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ABSTRACT:
The image source (IS) method is a commonly used geometrical acoustics simulation technique in room and virtual

acoustics. In particular, it has been used in the analysis of room reverberation under different choices of geometry and

wall conditions. Under a simple rectangular parallelepipedal geometry, reverberation time is known to be dependent on

the direction of arrival of reflections relative to the room axes. In this article, a closed-form expression for the directional

energy decay and reverberation time is derived, which is valid in the late response, and may be used in the case of either

angle-independent or angle-dependent reflection. The expression reduces to an easily evaluated formula in the case of an

omnidirectional energy decay curve (EDC). Various numerical results are presented, including the validation of the

closed-form expression against EDCs and late reverberation times drawn directly from the IS method.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0024975

(Received 6 November 2023; revised 2 February 2024; accepted 2 February 2024; published online 14 February 2024)
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I. INTRODUCTION

The mirror source or image source (IS) method1 is a

popular algorithm used in the analysis and simulation of

room acoustics. In the IS method, a sound source within an

enclosure is reflected recursively at every surface, and the

propagation paths from “image” rooms are used to synthe-

size a room impulse response (RIR).1 Although originally

formulated in terms of omnidirectional responses for rooms

of rectangular parallelepipedal shape, this method has since

been extended to arbitrary room geometry2 and directional

RIRs, which are suitable for spatial sound reproduction.3,4

The IS method belongs to the larger family of geometrical

acoustic (GA) algorithms,5,6 including ray tracing7 and

beam tracing,8–10 among others. For IS, as with all GA

methods, diffraction effects are not directly modeled but

may be incorporated through the use of an edge diffraction

model.11 (Wave-based methods, of which there are many

varieties,12–14 are more computationally intensive but offer

a complete solution, together with the effects of diffraction.)

The IS method has gotten extensive use in applications

across various domains, including sound reproduction,15

architectural acoustics,16 and training neural networks for

source localization.17

The IS method, especially in the case of rectangular

parallelepipedal (henceforth parallelepipedal) rooms, has

been used for some time as the starting point for investiga-

tions into the character of room reverberation, including

approximations to global reverberation time. See, especially,

chapter 4 of Kuttruff’s text,18 which gives a derivation of

reverberation time in this setting. In an article by Lehmann

and Johansson,19 a formulation of the IS method is proposed

to estimate the energy decay curve (EDC) instead of numeri-

cally reverse integrating a RIR obtained directly from the IS

method. The resulting decay slope is used to estimate the

omnidirectional reverberation time, although in certain

cases, decay is known to be non-exponential.20 Using decay

estimation methods, high-order reflections may be replaced

with an artificial reverberator21 that is designed to approxi-

mate the energy decay function produced by a given IS

configuration.22–24

The analysis approaches above are all geared toward

the approximation of global (i.e., omnidirectional)

responses. An important aspect to consider in parallelepipe-

dal rooms is the impact of parallel walls on the reverbera-

tion, leading to a nonuniform spatial distribution of

reflections.18,25 In his book,18 in the section entitled “The

Directional Distribution of Reflections, Diffusion,” Kuttruff

notes that the axial directions of a parallelepipedal room

have more reflected energy. Recent work has further studied

the anisotropy of reverberant sound fields in nonideally dif-

fuse rooms,26,27 and perceptual evaluation has also demon-

strated that direction-dependent reverberation is perceivable

above a certain threshold28 and, therefore, should be consid-

ered in sound reproduction.29 The literature on this subject

is mainly qualitative, or based on experimental observations,

and the goal of this article is to relate the effect of direc-

tional reverberation time to an underlying model and offer aa)Email: sbilbao@ed.ac.uk
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simple means of prediction in the very simple case of the

box-shaped room using IS methods.

