g(Xtk−1

;θ) +R(hl+1,Xtk−1
).

We need terms up to order R(h3,Xtk−1
). After applying the generator Lθ on g(x) = x(i), the previous Lemma yields:

E[X(i)
tk

| Xtk−1
= x] = x(i) + hF (i)(x) +

h2

2
(F(x)⊤∇F (i)(x) +

1

2
Tr(ΣΣ⊤HF (i)(x))) +R(h3,x).

2.3 Splitting Schemes

Consider the following splitting of (2):

dX
[1]
t = A(X

[1]
t −b) dt+ΣdWt, X

[1]
0 = x0, (3)

dX
[2]
t = N(X

[2]
t ) dt, X

[2]
0 = x0. (4)

6



SDE Parameter Estimation using Splitting Schemes A PREPRINT

The solution of equation (3) is an OU process given by the following h-flow:

X
[1]
tk

= Φ
[1]
h (X

[1]
tk−1

) = eAhX
[1]
tk−1

+(I− eAh)b+ ξh,k, (5)

where ξh,k
i.i.d∼ Nd(0,Ωh) for k = 1, . . . , N (Vatiwutipong and Phewchean, 2019). The covariance matrix Ωh and the

conditional mean of the OU process (5) are provided by:

Ωh =

∫ h

0

eA(h−u)ΣΣ⊤eA
⊤(h−u) du = hΣΣ⊤ +

h2

2
(AΣΣ⊤ +ΣΣ⊤A⊤) +R(h,x0), (6)

µh(x;β) := eA(β)hx+ (I− eA(β)h)b(β). (7)
Assumptions (A1) and (A2) ensure the existence and uniqueness of the solution of (4) (Theorem 1.2.17 in Humphries
and Stuart (2002)). Thus, there exists a unique function fh : Rd ×Θβ → Rd, for h ≥ 0, such that:

X
[2]
tk

= Φ
[2]
h (X

[2]
tk−1

) = fh(X
[2]
tk−1

;β). (8)
For all β ∈ Θβ , the time flow fh fulfills the following semi-group properties:

f0(x;β) = x, ft+s(x;β) = ft(fs(x;β);β), t, s ≥ 0. (9)

Remark Since only one-sided Lipschitz continuity is assumed, the solution to (4) might not exist for all h < 0 and all
x0 ∈ Rd, implying that the inverse f−1

h might not exist. If it exists, then f−1
h = f−h. For the S estimator, we need a

well-defined inverse. This is not an issue when N is globally Lipschitz .

We, therefore, introduce the following and last assumption.

(A6) Function f−1
h (x;β) is defined asymptotically, for all x ∈ Rd,β ∈ Θβ , when h → 0.

Before defining the splitting schemes, we present a useful proposition for expending the nonlinear solution fh (Section
1.8 in (Hairer et al., 1993)).

Proposition 2.2 Let Assumptions (A1)-(A2) hold. When h → 0, the h-flow of (4) is

fh(x) = x+ hN(x) +
h2

2
(DN(x))N(x) +R(h3,x).

Now, we introduce the two most common splitting approximations, which serve as the main building blocks for the
proposed estimators.

Definition 2.3 Let Assumptions (A1) and (A2) hold. The Lie-Trotter and Strang splitting approximations of the solution
of (2) are given by:

X
[LT]
tk

:= Φ
[LT]
h (X

[LT]
tk−1

) = (Φ
[1]
h ◦ Φ[2]

h )(X
[LT]
tk−1

) = µh(fh(X
[LT]
tk−1

)) + ξh,k, (10)

X
[S]
tk

:= Φ
[S]
h (X

[S]
tk−1

) = (Φ
[2]
h/2 ◦ Φ

[1]
h ◦ Φ[2]

h/2)(X
[S]
tk−1

) = fh/2(µh(fh/2(X
[S]
tk−1

)) + ξh,k). (11)

Remark The order of composition in the splitting schemes is not unique. Changing the order in the S splitting leads to
a sum of 2 independent random variables, one Gaussian and one non-Gaussian, whose likelihood is not trivial. Thus,
we only use the splitting (11). The reversed order in the LT splitting can be treated the same way as the S splitting.

Remark Splitting the drift F(x) into a linear and a nonlinear part is not unique. However, all theorems and properties,
particularly consistency and asymptotic normality of the estimators, hold for any splitting choice. Yet, for fixed step size
h and sample size N , certain splittings perform better than others. In this paper, we present two general and intuitive
strategies. The first applies when the system has a fixed point; here, the linear part of the splitting is the linearization
around the fixed point. The linear OU performs accurately near the fixed point, with the nonlinear part correcting for
nonlinear deviations. Simulations consistently show this approach to perform best. Another strategy is to linearize
around the measured average value for each coordinate. An in-depth analysis of the splitting strategies for a specific
example is provided in Section 2.5.

Remark Overall trajectories of the S and LT splittings coincide up to the first h/2 and the last h/2 move of the flow
Φ[2]

h/2. Indeed, when applied k times, the S splitting can be written as:

(Φ[S]
h )k(x0) = (Φ[2]

h/2 ◦ (Φ
[LT]
h )k ◦ Φ[2]

−h/2)(x0).

Thus, it is natural that LT and S have the same order of Lp convergence. We prove this in Section 3. However, the LT
and S trajectories differ in their output points (10) and (11). The S splitting outputs the middle points of the smooth
steps of the deterministic flow (8), while the LT splitting outputs the stochastic increments in the rough steps. We
conjecture that this is one of the reasons why the S splitting has superior statistical properties.

7
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2.4 Estimators

In this section, we first introduce two new estimators, LT and S, given a sample X0:tN . Subsequently, we provide a
brief overview of the EM, K, and LL estimators, which will be compared in the simulation study.

2.4.1 Splitting estimators

The LT scheme (10) follows a Gaussian distribution. Consequently, the objective function corresponds to (twice) the
negative pseudo-log-likelihood:

L[LT](X0:tN ;θ)
θ
= N log(detΩh(θ))

+

N∑
k=1

(Xtk − µh(fh(Xtk−1
;β);β))⊤Ωh(θ)

−1(Xtk − µh(fh(Xtk−1
;β);β)). (12)

The S splitting (11) is a nonlinear transformation of the Gaussian random variable µh(fh/2(Xtk−1
;β);β) + ξh,k. We

first define:

Ztk(β) := f
−1
h/2(Xtk ;β)− µh(fh/2(Xtk ;β);β). (13)

Afterwards, we apply a change of variables to derive the following objective function:

L[S](X0:tN ;θ)
θ
= N log(detΩh(θ)) +

N∑
k=1

Ztk(β)
⊤Ωh(θ)

−1Ztk(β)− 2

N∑
k=1

log |detDf−1
h/2(Xtk ;β)|. (14)

The last term is due to the nonlinear transformation and is an extra term that does not appear in commonly used
pseudo-likelihoods.

The inverse function f−1
h may not exist for all parameters in the search domain of the optimization algorithm.

However, this problem it can often be solved numerically. When f−1
h is well defined, we use the identity

− log |detDf−1
h (x;β) | = log |detDfh (x;β) | in (14) to increase the speed and numerical stability.

Finally, we define the estimators as:

θ̂
[k]
N := argmin

θ
L[k] (X0:tN ;θ) , k ∈ {LT,S}. (15)

2.4.2 Euler-Maruyama

The EM method uses first-order Taylor expansion of (1):

X
[EM]
tk

:= X
[EM]
tk−1

+ hF(X
[EM]
tk−1

;β) + ξ
[EM]
h,k , (16)

where ξ[EM]
h,k

i.i.d.∼ Nd(0, hΣΣ⊤) for k = 1, . . . , N (Kloeden and Platen, 1992). The transition density p[EM](Xtk |
Xtk−1

;θ) is Gaussian, so the pseudo-likelihood follows trivially.

2.4.3 Kessler

The K estimator uses Gaussian transition densities p[K](Xtk | Xtk−1
;θ) with the true mean and covariance of the

solution X (Kessler, 1997). When the moments are unknown, they are approximated using the infinitesimal generator
(Lemma 2.1). We implement the estimator K based on the 2nd-order approximation:

X
[K]
tk

:= X
[K]
tk−1

+ hF(X
[K]
tk−1

;β) + ξ
[K]
h,k(X

[K]
tk−1

)

+
h2

2

(
DF(X

[K]
tk−1

;β)F(X
[K]
tk−1

;β) +
1

2
[Tr(ΣΣ⊤HF (i)(X

[K]
tk−1

;β))]di=1

)
,

(17)

where ξ[K]
h,k(X

[K]
tk−1

) ∼ Nd(0,Ω
[K]
h,k(θ)), and Ω[K]

h,k(θ) = hΣΣ⊤ + h2

2 (DF(X
[K]
tk−1

;β)ΣΣ⊤ +ΣΣ⊤D⊤F(X
[K]
tk−1

;β)).
The covariance matrix is not constant which makes the algorithm slower for a larger sample size.
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2.4.4 Ozaki’s local linearization

Ozaki’s LL method approximates the drift of (1) between consecutive observations by a linear function (Jimenez et al.,
1999). The LL method consists of the following steps:

(1) Perform LL of the drift F in each time interval [t, t+ h) by the Itô-Taylor series;
(2) Compute the analytic solution of the resulting linear SDE.

The approximation becomes:

X
[LL]
tk

:= X
[LL]
tk−1

+Φ[LL]
h (X

[LL]
tk−1

;θ) + ξ
[LL]
h,k (X

[LL]
tk−1

), (18)

where Ω
[LL]
h,k (θ) =

∫ h

0
e
DF(X

[LL]
tk−1

;β)(h−u)
ΣΣ⊤e

DF(X
[LL]
tk−1

;β)⊤(h−u)
du and ξ[LL]h,k (X

[LL]
tk−1

) ∼ Nd(0,Ω
[LL]
h,k (θ)). More-

over,

Φ[LL]
h (x;θ) = Rh,0(DF(x;β))F(x;β) + (hRh,0(DF(x;β))−Rh,1(DF(x;β)))M(x;θ),

Rh,i(DF(x;β)) =

∫ h

0

exp(DF(x;β)u)ui du, i = 0, 1,

M(x;θ) =
1

2
(TrH1(x;θ),TrH2(x;θ), ...,TrHd(x;θ))

⊤,

Hk(x;θ) =

[
[ΣΣ⊤]ij

∂2F (k)

∂x(i)∂x(j)
(x)

]d
i,j=1

.

Building on the approach by Gu et al. (2020), we can efficiently compute Rh,i and Ω
[LL]
h,k (θ) using the following

procedure. To begin, let us define three block matrices:

P1(x) =

[
0d×d Id
0d×d DF(x;β)

]
,P2(x) =

[−DF(x;β) Id 0d×d

0d×d 0d×d Id
0d×d 0d×d 0d×d

]
,P3(x) =

[
DF(x;β) ΣΣ⊤

0d×d −DF(x;β)⊤

]
.

(19)

Then, we compute the matrix exponential of matrices hP1(x) and hP2(x):

exp(hP1(x)) =

[
⋆ Rh,0(DF(x;β))

0d×d ⋆

]
, exp(hP2(x)) =

[
⋆ ⋆ BRh,1

(DF(x;β))
0d×d ⋆ ⋆
0d×d 0d×d ⋆

]
.

Starting with the first matrix, we derive Rh,0(DF(x;β)). Then, we compute Rh,1(DF(x;β)) using the formula
Rh,1(DF(x;β)) = exp(hDF(x;β))BRh,1

(DF(x;β)). The terms marked with ⋆ symbols can be disregarded.
Finally, we obtain Ω

[LL]
h,k (θ) from the matrix exponential:

exp(hP3(x)) =

[
BΩh,k

(DF(x;β);θ) CΩh,k
(DF(x;β);θ)

0d×d ⋆

]
,

Ω
[LL]
h,k (θ) = CΩh,k

(DF(x;β);θ)BΩh,k
(DF(x;β);θ)⊤.

Thus, we have a Gaussian density p[LL](Xtk | Xtk−1
;θ) and standard likelihood inference. Like in the case of K,

the covariance matrix Ω
[LL]
h,k (θ) depends on the previous state X

[LL]
tk−1

, which is a major downside since it is harder to
implement and slower to run due to the computation of N − 1 covariance matrices. Unlike K, LL does not use Taylor
expansions of the approximated drift and covariance matrix, so the influence of the sample size N on computational
times is much stronger. For details on the derivations of the previous formulas, see Gu et al. (2020).

2.5 An example: the stochastic Lorenz system

The Lorenz system is a 3D system introduced by Lorenz (1963) to model atmospheric convection. The model is
originally deterministic exhibiting deterministic chaos. It means that tiny differences in initial conditions lead to
unpredictable and widely diverging trajectories. The Lorenz system evolves around two strange attractors. It means that
the trajectories remain within some bounded region, while points that start in close proximity may eventually separate

9
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Figure 1: An example trajectory of the stochastic Lorenz system (20) starting at (0, 1, 0) for N = 10000 and h = 0.005.
The first row shows the evolution of the individual components X,Y , and Z. The second row shows the evolution of
component pairs: (Y, Z), (X,Z) and (X,Y ). Parameters are p = 10, r = 28, c = 8/3, σ2

1 = 1, σ2
2 = 2 and σ2

3 = 1.5.

by arbitrary distances as time progresses. (Hilborn and Hilborn, 2000). We add noise to include unmodelled forces and
randomness in the Lorenz system . The stochastic Lorenz system is given by:

dXt = p(Yt −Xt) dt+ σ1 dW
(1)
t ,

dYt = (rXt − Yt −XtZt) dt+ σ2 dW
(2)
t ,

dZt = (XtYt − cZt) dt+ σ3 dW
(3)
t .

(20)

The variables Xt, Yt, and Zt represent convective intensity, and horizontal and vertical temperature differences,
respectively. Parameters p, r, and c denote the Prandtl number, the Rayleigh number, and a geometric factor, respectively
(Tabor, 1989). Lorenz (1963) used the values p = 10, r = 28 and c = 8/3, yielding chaotic behavior.

The system does not fulfill the global or the one-sided Lipschitz condition because it is a second-order polynomial
(Humphries and Stuart, 1994). However, it has a unique global solution and an invariant probability (Keller, 1996).
Thus, all assumptions (A2)-(A5), except (A1) hold. Even so, we show in Section 6 that the estimators work.

Different approaches for estimating parameters in the Lorenz system have been proposed, mostly in the deterministic
case. Zhuang et al. (2020) and Lazzús et al. (2016) used sophisticated optimization algorithms to achieve better
precision. Dubois et al. (2020) and Ann et al. (2022) used deep neural networks in combination with other machine
learning algorithms. Ozaki et al. (2000) used Kalman filtering based on LL on the stochastic Lorenz system.

Figure 1 shows an example trajectory of the stochastic Lorenz system. The trajectory was generated by subsampling
from an EM simulation, such that N = 10000 and h = 0.05, with parameter values p = 10, r = 28, c = 8/3, σ2

1 = 1,
σ2
2 = 2 and σ2

3 = 1.5. Even if the trajectory had not been stochastic, the unpredictable jumps in the first row of Figure 1
would still have been there due to the chaotic behavior .

We suggest to split SDE (20) by choosing the OU part (3) as the linearization around one of the two fixed points
(x⋆, y⋆, z⋆) = (±

√
c(r − 1),±

√
c(r − 1), r − 1). For simplicity, we exclude the fixed point (0, 0, 0) since X and Y

spend little time around this point, see Figure 1. Specifically, we apply a mixture of two splittings, linearizing around
(
√
c(r − 1),

√
c(r − 1), r− 1) when X > 0 and around (−

√
c(r − 1),−

√
c(r − 1), r− 1) when X < 0. We denote

these estimators by LTmix and Smix. The splitting is given by:

Amix =

[−p p 0
1 −1 −x⋆

y⋆ x⋆ −c

]
, bmix =

[
x⋆

y⋆

z⋆

]
, Nmix(x, y, z) =

[
0

−(x− x⋆)(z − z⋆)
(x− x⋆)(y − y⋆)

]
.

10



SDE Parameter Estimation using Splitting Schemes A PREPRINT

The OU process is mean-reverting towards bmix = (x⋆, y⋆, z⋆). The nonlinear solution is

fmix,h(x, y, z) =

[
x

(y − y⋆) cos(h(x− x⋆))− (z − z⋆) sin(h(x− x⋆)) + y⋆

(y − y⋆) sin(h(x− x⋆)) + (z − z⋆) cos(h(x− x⋆)) + z⋆

]
.

