
HAL Id: hal-04457706
https://hal.science/hal-04457706

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A memetic algorithm with adaptive operator selection
for graph coloring

Cyril Grelier, Olivier Goudet, Jin-Kao Hao

To cite this version:
Cyril Grelier, Olivier Goudet, Jin-Kao Hao. A memetic algorithm with adaptive operator selection
for graph coloring. 24th European Conference on Evolutionary Computation in Combinatorial Opti-
misation, Apr 2024, Aberystwyth, United Kingdom. �hal-04457706�

https://hal.science/hal-04457706
https://hal.archives-ouvertes.fr


A memetic algorithm with adaptive operator
selection for graph coloring

Cyril Grelier[0000−0002−6234−8278], Olivier Goudet[0000−0001−7040−5052], and
Jin-Kao Hao*[0000−0001−8813−4377]
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Abstract. We present a memetic algorithm with adaptive operator se-
lection for k-coloring and weighted vertex coloring. Our method uses
online selection to adaptively determine the couple of crossover and lo-
cal search operators to apply during the search to improve the efficiency
of the algorithm. This leads to better results than without the operator
selection and allows us to find a new coloring with 404 colors for C2000.9,
one of the largest and densest instances of the classical DIMACS coloring
benchmarks. The proposed method also finds three new best solutions
for the weighted vertex coloring problem. We investigate the impacts of
the different algorithmic variants on both problems.

Keywords: Graph Coloring, Memetic Algorithm, Hyperheuristics

1 Introduction

Graph coloring problems find applications across various domains, such as matrix
decomposition [26], metropolitan area network design [14], and task scheduling
in distributed computing [17]. Given a graph G = (V,E), defined by its vertex
set V and edge set E, a legal coloring S of the graph G partitions the vertex set
V into k non-empty and disjoint color groups {V1, . . . , Vk} such that the coloring
constraint is satisfied, i.e., for each Vi, if x ∈ Vi and y ∈ Vi, then {x, y} /∈ E.
In other words, the coloring constraint states that two adjacent vertices cannot
go to the same color group (they cannot receive the same color). A coloring
failing to meet the coloring constraint is an illegal coloring. Typically, graph
coloring problems entail finding a legal coloring of the graph G while taking into
account additional decision criteria and constraints. Specifically, the k-coloring
problem (k-col) is a decision problem, where given a number of colors k, the
goal is to find a legal coloring of the graph using these k colors. The graph
coloring problem (GCP) is to determine the smallest number of colors (chromatic
number of the graph) needed to color a graph. In the weighted vertex coloring
problem (WVCP), an additional weight function w : V → R+ is defined to
assign a strictly positive weight w(v) to each vertex v ∈ V . The objective of the
WVCP is then to find a legal coloring S = {V1, . . . , Vk} with a minimal score

f(S) =
∑k
i=1 maxv∈Vi

w(v), where the number of used colors k is not specified.
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This paper aims to develop a learning-based framework for solving both the
k-col decision problem and the WVCP minimization problem, which have been
addressed by various methods in the literature. Both problems are known to be
NP-hard in the general case [8], posing computational challenges in practice. For
example, some random graphs with 250 vertices cannot be solved optimally by
current exact algorithms (see [19] for k-col and [11] for WVCP). For this reason,
a number of heuristics have been developed over the last thirty years to obtain
approximate solutions to large graph coloring problems [6,20].

For the k-col, two particularly interesting local search heuristics are TabuCol
[15] and PartialCol [2], which were proposed many years ago. For the WVCP,
dedicated and effective local search procedures are much more recent, including
AFISA [29], RedLS [30], ILS-TS [22] and TabuWeight [12]. None of these meth-
ods really dominates the others for all reference instances of the k-col and the
WVCP [2,12,22]. It would be interesting to choose an appropriate local search
to solve each type of instance for each problem.

However, local search methods may fail to produce high-quality solutions due
to their limited ability to diversify their search. To overcome this difficulty, hy-
brid algorithms using the framework of memetic algorithms have been proposed,
which benefit from local search for intensification and offer diversification possi-
bilities with a population of high-quality solutions recombined with crossover op-
erators. Hybrid algorithms have mainly been used to date to solve the k-coloring
problem. The HEA (Hybrid Evolutionary Algorithm) algorithm [7] introduced
the powerful GPX crossover (Greedy Partition Crossover) operator and used a
local tabu search inspired by TabuCol. Evo-Div [24] and MACOL [18] both used
crossover strategies with multiple parents and distance management between
solutions. More recently, the HEAD algorithm (HEA in Duet) [21] proposes the
use of only two individuals in the population and a reintegration system for
high-quality individuals (elites) found earlier in the search. HEAD also uses the
GPX crossover and an improved TabuCol algorithm. This algorithm HEAD is
currently one of the most efficient solvers for the k-col. For the WVCP, to our
knowledge, there is only one memetic algorithm in the literature, DLMCOL [10],
which uses a large population (more than 20,000) and parallel GPU-based local
searches, combined with a neural network-guided crossover selection.

