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Abstract. This paper explores a novel approach aimed at overcoming
existing challenges in the realm of local search algorithms. The main ob-
jective is to better manage information within these algorithms, while
retaining simplicity and generality in their core components. Our goal is
to equip a neural network with the same information as the basic local
search and, after a training phase, use the neural network as the funda-
mental move component within a straightforward local search process. To
assess the efficiency of this approach, we develop an experimental setup
centered around NK landscape problems, offering the flexibility to adjust
problem size and ruggedness. This approach offers a promising avenue
for the emergence of new local search algorithms and the improvement
of their problem-solving capabilities for black-box problems.

Keywords: Neuro-evolution, Local search, Black-box optimization, NK
landscapes

1 Introduction

Local search (LS) algorithms are commonly used to heuristically solve discrete
optimization problems [10]. LS algorithms are usually composed of several com-
ponents: a search space, a neighborhood relation, an evaluation function, and
a selection strategy. The optimization problem instance to be solved can be
fully defined by its set of feasible solutions —the decision space— and an objec-
tive function that must be optimized. A classic and direct use of local search,
when applicable, is to consider the decision space as the search space, the ob-
jective function as the evaluation function, and a natural neighborhood relation,
defined from an elementary transformation function (move) such as bitflip for
pseudo-Boolean problems, or induced by specific operators for permutation prob-
lems [22].

Starting from an initial random solution, various components collaborate
to drive the search towards optimal solutions. The effectiveness of this search
process depends on the complexity of the problem, including factors such as
deception and other structural characteristics [2,13,28,29]. The strategy to ad-
vance in the search involves selecting neighboring solutions based on their eval-
uations, using a wide variety of criteria. These criteria can range from simple
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ones, such as choosing neighbors with better or the best evaluations, to more
intricate approaches involving stochastic methods. The strategy is often derived
from metaheuristic frameworks based on local search such as tabu search [6] or
iterated local search [15]. The goal is to effectively leverage the available local
and partial knowledge of the landscape to identify the most promising search
paths that lead to optimal solutions.

Fitness landscape analysis [16] provides the optimization and evolutionary
computation community with theoretical and practical tools to examine search
landscapes. It allows for the assessment of problem characteristics and the eval-
uation of the performance of search algorithms. In the context of combinatorial
fitness landscapes, these are represented as graphs defined by a discrete search
space and a neighborhood relation. A fundamental challenge lies in developing a
search algorithm capable of navigating a fitness landscape to reach the highest
possible fitness value.

In general, achieving optimal solutions through a straightforward adaptive
approach is quite challenging. This difficulty arises from the complex interplay
among different parts of the solution, which can lead to locally optimal solu-
tions. These local optima cannot be escaped by intensification or exploitative
move strategies. Consequently, the optimization algorithm becomes stuck in a
suboptimal state. The primary concern in such optimization processes is to strike
a balance between exploiting promising search areas through greedy search meth-
ods and diversifying search trajectories by temporarily exploring less promising
solutions.

To overcome this challenge, researchers have developed many metaheuristics
[23] and even hyperheuristic schemes [20] to mix different strategies. These ap-
proaches typically incorporate parameters that allow for precise adjustment of
the trade-off between exploration and exploitation. Still, they might not perform
efficiently in a black-box context, as many heuristics leverage the unique prop-
erties of the given problem to solve it efficiently. Machine learning techniques
have been widely used to improve combinatorial optimization solving [24] and
to address the optimal configuration of solving algorithms. An approach to algo-
rithm design known as "programming by optimization" (PbO) was introduced
by Hoos [9]. This paradigm encourages algorithm developers to adopt and lever-
age extensive design possibilities that encompass a wide range of algorithmic
techniques, to optimize performance for specific categories or groups of problem
instances.