The solution is a composition of a 3D rotation and translation of (y, z) around the fixed point. The inverse always exists,
and thus, Assumption (A6) holds. Moreover, detDf−1

mix,h(x, y, z) = 1.

The mixing strategy does not increase the complexity of the implementation significantly, and it is straightforward to
incorporate into the existing framework. Thus, this splitting strategy is convenient when the model has several fixed
points.

An alternative splitting linearizes around the average of the observations. Let (µx, µx, µz) be the average of the data,
where we put µx = µy since the difference of their averages is small, around 10−3. We denote these estimators by
LTavg and Savg.The splitting is given by:

Aavg =

[ −p p 0
r − µz −1 −µx

µx µx −c

]
, bavg =

[
µx

µx

µz

]
, Navg(x, y, z) =

 0
−(x− µx)(z − µz) + (r − 1− µz)µx

(x− µx)(y − µx) + µ2
x − cµz

 .

The nonlinear solution is:

favg,h(x, y, z) =

 µx

µx +
cµz−µ2

x

x−µx

µz +
µx(r−1−µz)

x−µx


+

 x− µx

(y − µx − cµz−µ2
x

x−µx
) cos(h(x− µx))− (z − µz − µx(r−1−µz)

x−µx
) sin(h(x− µx))

(y − µx − cµz−µ2
x

x−µx
) sin(h(x− µx)) + (z − µz − µx(r−1−µz)

x−µx
) cos(h(x− µx))

 ,

where we define favg,h(µx, y, z) = (µx, y + hµx(r − 1− µz), z + hµ2
x − cµz)

⊤. Again, detDf−1
avg,h(x, y, z) = 1.

3 Order of one-step predictions and Lp convergence

In this Section, we investigate Lp convergence of the splitting schemes and the order of the one-step predictions. Theo-
rem 2.1 in Tretyakov and Zhang (2013) extends Milstein’s fundamental theorem on Lp convergence for global Lipschitz
coefficients (Milstein, 1988) to Assumptions (A1) and (A2). This theorem provides the theoretical underpinning for our
approach, drawing on the key concepts of Lp consistency and boundedness of moments.

Definition 3.1 (Lp consistency of a numerical scheme) The one-step approximation Φ̃h of the solution X is Lp con-
sistent, p ≥ 1, of order q2 − 1/2≥ 0, if for k = 1, . . . , N , and some q1 ≥ q2 + 1/2:

∥E[Xtk − Φ̃h(Xtk−1
) | Xtk−1

= x]∥ = R(hq1 ,x),

(E[∥Xtk − Φ̃h(Xtk−1
)∥2p | Xtk−1

= x])
1
2p = R(hq2 ,x),

Definition 3.2 (Bounded moments of a numerical scheme) A numerical approximation X̃ of the solution X has
bounded moments, if for all p ≥ 1,there exists constant C > 0, such that, for k = 1, . . . , N :

E[∥X̃tk∥2p] ≤ C(1 + ∥x0∥2p).

The following theorem (Theorem 2.1 in Tretyakov and Zhang (2013)) gives sufficient conditions for Lp convergence of
a numerical scheme in a one-sided Lipschitz framework.

Theorem 3.3 (Lp convergence of a numerical scheme) Let Assumptions (A1) and (A2) hold, and let X̃tk be a nu-
merical approximation of the solution Xtk of (1) at time tk. If

(1) The one-step approximation X̃tk = Φ̃h(X̃tk−1
) is Lp consistent of order q2 − 1/2; and

(2) X̃ has bounded moments,

then, the numerical method X̃ is Lp convergent, p ≥ 1, of order q2 − 1/2, i.e., for k = 1, . . . , N , it holds:

(E[∥Xtk − X̃tk∥2p])
1
2p = R(hq2−1/2,x0).

11
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3.1 Lie-Trotter splitting

We first show that the one-step LT approximation is of order R(h2,x0) in mean. The following proposition is proved in
the Supplementary Material (Pilipovic et al., 2023) for scheme (10), as well as for the reversed order of composition.
We demonstrate that the order of one-step prediction can not be improved unless the drift F is linear.

Proposition 3.4 (One-step prediction of LT splitting) Let Assumptions (A1) and (A2) hold, let X be the solution to
SDE (1) and let Φ[LT]

h be the LT approximation (10). Then, for k = 1, . . . , N , it holds:

∥E[Xtk − Φ
[LT]
h (Xtk−1

) | Xtk−1
= x]∥ = R(h2,Xtk−1

).

Lp convergence of the LT splitting scheme is established in Theorem 2 in Buckwar et al. (2022), which we repeat here
for convenience.

Theorem 3.5 (Lp convergence of the LT splitting) Let Assumptions (A1) and (A2) hold, let X[LT] be the LT approx-
imation defined in (10), and let X be the solution of (1). Then, there exists C ≥ 1 such that for all p ≥ 2, and
k = 1, . . . , N , it holds:

(E[∥Xtk −X
[LT]
tk

∥p])
1
p = R(h,x0).

Now, we investigate the same properties for the S splitting.

3.2 Strang splitting

The following proposition states that the S splitting (11) has higher order one-step predictions than the LT splitting (10).
The proof can be found in Supplementary Material (Pilipovic et al., 2023).

Proposition 3.6 Let Assumptions (A1) and (A2) hold, let X be the solution to (1), and let Φ[S]
h be the S splitting

approximation (11). Then, for k = 1, . . . , N , it holds:

∥E[Xtk − Φ
[S]
h (Xtk−1

) | Xtk−1
= x]∥ = R(h3,Xtk−1

). (21)

Remark Even though LT and S have the same order of Lp convergence, the crucial difference is in the one-step predic-
tion. The approximated transition density between two consecutive data points depends on the one-step approximation.
Thus, the objective function based on pseudo-likelihood from the S splitting is more precise than the one from the LT.

To prove Lp convergence of the S splitting scheme for (1) with one-sided Lipschitz drift, we follow the same procedure
as in Buckwar et al. (2022). The proof of the following theorem is in Section 7.1.

Theorem 3.7 (Lp convergence of S splitting) Let Assumptions (A1), (A2) and (A6) hold, let X[S] be the S splitting
defined in (11), and let X be the solution of (1). Then, there exists C ≥ 1 such that for all p ≥ 2 and k = 1, . . . , N , it
holds:

(E[∥Xtk −X
[S]
tk
∥p])

1
p = R(h,x0).

Before we move to parameter estimation, we prove a useful corollary.

Corollary 3.8 Let all assumptions from Theorem 3.7 hold. Then, (E[∥Ztk − ξh,k∥p])1/p = R(h,x0).

Proof From the definition of Ztk in (13), it is enough to prove that:

(E[∥f−1
h/2(Xtk)− µh(fh/2(Xtk−1

))− ξh,k∥p])1/p = R(h,x0).

From (11) we have that ξh,k = f−1
h/2(X

[S]
tk
)− µh(fh/2(X

[S]
tk−1

)). Then,

E[∥f−1
h/2(Xtk)− µh(fh/2(Xtk−1

))− ξh,k∥p]1/p

≤ C(E[∥f−1
h/2(Xtk)− f

−1
h/2(X

[S]
tk
)∥p] + E[∥fh/2(Xtk−1

)− fh/2(X
[S]
tk−1

)∥p])1/p

≤ C(E[∥Xtk −X
[S]
tk
∥p] + E[∥Xtk−1

−X
[S]
tk−1

∥p])1/p +R(h,x0).

We used Proposition 2.2, together with the fact that X and X[S] have finite moments and fh/2 and f−1
h/2 grow

polynomially. The result follows from Lp convergence of the S splitting scheme, Theorem 3.7.

12
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4 Auxiliary properties

This paper centers around proving the properties of the S estimator. There are two reasons for this. First, most numerical
properties in the literature are proved only for LT splitting because proofs for S splitting are more involved. Here,
we establish both the numerical properties of the S splitting as well as the properties of the estimator. Second, the S
splitting introduces a new pseudo-likelihood that differs from the standard Gaussian pseudo-likelihoods. Consequently,
standard tools, like those proposed by Kessler (1997), do not directly apply.

The asymptotic properties of the LT estimator are the same as for the S estimator. However, the following auxiliary
properties will be stated and proved only for the S estimator. They can be reformulated for the LT estimator following
the same logic.

Before presenting the central results for the estimator, we establish the groundwork with two essential lemmas that rely
on the model assumptions. Lemma 4.1 (Lemma 6 in Kessler (1997)) deals with the p-th moments of the solution of the
SDE increments and also provides a moment bound of a polynomial map of the solution. The proof of this lemma,
presented in Section 7.2, differs from that in Kessler (1997) due to our relaxation of the global Lipschitz assumption of
the drift F. Instead, we use a one-sided Lipschitz condition for the drift function F in conjunction with the generalized
Grönwall’s inequality (Lemma 2.3 in Tian and Fan (2020) stated in Supplementary Material (Pilipovic et al., 2023)) to
establish the result.

Lemma 4.2 (Lemma 8 in Kessler (1997), Lemma 2 in Sørensen and Uchida (2003)) constitutes a central ergodic
property that is essential for establishing the asymptotic behavior of the estimator. The proof when the drift F is
one-sided Lipschitz is identical to the one presented in Kessler (1997), particularly when combined with Lemma 4.1.

Lemma 4.1 Let Assumptions (A1) and (A2) hold. Let X be the solution of (1). For tk ≥ t ≥ tk−1, where h =
tk − tk−1 < 1, the following two statements hold.

(1) For p ≥ 1, there exists Cp > 0 that depends on p, such that:

E[∥Xt −Xtk−1
∥p | Ftk−1

] ≤ Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp .

(2) If g : Rd ×Θ → R is of polynomial growth in x uniformly in θ, then there exist constants C and Ct−tk−1
that

depends on t− ttk−1
, such that:

E[|g(Xt;θ)| | Ftk−1
] ≤ Ct−tk−1

(1 + ∥Xtk−1
∥)C .

Lemma 4.2 Let Assumptions (A1), (A2) and (A3) hold, and let X be the solution to (1). Let g : Rd × Θ → R be a
differentiable function with respect to x and θ with derivative of polynomial growth in x, uniformly in θ. If h → 0 and
Nh → ∞, then,

1

N

N∑
k=1

g (Xtk ,θ)
Pθ0−−−−−→

Nh→∞
h→0

∫
g (x,θ) dν0(x),

uniformly in θ.

Lastly, we state the moment bounds needed for the estimator asymptotics. The proof is in Supplementary Material
(Pilipovic et al., 2023).

Proposition 4.3 (Moment Bounds) Let Assumptions (A1), (A2) and (A6) hold. Let X be the solution of (1), and Ztk
as defined in (13). Let g(x;β) be a generic function with derivatives of polynomial growth, and β ∈ Θβ . Then, for
k = 1, . . . , N , the following moment bounds hold:

(i) Eθ0
[Ztk(β0) | Xtk−1

= x] = R(h3,Xtk−1
)

(ii) Eθ0
[Ztk(β0)g(Xtk ;β)

⊤ | Xtk = x] = h
2 (ΣΣ⊤

0 D
⊤g(x;β) +Dg(x;β)ΣΣ⊤

0 ) +R(h2,Xtk−1
);

(iii) Eθ0 [Ztk(β0)Ztk(β0)
⊤ | Xtk−1

= x] = hΣΣ⊤
0 +R(h2,Xtk−1

).

5 Asymptotics

The estimators θ̂N are defined in (15). However, we do not need the full objective functions (12) and (14) to prove
consistency and asymptotic normality. It is enough to approximate the covariance matrix Ωh up to the second order by

13
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hΣΣ⊤ + h2

2 (AΣΣ⊤ +ΣΣ⊤A⊤) (see equation (6)). Indeed, after applying Taylor series on the inverse of Ωh, we
get:

Ωh(θ)
−1=

1

h
(ΣΣ⊤)−1(I+

h

2
(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1)−1) +R(h,x0)

=
1

h
(ΣΣ⊤)−1(I− h

2
(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1) +R(h,x0)

=
1

h
(ΣΣ⊤)−1 − 1

2
((ΣΣ⊤)−1A(β) +A(β)⊤(ΣΣ⊤)−1) +R(h,x0).

Similarly, we approximate the log-determinant as:

log detΩh(θ)= log det(hΣΣ⊤ +
h2

2
(A(β)ΣΣ⊤ +ΣΣ⊤A(β)⊤)) +R(h2,x0)

θ
= log detΣΣ⊤+ log det(I+

h

2
(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1)) +R(h2,x0)

= log detΣΣ⊤ +
h

2
Tr(A(β) +ΣΣ⊤A(β)⊤(ΣΣ⊤)−1) +R(h2,x0)

= log detΣΣ⊤ + hTrA(β) +R(h2,x0).

Using the same approximation we obtain:

2 log |detDfh/2 (x;β) |= 2 log |det(I+ h

2
DN(x;β))|

= 2 log |1 + h

2
TrDN(x;β)|+R(h,x)

= hTrDN(x;β) +R(h2,x0)

Subsequently, retaining terms up to order R(Nh2,x0) from objective functions (12) and (14), we establish the
approximate objective functions:

L[LT]
N (θ) := N log detΣΣ⊤+NhTrA(β)

+
1

h

N∑
k=1

(Xtk − µh(fh(Xtk−1
;β);β))⊤(ΣΣ⊤)−1(Xtk − µh(fh(Xtk−1

;β);β)) (22)

−
N∑

k=1

(Xtk − µh(fh(Xtk−1
;β);β))⊤(ΣΣ⊤)−1A(β)(Xtk − µh(fh(Xtk−1

;β);β))

L[S]
N (θ) := N log detΣΣ⊤+NhTrA(β) +

1

h

N∑
k=1

Ztk(β)
⊤(ΣΣ⊤)−1Ztk(β)

−
N∑

k=1

Ztk(β)
⊤(ΣΣ⊤)−1A(β)Ztk(β) + h

N∑
k=1

TrDN(Xtk ;β). (23)

Unlike other likelihood-based methods, such as Kessler (1997), Aït-Sahalia (2002, 2008), Choi (2013, 2015), Yang
et al. (2019), our estimators do not involve expansions. The objective functions are formulated in simple terms without
hyperparameters, such as the order of the expansions. Hence, our approach is robust and user-friendly, as we directly
employ (12) and (14) without requiring approximations. However, we leverage the approximations (22) and (23) for
the mathematical analysis and the proofs.

5.1 Consistency

Now, we state the consistency of β̂N and Σ̂Σ
⊤
N . The proof of Theorem 5.1 is in Section 7.3.

Theorem 5.1 Let Assumptions (A1)-(A6) hold, X be the solution of (1), and θ̂N = (β̂N , Σ̂Σ
⊤
N ) be the estimator that

minimizes one of objective functions (22) or (23). If h → 0 and Nh → ∞, then,

β̂N

Pθ0−−→ β0, Σ̂Σ
⊤
N

Pθ0−−→ ΣΣ⊤
0 .

14
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5.2 Asymptotic normality

In this Section, we state the asymptotic normality of the estimator. First, we need some preliminaries. Let ρ > 0 and
Bρ (θ0) = {θ ∈ Θ | ∥θ − θ0∥ ≤ ρ} be a ball around θ0. Since θ0 ∈ Θ, for sufficiently small ρ > 0, Bρ(θ0) ∈ Θ. Let
LN be one of the two objective functions (22) or (23). For θ̂N ∈ Bρ (θ0), the mean value theorem yields:(∫ 1

0

HLN
(θ0 + t(θ̂N − θ0)) dt

)
(θ̂N − θ0) = −∇LN (θ0) . (24)

With ς := vech(ΣΣ⊤) = ([ΣΣ⊤]11, [ΣΣ⊤]12, [ΣΣ⊤]22, ..., [ΣΣ⊤]1d, ..., [ΣΣ⊤]dd), we half-vectorize ΣΣ⊤ to
avoid working with tensors when computing derivatives with respect to ΣΣ⊤. Since ΣΣ⊤ is a symmetric d× d matrix,
ς is of dimension s = d(d + 1)/2. For a diagonal matrix, instead of a half-vectorization, we use ς := diag(ΣΣ⊤).
Define:

CN (θ) :=

[
1

Nh∂ββLN (θ) 1
N

√
h
∂βςLN (θ)

1
N

√
h
∂βςLN (θ) 1

N ∂ςςLN (θ)

]
, (25)

sN :=

[√
Nh(β̂N − β0)
√
N(ς̂N − ς0)

]
, λN :=

−
1√
Nh

∂βLN (θ0)

− 1√
N

∂ςLN (θ0)

 , (26)

and DN :=
∫ 1

0
CN (θ0 + t(θ̂N − θ0)) dt. Then, (24) is equivalent to DNsN = λN . Let:

C(θ0) :=

[
Cβ(θ0) 0r×s

0s×r Cς(θ0)

]
, (27)

where:

[Cβ(θ0)]i1,i2 :=

∫
(∂βi1

F0(x))
⊤(ΣΣ⊤

0 )
−1(∂βi2

F0(x)) dν0(x), 1 ≤ i1, i2 ≤ r,

[Cς(θ0)]j1,j2 :=
1

2
Tr((∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1(∂ςj2ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1), 1 ≤ j1, j2 ≤ s.