In this article, we propose a closed-form expression to

obtain directional reverberation times based on the IS

method in the case of a parallelepipedal room. For the sake

of generality, here, we work with angle-dependent wall

reflection coefficients,30 but the resulting expression may be

simplified by using angle-independent reflection coefficients,

and examples are provided in such cases. (Impedance-based

absorption is also referred to as “directional/direction-

dependent” absorption in the literature30 and, here, we use

the term angle-dependent absorption to make a clear distinc-

tion with directional reverberation, which is the main topic

of this study.) In either case, energy decay is purely expo-

nential in the limit of large times along a given direction, a

fact that has been indicated previously.20 This general for-

mula for the directivity of late reverberation in a parallelepi-

ped is potentially useful for applications applying IS that

could benefit from approximating characteristics of late

reverberation using statistically motivated methods, such as

artificial reverberation, instead of the full simulation of an

impulse response.19,22–24 In practical applications, the for-

mula may be used to efficiently obtain directional decay

characteristics by sampling around the sphere and inform

the design of a reverberator capable of synthesizing rooms

with directional reverberation, such as a long corridor. In

addition, the general expression presented here may be

employed to yield an easily computed approximation to the

full omnidirectional EDC. This omnidirectional approxima-

tion is distinct from those presented previously19 and holds

in the case of angle-dependent reflection coefficients.

In Sec. II, the general problem of the solution of the

wave equation over a parallelepipedal domain is presented,

including frequency-independent impedance boundary condi-

tions over all surfaces. In Sec. III, the pressure-based IS

method is reviewed, including the definition of reflection

coefficients in the cases of angle-dependent and angle-

independent reflections. In Sec. IV, a closed-form expression

for the EDC and reverberation time as a function of direction

is derived, which is valid in the late response. After integra-

tion over the sphere, a direct expression for omnidirectional

reverberation time also results. In Sec. V, various numerical

results are presented. First, plots of late reverberation times

are displayed as a function of angle for rooms of various

shapes and different choices of wall impedances.

Comparisons between directional reverberation times in the

cases of angle-dependent and angle-independent reflection

are then shown, illustrating trough-like features in the case of

angle-dependent reflection (corresponding to angles at which

no energy is reflected in the IS method). Next, the formula for

directional decay time is validated against the direct output of

the IS method for a variety of room geometries and imped-

ance conditions. Finally, comparisons between EDCs drawn

from the IS method against curves drawn from a closed-form

expression are compared in the omnidirectional case. A pub-

lic code repository demonstrating how to implement the

directional decay time formula is accessible online.43

II. THE WAVE EQUATION OVER A RECTANGULAR
PARALLELEPIPED

Room acoustics simulation is generally concerned with

numerical solutions to the three-dimensional wave equation

over an enclosure:

1

c2
@2

t p�r2p ¼ f dð3Þðr� rðSÞÞ: (1)

Here, pðr; tÞ is the acoustic pressure (in Pa) as a function of

time t � 0, and spatial coordinate r ¼ ½r1; r2; r3� 2 D � R3.

c is the wave speed in m s�1. @t represents partial differentia-

tion with respect to time, t, and r2 is the three-dimensional

spatial Laplacian operator. Finally, f(t) is a driving term,

assumed to be acting on the field pointwise at r ¼ rðSÞ 2 D,

where dð3Þ represents a three-dimensional Dirac delta func-

tion. The function f(t), defined for t � 0, is assumed to be

impulsive in nature and square integrable such that

ð1
0

f 2ðtÞdt ¼ 1: (2)

This value of the squared norm has been chosen to be one

here to simplify subsequent calculations of reverberation

time.31 The source term in Eq. (1) is omnidirectional but can

easily be generalised to include source directivity.32

In this simple study, the domain D is defined as a rect-

angular parallelepiped, centered at r ¼ 0, with side lengths

L1, L2, and L3,

D ¼ �L1=2; L1=2½ � � �L2=2; L2=2½ � � �L3=2; L3=2½ �: (3)