It was observed by the authors of HEAD [21], that the quality (number of
conflicts) of an offspring solution for the k-col, generated with the GPX crossover
from two parents, is highly correlated with the partition distance [25] between
these two parents, which is the minimum number of vertices that must change
color to transform one solution to another. Based on this insight, the authors
suggested employing modified versions of the GPX crossover, such as conserva-
tive asymmetric crossovers, which can lead to better results for certain types of
instances. In the context of a memetic algorithm, it is therefore important to
choose not only the right local search, but also the right crossover operator to
perform an efficient search.

To this end, in this work, we investigate the use of online hyperheuristics,
suggested in the literature to dynamically select adapted low-level heuristic com-
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ponents during the search process for solving a specific problem instance. We
refer the reader to [3,4] for an overview of existing hyperheuristics used to solve
various combinatorial optimization problems. More specifically, hyperheuristics
have been used to solve partitioning problems, with applications to planning and
graph coloring [5,13,27,28]. However, to our knowledge, no hyperheuristic-based
memetic algorithm for graph coloring has yet been proposed in the literature.
This work fills this gap by :

– investigating new memetic algorithms for the k-col and the WVCP using
the HEAD framework [21] with diverse local search procedures and GPX
variants.

– examining the ability of adaptive operator selectors to jointly choose crossovers
and local search procedures during the search for specific instances.

In the rest of the paper, we first present our new general framework, AHEAD
(for Adaptive HEAD), with different strategies for selecting local search proce-
dures and crossovers (Section 2). Next, we show the results of the different
variants of AHEAD in comparison with state-of-the-art algorithms (Section 3).

2 Adaptive Memetic Algorithm

In this section, we present the general framework of the adaptive memetic algo-
rithm developed for the k-col and the WVCP, as well as the selection operators.

For the k-col, with a graph G = (V,E) and k colors, the search explores the
space Ωk of legal and illegal colorings where all vertices are colored, but allowing
color conflicts between adjacent vertices:

Ωk = {{V1, . . . , Vk} : (∪ki=1Vi = V ) ∧ (Vi ∩ Vj = ∅, i 6= j, 1 ≤ i, j ≤ k)}. (1)

In this case, the fitness f (to be minimized) corresponds to the number of con-
flicts in the solution. A solution with the fitness of 0 is a legal coloring.

For the WVCP, the algorithm works in the space of legal solutions Ωl, where
all vertices are colored with no limit on the number of colors, but no adjacent
vertices are allowed to share the same color:

Ωl = {{V1, . . . , Vk} : (∪ki=1Vi = V ) ∧ (Vi ∩ Vj = ∅, i 6= j, 1 ≤ i, j ≤ k)

∧ (∀v1, v2 ∈ Vi, (v1, v2) /∈ E, 1 ≤ i ≤ k)} (2)

and we search in this search space a solution S = {V1, . . . , Vk} whose score

f(S) =
∑k
i=1 maxv∈Vi

w(v) is minimum.

2.1 Main Scheme

The architecture of the AHEAD framework, illustrated in Figure 1, extends the
state-of-the-art HEAD framework [21] by introducing an operator selector. In
particular, its simplicity with only two individuals in the population facilitates
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the parent matching and population updating phases compared to other memetic
algorithms in the literature [7,18,24,10].

AHEAD takes as input a graph G = (V,E), and an integer value k for the k-
col or a weight function w for the WVCP, a set of local search operators Ol, a set
of crossover operators Ox, and a high-level selection strategy πθ characterized by
a parameter vector θ. The πθ strategy chooses two pairs of operators < ol, ox >
with ol ∈ Ol and ox ∈ Ox to apply in the current generation to create two new
individuals, replacing their parents in the population for the next generation.

The population is initialized with two random colorings, S1 and S2. Two elite
solutions, E1 and E2, are also created, which are updated by the best solution
found during the search and are used to reintroduce diversity into the population
under specific conditions. Then, each generation of the algorithm performs the
next six steps until the stopping condition is met.

1. A selection phase to select two pairs of operators < crossover, local search >
to be applied during this generation: < ox1 , o

l
1 > and < ox2 , o

l
2 >. This selec-

tion is made using the function πθ, which takes as input the two individuals
in the population, with S1 as the first input for the selection of < ox1 , o

l
1 >,

then S2 as the first input for the selection of < ox2 , o
l
2 > (Section 2.2).

2. A crossover phase to create two offspring individuals C1 and C2 with C1 =
ox1(S1, S2) and C2 = ox2(S2, S1) (see Section 2.3).

3. An intensification phase to obtain improved offspring solutions with local
search, C ′1 = ol1(C1) and C ′2 = ol2(C2) (Section 2.4).

4. An insertion phase to replace S1 and S2 by C ′1 and C ′2, regardless of the
fitness of the offspring solutions compared to the parents.

5. An update phase to adjust the πθ selection policy from the examples collected
over the last few generations (Section 2.5).