Now, we state the theorem for asymptotic normality, whose proof is in Section 7.4.

Theorem 5.2 Let Assumptions (A1)-(A6) hold, X be the solution of (1), and θ̂N = (β̂N , ς̂N ) be the estimator that
minimizes one of the objective functions (22) or (23). If θ0 ∈ Θ, C(θ0) is positive definite, h → 0, Nh → ∞, and
Nh2 → 0, then, [√

Nh(β̂N − β0)√
N(ς̂N − ς0)

]
d−→ N (0,C−1(θ0)), (28)

under Pθ0 .

The estimator of the diffusion parameter converges faster than the estimator of the drift parameter. Gobet (2002) showed
that for a discretely sampled SDE model, the optimal convergence rates for the drift and diffusion parameters are
1/

√
Nh and 1/

√
N , respectively. Thus, our estimators reach optimal rates. Moreover, the estimators are asymptotically

efficient since C is the Fisher information matrix for the corresponding continuous-time diffusion (see Kessler (1997),
Gobet (2002)). Finally, since the asymptotic correlation is zero between the drift and diffusion estimators , they are
asymptotically independent.

6 Simulation study

This Section presents the simulation study of the Lorenz system, illustrating the theory and comparing the proposed
estimators with other likelihood-based estimators from the literature. We briefly recall the estimators, describe the
simulation process and the optimization in the programming language R (R Core Team, 2022), and present and analyze
the results.
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6.1 Estimators used in the study

The EM transition distribution (16) for the Lorenz system (20) is:[
Xtk
Ytk
Ztk

]
|

[
Xtk−1

Ytk−1

Ztk−1

]
=

[
x
y
z

]
∼ N

[ x+ hp(y − x)
y + h(rx− y − xz)
z + h(xy − cz)

]
,

hσ2
1 0 0

0 hσ2
2 0

0 0 hσ2
3

 .

We do not write the closed-form distributions for the K (17) and LL (18) estimators, but we use the corresponding
formulas to implement the likelihoods. We implement the two splitting strategies proposed in Section 2.5, leading
to four estimators: LTmix,LTavg,Smix, and Savg. To further speed up computation time, we use the same trick for
calculating Ωh in (6) as the one suggested by Gu et al. (2020) for calculating Ω[LL]

h . Namely, for the splitting schemes,
we adapt P3 from (19) accordingly:

P3 =

[
A ΣΣ⊤

0d×d −A⊤

]
.

Therefore, computing exp(hP3) circumvents the need for evaluating the integral in Ωh (6), following the approach
described in Section 2.4.4.

6.2 Trajectory simulation

To simulate sample paths, we use the EM discretization with a step size of hsim = 0.0001, which is small enough
for the EM discretization to perform well. Then, we sub-sample the trajectory to get a larger time step h, decreasing
discretization errors. We perform M = 1000 Monte Carlo repetitions.

6.3 Optimization in R

To optimize the objective functions we use the R package torch (Falbel and Luraschi, 2022), which uses AD instead
of the traditional finite differentiation used in optim. The two main advantages of AD are precision and speed.
Finite differentiation is subject to floating point precision errors and is slow in high dimensions (Baydin et al., 2017).
Conversely, AD is exact and fast and thus used in numerous applications, such as MLE or training neural networks.

We tried all available optimizers in the torch package and chose the resilient backpropagation algorithm optim_rprop
based on Riedmiller and Braun (1992). It performed faster than the rest and was more precise in finding the global
minimum. We used the default hyperparameters and set the optimization iterations to 200. We chose the precision
of 10−5 between the updated and the parameters from the previous iteration as the convergence criteria. For starting
values, we used (0.1, 0.1, 0.1, 0.1, 0.1, 0.1). All estimators converged after approximately 80 iterations.

6.4 Comparing criteria

We compare seven estimators based on their precision and speed. For the precision, we compute the absolute relative
error (ARE) for each component θ̂(i)N of the estimator θ̂N :

ARE(θ̂
(i)
N ) =

1

M

M∑
r=1

|θ̂(i)N,r − θ
(i)
0,r|

θ
(i)
0,r

.

For S and LL, we compare the distributions of θ̂N − θ0 to investigate the precision more closely.

The running times are calculated using the tictoc package in R, measured from the start of the optimization step until
the convergence criterion is met. To avoid the influence of running time outliers, we compute the median over M
repetitions.

6.5 Results

In Figure 2, AREs are shown as a function of the discretization step h. For a clearer comparison, we use the log scale
on the y axis. While most estimators work well for a step size no greater than 0.01, only LL, Smix, and Savg perform
well for h = 0.05. The LTavg is not competitive even for h = 0.005. The performance of LTmix varies, sometimes
approaching the performance of K, while other times performing similarly to EM. Thus, LTmix is not a good choice for
this specific model. The bias of EM starts to show for h = 0.01 escalating for h = 0.05. The largest bias appears in the
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Figure 2: Comparing the absolute relative error (ARE) as a function of increasing h for seven different estimators in the
stochastic Lorenz system. The estimators are obtained for sample sizes of N = 10000. The y-axis is on a log scale.

diffusion parameters, which is due to the poor approximation of ΩEM
h . K is less biased than EM except for p and r

when h = 0.05. Note how some parameters are estimated better for larger h when N is fixed. This is due to a longer
observation interval T = Nh, reflecting the

√
Nh rate of convergence.

Since Smix, Savg, and LL perform the best with large time steps, we zoom in on their distributions in Figure 3. To make
the figure clearer, we removed some outliers for σ2

1 and σ2
2 . This did not change the shape of the distributions, it only

truncated the tails. The three estimators perform similarly, especially for small h. For h = 0.05, the drift parameters are
underestimated by approximately 5− 10%, while the diffusion parameters are overestimated by up to 20%. Both S
estimators exhibited superior performance compared to LL, except for the parameters p and σ2

1 .

While the LL and S estimators perform similarly in terms of precision, Figure 4 shows the superiority of the S estimators
over LL in computational costs. The LL becomes increasingly computationally expensive for increasing N because it
calculates N covariance matrices for each parameter value. The second slowest estimator is Smix, followed by LTmix,
Savg, K, LTavg, and, finally, EM is the fastest. The speed of EM is almost constant in N. Additionally, it seems that the
running times do not depend on h. Thus, we recommend using the S estimators, especially for large N .

Figures 5 and 6 show that the theoretical results hold for the Smix and LTmix estimators. We compare how the
distributions of θ̂N −θ0 change with sample size N and step size h. With increasing N , the variance decreases, whereas
the mean does not change. For that, we need smaller h. To obtain negligible bias for LTmix, we need a step size smaller
than h = 0.005 . However, Smix is practically unbiased up to h = 0.01. This shows that LT estimators might not be a
good choice in practice, while S estimators are.

The solid black lines in Figures 5 and 6 represent the theoretical asymptotic distributions for each parameter computed
from (28). For the Lorenz system (20), the precision matrix (27) is given by:

C(θ0) = diag

(∫
(y − x)2

σ2
1,0

dν0(x),

∫
x2

σ2
2,0

dν0(x),

∫
z2

σ2
3,0

dν0(x),
1

2σ4
1,0

,
1

2σ4
2,0

,
1

2σ4
3,0

)
.

The integrals are approximated by taking the mean over all data points and all Monte Carlo repetitions.

Some outliers of σ̂2
2 are removed from Figures 5 and 6 by truncating the tails.
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Figure 3: Comparison of the normalized distributions of (θ̂N − θ0)⊘ θ0 (where ⊘ is the element-wise division) in the
Lorenz system for the Smix, Savg, and LL estimators for N = 10000. Each column represents one parameter, and each
row represents one value of the discretization step h. A black dot with a vertical bar in each violin plot represents the
mean and the standard deviation.

Figure 4: Running times as a function of N for different estimators of the Lorenz system. Each column shows one
value of h. On the x-axis is the sample size N , and on the y-axis is the running time in seconds.

7 Proofs

7.1 Proof of Lp convergence of the splitting scheme

The proof of Proposition 3.6 is in Supplementary Material (Pilipovic et al., 2023). Here, we present the proof of Lp

convergence stated in Theorem 3.7.
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Figure 5: Comparing distributions of θ̂N − θ0 for the Smix estimator with theoretical asymptotic distributions (28) for
each parameter (columns), for h = 0.01 and N ∈ {1000, 5000, 10000} (colors). The black lines correspond to the
theoretical asymptotic distributions computed from data and true parameters for N = 10000 and h = 0.01.

Figure 6: Comparing distributions of θ̂N − θ0 for the LTmix estimator with theoretical asymptotic distributions (28)
for each parameter (columns), for h ∈ {0.005, 0.01} (rows) and N ∈ {1000, 5000, 10000} (colors). The black lines
correspond to the theoretical asymptotic distributions computed from data and true parameters for N = 10000 and
corresponding h.

Proof of Theorem 3.7 We use Theorem 3.3 to prove Lp convergence. It is sufficient to prove the two conditions (1)
and (2). To prove condition (1), we need to prove the following property:

(E[∥Xtk − Φ
[S]
h (Xtk−1

)∥p | Xtk−1
= x])

1
p = R(hq2 ,x),

where q2 = 3/2. We start with ∥Xtk − Φ
[S]
h (Xtk−1

)∥p = ∥Xtk −Xtk−1
− hF(Xtk−1

)− ξh,k +R(h3/2,Xtk−1
)∥p.

For more details on the expansion of Φ[S]
h , see Supplementary Material (Pilipovic et al., 2023). We approximate

ξh,k =
∫ tk
tk−1

eA(tk−s)ΣdWs by:

ξh,k =

∫ tk

tk−1

(I+ (tk−s)A)ΣdWs +R(h2,Xtk−1
)

= Σ(Wtk −Wtk−1
) +AΣ

∫ tk

tk−1

(tk − s) dWs +R(h2,Xtk−1
).
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Using the fact that
∫ tk
tk−1

(tk − s) dWs ∼ N (0, h3

3 I), we deduce that ξh,k = Σ(Wtk −Wtk−1
) +R(h3/2,Xtk−1

).
Then, Hölder’s inequality yields:

∥Xtk −Xtk−1
− hF(Xtk−1

)−Σ(Wtk −Wtk−1
)∥p

≤ hp−1

∫ tk

tk−1

∥(F(Xs)− F(Xtk−1
))∥p ds.

Assumption (A2), the integral norm inequality, Cauchy-Schwartz, and Hölder’s inequalities, together with the mean
value theorem yield:

E[∥Xtk − Φ
[S]
h (Xtk−1

)∥p | Xtk−1
= x]

≤ C(E[hp−1

∫ tk

tk−1

∥F(Xs)− F(Xtk−1
)∥p ds | Xtk−1

= x])

≤C(hp−1

∫ tk

tk−1

E[∥Xs −Xtk−1
∥p∥

∫ 1

0

DxF(Xs − u(Xs −Xtk−1
)) du∥p | Xtk−1

= x] ds)

≤ C

(
hp−1

∫ tk

tk−1

(E[∥Xs −Xtk−1
∥2p | Xtk−1

= x])
1
2

(E[∥
∫ 1

0

DxF(Xs − u(Xs −Xtk−1
)) du∥2p | Xtk−1

= x])
1
2 ds

)
≤ C(hp−1

∫ tk

tk−1

h
p
2 ds) = R(h3p/2,x).

In the last line, we used Lemma 4.1. This proves condition (1) of Theorem 3.3.

Now, we prove condition (2). We use (5) and (11) to write X
[S]
tk

= fh/2(e
Ah(fh/2(X

[S]
tk−1

)−X
[1]
tk−1

) +X
[1]
tk
). Define

Rtk := eAh(fh/2(X
[S]
tk
) − X

[1]
tk
), and use the associativity (9) to get Rtk = eAh(fh(Rtk−1

+ X
[1]
tk
) − X

[1]
tk
). The

proof of the boundness of the moments of Rtk is the same as in Lemma 2 in Buckwar et al. (2022). Finally, we have
X

[S]
tk

= f−1
h/2(e

−AhRtk +X
[1]
tk
). Since f−1

h/2 grows polynomially and X
[1]
tk

has finite moments, X[S]
tk

must have finite
moments too. This concludes the proof.

7.2 Proof of Lemma 4.1

Proof of Lemma 4.1 We first prove (1). In the following, C1 and C2 denote constants. We use the triangular inequality
and Hölder’s inequality to obtain:

∥Xt −Xtk−1
∥p ≤ 2p−1(∥

∫ t

tk−1

F(Xs;θ) ds∥p + ∥Σ(Wt −Wtk−1
)∥p)

≤ 2p−1((

∫ t

tk−1

C1(1 + ∥Xs∥)C1 ds)p + ∥Σ(Wt −Wtk−1
)∥p)

≤ 2p−1Cp
1 (

∫ t

tk−1

(1 + ∥Xs −Xtk−1
∥+ ∥Xtk−1

∥)C1 ds)p + 2p−1∥Σ(Wt −Wtk−1
)∥p

≤ 2C1+2p−3Cp
1 (t− tk−1)

p−1(

∫ t

tk−1

∥Xs −Xtk−1
∥pC1 ds+ (t− tk−1)

p(1 + ∥Xtk−1
∥)pC1)

+ 2p−1∥Σ(Wt −Wtk−1
)∥p.

In the second inequality, we used the polynomial growth (A2) of F. Furthermore, for some constant C2 that depends on
p, we have E[∥Σ(Wt −Wtk−1

)∥p | Ftk−1
] = (t− ttk−1

)p/2C2(p). Then, for h < 1, there exists a constant Cp that
depends on p, such that:

Cp(t− tk−1)
2p−1(1 + ∥Xtk−1

∥)Cp + Cp(t− ttk−1
)p/2 ≤ Cp(t− tk−1)

p/2(1 + ∥Xtk−1
∥)Cp .

The last inequality holds because the term of order p/2 is dominating when t− tk−1 < 1. Denote m(t) = E[∥Xt −
Xtk−1

∥p | Ftk−1
]. Then, we have:

m(t) ≤ Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp + Cp

∫ t

tk−1

mC1(s) ds. (29)
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Now, we apply the generalized Grönwall’s inequality (Lemma 2.3 in Tian and Fan (2020), stated in Supplementary
Material (Pilipovic et al., 2023)) on (29). Since we consider a super-linear growth, we can assume that there exist
C1 > 1 and Cp > 0, such that:

m(t) ≤ Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp + (κ1−C1(t)− (C1 − 1)2C1−1Cp(t− tk−1))
1

1−C1

≤ Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp + Cκ(t), (30)

where κ(t) = Cp(t− tk−1)
C1p/2+1(1 + ∥Xtk−1

∥)Cp . The bound C in inequality (30) makes sense, because the term:

(1− (C1 − 1)2C1−1Cp(t− tk−1)κ
1

1−C1 (t))
1

1−C1

is positive by Lemma 2.3 from Tian and Fan (2020). Additionally, the same term reaches its maximum value of 1, for
t = tk−1. The constant C in (30) includes some terms that depend on t− tk−1. However, these terms will not change
the dominating term of κ(t) since h < 1. Finally, the terms in κ(t) are of order p/2, thus for large enough constant Cp,
it holds m(t) ≤ Cp(t− tk−1)

p/2(1 + ∥Xtk−1
∥)Cp .