See the left side of Fig. 1. Over the six bounding faces of the

parallelepiped, which are defined as

@D6
� ¼ fr 2 Djr� ¼ 6L�=2g; � ¼ 1;…; 3; (4)

boundary conditions of purely resistive type are defined

such that

p ¼ 6qcz6
� v� for r 2 @D6

� and � ¼ 1;…;3; (5)

where v� is the component of the particle velocity in direc-

tion �. Here, the six nondimensional constants

z6
� ; � ¼ 1;…; 3, are assumed real and nonnegative. These

are the wall impedances, normalized against the characteris-

tic impedance of air, qc. For the purposes of this contribu-

tion, the impedances are assumed to be purely real. In

general, wall impedances exhibit frequency dependence, in

which case Eq. (5) is replaced by a frequency domain rela-

tionship between pressure and velocity at a given surface,

and impedances are, in general, complex valued. Such con-

ditions are locally reactive and do not model extended reac-

tion conditions due, e.g., to the presence of porous media.33

A response is assumed to be drawn from the acoustic

field at coordinates r ¼ rðRÞ 2 D as

pðRÞðtÞ ¼ pðrðRÞ; tÞ: (6)
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For general choices of wall impedances, z6
� , a closed-form

solution for pðRÞðtÞ in terms of the driving function, f(t), is

not available, in general.

III. THE IMAGE SOURCE METHOD

In the special cases where z6
� ¼ þ1, corresponding to

a perfectly reflecting wall condition on all sides of the paral-

lelepiped, one approach to obtaining an exact solution at a

single output location, rðRÞ, is through the use of the IS

method.1 The IS method is still employed, however, even in

cases of finite values of the wall impedance. In this case, the

solution generated is no longer exact, and the IS method is

approximate. Careful comparisons against wave-based solu-

tions have been presented.34

The method consists of the redefinition of the problem

domain to D ¼ R3 and the insertion of so-called image

sources at locations rðqÞ reflected multiple times through the

parallelepipedal boundaries and indexed by the integer-

valued three-vector q ¼ ½q1; q2; q3� 2 Z3,

rðqÞ ¼ r
ðq1Þ
1 ; r

ðq2Þ
2 ; r

ðq3Þ
3

h i
; (7)

where

rðq�Þ� ¼ q�L� þ ð�1Þq� rðSÞ� for � ¼ 1;…; 3: (8)

(See Fig. 1 center.) Assuming point sources, the resulting

solution at coordinates rðRÞ is of the form

p
ðRÞ
IS ðtÞ ¼

X
q2Z3

nðqÞðtÞ; (9)

where

nðqÞðtÞ ¼ aðqÞ
f ðt� r

ðqÞ
D =cÞ

4pr
ðqÞ
D

: (10)

Here, r
ðqÞ
D is the distance from IS, q, to the receiver location,

rðRÞ, such that

r
ðqÞ
D ¼ jr

ðqÞ � rðRÞj: (11)

The signal nðqÞðtÞ represents the contribution to the com-

puted pressure waveform, p
ðRÞ
IS ðtÞ, due to image source, q. In

practical computations, the triply infinite sum in Eq. (9) is

truncated to a finite set of terms (normally falling within a

spherical region centered at r ¼ rðRÞ). Note that p
ðRÞ
IS ðtÞ is, in

general, not equal to pðRÞðtÞ from Eq. (6), which is the exact

solution to the wave equation over a parallelepiped, except

under perfectly reflecting conditions. In this article, we

employ a pressure-based IS method rather than an energy-

based IS method.6

The dimensionless constants, aðqÞ, must be determined

through an analysis of the number of “reflections” under-

gone by the wave emitted by the image source in its transit

to the receiver location. To this end, it is useful to decom-

pose the vector, r
ðqÞ
D , in terms of its length, r

ðqÞ
D , and the unit-

length direction vector, uðqÞ ¼ ½uðqÞ1 ; u
ðqÞ
2 ; u

ðqÞ
3 �, as

r
ðqÞ
D ¼ r

ðqÞ
D uðqÞ; (12)

where

uðqÞ ¼ cos ðhðqÞÞ sin ð/ðqÞÞ; sin ðhðqÞÞ sin ð/ðqÞÞ; cos ð/ðqÞÞ
h i

:

(13)

Here, hðqÞ 2 ½0; 2pÞ and /ðqÞ 2 ½0; p� are the azimuthal and

polar angles of the qth image source relative to the receiver

location, respectively. Next, the number of reflections

undergone by the qth image source through each of the six

faces of the original parallelepipedal domain must be deter-

mined. The six numbers will be denoted as NðqÞ;6� ; � ¼
1;…; 3 and can be written in terms of the components of q as