6. As in the original HEAD algorithm [21], each generation ends with a step of
storing the best individual (elite) from the cycle (10 generations). The elite
individual is reintroduced two cycles later (Section 2.6).

Fig. 1. General architecture of the Adaptive HEAD (AHEAD) framework.
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2.2 Automatic Operator Selection

To select the crossover and local search operators, a high-level πθ strategy au-
tomatically selects a pair of operators < ox, ol > ∈ Ox × Ol. Therefore, there
are |Ox| × |Ol| different < crossover, local search > pairs possible considered as
independent meta-operators. The set of crossover operators Ox is presented in
Section 2.3 and the set of local search operators Ol in Section 2.4.

In the general case, the πθ function takes a pair of parents as input. For
example, for (S1, S2), πθ chooses a pair of operators < ox, ol >, with a crossover
operator ox to be applied with S1 as the first parent and S2 as the second parent.
It will produce a child C1, which will be improved by the local search procedure
ol to obtain a new individual C ′1.

In this work, we examine the effects of six operator selection policies πθ
with varying levels of complexity, including four fitness-based criteria, a neural
network, and a random selector. Note that, except for the Deleter criteria, they
are also used in combination with a Monte Carlo tree search in [13].

– Random performs a uniform selection among all operators.
– Deleter deletes the operator with the worst average result every 5 genera-

tions, until only one remains.
– Roulette (or Adaptive roulette wheel) [9] selects randomly the operator with

a bias induced by the reward r (see Section 2.5) obtained by each operator.
The better the reward is, the higher its associated probability of being picked
is, using the same parameters as in [13].

– UCB (Upper Confidence Bound, One-armed bandit strategy) [1] selects the
operator depending on the rewards obtained in previous generations and the
number of times it has been picked using the UCB formula managing the
exploitation-exploration trade-off.

– Pursuit [9] randomly selects the operator with a proportional bias in favor
of the best performing operator. This strategy is among the most elitist, as
it gives more chances to the best strategy applied in previous iterations.

– NN (Neural Network) uses the recommendations of a deep set neural network
architecture [10,13,32]. This neural network gθ takes as input a coloring S
as a set of k binary vectors vj of size n, S = {v1, . . . ,vk}, where each vj

indicates the vertices belonging to the color group j. From such an entry the
neural network outputs a vector with |Ol| values in R corresponding to the
expected reward of each local search. In order to select a pair of operators
< ox, ol >∈ |Ox| × |Ol|, from a pair of parents (S1, S2), the neural network
selector πθ works as follows:

1. Each crossover operator ox ∈ Ox creates an individual Cx = ox(S1, S2).
2. Each raw solution Cx is passed as input to the neural network gθ to

obtain a vector of |Ol| values in R corresponding to the estimated score
that can be obtained after applying each local search ol ∈ O to Cx.

3. The pair < ox, ol > corresponding to the highest output value of the
neural network (for the |Ox| evaluations given by gθ) is selected. 10% of
the time, the selection is random to encourage diversity.
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2.3 Application of Crossover Operators

In this step, the parent solutions S1 and S2 are combined to create two offspring
solutions C1 = ox1(S1, S2) and C2 = ox2(S2, S1) from the crossover operators ox1
and ox2 chosen during the selection phase detailed in the previous section.

For both problems, we use the popular GPX crossover [7] used in the original
HEAD algorithm [21]. It consists of alternately taking the largest color group
from each parent and transmitting it to the offspring solution. Note that GPX
is asymmetrical, applying it with the pair (S1, S2) or the pair (S2, S1) does not
produce the same offspring solution. Three variants of this crossover can be
selected in AHEAD: GPX, GPX-3, and GPX-9 taking respectively 1, 3, and 9
groups of color in the first parent for 1 color in the second parent. Therefore the
last two are more conservative than the original GPX as more groups of the first
parent are transmitted to the offspring. This generally results in offspring with
lower (better) fitness, but less different from its parents. The two new solutions
C1 and C2 generated during the crossover phase will be improved in the local
search phase detailed in the next subsection.

2.4 Local Searches

In this step, the new individuals C1 and C2 are improved by the selected local
search operators ol1 and ol2. These two independent local searches are run in
parallel on two CPUs with a time limit of TLS seconds. The best solutions C ′1
and C ′2 found by ol1 and ol2 with this time budget are returned. For the k-col, two
state-of-the-art local search operators can be chosen: the efficient implementation
of TabuCol [15] proposed in [21] and PartialCol [2]. For the WVCP, the two best
performing algorithms RedLS [30] and ILS-TS [22] can be chosen.

2.5 Operator Selection Strategy Update

At each generation, new learning examples are collected from the results of pairs
of operators to update the selection strategy for future generations.