To prove (2), we use that g is of polynomial growth:

E[|g(Xt;θ)| | Ftk−1
] ≤ C1E[(1 + ∥Xtk−1

∥+ ∥Xt −Xtk−1
∥)C1 | Ftk−1

]

≤ C2(1 + ∥Xtk−1
∥C1 + E[∥Xt −Xtk−1

∥C1 | Ftk−1
]).

Now, we apply the first part of the lemma, to get:

E[|g(Xt;θ)| | Ftk−1
] ≤ C2(1 + ∥Xtk−1

∥C1 + C ′
t−tk−1

(1 + ∥Xtk−1
∥)C3) ≤ Ct−tk−1

(1 + ∥Xtk−1
∥)C .

That concludes the proof.

7.3 Proof of consistency of the estimator

The proof of consistency consists in studying the convergence of the objective function that defines the estimators. The
objective function LN (β, ς) (23) can be decomposed into sums of martingale triangular arrays. We thus first state a
lemma that proves the convergence of each triangular array involved in the objective function. Then, we will focus on
the proof of consistency. The proof of the Lemma is in Supplementary Material (Pilipovic et al., 2023).

Lemma 7.1 Let Assumptions (A1)-(A6) hold, and X be the solution of (1). Let g,g1,g2 : Rd × Θ × Θ → R be
differentiable functions with respect to x and θ, with derivatives of polynomial growth in x, uniformly in θ. If h → 0
and Nh → ∞, then:

1. 1
Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)

Pθ0−−−−−→
Nh→∞
h→0

Tr((ΣΣ⊤)−1ΣΣ⊤
0 );

2. h
N

N∑
k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)

Pθ0−−−−−→
Nh→∞
h→0

0;

3. 1
N

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β)
Pθ0−−−−−→

Nh→∞
h→0

0;

4. 1
Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β)
Pθ0−−−−−→

Nh→∞
h→0

0;

5. 1
N

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β)

Pθ0−−−−−→
Nh→∞
h→0

0;

6. 1
Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β)

Pθ0−−−−−→
Nh→∞
h→0

∫
Tr(Dg(x;β0,β)ΣΣ⊤

0 (ΣΣ⊤)−1) dν0(x);

7. h
N

N∑
k=1

g1(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1g2(Xtk ;β0,β)
Pθ0−−−−−→

Nh→∞
h→0

0,
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uniformly in θ.

Proof of Theorem 5.1 To establish consistency, we follow the proof of Theorem 1 in Kessler (1997) and study the limit
of L[S]

N (β, ς) from (23), rescaled by the correct rate of convergence. More precisely, the consistency of the diffusion
parameter is proved by studying the limit of 1

NL[S]
N (β, ς), while the consistency of the drift parameter is proved by

studying the limit of 1
Nh (L

[S]
N (β, ς) − L[S]

N (β0, ς)). We start with the consistency of the diffusion parameter ς . We
need to prove that:

1

N
L[S]
N (β, ς) → log(det(ΣΣ⊤)) + Tr((ΣΣ⊤)−1ΣΣ⊤

0 ) =: G1(ς, ς0), (31)

in Pθ0 , for Nh → ∞, h → 0, uniformly in θ. To study the limit, we first decompose 1
NL[S]

N (β, ς) as follows:

1

N
L[S]
N (β, ς) = log detΣΣ⊤ + T1 + T2 + T3 + 2(T4 + T5 + T6) +R(h,x0). (32)

The terms T1, . . . , T6 are derived from the quadratic form in (23) by adding and subtracting the corresponding terms
with β0, followed by rearrangements, resulting in the following expressions:

T1 :=
1

Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0),

T2 :=
1

Nh

N∑
k=1

(f−1
h/2,k(β)− f

−1
h/2,k(β0))

⊤(ΣΣ⊤)−1(f−1
h/2,k(β)− f

−1
h/2,k(β0)),

T3 :=
1

Nh

N∑
k=1

(µh,k−1(β0)− µh,k−1(β))
⊤(ΣΣ⊤)−1(µh,k−1(β0)− µh,k−1(β)),

T4 :=
1

Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1(µh,k−1(β0)− µh,k−1(β)),

T5 :=
1

Nh

N∑
k=1

(f−1
h/2,k(β)− f

−1
h/2,k(β0))

⊤(ΣΣ⊤)−1(µh,k−1(β0)− µh,k−1(β)),

T6 :=
1

Nh

N∑
k=1

(f−1
h/2,k(β)− f

−1
h/2,k(β0))

⊤(ΣΣ⊤)−1Ztk(β0).

Previously, we defined f−1
h/2,k(β) := f

−1
h/2(Xtk ;β) and µh,k−1(β) := µh(fh/2(Xtk−1

;β);β). These terms will also
play a significant role in proving the asymptotic normality.

The first term of (32) is a constant. Properties 1, 2, 3, 5, and 7 from Lemma 7.1 give the following limits T1 →
Tr((ΣΣ⊤)−1ΣΣ⊤

0 ) and for l = 2, 3, ..., 6, Tl → 0, uniformly in θ. The convergence in probability is equivalent to the
existence of a subsequence converging almost surely. Thus, the convergence in (31) is almost sure for a subsequence
(β̂Nl

, ς̂Nl
). This implies:

ς̂Nl

Pθ0
−a.s.

−−−−−−→
Nh→∞
h→0

ς∞.

The compactness of Θ implies that (β̂Nl
, ς̂Nl

) converges to a limit (β∞, ς∞) almost surely. By continuity of the
mapping ς 7→ G1(ς, ς0) we have 1

Nl
L[S]
Nl
(β̂Nl

, ς̂Nl
) → G1(ς

⊤
∞, ς0), in Pθ0 , for Nh → ∞, h → 0, uniformly in θ. By

the definition of the estimator, G1(ς∞, ς0) ≤ G1(ς0, ς0). We also have:

G1(ς∞, ς0) ≥ G1(ς0, ς0) ⇔ log(det(ΣΣ⊤
∞)) + Tr((ΣΣ⊤

∞)−1ΣΣ⊤
0 ) ≥ log(det(ΣΣ⊤

0 )) + Tr(Id)

⇔ Tr((ΣΣ⊤
∞)−1ΣΣ⊤

0 )− log(det((ΣΣ⊤
∞)−1ΣΣ⊤

0 )) ≥ d

⇔
d∑

i=1

λi − log

d∏
i=1

λi ≥
d∑

i=1

1 ⇔
d∑

i=1

(λi − 1− log λi) ≥ 0,

where λi are the eigenvalues of (ΣΣ⊤
∞)−1ΣΣ⊤

0 , which is a positive definite matrix. The last inequality follows since
for any positive x, log x ≤ x − 1. Thus, G1(ς∞, ς0) = G1(ς0.ς0). Then, all the eigenvalues λi must be equal to 1,
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hence, ΣΣ⊤
∞ = ΣΣ⊤

0 . We proved that a convergent subsequence of ς̂N tends to ς0 almost surely. From there, the
consistency of the estimator of the diffusion coefficient follows.

We now focus on the consistency of the drift parameter. The objective is to prove that the following limit in Pθ0
, for

Nh → ∞, h → 0, uniformly with respect to θ:
1

Nh
(L[S]

N (β, ς)− L[S]
N (β0, ς)) → G2(β0, ς0,β, ς), (33)

where:

G2(β0, ς0,β, ς) :=

∫
(F0(x)− F(x))⊤(ΣΣ⊤)−1(F0(x)− F(x)) dν0(x)

+

∫
Tr(D(N0(x)−N(x))(ΣΣ⊤

0 (ΣΣ⊤)−1 − I)) dν0(x).

To prove it, we decompose 1
Nh (L

[S]
N (β, ς)− L[S]

N (β0, ς)) as follows:
1

Nh
(L[S]

N (β, ς)− L[S]
N (β0, ς)) = Tr(A(β)−A(β0)) +

1

h
(T2 + T3 + 2(T4 + T5 + T6))

+
1

Nh

N∑
k=1

(Ztk(β0)
⊤(ΣΣ⊤)−1A(β0)Ztk(β0)− Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β)) (34)

+
1

N

N∑
k=1

TrD(N(Xtk ;β)−N(Xtk ;β0)) +R(h,x0).

The term 1
Nh

∑N
k=1(Ztk(β0)

⊤(ΣΣ⊤)−1A(β0)Ztk(β0) − Ztk(β)
⊤(ΣΣ⊤)−1A(β)Ztk(β)) converges to

Tr(A(β0) − A(β)), which thus cancels out with the first term in (34). Lemma 4.2 provides the uniform
convergence of 1

hT2 with respect to θ:

1

h
T2 =

1

4N

N∑
k=1

(N0(Xtk)−N(Xtk))
⊤(ΣΣ⊤)−1(N0(Xtk)−N(Xtk)) +R(h,x0)

→ 1

4

∫
(N0(x)−N(x))⊤(ΣΣ⊤)−1(N0(x)−N(x)) dν0(x).

The limit of 1
hT3 computes analogously. To prove 1

hT4 → 0, we use Lemma 9 in Genon-Catalot and Jacod (1993) and
Property 4 from Lemma 7.1. Lemma 4.2 yields:

1

h
T5

Pθ0−−−−−→
Nh→∞
h→0

1

4

∫
(N0(x)−N(x))⊤(ΣΣ⊤)−1(N0(x)−N(x)) dν0(x)

+
1

2

∫
(A0(x−b0)−A(x−b))⊤(ΣΣ⊤)−1(N0(x)−N(x)) dν0(x).

Finally, 1
hT6 → 1

2

∫
Tr(D(N0(x) −N(x))⊤ΣΣ⊤

0 (ΣΣ⊤)−1) dν0(x) uniformly in θ, by Property 6 of Lemma 7.1.
Lemma 4.2 gives:

1

N

N∑
k=1

TrD(N(Xtk)−N0(Xtk))
Pθ0−−−−−→

Nh→∞
h→0

∫
TrD(N(x)−N0(x)) dν0(x),

uniformly in θ. This proves (33). Then, there exists a subsequence Nl such that (β̂Nl
, ς̂Nl

) converges to a limit
(β∞, ς∞), almost surely. By continuity of the mapping (β, ς) 7→ G2(β0, ς0,β, ς), for Nlh → ∞, h → 0, we have the
following convergence in Pθ0

:
1

Nlh
(L[S]

Nl
(β̂Nl

, ς̂Nl
)− L[S]

Nl
(β0, ς̂Nl

)) → G2(β0, ς0,β∞, ς∞).

Then, G2(β0, ς0,β∞, ς∞) ≥ 0 since ΣΣ⊤
∞ = ΣΣ⊤

0 . On the other hand, by the definition of the estimator
L[S]
Nl
(β̂Nl

, ς̂Nl
) − L[S]

Nl
(β0, ς̂Nl

) ≤ 0. Thus, the identifiability assumption (A5) concludes the proof for the S esti-
mator.

To prove the same statement for the LT estimator, the representation of the objective function (32) has to be adapted.
In the LT case, this representation is straightforward. There is no extra logarithmic term and only three instead of six
auxiliary T terms are used. This is due to the Gaussian transition density in the LT approximation.
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7.4 Proof of asymptotic normality of the estimator

Proof of Theorem 5.2 According to Theorem 1 in Kessler (1997) or Theorem 1 in Sørensen and Uchida (2003),
Lemmas 7.2 and 7.3 below are enough for establishing the asymptotic normality of θ̂N . Here, we only present the
outline of the proof. For more details, see proof of Theorem 1 in Sørensen and Uchida (2003).

Lemma 7.2 Let CN (θ0) and C(θ0) be as defined in (25) and (27), respectively. If h → 0, Nh → ∞, and ρN → 0,
then:

CN (θ0)
Pθ0−−→ 2C(θ0), sup

∥θ∥≤ρN

∥CN (θ0 + θ)−CN (θ0)∥
Pθ0−−→ 0.

Lemma 7.3 Let λN be as defined (26). If h → 0, Nh → ∞ and Nh2 → 0, then:

λN
d−→ N (0, 4C(θ0)),

under Pθ0
.

Lemma 7.2 states that CN (θ0) approaches 2C(θ0) as h → 0 and Nh → ∞. Moreover, the difference between
CN (θ0 + θ) and CN (θ0) approaches zero when θ approaches θ0, within a distance specified by balls BρN

(θ0), where
ρN → 0. To ensure the asymptotic normality of θ̂N , Lemma 7.2 is employed to restrict the term ∥DN −CN (θ0)∥
when θ̂N ∈ Θ ∩ BρN

(θ0) as follows:

∥DN −CN (θ0)∥⊮{θ̂N∈Θ∩BρN
(θ0)} ⩽ sup

θ∈BρN
(θ0)

∥CN (θ)−CN (θ0)∥
Pθ0−−−−−→

Nh→∞
h→0

0

Applying again Lemma 7.2 on the previous line, we get DN → 2C(θ0) in Pθ0
, as h → 0 and Nh → ∞.

Lemma 7.3 establishes the convergence in distribution of λN to N (0, 4C(θ0)), under Pθ0
, as h → 0 and Nh → ∞.

This result provides the groundwork for the asymptotic normality of θ̂N . Indeed, consider the set DN composed of
instances where DN is invertible. The probability, under θ0, of DN occurring approaches 1, as h → 0 and Nh → ∞.
This implies that DN is almost surely invertible in this limit. Furthermore, we define EN as the intersection of
{θ̂N ∈ Θ} and DN . Then, it can be shown that ⊮EN

→ 1 in Pθ0 when h → 0 and Nh → ∞. For EN := DN on EN ,
we have EN → 2C(θ0) in Pθ0

as h → 0 and Nh → ∞. Given that sN⊮EN
= E−1

N DNsN⊮EN
= E−1

N λN⊮EN
and

according to Lemma 7.3, sN⊮EN
→ N (0,C(θ0)

−1) in distribution as h → 0, Nh → ∞ and Nh2 → 0.

In conclusion, under Pθ0 , as h → 0, Nh → ∞ and Nh2 → 0, sN⊮EN
is shown to converge in distribution to

N (0,C(θ0)
−1). The asymptotic normality for θ̂N is, thus, confirmed due to the convergence of ⊮EN

→ 1.

Proof of Lemma 7.2 To prove the first part of the lemma, we aim to represent CN (θ0) from the objective function
(14). In doing so, we again employ the approximation (23), focusing solely on the terms that do not converge to zero as
Nh → ∞ and h → 0. We start as in the approximation (34) and compute the corresponding derivatives to obtain the
first block matrix of CN (25). We begin with ∂βi1

βi2
L[S]
N (β, ς):

1

Nh
∂βi1

βi2
L[S]
N (β, ς)= ∂βi1

βi2
TrA(β) +

1

N

N∑
k=1

∂βi1
βi2

TrDN(Xtk ;β)

+ ∂βi1βi2

1

h

(
T2(β0,β, ς) + T3(β0,β, ς) + 2(T4(β0,β, ς) + T5(β0,β, ς) + T6(β0,β, ς))

)
− 1

Nh

N∑
k=1

∂βi1βi2
(Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β))) +R(h,x0).

To determine the convergence of each of the previous terms, we use the definitions of the sums Tis and approximate
each Ti using Proposition 2.2 and the Taylor expansion of the function µh. As we apply the derivatives ∂βi1βi2 , the
order of h in each sum increases since terms of order R(1,x0) are constant with respect to β. Finally, when evaluating
1

Nh∂βi1
βi2

L[S]
N (β, ς) at θ = θ0, numerous terms will cancel out due to differences of the type g(β0;Xtk ,Xtk−1

)−
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g(β;Xtk ,Xtk−1
). Using the results from Lemma 7.1 and the proof of Theorem 5.1, we get the following limits:

∂βi1
βi2

1

h
T2(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→ 1

2

∫
(∂βi1

N0(x))
⊤(ΣΣ⊤

0 )
−1∂βi2

N0(x) dν0(x),

∂βi1βi2

1

h
T3(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→

1

2

∫
(∂βi1

N0(x) + 2∂βi1
A0(x−b0))

⊤(ΣΣ⊤
0 )

−1(∂βi2
N0(x) + 2∂βi2

A0(x−b0)) dν0(x),

∂βi1βi2

1

h
T5(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→ 1

2

∫
(∂βi1

F0(x))
⊤(ΣΣ⊤

0 )
−1∂βi2

N0(x) dν0(x)

+
1

2

∫
(∂βi2

A0(x−b0))
⊤(ΣΣ⊤

0 )
−1∂βi1

N0(x) dν0(x),

∂βi1βi2

1

h
T6(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→ −1

2

∫
Tr(D∂βi1

βi2
N0(x)) dν0(x),

for Nh → ∞, h → 0. Since 1
hT4 → 0, the partial derivatives go to zero too. From Lemma 4.2, for Nh → ∞, h → 0,

we have:

1

N

N∑
k=1

∂βi1
βi2

TrDN(Xtk ;β)
Pθ0−−→

∫
Tr(D∂βi1

βi2
N0(x)) dν0(x).