NðqÞ;þ� ¼
����
�

q�
2

�����; NðqÞ;�� ¼
����
�

q�
2

����� for � ¼ 1;…;3: (14)

Here, d�e and b�c indicate ceiling and floor operations,

respectively, taking sign into consideration. Note that

NðqÞ;þ� þ NðqÞ;�� ¼ jq�j.
The constants, aðqÞ, in which the reflectances undergone by

image source q, are accumulated, may now be assembled as

FIG. 1. (Color online) (Left) Rectangular parallelepiped with source and receiver coordinates, rðSÞ and rðRÞ as indicated by red and yellow points, respec-

tively; (center) an array of image volumes with IS locations indicated in blue; and (right) cross section in the ðr1; r2Þ plane with the qth IS coordinates, rðqÞ,

and displacement vector, r
ðqÞ
D , as indicated are shown.
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aðqÞ ¼
Y3

�¼1

Y
a¼þ;�

bðqÞ;a�

� �N
ðqÞ;a
�

; (15)

where the reflectances, bðqÞ;a� ðuðqÞÞ, are defined by

bðqÞ;a� ðuðqÞÞ ¼ za
�juðqÞ� j � 1

za
�ju
ðqÞ
� j þ 1

: (16)

This definition takes into account the specular nature of the

reflection assumed here and, thus, the reflection coefficients,

bðqÞ;a� , are angle dependent.6

If, instead of angle-dependent reflection, angle-

independent reflection is assumed, then the coefficients,

bðqÞ;a� , become constants that are independent of angle or

uðqÞ. In the present context, these are often written1,19 in

terms of a constant absorption, aa
� , at a given wall surface,

bðqÞ;a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aa

�

p
: (17)

The absorption may be derived from measurement but also

may be related to an impedance at normal incidence, za
� . In

this article, we have used the approach outlined by

London.35 Many other approaches to determining angle-

independent reflection coefficients are available36–39—the

choice above is made for reasons of simplicity and does not

affect the computational procedure for determining

direction-dependent reverberation time given in Sec. IV.

It follows that the reflectances, bðqÞ;a� , are bounded by

one in magnitude such that

jbðqÞ;a� j � 1: (18)

This holds in either the case of angle-dependent coefficients,

from Eq. (16), or angle-independent coefficients, from Eq. (17).

In the angle-dependent case, the reflection coefficients can be

negative, leading to reflection with inversion for nearly tangen-

tial reflections for which juðqÞ� j < 1=za
� . In the angle-

independent case, the reflectances are constrained to be positive

in Eq. (17), although some authors employ negative values.19

For the purposes of the determination of reverberation

times, it is also useful to define the so-called “energy” asso-

ciated with the individual contribution to the IS solution:

eðqÞðtÞ ¼ nðqÞðtÞ
� �2

¼ aðqÞð Þ2 f 2ðt� r
ðqÞ
D =cÞ

16p2 r
ðqÞ
D

� �2
: (19)

IV. REVERBERATION TIME

A. Directional reverberation time

Now, consider a single image source at coordinates

rD ¼ rDu relative to the receiver location, where, as above,

rD is the distance between the image source and receiver,

and u ¼ ½u1; u2; u3� is a unit-length direction vector, which

is defined as

u ¼ cos ðhÞ sin ð/Þ; sin ðhÞ sin ð/Þ; cos ð/Þ½ �: (20)

Next, consider the definition of the contribution of the signal

nðqÞðtÞ to the total IS solution, p
ðRÞ
IS ðtÞ, from Eq. (9), and the

associated energy from Eq. (19). These may be rewritten for

a general image source location, rD, as

nðrD; tÞ ¼ aðrDÞ
f ðt� rD=cÞ

4prD
; (21a)

eðrD; tÞ ¼ a2ðrDÞ
f 2ðt� rD=cÞ

16p2r2
D

: (21b)

Returning now to Eq. (15) of the amplitudes of the individ-

ual contributions to the IS solution, note that in the limit of

large image source locations, rD, one may approximate the

numbers of reflections as

N6
� ðrDÞu

rDju� j
2L�

: (22)

This limiting “large radius” assumption is also used in other

work on approximations to the omnidirectional EDC

curve.19 In contrast here, we do not use a simplified first-

order approximation to the components u� in terms of eleva-

tion and azimuthal angles.