Learning examples memory. Reward scores r1 = −f(C ′1) and r2 = −f(C ′2) are
associated with the choice of operator pairs < ox1 , o

l
1 > and < ox2 , o

l
2 >, with f

the fitness function of the k-col or the WVCP. These rewards are negative, as
the fitness f is to be minimized in both problems. Then, two learning examples
(ox1 , o

l
1, C1, r1) and (ox2 , o

l
2, C2, r2) are stored in a database D, specific to the

current execution. D is a queue of the N last examples obtained during previous
generations (N is set to 50 empirically). This limited queue size enables us to
better adapt to potential variations in operator results, in the event that certain
operators are better at the beginning of the search than at the end.

Online learning of the selection criteria. Every generation, the πθ policy is
trained on the database D and all its θ parameters are updated. For the NN
policy, the training phase occurs every nb = 20 generations. During this training



A memetic algorithm with adaptive operator selection for graph coloring 7

phase, each training example (ox, ol, C, r) from the database D is converted into
a supervised learning example (X, y), with X an input matrix of size k × |V |
corresponding to the set of k vectors C = {v1, . . . ,vk}, and y is a real vector of
size |Ol| (number of local search operators), so that y is initialized with gθ(C),
the output vector of the neural network taking as input C, then its value y[ol]
for the chosen operator ol is replaced by the expected reward r: y[ol] = r. Once
this conversion of the training examples is done, gθ is trained to minimize the
mean square error computed over the |Ol| outputs (supervised learning) on this
training dataset for 10 epochs with the Adam optimizer [16].

2.6 Insertion and Elite Solutions

Like HEAD [21], offspring solutions systematically replace the parents and elite
solutions are used. Elites, which are high-quality solutions from previous gener-
ations, are added to the population after 10 generations. Thus, every 10 genera-
tions, the best individual encountered from the previous 11 to 20 generations is
reintegrated into the population.

Furthermore, at each generation, the set-theoretic partition distance [25] be-
tween the solutions S1 and S2 is evaluated. This distance is defined as the least
number of one-move operator changes for transforming S1 to S2. If the distance
is 0, meaning that the two individuals are the same solution, the individuals of
the population are randomly reinitialized. Note that when this happens, we do
not reset the θ weights of the learning strategy in order to benefit from what the
operator selector has learned since the start of the search.

3 Computational Experiments

This section is dedicated to a computational assessment of the proposed AHEAD
algorithm for solving the k-coloring and the weighted vertex coloring problems,
by making comparisons with state-of-the-art methods. We also discuss the im-
pact of the different operator selection strategies on the results.

3.1 Experimental Settings

In these experiments, we consider 31 instances for the k-col and 48 instances
for the WVCP, among the most challenging DIMACS benchmark instances and
widely used in the experiments of many recent papers [21,22,29]. 20 independent
runs per method and per instance are carried out for one hour with two CPU
for the HEAD and AHEAD methods (four hours for the WVCP) and two hours
with one CPU for the local search algorithms for the k-col (eight hours for the
WVCP). For each k-col instance, and for each independent run, the smallest
value of k for which the method is able to find a legal solution is reported.

The time spent, in seconds, in the local search during each generation in
HEAD and AHEAD is 0.001∗|V | for the k-col and 0.04∗|V | for the WVCP, with
|V | being the number of vertices in the graph. These values were chosen following
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tests on a range of values for each problem, which will not be presented here. To
erase the impact of the training time of the neural network, for the versions with
AHEAD, the methods perform as many generations in the memetic algorithm
as the HEAD versions.

The experiments are run on a computer equipped with an Intel Xeon ES 2630,
2.66 GHz processor. All algorithms are coded in C++, compiled and optimized
with the g++ 12.1 compiler. For the neural network implementation, the Pytorch
1.13 C++ library was used. The source code and complete tables of detailed
results are available at https://github.com/Cyril-Grelier/gcp_ahead and
https://github.com/Cyril-Grelier/wvcp_ahead.

3.2 Experimental Results for the k-coloring Problem

In this section, we first analyze the general results obtained for the k-coloring
problem. The different methods tested can be regrouped into three categories:

– The standalone local searches PartialCol (PC) [2] and TabuCol (TC) [15]
(with optimizations from [21]).

– The memetic algorithm HEAD [21] combined with local search operators
PartialCol (version HEAD + PC) and TabuCol (version HEAD + TC).

– The different proposed AHEAD versions with the 6 different operator selec-
tion strategies presented in Section 2.2. These versions are called “AHEAD
+ the name of the selection strategy”.

We first present a general comparison between all these methods, followed
by detailed results on the different benchmark instances.

General Comparisons Table 1 displays general performance comparisons be-
tween each pair of methods on the benchmark instances considered in this work
for the k-col. Whenever the mean score of a method in the row for an instance
is better than the mean score of a method in the column, and this difference
is significant (non-parametric Wilcoxon signed rank test with p-value ≤ 0.001)
the method in the row obtains one point. If the method in the row is better
on more instances than the method in the column than the opposite, then the
number of instances is in bold. As an example, we observe in Table 1 that Tabu-
Col is significantly better on 14 instances when compared with PartialCol, while
PartialCol is only better on 2 instances when compared with TabuCol. The last
three columns of Table 1 gives the number of times a Best Known Score (BKS)
from the literature is found by the method and the number of times the method
reaches the best score and the best mean among the presented methods.