Term 1
Nh

∑N
k=1 ∂βi1

βi2
(Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β)), evaluated in θ = θ0, has only one term of order h:
1

Nh

∑N
k=1 Ztk(β0)

⊤(ΣΣ⊤
0 )

−1∂βi1
βi2

A(β0)Ztk(β0), which converges to ∂βi1
βi2

TrA(β0) (Property 1 Lemma 7.1).

Thus, 1
Nh∂βi1

βi2
L[S]
N (β, ς0)|β=β0

→ 2
∫
(∂βi2

F0(x))
⊤(ΣΣ⊤

0 )
−1∂βi2

F0(x) dν0(x), in Pθ0
for Nh → ∞, h → 0.

Now, we prove 1
N

√
h
∂βςL[S]

N (β, ς)|β=β0,ς=ς0 → 0, in Pθ0
for Nh → ∞, h → 0. For a constant Ch, depending on h,

l = 2, 3, ..., 6, and generic functions g,g1, the following term is at most of order R(h,x0):

∂βiTl(β, ς) = Ch

N∑
k=1

(g(β0;Xtk ,Xtk−1
)− g(β;Xtk ,Xtk−1

))⊤(ΣΣ⊤)−1g1(β;Xtk ,Xtk−1
),

Then, term ∂βςL[S]
N (β, ς) still contains g(β0;Xtk ,Xtk−1

) − g(β;Xtk ,Xtk−1
) which is 0 for β = β0.

Moreover, the term 1
N

∑N
k=1 ∂βς(Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β)) is at most of order R(h,x0). Thus,
1

N
√
h
∂βςL[S]

N (β, ς)|β=β0,ς=ς0 = 0.

Finally, we compute 1
N ∂ςj1 ςj2L

[S]
N (β, ς). As before, it holds 1

N ∂ςj1 ςj2Tl(β, ς)|β=β0,ς=ς0 → 0, for l = 2, 3, ..., 6.
Similarly, we see that 1

N

∑N
k=1 Ztk(β0)

⊤∂ςj1 ςj2 (ΣΣ⊤)−1A(β0)Ztk(β0) is at most of order R(h,x0). So, we need
to compute the following second derivatives ∂ςj1 ςj2 log(detΣΣ⊤) and ∂ςj1 ςj2

1
Nh

∑N
k=1 Ztk(β0)

⊤(ΣΣ⊤)−1Ztk(β0).
The first one yields:

∂ςj1 ςj2 log(detΣΣ⊤) = Tr((ΣΣ⊤)−1∂ςj1 ςj2ΣΣ⊤)− Tr((ΣΣ⊤)−1(∂ςj1ΣΣ⊤)(ΣΣ⊤)−1∂ςj2ΣΣ⊤).

On the other hand, we have:

∂ςj1 ςj2
1

Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)

= − 1

Nh

N∑
k=1

Tr(Ztk(β0)Ztk(β0)
⊤(ΣΣ⊤)−1(∂ςj1 ςj2ΣΣ⊤)(ΣΣ⊤)−1)

+
1

Nh

N∑
k=1

Tr(Ztk(β0)Ztk(β0)
⊤(ΣΣ⊤)−1(∂ςj1ΣΣ⊤)(ΣΣ⊤)−1(∂ςj2ΣΣ⊤)(ΣΣ⊤)−1)

+
1

Nh

N∑
k=1

Tr(Ztk(β0)Ztk(β0)
⊤(ΣΣ⊤)−1(∂ςj2ΣΣ⊤)(ΣΣ⊤)−1(∂ςj1ΣΣ⊤)(ΣΣ⊤)−1).
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Then, from Property 1 of Lemma 7.1, we get:

∂ςj1 ςj2
1

Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)

∣∣∣
ς=ς0

Pθ0−−−−−→
Nh→∞
h→0

2Tr((ΣΣ⊤
0 )

−1(∂ςj1ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1∂ςj2ΣΣ⊤

0 )− Tr((ΣΣ⊤
0 )

−1∂ςj1 ςj2ΣΣ⊤
0 ).

Thus, 1
N ∂ςj1 ςj2L

[S]
N (β, ς)|β=β0,ς=ς0 → Tr((ΣΣ⊤

0 )
−1(∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1∂ςj2ΣΣ⊤
0 ). Since all the limits used in

this proof are uniform in θ, the first part of the lemma is proved. The second part is trivial, because all limits are
continuous in θ.

Proof of Lemma 7.3 First, we compute the first derivatives. We start with:

∂βiL
[S]
N (β, ς) = −2

N∑
k=1

Tr(Dfh/2,k(β)Dx∂βif
−1
h/2,k(β))

+
2

h

N∑
k=1

(f−1
h/2,k(β)− µh,k−1(β))

⊤(ΣΣ⊤)−1(∂βif
−1
h/2,k(β)− ∂βiµh,k−1(β)).

The first derivative with respect to ς is:

∂ςjL
[S]
N (β, ς) = N∂ςj log det(ΣΣ⊤)

+
1

h
∂ςj

N∑
k=1

(f−1
h/2,k(β)− µh,k−1(β))

⊤(ΣΣ⊤)−1(f−1
h/2,k(β)− µh,k−1(β))

= − 1

h

N∑
k=1

(
Tr
(
(f−1

h/2,k(β)− µh,k−1(β))(f
−1
h/2,k(β)− µh,k−1(β))

⊤

(ΣΣ⊤)−1(∂ςjΣΣ⊤)(ΣΣ⊤)−1
)
+Tr((ΣΣ⊤)−1∂ςjΣΣ⊤)

)
.

Define:

η
(i)
N,k(θ) :=

2√
Nh

Tr(Dfh/2,k(β)Dx∂βi
f−1
h/2,k(β)) (35)

− 2√
Nhh

Ztk(β)
⊤(ΣΣ⊤)−1∂βi(f

−1
h/2,k(β)− µh,k−1(β))

ζ
(j)
N,k(θ) :=

1√
Nh

Tr(Ztk(β)Ztk(β)
⊤(ΣΣ⊤)−1(∂ςjΣΣ⊤)(ΣΣ⊤)−1) (36)

− 1√
N

Tr((ΣΣ⊤)−1∂ςjΣΣ⊤),

and rewrite λN as λN =
∑N

k=1[η
(1)
N,k(θ0), . . . , η

(r)
N,k(θ0), ζ

(1)
N,k(θ0), . . . , ζ

(s)
N,k(θ0)]

⊤. Now, by Proposition 3.1 from
Crimaldi and Pratelli (2005), it is sufficient to prove Lemma 7.4. For more details, see Supplementary Material
(Pilipovic et al., 2023).

Lemma 7.4 Let η(i)N,k(θ) and ζ
(j)
N,k(θ) be defined as in (35) and (36), respectively. If h → 0, Nh → ∞, and Nh2 → 0,

then for and all i, i1, i2 = 1, 2, ..., r, and j, j1, j2 = 1, 2, ..., s, it holds:

[(i)]

1. Eθ0
[sup1≤k≤N |η(i)N,k(θ0)|] −→ 0, and Eθ0

[sup1≤k≤N |ζ(j)N,k(θ0)|] −→ 0;

2.
∑N

k=1Eθ0 [η
(i)
N,k(θ0) | Xtk−1

]
Pθ0−−→ 0, and

∑N
k=1Eθ0 [ζ

(j)
N,k(θ0) | Xtk−1

]
Pθ0−−→ 0;

3.
∑N

k=1 Eθ0
[η

(i1)
N,k(θ0) | Xtk−1

]Eθ0
[η

(i2)
N,k(θ0) | Xtk−1

]
Pθ0−−→ 0;
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4.
∑N

k=1 Eθ0
[ζ

(j1)
N,k (θ0) | Xtk−1

]Eθ0
[ζ

(j2)
N,k (θ0) | Xtk−1

]
Pθ0−−→ 0;

5.
∑N

k=1 Eθ0
[η

(i)
N,k(θ0) | Xtk−1

]Eθ0
[ζ

(j)
N,k(θ0) | Xtk−1

]
Pθ0−−→ 0;

6.
∑N

k=1 Eθ0
[η

(i1)
N,k(θ0)η

(i2)
N,k(θ0) | Xtk−1

]
Pθ0−−→ 4[Cβ(θ0)]i1i2 ;

7.
∑N

k=1 Eθ0
[ζ

(j1)
N,k (θ0)ζ

(j2)
N,k (θ0) | Xtk−1

]
Pθ0−−→ 4[Cς(θ0)]j1j2 ;

8.
∑N

k=1 Eθ0
[η

(i)
N,k(θ0)ζ

(j)
N,k(θ0) | Xtk−1

]
Pθ0−−→ 0;

9.
∑N

k=1 Eθ0
[(η

(i1)
N,k(θ0)η

(i2)
N,k(θ0))

2 | Xtk−1
]

Pθ0−−→ 0;

10.
∑N

k=1 Eθ0
[(ζ

(j1)
N,k (θ0)ζ

(j2)
N,k (θ0))

2 | Xtk−1
]

Pθ0−−→ 0;

11.
∑N

k=1 Eθ0
[(η

(i)
N,k(θ0)ζ

(j)
N,k(θ0)

2) | Xtk−1
]

Pθ0−−→ 0.

The proof of the previous Lemma is technical and is shown in Supplementary Material (Pilipovic et al., 2023).

8 Conclusion

We proposed two new estimators for nonlinear multivariate SDEs. These estimators are based on splitting schemes, a
numerical approximation that preserves all important properties of the model. It was known that the LT splitting scheme
has Lp convergence rate of order 1. We proved that the same holds for the S splitting. This result was expected because
the overall trajectories of the S and LT splittings coincide up to the first h/2 and the last h/2 move of the flow Φ[2]

h/2.
Nonetheless, S splitting is more precise in one-step predictions, which is crucial for the estimators because the objective
function consists of densities between consecutive data points. Therefore, the obtained S estimator is less biased than
the LT.

We proved that both estimators have optimal convergence rates for discretized observations of the SDEs. These rates
are

√
N for the diffusion parameter and

√
Nh for the drift parameter. We also showed that the asymptotic variance of

the estimators is the inverse of the Fisher information for the continuous time model. Thus, the estimators are efficient.

In the simulation study conducted with the stochastic Lorenz system, we the superior performance of the S estimators.
We compared seven estimators based on different discretization schemes. Estimators based on Ozaki’s LL and the
S splitting schemes demonstrated the highest precision. However, the running time of LL is notably influenced by
the sample size N , unlike the S estimator, which experiences a more gradual increase in runtime with larger N . This
property makes the S estimator a more appropriate choice for large sample sizes. The LT, EM, and K estimators perform
well for small h, but for larger h the bias increases, especially for the diffusion parameters in the EM case.

While the proposed estimators are versatile, they come with certain limitations. These include assumptions like
the presence of additive noise and equidistant observations. However, under specific conditions, the Lamperti
transformation can relax the constraint of additive noise. Equidistant observations can easily be relaxed due to the
continuous-time formulation. Furthermore, we assumed that the diffusion parameter ΣΣ⊤ is invertible. However, there
are applications where models with degenerate noise naturally arise, like second-order differential equations. We will
thoroughly investigate these cases in another paper with more involved proofs.
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S1 Supplementary Material

This section provides proofs for all propositions, lemmas, and theorems. References to equations and sections that do
not begin with "S" refer to the main paper. If not stated, we assume the parameters are the true ones and the expectations
are taken under the probability measure. Occasionally, we omit explicit parameter notation to enhance clarity. For
instance, E implicitly denotes Eθ.

In Section S1.1, we provide the proof for the Lie-Trotter splitting, while Section S1.2 contains the proofs for the
Strang splitting. Additionally, the proofs of moment bounds are detailed in Section S1.3. These three sections rely on
manipulating the Itô-Taylor expansion. The foundational properties necessary for subsequent proofs are outlined in
Section S1.4. These properties encompass Grönwall’s and Rosenthal’s inequalities, as well as Central Limit Theorems
for a sum of triangular arrays. The proof for Lemma 7.1 can be found in Section S1.5, while the section addressing
asymptotic normality is presented in Section S1.6.

S1.1 Proof for the Lie-Trotter splitting

Proof of Proposition 3.4 To establish the proposition, we compare the actual first moment of the solution to SDE
(1), as obtained from Lemma 2.1, with the moment derived through Taylor expansion of the LT approximation. First,
we prove the proposition for Lie-Trotter splitting as defined in the paper. By performing the Taylor expansion of
E[Φ[LT]

h (x)] = µh(fh/2((x)) =eAhfh(x)+(I− eAh)b around h = 0, using Proposition 2.2, we arrive at:

µh(fh/2((x)) = x+ h(A(x−b) +N(x)) +
h2

2
(A2(x−b) + 2AN(x) + (DN(x))N(x)) +R(h3,x). (S1)

The coefficient of h in (S1) is F(x), which aligns with the coefficient of h in the theoretical moment of the solution to (1)
as provided in Lemma 2.1. However, in Lemma 2.1, Σ appears in the coefficient of h2, while it does not appear in (S1).
Consequently, to achieve the order of convergence R(h3,x), we need to make the following unrealistic assumption.

(SA)
∑d

i=1

∑d
j=1[ΣΣ⊤]ij∂

2
ijF

(i)(x) = 0, for all k = 1, . . . , d.

Upon comparing expression (S1) with the true moments of the SDE solution under Assumption (SA), we arrive at
(DF(x))N(x) = (DN(x))F(x) to ensure equality of the coefficient at order h2. However, the last equation holds true
for all x ∈ Rd only when N is linear. Therefore, achieving the order R(h3,x) one-step convergence is feasible only if
SDE (1) is linear.

We now aim to show that changing the composition order within the LT splitting does not affect the one-step convergence
order. To demonstrate this, we define the reversed Lie-Trotter splitting:

X
[LT]⋆
tk

:= Φ
[LT]⋆
h (X

[LT]⋆
tk−1

) = (Φ
[2]
h ◦ Φ[1]

h )(X
[LT]⋆
tk−1

) = fh(µh(X
[LT]⋆
tk−1

) + ξh,k).