In various works, different machine learning approaches have been used either
to consider offline adjustment, selection of parameters, or online control of the
search process using reinforcement learning (RL) techniques (see [17] for a recent
survey). The use of neural networks (NNs) in solving combinatorial optimization
problems has been studied for decades [26], starting with the early work of
Hopfield [11]. Recent applications of Graph Neural Networks in the context of
combinatorial optimization have been proposed to reach optimal solutions or to
assist the solving algorithm in proving the optimality of a given solution (see [4]
for a recent survey).
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In the traveling salesman problem, a GNN can be used to predict the regret
associated with adding each edge to the solution to improve the computation
of the fitness function of the LS algorithm [12]. Note that NNs are classically
used in surrogate model-based optimization [30]. In [21], the authors introduce
a GNN into a hybrid genetic search process to solve the vehicle routing problem.
The GNN is used to predict the efficiency of search operators and to select
them optimally in the solving process. A deep Q-learning approach has recently
been proposed to manage the different stages of an LS-based metaheuristic to
solve routing and job-shop problems [5]. High-level solving policies can often
be managed by reinforcement learning in LS processes [27]. In this paper, our
purpose is different, as we focus on building simple search heuristics for black-box
problems, rather than scheduling specific operators or parameters. In particular,
we assume that the learning process cannot be based on the immediate rewards
that are used in RL. This motivates our choice of neuro-evolution.

Objective of the paper This study explores the potential for emerging
search strategies to overcome existing challenges. The objective is to change how
information is leveraged while retaining simple and generic search components.
Considering a basic hill climber algorithm to achieve a baseline search process for
solving black-box binary problem instances, our aim is to benefit from machine
learning techniques to get new local search heuristics that will be built from basic
search information instead of choosing a priori a predefined move heuristic (e.g.,
always select the best neighbor). Hence, our goal is to provide a NN with the same
information as a basic LS and, after training, to use the NN as the basic move
component of a simple LS process. To evaluate the efficiency of our approach, we
define an experimental setup based on NK landscape problems, which allows us
to describe a fitness landscape whose problem size and ruggedness (determining
the number of local minima) can be adjusted as parameters.

2 General framework

2.1 Pseudo-Boolean Optimization Problems and Local Search

Let us consider a finite set X ⊆ {0, 1}N of solutions to a specific problem in-
stance. These solutions are tuples of values that must satisfy certain constraints,
which may or may not be explicitly provided. We evaluate the quality of these
solutions using a pseudo-Boolean objective function fobj : X → R. Therefore,
a problem instance can be fully characterized by the pair (X , fobj). In terms of
solving this problem, X is referred to as the search space.

When solving an optimization problem instance with an LS algorithm, the
objective is to identify a solution x ∈ X that optimizes the value of fobj(x).
Since we are primarily concerned with maximization problems, let us note that
any minimization problem can be reformulated as a maximization problem. In
this context, an optimal solution, denoted as x∗ ∈ X , must satisfy the condition
that for every x ∈ X , fobj(x) ≤ fobj(x

∗). While exhaustive search methods, or
branch and bound algorithms, guarantee the computation of an optimal solution,
this is not the case with LS algorithms. However, computing optimal solutions
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within a reasonable time is often infeasible, leading to the use of local search
algorithms within a limited budget of evaluations of fobj to approximate near-
optimal solutions.

LS algorithms operate within a structured search space, thanks to a fixed-
sized neighborhood function denoted as N : X → 2X . This function assigns a
set of neighboring solutions N (x) ⊆ X for each solution x ∈ X . To maintain a
fundamentally generic approach to LS, we assume that N is defined using basic
flip functions, flipi : X → X , where i ∈ J1, NK, and flipi(x) is equal to x except
for the ith element, which is changed from 0 to 1 or vice versa. In this case,
N (x) = {flipi(x) | i ∈ J1, NK}. Starting from an initial solution, often selected
randomly and denoted as x0, LS constructs a path through the search space
based on neighborhood relationships. This path is typically represented as a se-
quence of solutions bounded by a limit (horizon) H, denoted as (x0, x1, . . . , xH),
where for each i ∈ J0, H − 1K, xi+1 ∈ N (xi). Let us denote P = X ∗ the set of all
paths (i.e., the set of all possible sequences built on X ).