We observe in Table 1 that using the memetic framework HEAD with Partial-
Col or TabuCol (version HEAD + TC, and HEAD + PC) improves the results
over the methods using the corresponding local search alone.

Overall, TabuCol is more effective than PartialCol, that is why HEAD+TC
keeps good results against some versions of AHEAD with less elitist operator
selection such as Random, Roulette or UCB. However, the other versions of

https://github.com/Cyril-Grelier/gcp_ahead
https://github.com/Cyril-Grelier/wvcp_ahead
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PartialCol - 2 3 2 1 2 1 2 2 2 5 8 11
TabuCol 14 - 11 2 2 1 0 2 0 1 8 14 7

HEAD+PC 8 6 - 1 0 0 1 0 0 0 6 10 7
HEAD+TC 18 12 20 - 4 2 1 2 2 2 7 17 15

AHEAD+Random 17 11 19 1 - 0 1 1 0 0 9 17 9
AHEAD+Roulette 17 11 19 1 0 - 0 0 0 0 11 19 12
AHEAD+Deleter 19 15 20 5 8 3 - 5 1 1 13 24 20
AHEAD+UCB 19 11 20 1 1 0 0 - 0 0 10 18 10

AHEAD+Pursuit 19 13 20 3 5 2 0 1 - 0 11 20 14
AHEAD+NN 19 12 20 2 4 0 0 0 0 - 12 23 16

Table 1. Comparison of each method for the k-col, the value is the number of instances
where the method in the row is significantly better than the method in the column.
The last three columns are a summary of the number of best scores.

AHEAD, using Deleter, Pursuit and the neural network (NN), obtained overall
better results than the memetic algorithm HEAD+TC without operator selec-
tion. It highlights the interest of dynamically choosing the best operator to apply
for each given instance.

The Random selection policy is less effective in comparison with the other
operator selection strategies, especially against Deleter, Pursuit and NN, which
have a stronger bias on selecting the best operators. Surprisingly, the simplest
but most elitist selection strategy, Deleter, achieves the best results, indicating
that for this problem, once the best operator has been identified for each specific
instance, there is generally no need to change it for the rest of the search.

Detailed Results Table 2 shows, for each instance, the Best Known Score
(BKS) in the literature 1 with a star if it is optimal, then, for each method,
the best score, the mean score and the average time to reach the best scores
over the 20 executions. Bold values indicate the best scores among the studied
methods. The average score is not shown if equal to the best score. Due to space
limitations, only a selection of methods is shown in the various tables, and not
all instances studied are shown. Complete tables are available on the github
repository.

First, those results confirm that the TabuCol local search is more often bet-
ter than PartialCol, but that the latter can give better results for some in-

1 Achieving these BKS for k-col, especially for the largest instances, is a very difficult
task. Some have only been found by few algorithms under particular conditions
(hyperparameter tuning, extended execution times of several days to a month).
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instance BKS
PartialCol TabuCol HEAD+TC AHEAD+Random AHEAD+Deleter

best mean time best mean time best mean time best mean time best mean time

C2000.5 145 164 165.2 5313 162 162.8 4628 148 149.2 3330 150 150.7 3101 149 150.7 3152
C2000.9 408 420 420.8 5171 411 412.5 4786 405 406.4 2328 405 407.7 2956 404 405.6 2988
C4000.5 259 304 305.6 6690 303 304.2 5567 278 279.6 3580 280 281.6 3651 279 280.8 3404

DSJC500.1 12 12 128 12 75 12 86 12 80 12 56
DSJC500.5 47 50 50.1 2227 49 460 48 819 48 1258 48 850
DSJC500.9 126 128 975 126 126.3 2988 126 1027 126 126.1 1379 126 632
DSJC1000.1 20 21 1 21 0 21 0 21 1 20 20.9 2391
DSJC1000.5 82 90 90.5 3516 88 1760 83 83.3 2290 83 83.5 2372 83 83.5 2511
DSJC1000.9 222 227 228.4 3630 224 224.9 3345 223 224 1616 223 224.2 2734 223 223.8 1589
DSJR500.5 122* 125 126.2 1666 124 127 1155 123 124 1766 123 124.2 2245 123 123.8 2289
flat300 28 0 28* 28 896 28 29.5 3220 30 30.8 1916 28 28.5 702 28 30.4 5
flat1000 50 0 50* 50 44 50 69 50 28 50 8 50 8
flat1000 60 0 60* 60 213 60 233 60 54 60 28 60 29
flat1000 76 0 76* 89 89.1 2845 86 87 3096 82 82.3 1905 82 82.8 2775 82 82.8 1969