One arrives, finally, at expressions for the squared

amplitudes,

a2ðrDÞ ¼
Y3

�¼1

Y
a¼þ;�

jba
�ðuÞj

rDju� j=L� ; (23)

where in the case of angle-dependent reflection [Eq. (16)],

ba
�ðuÞ ¼

za
� ju�j � 1

za
� ju�j þ 1

; (24)

and for angle-independent reflection, as in Eq. (17),

ba
�ðuÞ ¼ ba

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aa

�

p
: (25)

At this point, it is useful to introduce the time parame-

ter, sD ¼ rD=c, corresponding to the time delay of the contri-

bution to p
ðRÞ
IS ðtÞ, which is received from an image source at

coordinates rD and, thus,

eðsD; u; tÞ ¼ a2ðsD; uÞ
f 2ðt� sDÞ
16p2c2s2

D

; (26)

where

a2ðsD; uÞ ¼
Y3

�¼1

Y
a¼þ;�

jba
�j

csDju� j=L� : (27)

In particular, note that for a fixed direction u, the expression

for a2ðsD; uÞ is a pure exponential function,

a2ðsD; uÞ ¼ e�KðuÞsD ; (28)

where

KðuÞ ¼ �c
X3

�¼1

X
a¼þ;�

ln ðjba
�jÞju�j

L�
� 0: (29)
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The time-integrated energy received may be defined, recall-

ing Eq. (2), as

EðsD; uÞ ¼
ð1

0

eðsD; u; tÞdt ¼ a2ðsD; uÞ
16p2c2s2

D

¼ e�KðuÞsD

16p2c2s2
D

: (30)

The pure exponential decay of the energy in a given direc-

tion and in the limit of large times in the case of the IS

method, defined over a parallelepiped, has been indicated

previously.20

Now, following Kuttruff,18 consider a thin cone with its

apex at rD ¼ 0, oriented along direction u, and subtending a

solid angle X. For small enough X, all image sources con-

tained within this cone can be considered to be at direction

u relative to the receiver location. The total number of

image sources over a time interval, ½sD; sD þ dsD�, for a

cone of solid angle X, and taking into account the density,

1=V, of image sources per unit volume, where V ¼ L1L2L3

is the room volume, is

dN ¼ Xc3s2
DdsD

V
: (31)

Thus, the total energy received at rðRÞ from image sources

from direction u over this range of delays is dE, which is

defined as

dE ¼ EðsD; uÞdN ¼ cX
16p2V

e�KðuÞsDdsD: (32)

A late-time approximation to the EDC, as a function of inci-

dence direction u, may then be obtained by integrating dE
from time t to1, yielding

EDClateðu; tÞ ¼
cX

16p2VKðuÞ e
�KðuÞt: (33)

The pure exponential dependence on time t is important

here. On a dB scale, this curve is in the form of a line with

slope �10 log10ðeÞKðuÞ.
An expression for the directional RT60ðuÞ, which are

defined here from the decay rates in the late response, is

obtained from KðuÞ through

RT60ðuÞ ¼
6 ln ð10Þ

KðuÞ : (34)

Unsurprisingly, this expression, which pertains to late reverber-

ation, is independent of the source and receiver locations. This

expression has been derived using angle-dependent reflection,

leading to a dependence of the factors ba
� on u as in Eq. (23). If

angle-independent reflection is employed, then these factors

become constants, but the directional behavior of the RT60 will

persist as per the definition of KðuÞ from Eq. (16).

B. Reduction to an omnidirectional EDC

Equation (32), which gives the energy received at the

receiver location at time sD from direction u, could be

integrated over the sphere to yield a global omnidirectional

measure of energy decay. In this case, non-exponential

decay is expected, and examples are given by Kanev20 under

particular configurations (such as, e.g., a room with only one

absorptive wall, leading to a 1=sD dependence).