In addition to the neighborhood function, this sequence of solutions is deter-
mined by a strategy, often involving the use of a fitness function f . For example,
hill climbing algorithms select the next solution on the path based on a sim-
ple criterion: ∀t ∈ J0, H− 1K, f(xt) < f(xt+1), where f(xt) represents the fitness
evaluation of solution xt. The process of choosing the next solution on the search
path is referred to as a move. We denote xt+1 = xt ⊕ flipi the move that corre-
sponds to xt+1 = flipi(xt).

2.2 Local Search as an Episodic Tasks Process

According to previous remarks, an LS process can be modeled by a sequence of
actions performed on states. To be as exhaustive as possible, these states must
be general enough to describe the current solution, as well as the path already
explored and future possible moves. Therefore, we may define a set of states as
S = P ×X × 2X . Of course, states of S cannot be managed by a practical local
search algorithm, at least from a memory size point of view. We introduce the
notion of observation of a state as a function o : S → Ω where Ω is a domain
that corresponds to an abstraction of the real states of search to gather only
useful information for the considered local search strategy.

Note that here we are in the context of episodic (discrete states) tasks with a
terminal state (the end of the search fixed for instance by a maximal number of
moves H). Following a reinforcement learning-based description, a local search
process can be encoded by a policy π : Ω → A where A is a set of actions. Here
we consider deterministic policies, i.e. for each o ∈ Ω, there exists one and only
one action a ∈ A, such that π(o) = a. Note that the policy can be parameterized
by a parameter vector θ. The set of all policies is Π = {πθ | θ ∈ Θ} where Θ is
the parameter space.

In our context, we consider actions that are bitflips flipi defined in Sec-
tion 2.1. Hence, A ⊇ {flipi | i ∈ J1, NK}. Note that of course, other actions can
be introduced to fit specific strategies.
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We consider a transition function δ : X ×A → X such that δ(x, a) = x⊕ a.
The transition function turns an action that is defined on the set of observations
to a move in the set of solutions. Note that the transition is used to update the
current state and compute the next state of the LS process. An LS run can be
fully characterized by the search trajectory that it has produced from an initial
starting solution.

Given an instance I = (X , fobj), an initial solution x0 ∈ X , a policy πθ, and
a horizon H, a trajectory T (x0, πθ, H, I) is a sequence (x0, a0, x1, a1, . . . , xH−1,
aH−1, xH) such that (x0, . . . , xH) ∈ P is an LS path (the multiset {x0, . . . , xH}
will be denoted P (T (x0, πθ, H, I))), ∀i ∈ J0, H − 1K, ai = πθ(o(xi)) and ∀i ∈
J1, HK, xi = δ(xi−1, ai−1). Note that the trajectory is defined with regard to
solutions belonging to X , while the policy operates on the space of observations
obtained from these solutions. Compared to classic reinforcement schemes, where
a reward can be assigned after each action, in our context, the reward will be
computed globally for a given trajectory. Note that if we considered only the
best-improvement strategy, then the reward could be assigned after each move
to assess that the best move has been selected. Unfortunately, such a strategy
will only be suitable for simple smooth unimodal problems. Hence we translate
this reward as a function R(x0, πθ, H, I) = maxx∈P (T (x0,πθ,H,I)) fobj(x).

Example 1. In order to illustrate our framework, let us consider a basic hill
climber (HC) that uses a simple best-improve strategy using objective function
fobj as fitness function. In the following, we only consider LS processes that do
not involve memory that records past decisions. Hence, a state of a HC is fully de-
scribed by a current solution x ∈ X and its neighborhood N (x). An observation
will abstract the state as the variation of the fitness function for each possible flip
of the values of x, o(x) = (fobj(flip1(x))−fobj(x), . . . , fobj(flipN (x))−fobj(x)) ∈
RN (Ω = RN ). In a best-improve HC process, the search stops when a local
optimum is reached and no improving move can be performed. We consider
A = {flipi| i ∈ J1, NK} ∪ {Id}, where Id is the identity function on X . Then,
we define the policy πHC(o(x)) = argmaxa∈A(fobj(δ(x, a))− fobj(x)). Note that
when a local optimum is reached, the identity action will always be selected for
the remainder of the process.