latin square 10 97 107 110.2 4875 100 100.8 4377 102 103.7 93 103 103.8 1996 99 100.7 1729
le450 25c 25* 27 69 26 0 26 0 25 25.9 1407 25 25.3 1022
le450 25d 25* 27 50 26 0 26 0 26 0 25 25.3 1537

queen11 11 11* 11 11.9 1303 12 0 12 0 12 0 12 0
queen12 12 12* 13 4 13 0 13 0 13 0 13 1
queen13 13 13* 14 20 14 0 14 1 14 1 14 1
queen14 14 14* 15 585 15 20 15 9 15 18 15 16

r250.5 65* 67 134 66 67.2 462 65 66 3378 65 66 1638 66 549
r1000.1c 98 141 149.1 61 134 155.2 77 100 101.6 264 100 101.6 1674 100 101.6 1621
r1000.5 234 247 248.1 5638 244 245.6 3622 246 247.6 1479 246 247.4 2134 245 245.5 2009
wap01a 41* 42 1088 42 43 2160 42 137 42 143 41 42 1958
wap02a 40* 41 41.7 4275 40 41.1 6499 41 15 41 15 40 40.8 1634
wap03a 43 44 91 44 45.9 4342 45 261 45 87 43 44.3 2387
wap04a 41 43 61 42 43.1 4869 43 880 43 1186 43 293
wap06a 40* 41 98 40 41.3 4248 40 909 40 40.8 1549 40 246
wap07a 41 44 41 41 42.3 5046 42 42.1 1771 42 43 2526 42 42.1 494
wap08a 40* 43 43.2 2750 41 41.5 2967 42 48 42 365 41 41.9 2146

#BKS 5/31 8/31 7/31 9/31 13/31
#Best 8/31 14/31 17/31 17/31 24/31

#Best Avg 11/31 7/31 15/31 9/31 20/31

Table 2. Results of the main methods for the GCP.

stances such as queen11 11 and can be faster for solving other instances such as
flat300 28 0 or wap03a. It shows to some extent that these two local searches
can be complementary.

Second, we obviously confirm that when TabuCol is integrated within the
HEAD memetic framework and combined with the GPX crossover (version
HEAD +TC), it can generally improve the results significantly, but it does not
improve the results for all instances. For example, for the instances flat300 28 0,
r1000.5, and some wap, it is actually better to use the local search alone for
better intensification. Using crossovers for these instances can actually disrupt
the search too early, preventing the local search from significantly improving its
results. Note that the results of HEAD in [21] can differ from our results with
HEAD+TabuCol using exactly the same operators, because we did not perform
a fine-tuning of the number of iterations spent in local search for each given
instance, unlike it was done in the original article.
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Third, the algorithm AHEAD + Random can find the best results for more
instances than the HEAD+TabuCol version whose choice of operators does not
change during the search. For example, AHEAD + Random finds the optimal
coloring with 28 colors for the instance flat300 28 0. This is due to the fact
that TabuCol is not able to reach the chromatic number of the graph in a short
amount time compared to PartialCol which can reach it systematically more
than three times faster. Therefore, AHEAD + Random benefits from having a
chance at each generation to select the right local search for each given instance.

Fourth, from Table 2, we observe that using an elitist strategy in local search
and crossover selection can significantly improve the results compared to the
random selection strategy. In particular, as shown in this table, the version
AHEAD + Deleter can find a new best coloring with k = 404 for the instance
C2000.9 that has never been reported in the literature. This new best score is
also found by the versions AHEAD + Pursuit and AHEAD + NN. In general,
these versions of AHEAD with elitist operator selection strategies obtain the
best results for a wide variety of instances of different types.

Figure 2 shows the average cumulative selections for each pair of operators,
performed by the different selection criteria for the DSJC500.1 and queen12 12
instances. In the plots, TabuCol and PartialCol selections are indicated by red
and blue lines, respectively, and a higher contrast indicates a more conservative
crossover. When we look at the frequencies of the local search operators selected
by AHEAD, we see that TabuCol is selected most often in comparison with
PartialCol, which is no surprise, as TabuCol is already better on its own for a
greater number of instances. However, when it comes to crossovers, we observe
a balanced choice between the three GPX variants, with a bias toward the more
conservative crossover GPX-9 for geometric graphs (e.g., DSJR500.5) and sparse
graphs (e.g., wap instances), for which local optima are very distant in the search
space, while the GPX crossover is more often preferred for random and dense
graphs (e.g., DSJC1000.9), for which there is often larger backbones of solutions
shared by the high-quality solutions (as shown in [10]).

Fig. 2. Average cumulative selections, along with error bars, for each pair of operators
based on different criteria on the DSJC500.1 and queen12 12 instances.
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3.3 Experimental Results for WVCP

Now, we analyze the general results obtained for the WVCP. We first present
a general comparison between the methods, followed by detailed results on the
different benchmark instances. The studied methods are the following:

– The local searches, RedLS [30] and ILS-TS [22] (8h runs on 1 CPU).
– The memetic algorithm HEAD [21] with RedLS or ILS-TS (HEAD + RedLS

/ILS-TS) and the crossover GPX (4h runs on 2 CPUs).
– The different proposed AHEAD versions with the 6 different operator selec-

tion strategies presented in Section 2.2 with the two local searches (RedLS
and ILS-TS) and the three variants of GPX crossovers (4h runs on 2 CPUs).