Beginning from Eq. (32), for infinitesimal X, integrat-

ing over the unit sphere and backward time integrating ana-

lytically leads directly to the following expression for the

omnidirectional EDC that is valid in the late response:

EDClateðtÞ ¼
c

16p2V

ð ð
S2

e�KðuÞt

KðuÞ dX: (35)

This is simple to evaluate numerically, requiring only an inte-

gration over the unit sphere S2 (which, by symmetry, can be

reduced to an integration over a single octant). It relies on

fewer simplifying assumptions than the closed-form expres-

sion of Lehmann and Johansson.19 In particular, (a) this form

yields the EDC directly without requiring a further numerical

backward time integration; (b) there is not a further first-order

approximation to the components of the direction vector u in

terms of angles; and (c) it holds, generally, for the cases of

angle-dependent and angle-independent reflections—and

indeed, results differ considerably according to this choice—

see Sec. V D. Although it is intended to model the energy

decay in the late reverberant tail, like the expression of

Lehmann and Johansson, it does an excellent job of approxi-

mating the early decay of the IS method. See Sec. V D.

The omnidirectional EDC defined by Eq. (35) is non-

exponential, but notice from the directional representation of

the RT60 from Eq. (34) that the integrand in Eq. (35) is larg-

est for directions u with a long RT 60ðuÞ [or small value of

KðuÞ], implying that such directions will dominate in the cal-

culation of the omnidirectional EDC—a known result.18,20

V. RESULTS

In this section, we show various examples of the

closed-form directional reverberation time expression from

Eq. (34) for different choices of room geometry and wall

conditions and validate the expression against the output of

the IS method, which is modified to compute the directional

EDC over a cone of small angle. In addition, we compare

omnidirectional EDC curves obtained directly from the IS

method with Eq. (35).

Angle-dependent [Eq. (16)] and angle-independent [Eq.

(17)] reflection coefficients will be employed here. The

wave speed, c, is set uniformly to c¼ 344 m s�1.

A. RT60 maps

It is direct, given Eq. (34) for RT60 as a function of

direction u through KðuÞ, as defined in Eq. (29), to examine

the directional dependence for a given choice of room

dimensions, L�; � ¼ 1;…; 3, and associated impedances,

z6
� ; � ¼ 1;…; 3. See Fig. 2, which shows directional RT60

over the unit sphere as well as over the planar cross sections,

/ ¼ p=2, h¼ 0, and h ¼ p=2, for a variety of choices of
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room dimensions and impedances and uses angle-dependent

reflection coefficients. There are large variations, depending

on the impedances and wall dimensions—normally, the axial

directions are associated with locally maximal RT60 times.

An interesting feature, visible in the plots at the bottom

in Fig. 2, is the presence of “troughs” in the RT60 at certain

angles. Such angles correspond to those for which the reflec-

tance vanishes—this is possible when at least one of the nor-

malized impedances, z6
� , is greater than unity. This feature

results from the use of angle-dependent reflection coeffi-

cients and disappears if angle-independent reflection coeffi-

cients are employed. As a simple example, consider the case

depicted in the middle in Fig. 2 with uniform dimensions of

L� ¼ 8 m and varying wall impedances, za
� . In Fig. 3, the

RT60 over the circle / ¼ p=2 is shown with troughs indi-

cated at the angles h ¼ sin�1ð1=zþ2 Þ and h ¼ sin�1ð1=z�2 Þ.

B. Angle-dependent vs angle-independent reflection
coefficients

The directional dependence of the late reverberant tail

depends strongly on the type of reflection model. In Sec. V A,

plots of RT60 were shown in the case of angle-dependent

reflection. As can be observed from Eq. (29), however, the

variation in RT60 persists in the case where the reflection coef-

ficients, ba
� , are constants independent of angle. See Fig. 4,

which illustrates angle-dependent and angle-independent

FIG. 2. (Color online) Variation in RT60 under three different choices of room dimensions and wall impedances. In each case, the expression (34) is repre-

sented as a surface plot over a sphere, where maximal and minimal values are indicated in the accompanying color bar. In addition, planar cross sections of

the RT60 for / ¼ p=2, h¼ 0, and h ¼ p=2 are shown, where the polar angle, /, and azimuthal angle, h, are as indicated in the top left plot.