Our objective is to maximize the maximum score encountered by the agent
during its trajectory, and not the sum of local fitness improvements obtained
during its trajectory. We are therefore not in the case of learning a Markov
decision process. This is why classical reinforcement learning algorithms such as
Q-learning or policy gradient are not applicable in this context.

This justifies our choice of neuro-evolution where the policy parameters will
be abstracted by a neural network that will be used to select the suitable ac-
tion. The parameters of this neural network will be searched by means of an
evolutionary algorithm according to a learning process defined below.

2.3 Policy Learning for a Set of Instances

In this paper, we focus on NK landscapes as pseudo-boolean optimization prob-
lems. The NK landscape model was introduced to describe binary fitness land-
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scapes [14]. The characteristics of these landscapes are determined by two key
parameters: N , which represents the dimension (number of variables), and K
(where K < N), which indicates the average number of dependencies per vari-
able and, in turn, influences the ruggedness of the fitness landscape. An NK
problem instance is an optimization problem represented by an NK function.
We use random NK functions to create optimization problem instances with
adjustable search landscape characteristics. This adjustment will be achieved
by varying the parameters (N,K), thus generating diverse search landscapes.
Hence, we consider NK(N,K) as a distribution of instances generated by a
random NK function generator.

In order to achieve our policy learning process, we must assess the perfor-
mance of a policy as F (πθ,NK(N,K), H) = EI∼NK(N,K),x0∼X [R(x0, πθ, H, I)]
where x0 ∼ X stands for a uniform selection of an element in X . However, since
this expectancy cannot be practically evaluated, we rely on an empirical estima-
tor computed as an average of the score obtained by the policy πθ for a finite
number q of instances I1, . . . , Iq sampled from the distribution NK(N,K) and
a finite number r of restarts x

(1)
0 , . . . , x

(r)
0 drawn uniformly in X :

F̄ (πθ,NK(N,K), H) =
1

qr

q∑
i=1

r∑
j=1

R(x
(j)
0 , πθ, H, Ii). (1)

Figure 1 highlights our general learning methodology and the connections
between the LS process at the instance solving level and the policy learning task
that will be achieved by a neural network presented in the next section.

Fig. 1. Global View of the Process

3 Deterministic local search policies for pseudo-boolean
optimization

In this paper, our objective is to compare an LS policy learned by neuro-
evolution, with three different baseline LS algorithms. To ensure a fair compari-
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son among all the algorithms, all the different strategies take as input the same
vector of observations corresponding to the variation of the objective/fitness
function f for each possible flip of the values of x: o(x) = (f(flip1(x)) −
f(x), . . . , f(flipN (x)) − f(x)) ∈ RN . The set of possible actions available to
the different strategies always remains A = {flipi | i ∈ J1, NK}.

3.1 Neural network local search policy

We introduce a deterministic LS policy πθ : RN → A, called Neuro-LS, which
uses a neural network gθ, parametrized by a vector of real numbers θ. This
neural network takes as input an observation vector o ∈ RN and gives as output
a vector gθ(o) of size N whose component gθ(o)i corresponds to a preference
score associated to each observation oi. Then, the action ai corresponding to the
highest score gθ(o)i is selected.

Permutation equivariant neural network
A desirable property of this neural network policy is to be permutation equiv-
ariant with respect to the input vector of observations, which is a property
generally entailed by a local search algorithm, in order to make its behavior
consistent for solving any type of instance. Formally, an LS algorithm is said
to be invariant to permutations in the observations if for any permutation σ on
J1, NK, we have aσ(i) = πθ(oσ(1), oσ(2), . . . , oσ(N)). As an example, the basic hill
climber HC defined with Example 1 in Section 2.2 has this property.