General Comparisons As seen in Table 3, using HEAD with RedLS (HEAD
+ RedLS) improves the results for 26 instances but the standalone local search
RedLS stays better in 9 instances. On the other hand, for ILS-TS, using the
HEAD framework is better only for 6 instances, while ILS-TS remains better
for 19 instances. We observe that the use of crossovers in combination with the
ILS-TS local search procedure does not improve the results of ILS-TS. This can
be explained by the fact that ILS-TS is already a method incorporating a strong
perturbation strategy for search diversification, making the use of crossovers
somewhat superfluous. Regarding the results of AHEAD, we confirm what we
have observed for the k-col, even if it’s less pronounced. The AHEAD versions
are more often better than the other methods, and the most elitist operator
selection strategies (Deleter and Pursuit) obtain the best results.
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RedLS - 10 9 14 9 9 9 9 9 9 15 24 11
ILS-TS 27 - 8 19 3 6 5 4 1 3 23 25 21

HEAD+RedLS 26 15 - 25 1 1 0 0 1 0 19 19 11
HEAD+ILS-TS 20 6 5 - 0 0 0 0 0 0 18 19 13

AHEAD+Random 27 20 10 25 - 0 0 0 0 0 21 22 19
AHEAD+Roulette 26 20 9 26 0 - 0 0 0 0 22 22 17
AHEAD+Deleter 26 19 9 26 3 0 - 0 0 0 24 28 19
AHEAD+UCB 26 20 9 26 1 1 0 - 0 0 23 23 19

AHEAD+Pursuit 26 23 11 26 1 0 0 0 - 0 24 26 22
AHEAD+NN 27 21 10 27 0 1 0 0 0 - 21 23 19

Table 3. Comparison of each method for the WVCP, the value is the number of
instances where the method in the row is significantly better than the method in the
column.
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instance BKS
RedLS ILS-TS HEAD+RedLS AHEAD+Random AHEAD+Deleter

best mean time best mean time best mean time best mean time best mean time

C2000.5 2144 2131 2155.7 18367 2244 2264.4 6423 2244 2257.9 7453 2220 2236.8 12962 2218 2236.3 1782
C2000.9 5477 5439 5455.1 23137 5847 5910.1 23014 5732 5748.2 12980 5732 5783.9 12491 5717 5758.8 12327

DSJC1000.1 300 303 306.9 5839 305 306.2 5819 304 305.6 7380 302 303.8 9348 300 302.2 12874
DSJC1000.5 1185 1190 1206.9 12204 1241 1267.7 21935 1225 1229.7 7011 1222 1228.2 5371 1224 1230.5 1476
DSJC1000.9 2836 2828 2841.8 22796 3004 3035.9 25345 2909 2926.5 820 2911 2928.7 12633 2907 2926.8 2379
DSJC500.1 184 187 194 702 185 187.3 7107 186 186.9 6594 185 186.5 10290 184 185.9 8022
DSJC500.5 685 707 712.5 27147 711 721.2 9150 709 712.6 2534 706 711.5 12516 709 713.5 5838
DSJC500.9 1662 1667 1671 9925 1709 1725.3 24351 1680 1683.5 4053 1678 1684.2 12644 1676 1682.8 8149
DSJC250.1 127 129 131.4 56 127 127.1 11901 127 4516 127 3729 127 127.2 3235
DSJC250.5 392 399 400.8 2602 392 393.9 10722 395 396.2 8349 393 395.2 9592 392 396.6 6028
DSJC250.9 934* 934 935 9679 934 935.1 14740 934 935.1 6741 934 934.2 8097 934 935 5011

DSJC125.5gb 240 243 252.7 0 240 132 240 240.9 4098 240 222 240 152
DSJC125.5g 71 72 1063 71 64 71 1609 71 86 71 104

DSJC125.9gb 604* 604 2 604 125 604 4 604 13 604 12
DSJC125.9g 169* 169 0 169 320 169 0 169 6 169 9
flat1000 50 0 924 1152 1165.7 6259 1213 1230.5 570 1181 1187.7 7544 1179 1186.3 4428 1180 1186.8 2952
flat1000 60 0 1162 1196 1204.8 1877 1247 1263.8 25765 1216 1227.2 10824 1213 1223.7 11726 1217 1224.5 9840
flat1000 76 0 1165 1163 1183.2 28084 1228 1242.2 16513 1192 1204 2214 1187 1203 10742 1196 1204 8938