We compute E[fh(µh(Xtk−1
) + ξh,k) | Xtk−1

= x], which is equivalent to calculating E[fh(X[1]
tk
) | X[1]

tk−1
= x] =

E[fh(µh(X
[1]
tk−1

) + ξh,k) | X[1]
tk−1

= x]. The infinitesimal generator L[1] for SDE (3) is defined on the class of

sufficiently smooth functions g : Rd → R by L[1]g(x) = (A(x−b))⊤ ∂g(x)
∂x + 1

2 Tr(ΣΣ⊤Hg(x)). This yields:

E[g(X[1]
tk
) | X[1]

tk−1
= x] = g(x) + hL[1]g(x) +

h2

2
L2
[1]g(x) +R(h3,x). (S2)

We apply (S2) to g(x) = f
(i)
h (x). For calculating L[1]f

(i)
h (x) and L2

[1]f
(i)
h (x), we use the Taylor expansion of fh(x)

around h = 0, as provided in Proposition 2.2. The partial derivatives are ∂jf
(i)
h (x) = δij + h∂jN

(i)(x) +R(h2,x) and

∂2
jkf

(i)
h (x) = h∂2

jkN
(i)(x) +R(h2,x). Since L[1]f

(i)
h (x) is multiplied by h in (S2), we only need to calculate it up to

order R(h,x). We have L[1]f
(i)
h (x) = (A(x−b))(i) + h(A(x−b))⊤∇N (i)(x) + h

2 Tr(ΣΣ⊤HN(i)(x)) +R(h2,x).
Similarly, we have L2

[1]f
(i)
h (x) = (A(x−b))⊤∇(A(x−b))(i) +R(h,x) = (A(x−b))⊤A(i) +R(h,x). Thus,

E[f (i)
h (X

[1]
tk−1

) | X[1]
tk−1

= x] = x(i) + hN (i)(x) +
h2

2
(N(x))⊤∇N (i)(x) (S3)

+ h(A(x−b))(i) + h2(A(x−b))⊤∇N (i)(x) +
h2

2
Tr(ΣΣ⊤HN(i)(x)) +

h2

2
(A(x−b))⊤A(i) +R(h3,x)

= x(i) + hF (i)(x) +
h2

2
((F(x))⊤(∇N (i)(x)) + (A(x−b))⊤∇F (i)(x) + Tr(ΣΣ⊤HN(i)(x))) +R(h3,x).
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Using that F (i)(x) = (A(x−b))(i) + N (i)(x), ∂F (i)(x)
∂x = (A(i))⊤ + ∇N (i)(x) and HF (i)(x) = HN(i)(x), the

expectation of the true process rewrites as:

E[X(i)
tk

| Xtk−1
= x] = x(i) + hF (i)(x)

+
h2

2
((N(x))⊤∇F (i)(x) + (A(x−b))⊤∇F (i)(x) +

1

2
Tr(ΣΣ⊤HN(i)(x))) +R(h3,x).

The final equation coincides with equation (S3) only up to order R(h,x). Despite the reversed LT splitting having
the term with ΣΣ⊤ at the order h2, the coefficients do not match. Thus, to obtain order R(h2,x), the condition
(N(x))⊤∇F (i)(x)− 1

2 Tr(ΣΣ⊤HN(i)(x)) = (F(x))⊤∇N (i)(x), must hold for all i = 1, . . . , d. Given Assumption
(SA), the condition for achieving a higher one-step convergence order remains equivalent to the case of the original LT
splitting.

S1.2 Proof for the Strang Splitting

We continue employing the Taylor expansion to establish the numerical properties of the Strang splitting approximation.
To begin, we introduce a helpful Lemma S1.1 regarding the approximation of the composition of the mean function µh

and the nonlinear solution fh/2. Lemma S1.1 expends µh(fh/2(x)) around h = 0, in various ways, each retaining the
crucial terms necessary for the subsequent proofs.

Lemma S1.1 For the mean function µh and the nonlinear solution fh/2 the following three identities hold:

1. µh(fh/2(x)) = fh/2(x) + hA(x−b) + h2

2 AF(x) +R(h3,x)

2. µh(fh/2(x)) = f
−1
h/2(x) + hF(x) + h2

2 AF(x) +R(h3,x).

3. µh(fh/2(x)) = x+ hA(x−b) + h
2N(x) + h2

2 (A2(x− b) +AN(x) + 1
4 (DN(x))N(x)) +R(h3,x).

Proof We prove only the first two identities, as the last one follows the same reasoning. Utilizing the definition of µh,
its Taylor expansion, and the expansion of fh/2, we obtain: µh(fh/2(x)) = (I + hA + h2

2 A2)(fh/2(x)−b) + b +

R(h3,x) = fh/2(x) + hA(x−b) + h2

2 AF(x) +R(h3,x), which concludes the first part.

For the second part, Proposition 2.2 gives fh/2(x)− f−1
h/2(x) = hN(x) +R(h3,x). This leads to: µh(fh/2(x)) =

f−1
h/2(x) + hF(x) + h2

2 AF(x) +R(h3,x).

Proof of Proposition 3.6 We begin by introducing a new function of x, arising from the third property of Lemma S1.1:

Qh(x) :=
h

2
(2A(x−b) +N(x)) +

h2

8
(4A2(x−b) + 4AN(x) + (DN(x))N(x)).

Then, for a generic random vector X we use Proposition 2.2 and Lemma S1.1 to write:

fh/2(µh(fh/2(X)) + ξh) = fh/2(X+Qh(X) + ξh +R(h3,X))

= X+Qh(X) + ξh +
h

2
N(X+Qh(X) + ξh)

+
h2

8
(DN(X+Qh(X) + ξh))N(X+Qh(X) + ξh) +R(h3,X). (S4)

Consequently, we expand:

N(X+Qh(X) + ξh) = N(X) + (DN(X))(Qh(X) + ξh)

+
1

2
[(Qh(X) + ξh)

⊤HN(i)(X)(Qh(X) + ξh)]
d
i=1 +R(h2,X). (S5)

The term [Qh(X)⊤HN(i)(X)Qh(X)]di=1 is R(h2,X), while the terms with only one ξh have zero means. Thus,

E[N(X+Qh(X)+ξh) | X = x] = N(x)+(DN(x))Qh(x)+
1

2
[E[ξ⊤h HN(i)(X)ξh | X = x]]di=1+R(h2,x). (S6)

34



SDE Parameter Estimation using Splitting Schemes A PREPRINT

Lastly, we compute:

E[ξ⊤h HN(i)(X)ξh | X = x] = E[tr(ξ⊤h HN(i)(X)ξh) | X = x] = tr(HN(i)(X)E[ξhξ⊤h ])

=

d∑
j,k=1

∂2
jkN

(i)(x)[var(ξh)]jk =

d∑
j,k=1

∂2
jkF

(i)(x)[Ωh]jk.

We use the approximation of the variance of the random vector ξh to get E[N(X+Qh(X) + ξh) | X = x] = N(x) +

(DN(x))Qh(x) +
h
2 [
∑d

j,k=1[ΣΣ⊤]jk∂
2
jkF

(i)(x)]di=1 +R(h2,x). Taking the expectation of (S4) and incorporating
the previous equation completes the proof.

S1.3 Proofs of the Moment Bounds

Before proving the moment bounds, we first demonstrate in Lemma S1.2 how the infinitesimal generator L operates on
a product of two functions.

Lemma S1.2 Let L be the infinitesimal generator defined in the main text of SDE (1). For sufficiently smooth functions
α, β : Rd → R, it holds:

L(α(x)β(x)) = α(x)Lβ(x) + β(x)Lα(x) +
1

2
Tr(ΣΣ⊤(∇α(x)∇⊤β(x) +∇β(x)∇⊤α(x))).

Proof We use the generator L and the product rule to get:

L(α(x)β(x)) = F(x)⊤α(x)∇β(x) + F(x)⊤β(x)∇α(x) +
1

2
Tr(ΣΣ⊤(α(x)Hβ(x) + β(x)Hα(x)))

+
1

2
Tr(ΣΣ⊤(∇α(x)∇⊤β(x) +∇β(x)∇⊤α(x)))

= α(x)Lβ(x) + β(x)Lα(x) +
1

2
Tr(ΣΣ⊤(∇α(x)∇⊤β(x) +∇β(x)∇⊤α(x))).

This concludes the proof.

Proof of Proposition 4.3 Proof of (i). Lemma S1.1 yields:

E[f−1
h/2(Xtk)− µh(fh/2(Xtk−1

)) | Xtk−1
= x] = E[f−1

h/2(Xtk) | Xtk−1
= x]− µh(fh/2(x))

= E[f−1
h/2(Xtk) | Xtk−1

= x]− f−1
h/2(x)− hF(x)

− h2

2
AF(x) +R(h3,x).

Now, we use the infinitesimal generator L to evaluate the expectation in the last line where the generator L is applied to
a vector-valued function. We have:

E[f−1
h/2(Xtk) | Xtk−1

= x] = f−1
h/2(x) + hLf−1

h/2(x) +
h2

2
L2f−1

h/2(x) +R(h3,x).

We use f−1
h/2(x) = f−h/2(x) and Proposition 2.2 to get:

Lf−1
h/2(x) = Lx− h

2
LN(x) +R(h2,x) = F(x)− h

2
LN(x) +R(h2,x),

L2f−1
h/2(x) = LA(x−b) + LN(x) +R(h,x) = AF(x) + LN(x) +R(h,x).

It follows that E[f−1
h/2(Xtk)− µh(fh/2(Xtk−1

)) | Xtk−1
= x] = R(h3,x).

35



SDE Parameter Estimation using Splitting Schemes A PREPRINT

Proof of (ii). In this proof, we distinguish the true parameters θ0 from a generic parameter θ. We start with the
expansions of f−1

h and µh:

Eθ0
[(f−1

h/2(Xtk ;β0)− µh(fh/2(Xtk−1
;β0);β0))g(Xtk ;β)

⊤ | Xtk−1
= x]

= Eθ0 [Xtkg(Xtk ;β)
⊤ | Xtk−1

= x]− h

2
Eθ0

[N(Xtk ;β0)g(Xtk ;β)
⊤ | Xtk−1

= x]

− xEθ0 [g(Xtk ;β)
⊤ | Xtk−1

= x]− h

2
(2A0(x−b0) +N0(x))Eθ0 [g(Xtk ;β)

⊤ | Xtk−1
= x] +R(h2,x)

= xg(x;β)⊤ + hLθ0
(xg(x;β)⊤)− h

2
N0(x)g(x;β)

⊤

− xg(x;β)⊤ − hxLθ0
g(x;β)⊤ − hA0(x−b0)g(x;β)

⊤ − h

2
N0(x)g(x;β)

⊤ +R(h2,x)

= hLθ0(xg(x;β)
⊤)− hxLθ0g(x;β)

⊤ − hF0(x)g(x;β)
⊤ +R(h2,x).

Lastly, Lemma S1.2 and the definition of Lθ0 yield:

Lθ0
(xg(x;β)⊤) = xLθ0

g(x;β)⊤ + (Lθ0
x)g(x;β)⊤ +

1

2
(ΣΣ⊤

0 D
⊤g(x;β) +Dg(x;β)ΣΣ⊤

0 )

= xLθ0
g(x;β)⊤ + F(x;β0)g(x;β)

⊤ +
1

2
(ΣΣ⊤

0 D
⊤g(x;β) +Dg(x;β)ΣΣ⊤

0 ).

Proof of (iii). We introduce g(Xtk ;β0) = f
−1
h/2(Xtk ;β0) and use (ii) to show:

Eθ0 [(f
−1
h/2(Xtk ;β0)− µh(fh/2(Xtk−1

;β0);β0))(f
−1
h/2(Xtk ;β0)− µh(fh/2(Xtk−1

;β0);β0))
⊤ | Xtk−1

= x]

=
h

2
(ΣΣ⊤

0 D
⊤g(x;β0) +Dg(x;β0)ΣΣ⊤

0 )

− Eθ0 [f
−1
h/2(Xtk ;β0)− µh(fh/2(Xtk−1

;β0);β0) | Xtk−1
= x]µh(fh/2(x;β0);β0)

⊤ +R(h2,x).

The result follows from property (i) and

Dg(x;β0) = I+R(h,x).

S1.4 Auxiliary properties

In this section, we revisit crucial properties essential for establishing the consistency and asymptotic normality of the
proposed estimators. To begin, we invoke Lemma 2.3 from Tian and Fan (2020) as Lemma S1.3, which was used in
proving Lemma 4.1. This lemma offers a generalization of the Grönwall’s inequality.

Furthermore, Lemma 9 in Genon-Catalot and Jacod (1993) provides conditions for the convergence of a sum of a
triangular array and is recalled as Lemma S1.4.

Lemmas S1.5 and S1.6 give sufficient conditions for uniform convergence. The former is sourced from Proposition A1
in Gloter (2006), while the latter comes from Lemma 3.1 from Yoshida (1990). On occasions, Lemma S1.5 might not
suffice, warranting the use of Lemma S1.6. Theorem S1.7 is a helpful tool for assessing the conditions of these two
lemmas is the Rosenthal’s inequality for martingales (Theorem 2.12 in Hall and Heyde (1980)).

Lastly, Theorem S1.8 presents a special case of the central limit theorem for multivariate martingale triangular arrays
(Proposition 3.1 from Crimaldi and Pratelli (2005)). This theorem is pivotal for proving the asymptotic normality of the
proposed estimators.

Lemma S1.3 (Generalized Grönwall’s inequality, Lemma 2.3 in Tian and Fan (2020)) Let p > 1 and b > 0 be
constants, and let a : (0,+∞) → (0,+∞) be a continuous function. If

u(t) ≤ a(t) + b

∫ t

0

up(s) ds,

then u(t) ≤ a(t) + (κ1−p(t)− (p− 1)2p−1bt)
1

1−p and κ1−p(t) > (p− 1)2p−1bt, where

κ(t) := 2p−1b

∫ t

0

ap(s) ds. (S7)
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Lemma S1.4 (Lemma 9 in Genon-Catalot and Jacod (1993)) Let (XN
k )N∈N,1≤k≤N be a triangular array with each

row N adapted to a filtration (GN
k )1≤k≤N , and let U be a random variable. If

N∑
k=1

E[XN
k | GN

k−1]
P−−−−→

N→∞
U,

N∑
k=1

E[(XN
k )2 | GN

k−1]
P−−−−→

N→∞
0,

then
∑N

k=1 X
N
k

P−−−−→
N→∞

U .

Lemma S1.5 (Proposition A1 in Gloter (2006)) Let SN (ω,θ) be a sequence of measurable real-valued functions
defined on Ω×Θ, where (Ω,F ,P) is a probability space, and Θ is product of compact intervals of R. We assume that
SN (·,θ) converges to a constant C in probability for all θ ∈ Θ; and that there exists an open neighbourhood of Θ on
which SN (ω, ·) is continuously differentiable for all ω ∈ Ω. Furthermore, we suppose that:

sup
N∈N

E[sup
θ∈Θ

|∇θSN (θ)|] < ∞.

Then, SN (θ)
P−−−−→

N→∞
C uniformly in θ.

Lemma S1.6 (Lemma 3.1 in Yoshida (1990)) Let F ⊂ Rd be a convex compact set, and let {ξN (θ);θ ∈ F}, be a
family of real-valued random processes for N ∈ N. If there exist constants p ≥ l > d and C > 0 such that for all θ,θ1
and θ2, it holds:

(1) E[|ξN (θ1)− ξN (θ2)|p] ≤ C∥θ1 − θ2∥l;

(2) E[|ξN (θ)|p] ≤ C;

(3) ξN (θ)
P−−−−→

N→∞
0,

then supθ∈F |ξN (θ)| P−−−−→
N→∞

0.

Theorem S1.7 (Rosenthal’s inequality, Theorem 2.12 in Hall and Heyde (1980)) Let (XN
k )N∈N,1≤k≤N be a trian-

gular array with each row N adapted to a filtration (GN
k )1≤k≤N and let:

SN =

N∑
k=1

XN
k , N ∈ N

be a martingale array. Then, for all p ∈ [2,∞) there exist constants C1, C2 such that:

C1(E[(
N∑

k=1

E[(XN
k )2 | GN

k−1])
p
2 ] +

N∑
k=1

E[|XN
k |p]) ≤ E[|SN |p] ≤ C2(E[(

N∑
k=1

E[(XN
k )2 | GN

k−1])
p
2 ] +

N∑
k=1

E[|XN
k |p]).

Theorem S1.8 (Proposition 3.1. in Crimaldi and Pratelli (2005)) Let (XN,k)N∈N,1≤k≤N be a triangular array of
d-dimensional random vectors, such that, for each N , the finite sequence (XN,k)1≤k≤N is a martingale difference
array with respect to a given filtration (GN

k )1≤k≤N such that:

SN =

N∑
k=1

XN,k, N ∈ N.

If

(1) E[ sup
1≤k≤N

∥XN,k∥1] −−−−→
N→∞

0;

(2)
N∑

k=1

XN,kX
⊤
N,k

P−−−−→
N→∞

U, for some non-random positive semi-definite matrix U,

then, SN
d−−−−→

N→∞
Nd(0,U).
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Remark Instead of using the second condition of Theorem S1.8, Lemma S1.6 yields that it is sufficient to prove that,
for all i, j = 1, ..., d, it holds:

N∑
k=1

E[X(i)
N,kX

(j)
N,k | GN

k−1]
P−−−−→

N→∞
Uij ,

N∑
k=1

E[(X(i)
N,kX

(j)
N,k)

2 | GN
k−1]

P−−−−→
N→∞

0.

Remark For a martingale difference array the conditional expectations need to be zero almost surely, i.e:

E[XN,k | GN
k−1] = 0, a.s. for all N ∈ N, 1 ≤ k ≤ N.