In order to obtain this property for Neuro-LS, gθ must be function from RN

to RN , such that for any permutation σ we have (gθ(o)σ(1), . . . , gθ(o)σ(N)) =
gθ(oσ(1), . . . , oσ(N)). Such type of permutation equivariant neural network can
be obtained by using the deep sets architecture [31].

Each layer of the proposed network combines the treatment of each obser-
vation oi associated to each of the N variables with an additional operation
that performs an average of the features across the different variables. This N -
averaging operation is independent by permutation of the inputs and allows to
transmit some general contextual information between the N features vector.

For a vector of observation o = (o1, o2, . . . , oN ) given as input, a permutation
equivariant network gθ with P hidden layers is defined as gθ(o) = ϕθP ◦ ϕθP−1

◦
· · · ◦ ϕθ0(o), where each ϕθj is a permutation invariant function from RN×lj to
RN×lj+1 . The lj values correspond to the layer sizes. Note that for the first layer
l0 = 1 and for the last layer lP+1 = 1. This network gθ is shown in Figure 2.

Each layer operation ϕθj with lj input features and lj+1 output features
includes a weight matrix Wj ∈ Rlj×lj+1 that treats each variable information
independently, a variable-mixing weight matrix Γj ∈ Rlj×lj+1 and a bias vector
βj ∈ Rl. Note that the size of these matrices Wj and Γj does not depend on
the size N of the observation vector, allowing the Neuro-LS strategy to adapt
to pseudo-Boolean optimization problems of different sizes.

When taking as input a feature matrix v = (v1, . . . , vN ) of size N × lj ,
the matrix of weights Wj processes each feature vector vi associated with each
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Fig. 2. Neural network policy πθ : Ω → A using a deep sets network architecture. Given
a vector of observation o ∈ RN , the neural network outputs a vector gθ(o) ∈ RN . Then,
the action a = argmaxi∈J1,NK gθ(o)i is returned by πθ.

variable i independently. Then, the weight matrix Γj processes an average vector
ρ(v) computed across the different N feature vectors of size lj and given by
ρ(v) = 1

N

∑N
i=1 vi.

Given v ∈ RN×lj , the output of the layer ϕθj is a matrix in RN×lj+1 , which is
the concatenation of N output vectors of size lj+1, ϕθj (v) = (ϕθj (v)1, . . . , ϕθj (v)N ),
where for 1 ≤ i ≤ N ,

ϕθj (v)i = η(βj + xiWj + ρ(v)Γj), (2)

with η : Rlj → Rlj+1 the element-wise nonlinear activation map defined by
η(z) := (tanh(z1), . . . , tanh(zlj )). We denote θ := {(Wj , Γj , βj)}j∈J0,P K, the set
of all weight matrices and bias vectors of the neural network.

Neuro-evolution with CMA-ES

The neural network policy πθ is characterized by a set of parameters denoted as θ.
The optimization goal is to maximize the estimated score F̄ (πθ,NK(N,K), H).
This poses a stochastic black-box optimization problem within the real-valued
search space R|θ|. To tackle this problem, we propose to use the covariance matrix
adaptation evolution strategy (CMA-ES) [8], which stands out as one of the most
powerful evolutionary algorithms for addressing such black box optimization
problems [18].

The principle of CMA-ES is to iteratively test new generations of real-valued
parameter vectors θ (individuals). Each new generation of parameter vectors
is stochastically sampled according to a multivariate normal distribution. The
mean and covariance matrix of this distribution are incrementally updated, so as
to maximize the likelihood of previously successful candidate solutions. Thanks
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to the use of a stepwise-adapted covariance matrix, the algorithm is able to
quickly detect correlations between parameters, which is an important advantage
when optimizing the (many) parameters of the neural network policy. Another
advantage of CMA-ES is that it relies on a ranking mechanism of the estimated
scores F̄ given by the Equation (1) for the different individuals of the popula-
tion, rather than on their absolute values, making the algorithm more robust to
stochastic noise related to the incertitude on the estimation of the performance
score F with a finite number of trajectories.