FIG. 3. (Color online) RT60 for / ¼ p=2 and as a function of angle h 2
½0;p=4� for the case depicted at the middle in Fig. 2. The locations of

troughs are indicated by red dotted lines at angles h ¼ sin�1ð1=zþ2 Þ and

h ¼ sin�1ð1=z�2 Þ.
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predicted RT60 curves over a cross section of the sphere.

Notably absent are the troughs in the case of angle-

independent reflection.

Beyond this distinction, however, the predicted curves

are quite different. Here, the angle-independent reflection

coefficients have been chosen to correspond to London’s

formula35 at all angles for simplicity, but this difference

remains regardless of how the reflection coefficients are

chosen (perhaps derived from measured absorption and the

assumption of random incidence38). This signals that the

calculation of global (omnidirectional) measures of rever-

beration derived from the IS method,19 such as that given in

Sec. IV B, will be influenced strongly by this choice.

C. Directional EDC validation

The validation against EDCs obtained through the IS

method is also direct. In this case, the simplest computa-

tional procedure is to define a cone subtending a small but

finite angle, w, relative to the direction vector, u, and

describing a region Dðu;wÞ, which is defined by

Dðu;wÞ ¼ fr 2 R3jðr=jrjÞ � u � cos ðwÞg: (36)

The summation (9) used in the computation of the response

may, thus, be modified to obtain a directional response,

p
ðRÞ
IS ðu; tÞ,

p
ðRÞ
IS ðu; tÞ ¼

X
q2Z3;r

ðqÞ
D 2Dðu;wÞ

nðqÞðtÞ; (37)

such that the sum above is limited to those image sources

clustered around the direction, u, relative to the receiver

location. All other aspects of the IS computational proce-

dure remain the same. Then, a directional EDC may be

obtained directly as

EDCðu; tÞ ¼
ð1

t

p
ðRÞ
IS ðu; t0Þ

� �2

dt0: (38)

It is direct to transfer the calculation above to discrete time

at a sample rate of Fs Hz, and by specifying a unit impulse

to approximate the excitation, f(t). Note that, in contrast

with other authors,19 we do not normalize the EDC.

Energy decay curves for a particular choice of room

geometry, a variety of incidence directions, and wall impe-

dances are displayed in Fig. 5. These are calculated using a

high sample rate of Fs ¼ 1 MHz so as to achieve a good res-

olution and separation of impulses received from ISs when

truncated to sampling instances. In addition, it is necessary

to use a relatively small cone angle, w (here, set to

w ¼ p=200), to ensure that variations in RT60 over the cone

are minimized. For such thin cones, the number of ISs con-

tained is small in the early part of the response, explaining

the jagged character of the EDC curves in Fig. 5. However,

at later times, the number of image sources within the cone

increases, and the EDC settles down to pure exponential

decay with a slope on a log scale predicted by KðuÞ as

defined in Eq. (16), and as indicated in Fig. 5.

As a further cross-checking exercise, we illustrate dif-

ferences in the approximation over the entire sphere, as

shown in Fig. 6, using the room dimensions and impedances

as given at right in Fig. 2 and under angle-dependent reflec-

tion conditions. This is a worst case with very large varia-

tions in wall reflectance. The differences represent less than

0.48% error over the majority of the sphere (92%) with

larger differences observed near the axes. Larger differences

occur in directions where very high IS orders are necessary

to resolve very localized variations in RT60 as seen in the

cross section plots at right in Fig. 2. In these directions, it

becomes more challenging to estimate the RT60 by analy-

sing the EDC slope from the generated directional RIR. The

problem is especially severe near the troughs in the RT60, as

illustrated in Fig. 3, where very little energy is received,

requiring extreme IS order.

The practical challenges of obtaining reliable RT60 esti-

mates using the IS method demonstrate the benefits of using

the proposed formula to obtain measures at arbitrary angles.