In our case, (XN,k)N∈N,1≤k≤N does not fulfil the previous condition. Hence, similar to the approach in Corollary 2.6
of McLeish (1974), we need the following two additional conditions on (XN,k)N∈N,1≤k≤N :

N∑
k=1

E[X(i)
N,k | GN

k−1]
P−−−−→

N→∞
0,

N∑
k=1

E[X(i)
N,k | GN

k−1]E[X
(j)
N,k | GN

k−1]
P−−−−→

N→∞
0. (S8)

Indeed, martingale difference array YN,k = XN,k − E[XN,k | GN
k−1] satisfies conditions of the previous theorem. To

prove that the first condition is satisfied, we write:

E[ sup
1≤k≤N

∥YN,k∥1] ≤ E[ sup
1≤k≤N

∥XN,k∥1] + E[ sup
1≤k≤N

E[∥XN,k∥1 | GN
k−1]]

≤ E[ sup
1≤k≤N

∥XN,k∥1] + E[ sup
1≤k≤N

E[ sup
1≤j≤N

∥XN,j∥1 | GN
k−1]] ≤ 3E[ sup

1≤k≤N
∥XN,k∥1] −−−−→

N→∞
0.

We used the Doob’s inequality for the last submartingale. To demonstrate the second condition we fix i, j to get:

N∑
k=1

Y
(i)
N,kY

(j)
N,k =

N∑
k=1

X
(i)
N,kX

(j)
N,k −

N∑
k=1

X
(i)
N,kE[X

(j)
N,k | GN

k−1]

−
N∑

k=1

X
(j)
N,kE[X

(i)
N,k | GN

k−1] +

N∑
k=1

E[X(i)
N,k | GN

k−1]E[X
(j)
N,k | GN

k−1].

The first term goes to Uij , and the last term goes to zero. To prove that middle terms also vanish, we use the following
inequalities:

|
N∑

k=1

X
(i)
N,kE[X

(j)
N,k | GN

k−1]| ≤
N∑

k=1

|X(i)
N,k||E[X

(j)
N,k | GN

k−1]| ≤ (

N∑
k=1

(X
(i)
N,k)

2
N∑

k=1

E2[X
(j)
N,k | GN

k−1])
1
2 −−−−→

N→∞
0.

Theorem S1.8 yields that
N∑

k=1

YN,k
d−−−−→

N→∞
Nd(0,U), which together with (S8), gives SN

d−−−−→
N→∞

Nd(0,U).

S1.5 Proof of Lemma 7.1

Lemma 7.1 plays a central role in demonstrating the consistency and asymptotic normality of the proposed estimators.
The lemma deals with the uniform convergence of multiple triangular arrays, and proving various aspects of it involves
a range of technical tools and methods. Different parts of Lemma 7.1 require distinct strategies to establish appropriate
bounds, which can be intricate. Once these bounds are established, we leverage the properties discussed in the preceding
section.

For instance, when establishing point-wise convergence, we primarily rely on Lemma S1.4. On the other hand, for
proving uniform convergence, we utilize both Lemma S1.5 and Lemma S1.6. Throughout the proof of Lemma 7.1, a
recurring theme is to interpret quadratic forms as traces and exploit the cyclic property inherent to them. Additionally,
we employ fundamental mathematical tools like the mean value theorem, the Cauchy-Schwartz inequality, and Hölder’s
inequality in various instances.

Furthermore, there are occasions where we require inequality for norms, particularly the Frobenius norm. To address
this, we introduce the Frobenius inner product of matrices M1 and M2 in Rn×m as ⟨M1,M2⟩F := Tr(M⊤

1 M2).
Leveraging Hölder’s inequality on Frobenius norm provides us with the following bound for the trace of a matrix
product: ∥Tr(M⊤

1 M2)∥ ≤ ∥Tr(M1)∥∥M2∥.
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Proof of Lemma 7.1 Proof of 1. As previously discussed, we introduce a martingale array that corresponds to
the limit outlined in point 1. We then utilize Lemma S1.4 to facilitate our analysis. We denote Y N

k (β0, ς) :=
1

NhZtk(β0)
⊤(ΣΣ⊤)−1Ztk(β0). We have:

N∑
k=1

Eθ0 [Y
N
k (β0, ς) | Xtk−1

] =
1

Nh

N∑
k=1

Eθ0 [Tr(Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)) | Xtk−1

]

=
1

Nh

N∑
k=1

Tr((ΣΣ⊤)−1Eθ0
[Ztk(β0)Ztk(β0)

⊤ | Xtk−1
])

=
1

Nh

N∑
k=1

Tr((ΣΣ⊤)−1hΣΣ⊤
0 +R(h2,Xtk−1

))
Pθ0−−−−−→

Nh→∞
h→0

Tr((ΣΣ⊤)−1ΣΣ⊤
0 ).

To use the result of Lemma S1.4, we need to prove that covariance of Y N
k (β0, ς) goes to zero. To achieve this,

we leverage Corollary 3.8 and recall that if ρ is a Gaussian random vector ρ ∼ N (0,Π), then E[(ρTMρ)2] =
2Tr((MΠ)2) + (Tr(MΠ))2. This leads to:

N∑
k=1

Eθ0
[Y N

k (β0, ς)
2 | Xtk−1

] =
1

N2h2

N∑
k=1

(Eθ0
[(ξ⊤h,k(ΣΣ⊤)−1ξh,k)

2 | Xtk−1
] +R(h3/2,Xtk−1

))

=
1

Nh

1

N

N∑
k=1

(2Tr((ΣΣ⊤)−1Σ0Σ
⊤
0 )

2 + (Tr((ΣΣ⊤)−1Σ0Σ
⊤
0 ))

2 +R(h1/2,Xtk−1
))

Pθ0−−→ 0,

for Nh → ∞, h → 0. Then, by Lemma S1.4 1
Nh

∑N
k=1 Ztk(β0)

⊤(ΣΣ⊤)−1Ztk(β0)
Pθ0−−→ Tr((ΣΣ⊤)−1ΣΣ⊤

0 ), for
Nh → ∞, h → 0. To establish the uniformity of the limits with respect to ς , we turn to Lemma S1.5 and introduce sets
Θςj such that ς = (ς1, ς2, . . . , ςs) ∈ Θς1 ×Θς2 × · · · ×Θςs = Θς . Then it is enough to show that for all j = 1, . . . , s,
it holds:

sup
N∈N

Eθ0 [ sup
ςj∈Θςj

|∂ςj
1

Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)|] < ∞. (S9)

We use the well-known rule of matrix differentiation ∂X(a⊤X−1a) = −X−1aa⊤X−1, where a is a vector and X is a
symmetric matrix, to get:

∂x(i) Tr(a⊤C−1(x)a) = −Tr(C−1(x)aa⊤C−1(x)∂x(i)C(x)) = −Tr(aa⊤C−1(x)(∂x(i)C(x))C−1(x)).

We omit writing β0 for ease of notation. Then, by using the trace bound, the norm inequality, and Assumption (A4), we
can deduce that:

sup
N∈N

Eθ0
[ sup
ςj∈Θςj

|∂ςj
1

Nh

N∑
k=1

Z⊤
tk
(ΣΣ⊤)−1Ztk |] ≤ sup

N∈N
Eθ0

[
1

Nh

N∑
k=1

sup
ςj∈Θςj

|∂ςj Tr(Z⊤
tk
(ΣΣ⊤)−1Ztk)|]

≤ sup
N∈N

Eθ0 [
1

Nh

N∑
k=1

Tr(ZtkZ
⊤
tk
) sup
ςj∈Θςj

∥(ΣΣ⊤)−1(∂ςjΣΣ⊤)(ΣΣ⊤)−1∥]

≤ sup
N∈N

Eθ0
[
1

Nh

N∑
k=1

Tr(ZtkZ
⊤
tk
) sup
ςj∈Θςj

∥(ΣΣ⊤)−1∥2∥∂ςjΣΣ⊤∥] ≤ C sup
N∈N

Eθ0
[
1

Nh

N∑
k=1

Tr(ZtkZ
⊤
tk
)]

= C sup
N∈N

Eθ0
[Eθ0

[
1

Nh

N∑
k=1

Tr(ZtkZ
⊤
tk
) | Xtk−1

]] = C sup
N∈N

Eθ0
[
1

Nh

N∑
k=1

Tr(hΣΣ⊤
0 +R(h2,Xtk−1

))] < ∞.

Proof of 2. We use Lemma 4.2 to deduce:

1

N

N∑
k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)

Pθ0−−→
∫

g(x;β0,β)
⊤(ΣΣ⊤)−1g(x;β0,β) dν0(x),

uniformly in θ, for Nh → ∞, h → 0. Then we use the bound of g to conclude the proof of 2.
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Proof of 3. For Y N
k (β0,θ) := 1

NZtk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β), the limit of
∑N

k=1 Eθ0 [Y
N
k (β0,θ) | Xtk−1

]
rewrites as:

N∑
k=1

Eθ0
[Y N

k (β0,θ) | Xtk−1
] =

1

N

N∑
k=1

Eθ0
[Tr(Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)) | Xtk−1

]

=
1

N

N∑
k=1

Tr((ΣΣ⊤)−1g(Xtk−1
;β0,β)Eθ0

[Ztk(β0)
⊤ | Xtk−1

])

=
1

N

N∑
k=1

R(h3,Xtk−1
)

Pθ0−−→ 0,

for Nh → ∞, h → 0 . Then, we study the limit of
∑N

k=1 Eθ0
[Y N

k (β0,θ)
2 | Xtk−1

]:

N∑
k=1

Eθ0
[Y N

k (β0,θ)
2 | Xtk−1

]

=
1

N2

N∑
k=1

Eθ0
[g(Xtk−1

;β0,β)
⊤(ΣΣ⊤)−1Ztk(β0)Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β) | Xtk−1

]

=
1

N2

N∑
k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1Eθ0 [Ztk(β0)Ztk(β0)
⊤ | Xtk−1

](ΣΣ⊤)−1g(Xtk−1
;β0,β)

=
1

N

N∑
k=1

R(
h

N
,Xtk−1

)
Pθ0−−→ 0,

for Nh → ∞, h → 0. Lemma S1.4 yields that 1
N

∑N
k=1 Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)

Pθ0−−→ 0, for Nh → ∞,
h → 0. To show the uniformity of the limits with respect to θ, we leverage Lemma S1.6. It is sufficient to demonstrate
the existence of constants p ≥ l > r + s and C > 0 such that for all θ,θ1 and θ2 it holds:

Eθ0
[|

N∑
k=1

Y N
k (β0,θ)|p] ≤ C, (S10)

Eθ0
[|

N∑
k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p] ≤ C∥θ1 − θ2∥l. (S11)

We begin by considering equation (S10). Based on the definition of Ztk(β0) and the assumptions made about N, as
well as the fact that h < 1, there exist constants C1 and C2 such that:

∥Ztk(β0)∥p ≤ ∥Xtk −Xtk−1
∥p + C1h

p(1 + ∥Xtk∥)C1 + C2h
p(1 + ∥Xtk−1

∥)C2 , (S12)

Then, Lemma 4.1 yields:
Eθ0

[∥Ztk(β0)∥p | Xtk−1
] ≤ Chp/2(1 + ∥Xtk−1

∥)C . (S13)

Subsequently, we use the norm inequality, (S13) and both statements of Lemma 4.1 to get:

Eθ0
[|

N∑
k=1

Y N
k (β0,θ)|p] ≤ Np−1

N∑
k=1

Eθ0
[|Y N

k (β0,θ)|p]

=
1

N

N∑
k=1

Eθ0
[Eθ0

[|Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β)|p | Xtk−1
]]

≤ 1

N

N∑
k=1

Eθ0
[Eθ0

[∥Ztk(β0)∥p | Xtk−1
]∥(ΣΣ⊤)−1∥p∥g(Xtk−1

;β0,β)∥p] ≤
1

N
·N · C.

(S14)
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This completes the proof of (S10). Now, we focus on (S11). We use the triangular inequality and the Hölder’s inequality
to derive:

Eθ0
[|

N∑
k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]

≤ 2p−1

N

N∑
k=1

Eθ0
[|Ztk(β0)

⊤(Σ1Σ
⊤
1 )

−1(g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0))|p] (S15)

+
2p−1

N

N∑
k=1

Eθ0 [|Ztk(β0)
⊤((Σ1Σ

⊤
1 )

−1 − (Σ2Σ
⊤
2 )

−1)g(Xtk−1
;β2,β0)|p]. (S16)

First, we study sum (S15). We use the mean value theorem and the triangular inequalities to get:

1

N

N∑
k=1

Eθ0 [|Ztk(β0)
⊤(Σ1Σ

⊤
1 )

−1(g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0))|p]

≤ 1

N

N∑
k=1

Eθ0
[Eθ0

[∥Ztk(β0)∥p | Xtk−1
]∥(Σ1Σ

⊤
1 )

−1∥p∥g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0)∥p]

≤ 1

N

N∑
k=1

Eθ0
[Cp(1 + ∥Xtk−1

∥)Cp∥β1 − β2∥p∥
∫ 1

0

Dβg(Xtk−1
;β2 + t(β1 − β2),β0) dt∥p]

≤ C∥β1 − β2∥p. (S17)

To bound sum (S16), we introduce the following multivariate matrix-valued function G(ς) := (ΣΣ⊤)−1. Then, we
use the inequality between the operator 2-norm and Frobenius norm, and the definition of the Frobenius norm to get:

∥G(ς1)−G(ς2)∥ ≤ (

d∑
i,j=1

∥Gij(ς1)−Gij(ς2)∥2)
1
2 .

Now, apply the mean value theorem on each Gij and Assumption (A4) to get:

∥G(ς1)−G(ς2)∥ ≤ (

d∑
i,j=1

∥ς1 − ς2∥2∥
∫ t

0

∇ςGij(ς2 + t(ς1 − σ2)) dt∥2)
1
2 ≤ C∥ς1 − ς2∥.

Finally, combining the previous results, we conclude that:

Eθ0 [|
N∑

k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p] ≤ C(∥β1 − β2∥p + ∥ς1 − ς2∥p)

≤ C(∥β1 − β2∥2 + ∥ς1 − ς2∥2)p/2 = C∥θ1 − θ2∥p,

for p ≥ 2. This concludes the proof of 3.

Proof of 4. For Y N
k (β0,θ) :=

1
NhZtk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β), we repeat the same derivations as in the proof

of 3. to show that the limit of
∑N

k=1 Eθ0
[Y N

k (β0,θ) | Xtk−1
] satisfies:

N∑
k=1

Eθ0 [Y
N
k (β0,θ) | Xtk−1

]

=
1

Nh

N∑
k=1

Tr((ΣΣ⊤)−1g(Xtk−1
;β0,β)Eθ0

[Ztk(β0)
⊤ | Xtk−1

]) =
1

N

N∑
k=1

R(h2,Xtk−1
)

Pθ0−−→ 0,
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for h → 0. Similarly, we deduce that:
N∑

k=1

Eθ0
[Y N

k (β0,θ)
2 | Xtk−1

] (S18)

=
1

N2h2

N∑
k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1Eθ0 [Ztk(β0)Ztk(β0)
⊤ | Xtk−1

](ΣΣ⊤)−1g(Xtk−1
;β0,β)

=
1

N

N∑
k=1

R(
1

Nh
,Xtk−1

)
Pθ0−−→ 0,

for Nh → ∞. To prove uniform convergence, we use Lemma S1.6 along with Rosenthal’s inequality from Theorem
S1.7, resulting in:

Eθ0 [|
N∑

k=1

Y N
k (β0,θ)|p] ≤ C(E[(

N∑
k=1

E[Y N
k (β0,θ)

2 | Xtk−1
])p/2] +

N∑
k=1

E[|Y N
k (β0,θ)|p]).

The first term is bounded because of (S18). To bound the second term on the right-hand side, we use (S14). Then, for
Nh → ∞ and h → 0 and p > 2 it holds:

N∑
k=1

E[|Y N
k (β0,θ)|p] ≤

1

(Nh)p
·Nhp/2 · C =

1

(Nh)p−1
· hp/2−1 · C ≤ C.