3.2 Basic local search policies

We compare the neural network policy above with three basic local search policies
which have been extensively studied in the literature [19,1]. All these strategies
take as input the same vector of observation as the neural network policy and
return an action a ∈ A. These three policies are two hill climbers as well as a
(1, λ)-evolution strategy [3] used as a local search [25]. They are made determin-
istic using a pseudo-random number generator h whose seed is determined with
a hash function from the current state x encountered by the LS.

Best improvement hill climber [+jump] (BHC+). This strategy always
selects the action ai = flipi ∈ A in such a way that f(ai(x)) − f(x) is maxi-
mized, provided there is at least one action ai that strictly improves the score. If
∀i, f(ai(x))−f(x) ≤ 0, then this strategy performs a random jump by choosing
a random action a ∈ A using the pseudo-random number generator h(x).

First improvement hill climber [+jump] (FHC+). This strategy iterates
through all actions in A in random order and selects the first action ai leading to
a strictly positive score improvement, i.e. such that f(ai(x))− f(x) > 0. Similar
to the BHC+ strategy, if ∀i, f(ai(x))− f(x) ≤ 0, it performs a random jump.

(1, λ)-evolution strategy ((1, λ)-ES). This strategy randomly evaluates λ
actions in A and chooses the one that yields the best score, even if it results
in a deteriorating move. λ is a method hyperparameter that will be calibrated
to maximize the estimated score F̄ for each type of NK landscape instance as
detailed in the next section.

4 Computational experiments

The aim of this section is to answer two questions experimentally. The first
concerns the performance of Neuro-LS compared to the baseline LS strategies
presented in the last subsection for NK landscape problems of different size and
ruggedness. The second is to study the emergent strategies discovered by Neuro-
LS at the end of its evolutionary process.
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First, we discuss the experimental setting. Then, we follow the classical steps
of a machine learning workflow: subsection 4.2 describes the Neuro-LS training
process; it will allow us to select different emerging strategies for each type of
NK landscape on validation sets, which we will then compare with the different
baseline LS strategies on test sets (subsection 4.3). Finally, an in-depth analysis
of the best emerging strategies discovered by Neuro-LS will be performed in
subsection 4.4.

4.1 Experimental settings

In these experiments, we consider independent instances of NK-landscape prob-
lems. 12 different scenarios with N ∈ {32, 64, 128} and K ∈ {1, 2, 4, 8} are
considered. For each scenario, three different sets of instances are sampled inde-
pendently from the NK(N,K) distribution described in Section 2.3: a training
set, a validation set and a test set. For the resolution of each instance, given
a random starting point x0 ∈ X , each LS algorithm performs a trajectory of
size H = 2×N (iterations) and returns the best solution found during this tra-
jectory. The experiments were performed on a computer equipped with a 12th
generation Intel® CoreTM i7-1265U processor and 14.8 GB of RAM.

Neuro-LS is implemented in Python 3.7 with Pytorch 1.4 library.1 For all
experiments with different values N and K, we use the same architecture of the
neural network composed of two hidden layers of size 10 and 5, with a total of
|θ| = 162 parameters to calibrate. To optimise the weights of the neural net-
work, we used the CMA-ES algorithm of the pycma library [7]. The multivariate
normal distribution of CMA-ES is initialized with mean parameter µ (randomly
sampled according to a unit normal distribution) and initial standard deviation
σinit = 0.2.

4.2 Neuro-LS training phase

For each NK-landscape configuration, we run 10 different training processes of
Neuro-LS with CMA-ES, with a time limit of two hours, to optimize the empirical
score F̄ defined by equation (1) computed as an average of the best fitness scores
obtained for 50 trajectories (r = 5 independent random restarts for each of the
q = 10 training instances).