For sound reproduction, the formula may be sampled around

the sphere to provide design parameters for a directional

reverberator. However, as the perceptual threshold for direc-

tional decay characteristics remains unclear at this point, the

appropriate level of detail is more likely to be informed by

the available computing resources for a given practical

application.40 This is similar to how the absorbent filters of

FIG. 4. (Color online) Cross section of RT60 for room geometry and wall

impedances. Curves in the cases of angle-dependent reflection (in blue) and

angle-independent reflection, using the form in Eq. (17) for all angles (in

dashed red), are shown.
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a reverberator are designed to ensure frequency-dependent

decay without clear guidelines on minimum requirements.41

D. Omnidirectional EDCs

As a final example, we revert to the reduced omnidirec-

tional estimate [Eq. (35)] of the EDC curve given in Sec.

IV B. Returning to the three examples shown in Fig. 2, the

omnidirectional EDC curve calculated directly from Eq. (35)

is depicted, alongside EDC curves drawn directly from the IS

method. See Fig. 7. The cases of angle-dependent and angle-

independent reflection are displayed. In all cases, the match is

very good (and to within 1–2 dB over the interval shown).

As expected, the particular approximation35 used to derive

angle-independent reflectance from the impedances exhibited

has a large bearing on the resulting EDC but will generally

lead to a faster energy decay. In both cases, however, the

approximation matches well and includes the changes in

slope in the very early part of the decay curve.

FIG. 5. (Color online) Directional EDCs in dB at angles A–G for the IS method with geometric and impedance parameters as indicated. All curves are nor-

malized to 0 dB. Superimposed on the EDCs in blue are lines of slope �10 log10ðeÞKðuÞ, where KðuÞ is as defined in Eq. (16).

FIG. 6. (Color online) Differences between the estimated directional RT60 and formula (34) for the case depicted at the right in Fig. 2. The RT60 was esti-

mated from IS simulation up to order 400. The differences are between 0 and 120 ms. The mean difference is 4.88 ms and less than 25 ms over 99.24% of

the sphere.
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The surface integral used in Eq. (35) is numerically

integrated at intervals of 0.1 s, using a resolution of p=800

in the elevation angle, /, and p=400 in azimuth, h.

As mentioned previously, no numerical time integration is

necessary, and no further adjustments have been applied

(such as shifts of the computed values from the formula up

or down for matching purposes).

VI. CONCLUDING REMARKS

The main result here is a closed-form expression for

reverberation time in a parallelepipedal room as a function

of direction as given in Eqs. (34) and (16). It is valid in the

case of angle-dependent reflection, where the reflectances,

ba
� , are as defined in Eq. (23), and in the case of angle-

independent reflection, in which case, the reflectances, ba
� ,

are held constant [and perhaps set according to absorbances

as per Eq. (17)]. Furthermore, energy decay in late reverber-

ation is purely exponential for any given incidence angle.

This result has been cross-checked against EDCs obtained

directly from the IS method. There are major differences in

the resulting directional profile of reverberation time,

including the presence of so-called troughs at which the

reverberation time becomes zero at particular angles in the

case of angle-dependent reflectances. In addition, a simple

direct formula for the EDC in the omnidirectional case has

been presented and holds for either angle-dependent or

angle-independent reflection.

While useful in framing a test problem, the box-shaped

region exhibits an extreme symmetry that leads to preferred

directions in terms of decay time. It is clear that the magni-

tude of variation in the late reverberation time with direction

will decrease when more realistic geometries are considered,

but an open question is the extent of this decrease and how

sensitive it is to small variations in geometry (i.e., can one

expect residual preferred directions in a room that is nearly

box-shaped?). Some case studies42 indicate that the sensitiv-

ity may be high.

A further aspect to consider is the inaccuracy of the IS

method—one could envisage employing a wave-based

method to test the directivity of reverberant characteristics

further. Nonetheless, this work has valuable applications in

creating a statistical approximation of the late reverberation

behavior of the IS method, notably through the use of a

directional artificial reverberator,29 which may be specified

using the decay parameters obtained using the proposed

formula.
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