To conclude the proof of uniform convergence, we once again apply Rosenthal’s inequality to get:

Eθ0
[|

N∑
k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]

≤ CE[(
N∑

k=1

E[(Y N
k (β0,θ1)− Y N

k (β0,θ2))
2 | Xtk−1

])p/2] + C

N∑
k=1

E[|(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]. (S19)

To bound the first term in (S19), we follow the reasoning from (S17) and start with:

E[(Y N
k (β0,θ1)− Y N

k (β0,θ2))
2 | Xtk−1

]

≤ 2Eθ0
[(Ztk(β0)

⊤(Σ1Σ
⊤
1 )

−1(g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0)))
2 | Xtk−1

]

+ 2Eθ0
[(Ztk(β0)

⊤((Σ1Σ
⊤
1 )

−1 − (Σ2Σ
⊤
2 )

−1)g(Xtk−1
;β2,β0))

2 | Xtk−1
].

Then, the rest is the same. Similarly, to bound the second term in (S19), we repeat derivations from (S17) to get:
N∑

k=1

E[|(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p] ≤
1

(Nh)p
·Nhp/2 · C · ∥θ1 − θ2∥p ≤ C∥θ1 − θ2∥p,

Finally, (S18) and conclusions after (S17) complete the proof of 4.

Proof of 5. We introduce Y N
k (β0,θ) := 1

NZtk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β). Proposition 4.3 yields that

E[Ztk(β0)g(Xtk ;β0,β)
⊤ | Xtk−1

] = R(h,Xtk−1
). Then, we conclude that

∑N
k=1 Eθ0

[Y N
k (β0,θ) | Xtk−1

] → 0

in Pθ0 , for Nh → ∞, h → 0. Moreover, to prove the convergence of
∑N

k=1 Eθ0 [Y
N
k (β0,θ)

2 | Xtk−1
], it is

enough to bound 1
N2

∑N
k=1 E[Tr((Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk ;β0,β))
2) | Xtk−1

]. Hölder’s inequality, together with
Cauchy-Schwartz inequality, Lemma 4.1 and (S13), yield:

1

N2

N∑
k=1

E[Tr((Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β))

2) | Xtk−1
]

≤ 1

N2

N∑
k=1

E[∥Ztk(β0)∥2∥g(Xtk ;β0,β)∥2 | Xtk−1
] Tr((ΣΣ⊤)−1)∥(ΣΣ⊤)−1∥

≤ C

N2

N∑
k=1

(E[∥Ztk(β0)∥4 | Xtk−1
]E[∥g(Xtk ;β0,β)∥4 | Xtk−1

])
1
2 =

1

N

N∑
k=1

R(h/N,Xtk−1
)

Pθ0−−→ 0, (S20)
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for Nh → ∞, h → 0. To prove the uniform convergence, we use Lemma S1.6. Again, it is enough to prove (S10) and
(S11). Repeating the same steps as in the proof of (S14) leads to (S10). Similarly, to prove (S11) we repeat the same
steps as in (S17) using Hölder’s inequality, Cauchy-Schwartz inequality, and Lemma 4.1 with (S13).

Proof of 6. We introduce Y N
k (β0,θ) := 1

NhZtk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β) and study

∑N
k=1 Eθ0

[Y N
k (β0,θ) |

Xtk−1
]. Proposition 4.3 yields:

N∑
k=1

Eθ0
[Y N

k (β0,θ) | Xtk−1
] =

1

Nh

N∑
k=1

Tr((ΣΣ⊤)−1Eθ0
[Ztk(β0)g(Xtk ;β0,β)

⊤ | Xtk−1
])

=
1

2N

N∑
k=1

Tr((ΣΣ⊤)−1(ΣΣ⊤
0 D

⊤g(Xtk−1
;β0,β) +Dg(Xtk−1

;β0,β)ΣΣ⊤
0 +R(h,Xtk−1

)))

Pθ0−−→
∫

Tr(Dg(x;β0,β)ΣΣ⊤
0 (ΣΣ⊤)−1) dν0(x),

for Nh → ∞, h → 0. On the other hand,
∑N

k=1 Eθ0
[Y N

k (β0,θ)
2 | Xtk−1

] = 1
N

∑N
k=1 R( 1

Nh ,Xtk−1
) → 0, in Pθ0

,
for Nh → ∞, h → 0, which follows from derivations in (S20). To prove uniform convergence, we repeat the same
approach as in the previous two proofs.

Proof of 7. First, we use the fact that E[g(Xtk ;β0,β) | Xtk−1
= x] = g(x;β0,β) +R(h,x), for a generic function

g. Then, for Y N
k (β0,θ) :=

h
N g1(Xtk−1

;β0,β)
⊤(ΣΣ⊤)−1g2(Xtk ;β0,β) it follows

N∑
k=1

Eθ0
[Y N

k (β0,θ) | Xtk−1
]

Pθ0−−−−−→
Nh→∞
h→0

0,

N∑
k=1

Eθ0
[Y N

k (β0,θ)
2 | Xtk−1

]
Pθ0−−−−−→

Nh→∞
h→0

0.

Again, the proofs of (S10) and (S11) are the same as in property 3, with a distinction of rewriting:

g1(β1)
⊤(Σ1Σ

⊤
1 )

−1g2(β1)− g1(β2)
⊤(Σ2Σ

⊤
2 )

−1g2(β2)

= (g1(β1)− g1(β2))
⊤(Σ1Σ

⊤
1 )

−1g2(β1) + g1(β2)
⊤(Σ1Σ

⊤
1 )

−1(g2(β1)− g2(β2))

+ g1(β2)
⊤((Σ1Σ

⊤
1 )

−1 − (Σ2Σ
⊤
2 )

−1)g2(β2).

S1.6 Proof of the Asymptotic Normality

In this section, we distinguish between the true parameter θ0 and a generic parameter θ. To complete the proof of
asymptotic normality, we need to prove Lemma 7.4. The proof of this lemma is technical and involves bounding the
sums of triangular arrays in such a way that the bound converges to zero in probability Pθ0

as h → 0, Nh → ∞, and
Nh2 → 0. Unlike in the previous proof, this time we do not require uniform convergence.

Proof of Lemma 7.4 We begin by expanding η
(i)
k to differentiate between terms that vanish and those that do not in

the limits:

η
(i)
N,k(θ0) =

2√
Nh

Tr((I+
h

2
DN0(Xtk))(−

h

2
Dx∂βiN0(Xtk)))

− 2

h
√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1(−h

2
∂βi

N0(Xtk) +
h2

8
∂βi

(DN0(Xtk))N0(Xtk))

+
2

h
√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βiµh(fh/2(Xtk−1

;β0);β0) +R(
√
h3/N,Xtk−1

)

= −
√

h

N
Tr(Dx∂βi

N0(Xtk)) +
1√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

N0(Xtk)

− 1

4

√
h

N
Ztk(β0)

⊤(ΣΣ⊤
0 )

−1∂βi
(DN0(Xtk))N0(Xtk)

+
2

h
√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

µh(fh/2(Xtk−1
;β0);β0) +R(

√
h3/N,Xtk−1

). (S21)

Proof of (i). Let us begin by examining the limit of the expectation of sup1≤k≤N |η(i)N,k(θ0)|. In equation
(S21), all the involved functions are bounded, and the term with the largest order is R(

√
Nh,Xtk−1

) because
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∂βiµh(fh/2(Xtk−1
;β0);β0) is R(h,Xtk−1

). The remaining terms converge to zero. Moreover, terms with coef-
ficients 1√

Nh
take the form Ztk(β0)

⊤(ΣΣ⊤
0 )

−1g, where g is a vector-valued function of either Xtk−1
or Xtk . Their

expected values are bounded by R(h,Xtk−1
) at most. Thus, the dominant order becomes R(

√
h/N,Xtk−1

), which
indeed converges to zero.

We proceed to analyze the limit of the expectation of sup1≤k≤N |ζ(j)N,k(θ0)| . The leading term in ζ
(j)
N,k(θ0), as defined

in the paper, has an order R(1/
√
Nh2,Xtk−1

). Upon calculating its expected value, we obtain an order of R(h,Xtk−1
).

This concludes the proof of (i).

To establish limits (ii)-(v), we need to calculate the expectations of η(i)N,k and ζ
(i)
N,k. By analyzing (S21), we can deduce

that Eθ0
[η

(i)
N,k(θ0) | Xtk−1

] = R(
√

h3/N,Xtk−1
), since Proposition 4.3 gives:

Eθ0 [
1√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βiN0(Xtk) | Xtk−1

] =

√
h

N
Tr(Dx∂βiN0(Xtk)) +R(

√
h3/N,Xtk−1

),

Similarly, from:

Eθ0 [Tr(ZtkZ
⊤
tk
(ΣΣ⊤

0 )
−1(∂ςjΣΣ⊤

0 )(ΣΣ⊤
0 )

−1) | Xtk−1
] = hTr((ΣΣ⊤

0 )
−1∂ςjΣΣ⊤

0 ) +R(h2,Xtk−1
)

we conclude that Eθ0
[ζ

(i)
N,k(θ0) | Xtk−1

] = R(h/
√
N,Xtk−1

). Then, combining the previous, we get:

N∑
k=1

Eθ0
[η

(i)
N,k(θ0) | Xtk−1

] = R(
√
Nh3,Xtk−1

)
Pθ0−−→ 0,

N∑
k=1

Eθ0
[ζ

(j)
N,k(θ0) | Xtk−1

] = R(
√
Nh2,Xtk−1

)
Pθ0−−→ 0,

N∑
k=1

Eθ0 [η
(i1)
N,k(θ0) | Xtk−1

]Eθ0 [η
(i2)
N,k(θ0) | Xtk−1

] = R(h3,Xtk−1
)

Pθ0−−→ 0,

N∑
k=1

Eθ0
[ζ

(j1)
N,k (θ0) | Xtk−1

]Eθ0
[ζ

(j2)
N,k (θ0) | Xtk−1

] = R(h2,Xtk−1
)

Pθ0−−→ 0,

N∑
k=1

Eθ0
[η

(i)
N,k(θ0) | Xtk−1

]Eθ0
[ζ

(j)
N,k(θ0) | Xtk−1

] = R(h5/2,Xtk−1
)

Pθ0−−−−→
N→∞

0.

Now, we prove limit (vi). Here, we focus on the terms of order 1/
√
Nh in η

(i)
N,k which are the only ones that will not

converge to zero when multiplying η
(i1)
N,k and η

(i2)
N,k:

η
(i)
N,k(θ0) =

1√
Nh

Z⊤
tk
(ΣΣ⊤

0 )
−1∂βiN0(Xtk)

+
2

h
√
Nh

Z⊤
tk
(ΣΣ⊤

0 )
−1∂βiµh(fh/2(Xtk−1

;β0);β0) +R(

√
h

N
,Xtk−1

)

=
1√
Nh

Z⊤
tk
(ΣΣ⊤

0 )
−1∂βi

N0(Xtk) +
1√
Nh

Z⊤
tk
(ΣΣ⊤

0 )
−1∂βi

(N0(Xtk−1
)

+ 2A0(Xtk−1
−b0)) +R(

√
h

N
,Xtk−1

)

=
2√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

F0(Xtk−1
) +

1√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1ψi

k,k−1(β0) +R(

√
h

N
,Xtk−1

),
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In the previous calculations, we introduced a new notation ψi
k,k−1(β0) := ∂βi(N0(Xtk) −N0(Xtk−1

)). Now, we

consider the product η(i1)N,k(θ0)η
(i2)
N,k(θ0) and again focus only on the terms with coefficient 1/Nh:

η
(i1)
N,k(θ0)η

(i2)
N,k(θ0) =

4

Nh
Z⊤

tk
(ΣΣ⊤

0 )
−1∂βi1

F0(Xtk−1
)∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1Ztk

+
2

Nh
Z⊤

tk
(ΣΣ⊤

0 )
−1ψi1

k,k−1(β0)∂βi2
F0(Xtk−1

)⊤(ΣΣ⊤
0 )

−1Ztk

+
2

Nh
Z⊤

tk
(ΣΣ⊤

0 )
−1∂βi1

F0(Xtk−1
)ψi2

k,k−1(β0)
⊤(ΣΣ⊤

0 )
−1Ztk

+
1

Nh
Z⊤

tk
(ΣΣ⊤

0 )
−1ψi1

k,k−1(β0)ψ
i2
k,k−1(β0)

⊤(ΣΣ⊤
0 )

−1Ztk +R(1/N,Xtk−1
).

In the previous equation, we must show that the sum of expectations of all the terms except the first converges to
zero. We only prove this for the second row; the rest follows analogously. Due to the definition of ψi, it is clear that
E0[∥ψi

k,k−1(β0)∥p | Xtk−1
] = R(h,Xtk−1

), for all p ≥ 1. Then, we use property (S13) to obtain:

1

Nh
|Eθ0

[Z⊤
tk
(ΣΣ⊤

0 )
−1ψi1

k,k−1(β0)∂βi2
F0(Xtk−1

)⊤(ΣΣ⊤
0 )

−1Ztk | Xtk−1
]|

≤ 1

Nh
|Tr(∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1)|∥(ΣΣ⊤

0 )
−1∥Eθ0

[∥ZtkZ
⊤
tk
∥∥ψi1

k,k−1(β0)∥ | Xtk−1
]

≤ C

Nh
(Eθ0 [∥ZtkZ

⊤
tk
∥2 | Xtk−1

]Eθ0 [∥ψ
i1
k,k−1(β0)∥2 | Xtk−1

])
1
2

=
1

Nh
(R(h2,Xtk−1

)R(h,Xtk−1
))

1
2 = R(

√
h/N,Xtk−1

).

Finally, we use Lemma 4.2 to get:
N∑

k=1

Eθ0
[η

(i1)
N,k(θ0)η

(i2)
N,k(θ0) | Xtk−1

]

=
4

Nh

N∑
k=1

(Eθ0 [Z
⊤
tk
(ΣΣ⊤

0 )
−1∂βi1

F0(Xtk−1
)∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1Ztk | Xtk−1

] +R(h3/2,Xtk−1
))

=
4

N

N∑
k=1

(Tr(∂βi2
F(Xtk−1

;β0)
⊤(ΣΣ⊤

0 )
−1∂βi1

F(Xtk−1
;β0)) +R(

√
h,Xtk−1

))
Pθ0−−−−→

N→∞
4[Cβ(θ0)]i1i2 .

To prove (vii) we use Corollary 3.8:

Eθ0
[ζ

(j1)
N,k (θ0)ζ

(j2)
N,k (θ0) | Xtk−1

]

=
1

h2N
Eθ0 [Z

⊤
tk
(ΣΣ⊤

0 )
−1(∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ZtkZ
⊤
tk
(ΣΣ⊤

0 )
−1(∂ςj2ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Ztk | Xtk−1
]

− 1

N
Tr((ΣΣ⊤

0 )
−1∂ςj1ΣΣ⊤

0 ) Tr((ΣΣ⊤
0 )

−1∂ςj2ΣΣ⊤
0 )

=
1

h2N
Eθ0 [ξ

⊤
h,k(ΣΣ⊤

0 )
−1(∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ξh,kξ
⊤
h,k(ΣΣ⊤

0 )
−1(∂ςj2ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ξh,k | Xtk−1
]

− 1

N
Tr((ΣΣ⊤

0 )
−1∂ςj1ΣΣ⊤

0 ) Tr((ΣΣ⊤
0 )

−1∂ςj2ΣΣ⊤
0 ) +R(

√
h/N,Xtk−1

).

Now, we use the expectation of a product of two quadratic forms of normally distributed random vectors (see for
example Section 2 in Kumar (1973)) to get:

1

h2N
Eθ0 [ξ

⊤
h,k(ΣΣ⊤

0 )
−1(∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ξh,kξ
⊤
h,k(ΣΣ⊤

0 )
−1(∂ςj2ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ξh,k | Xtk−1
]

=
2

N
Tr((ΣΣ⊤

0 )
−1 ∂ΣΣ⊤

0

∂ςj1
(ΣΣ⊤

0 )
−1 ∂ΣΣ⊤

0

∂ςj2
) +

1

N
Tr((ΣΣ⊤

0 )
−1 ∂ΣΣ⊤

0

∂ςj1
) Tr((ΣΣ⊤

0 )
−1 ∂ΣΣ⊤

0

∂ςj2
).

This proves (vii). We omit the proofs of (viii)-(xi) since they follow the same pattern. Namely, we find the leading
term and ensure it goes to zero. For the expectations of squares, we can apply the same approach with a product of two
quadratic forms.
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