Figure 3 displays the results of 10 independent neuro-evolution training pro-
cesses for the NK landscape instances with N = 32 and K = 8. At each gen-
eration, the 10 learning instances are regenerated to avoid over-fitting, then
CMA-ES samples a population of 19 individuals (19 vectors of weights θ ∈ R162

of the neural network), and the best Neuro-LS strategy of the population on the
training set is evaluated on the 10 instances of the validation set.

The evolution of the average score of Neuro-LS on the training and validation
sets are indicated with orange and blue lines in Figure 3. The red line is a
1 The program source code, benchmark instances and result files are available at the

url https://github.com/Salim-AMRI/NK_Landscape_Project.git.

https://github.com/Salim-AMRI/NK_Landscape_Project.git
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reference score. It corresponds to the average score F̄ obtained by the BHC+

local search strategy (see Section 3.2) on the same validation set.

Fig. 3. Evolution of the average score obtained by Neuro-LS on the training and vali-
dation sets over the generations of CMA-ES.

First, we find that the validation curve closely follows the training curve in
average, even if it is slightly below. This reassuring consistency suggests that
our model successfully generalizes the strategy learned in training instances.

Furthermore, upon comparing the validation curves of Neuro-LS and BHC+,
we observe that the Neuro-LS curve progresses over generations, and eventually
surpasses BHC+ when evaluated on the same set of validation instances. This
finding highlights that, once trained, the Neuro-LS method is able to find so-
lutions more efficiently compared to the baseline BHC+ local search for these
types of instances.

In Figure 3, the minimum and maximum scores on the validation set ob-
tained during the 10 independent neuro-evolution runs are also indicated with
blue dashed lines. The figure illustrates significant variability in the results, high-
lighting the diversity in the performance of the emerging strategies. Nevertheless,
this variability poses no issue in our context, as only the strategy with the best
results on the validation set will be selected for the test phase presented in the
next subsection.

4.3 Test phase

In this phase, we performed a series of evaluations to assess whether the best
Neuro-LS strategies, selected based on the validation set for each configuration
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of NK landscape, continue to perform well in new test instances that are inde-
pendently sampled from the same NK(N,K) distribution.

Table 1 summarizes the average score obtained by Neuro-LS and the three
other competing methods, namely the BHC+, FHC+ and (1, λ)-ES algorithms,
presented in section 3.2. The strategy (1, λ)-ES has one hyperparameter λ that
we calibrated in the range J1, NK on training instances for each (N,K) configu-
ration.

In order to perform a fair comparison between the different strategies, we
computed an average estimated score F̄ on the same 100 test instances. For each
instance we use the same starting point to compute the trajectory produced by
each LS strategy.2

In Table 1, the best average result obtained among the mentioned methods
for each configuration (N,K) of test instances is highlighted in bold. Results un-
derlined indicate significant better results in average compared to all the other
strategies (p-value below 0.001), measured with a Student t-test without assum-
ing equal variance.3

Instances Methods
N K BHC+ FHC+ (1, λ)-ES Neuro-LS
32 1 0.694 0.688 0.695 0.699
32 2 0.713 0.709 0.717 0.721
32 4 0.717 0.721 0.713 0.735
32 8 0.702 0.712 0.707 0.732
64 1 0.700 0.693 0.696 0.702
64 2 0.712 0.709 0.712 0.715
64 4 0.721 0.721 0.714 0.734
64 8 0.710 0.719 0.707 0.737
128 1 0.698 0.691 0.696 0.701
128 2 0.712 0.711 0.710 0.713
128 4 0.724 0.723 0.717 0.728
128 8 0.711 0.719 0.705 0.730

Table 1. Average results on test instances obtained by different local search strategies
for different NK landscape configurations.

Table 1 shows that Neuro-LS always obtains better results for all the con-
figurations of NK landscape, but the difference in score is only really significant
when K = 4 and K = 8 for all values of N (except for N = 128 and K = 4). It
2 For this evaluation test, we only perform one restart per instance, to avoid any

dependency between the different executions that might take place on the same
instance. It allows to obtain a distribution of 100 independently and identically
distributed scores for each strategy and for each NK configuration.

3 The normality condition required for this test was first confirmed using a Shapiro
statistical test on the empirical distributions of 100 iid scores obtained by each
strategy.
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means that our strategy becomes more effective than other methods when the
landscape is more rugged.

This score improvement compared to the other baseline methods, obtained
with the same budget of H = 2×N iterations performed on each instance, can
be attributed to a more efficient exploration of the search space as K increases
(as seen in the next subsection).

4.4 Study of Neuro-LS emerging strategies

The objective here is to analyse in detail the best Neuro-LS strategies that have
emerged with neuro-evolution and to understand their decision-making processes
for the different types of landscape studied (smooth or rugged).

We have observed two main patterns of emerging strategies:
– For smooth landscapes, when K = 1 or K = 2, Neuro-LS learns to per-

form almost all the time a best improvement move, which explains why for
these instances, it obtains almost the same score as the BHC+ strategy (see
Table 1).

– For rugged landscapes, when K = 4 and K = 8, the emerging strategy is
much more interesting. Figure 4 displays a representative example of the
trajectory performed by Neuro-LS when N = 64 and K = 8. This figure
shows two graphs based on data collected during the resolution of this in-
stance. The graph on the top of this Figure shows the evolution of the fitness
reached by Neuro-LS over the H = 2×N = 128 iterations. The graph below
shows at each iteration the number of available actions corresponding to an
improvement of the score (in blue), and the rank of the action selected by
Neuro-LS, measured in term of fitness improvement (in red). A rank of 1
on this plot indicates that Neuro-LS has chosen a best improvement move,
while a rank of 64 indicates a worst deteriorating move (note that the y-axis
is inverted, because it is a maximization problem). We observe on this plot
that the emerging Neuro-LS strategy has three different successive operating
modes:
1. Median hill climbing behavior. When the number of actions asso-

ciated with a positive improvement of the score, N+
a , is relatively large

(∼ above N/10), Neuro-LS does not always choose the best improvement
move, but instead a move with a rank approximately equal to N+

a /2. This
provides a good compromise between improving the score and avoiding
being trapped too quickly in a local optimum.

2. Best improvement hill climbing behavior. When the number of
actions corresponding to a positive delta fitness is low (∼ below N/10),
Neuro-LS often chooses the best move (with rank 1) to quickly converge
toward the closest local optimum.

3. Jump with worst move. When there is no more improving move,
Neuro-LS does not stagnate, but instead directly chooses to perform the
worst possible move (with rank 64). Even if this movement considerably
deteriorates the current fitness score, it actually maximizes its long-term



14 Goudet, Amri Sakhri, Goëffon and Saubion

chances of escaping the current local optimum and continually exploring
new areas of the search space. Indeed, we observe on this plot that Neuro-
LS continuously improves its score with this strategy for this instance.
Note that after choosing the worst possible move, it does not choose the
best possible move, otherwise it would return to the same local optimum.

Fig. 4. Fitness evolution curve and strategy used by Neuro-LS for the resolution of a
instance with significantly rugged NK landscape (N = 64 and K = 8).

Conclusion

Our study explores the emergence of new local search algorithms with neuro-
evolution. Results on NK landscapes show that different neural network policies
are learned, each adapted to the resolution of a particular landscape distribution
type (smooth or rugged). Our algorithm is competitive with basic deterministic
local search procedures for all the NK landscape types considered in this work.
Particularly for rugged landscapes, it can achieve significantly better results
with an original emerging strategy, using a worst-case improvement move, which
proves very effective in the long run for escaping local optima.

This study outlines avenues for future research on the automatic discovery of
more advanced strategies using as input a richer set of observations to make its
decision. The proposed framework could also be applied to study the emergence
of strategies adapted to other types of combinatorial optimization problems.
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