latin square 10 1480 1505 1515.3 14189 1555 1575 18924 1523 1532.5 11286 1510 1526.2 13987 1517 1527.8 8732
le450 15a 212 213 215.4 54 211 213.6 11684 212 212.8 6777 212 212.8 8819 211 212.4 10557
le450 15b 216 218 219.9 41 217 217.1 10346 216 217 3204 216 217.1 2736 215 216.5 11124
le450 15c 275 282 285.4 82 279 281.7 16288 277 279.4 8360 277 278.8 7220 278 279.4 4788
le450 15d 272 277 280.6 325 275 277.6 8456 274 276.1 6004 274 275.6 8759 273 275.2 13299
le450 25a 306 306 306.6 2881 306 142 306 161 306 169 306 131
le450 25b 307* 307 307.6 95 307 23 307 53 307 28 307 19
le450 25c 342 348 352.8 583 348 349.1 16413 347 348.1 180 346 347.8 5652 346 348 588
le450 25d 330 335 339.4 232 337 338.7 14212 333 334.4 5904 333 334.2 6282 333 334.2 9648

queen10 10 162 162 164.8 865 162 20 162 51 162 32 162 27
queen10 10gb 164 165 168.7 4790 164 172 164 164.4 4850 164 227 164 314
queen10 10g 43* 43 43.1 12 43 7 43 11 43 7 43 9
queen11 11 172 174 178 28766 172 6983 172 172.7 5668 172 172.1 3108 172 2207

queen11 11gb 176 177 178.6 1329 176 187 176 1583 176 436 176 396
queen11 11g 47 47 47.9 669 47 154 47 276 47 144 47 151
queen12 12 185 188 189.9 61 185 185.2 13770 186 186.3 6201 185 185.6 5997 185 185.4 7066

queen12 12gb 191 192 197.8 150 191 5019 191 191.3 5174 191 1521 191 191.1 3380
queen12 12g 50 50 51.5 986 50 1214 50 1464 50 1533 50 865
queen13 13 194 194 199.9 8 194 194.8 11188 194 194.2 5243 194 1560 194 194.1 1480
queen14 14 215 218 223.8 568 215 216.4 9862 216 216.6 7956 215 216.2 6384 214 215.3 8624
queen15 15 223 228 229.7 5806 225 226.5 15730 224 225.5 13260 224 225.1 10180 224 225.7 7200
queen16 16 234 237 240.8 17 237 238.3 15114 235 236.4 913 235 236 5610 235 236.4 11836

wap01a 545 557 577 995 547 550.1 20531 552 559.1 8178 549 553.6 14094 549 552.8 8874
wap02a 538 554 572.1 16183 536 541 21912 550 557.1 13884 541 546.1 7654 541 545.5 12994
wap03a 562 569 575.5 17878 572 575.5 22637 577 579.7 6992 573 576.3 8096 573 575.9 2944
wap04a 563 567 578.9 13939 567 570.5 7346 573 575.6 3152 570 573.2 1970 569 572.5 13790
wap05a 541 542 543.8 7719 542 542.2 11809 542 542.9 4471 542 543 12056 542 543.2 2772
wap06a 516 519 526.1 1575 516 519.5 6264 519 520.7 12180 518 521 9100 520 521.2 5978
wap07a 555 554 573 8460 565 569.2 16299 557 559.4 3360 558 559.8 12040 557 559.2 12460
wap08a 529 536 543.7 19557 543 546.9 19271 539 540.8 7452 539 541.2 1800 538 540.1 10608

#BKS 15/48 23/48 19/48 21/48 24/48
#Best 24/48 25/48 19/48 22/48 28/48

#Best Avg 11/48 21/48 11/48 19/48 19/48

Table 4. Results of the best methods for the WVCP.
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Detailed Results First, we see in Table 4 that with the help of the eight hours
of computation, RedLS is capable of finding five new scores (underlined score).
ILS-TS is also able to find two new upper bounds with this longer execution time.
The RedLS local search alone remains better on large instances (e.g., C2000,
latin square and flat) than the different memetic versions using this local search
procedure (HEAD + RedLS, and all AHEAD variants). Contrary to what was
observed for the k-col, this shows that for very large WVCP instances, using
the GPX crossover is not very beneficial. This can be explained by the fact
that for the WVCP, only the maximum weight of each color group affects the
score. Thus, for large instances, many different groupings of vertices are possible
without impacting the score, which generally results in a very high distance
between the two solutions S1 and S2 of the population. However, as observed in
[21], the solution quality of an offspring built with the GPX crossover is poorer
(higher fitness) if the individuals are too distant in the search space.

However, for medium-sized instances, such as le450 15a/b and queen14 14,
the AHEAD memetic framework with an elitist operator selection (AHEAD +
Deleter) significantly improves results and yields three new best upper bounds.

Regarding the operators selected by AHEAD, the two local search operators
RedLS and ILS-TS are almost equally preferred, with a choice depending on the
type of instance. On the other hand, unlike the k-col, the choice of crossover
is almost exclusively oriented towards the most conservative crossover, GPX-9,
particularly in combination with the local search ILS-TS. As mentioned above,
this is due to the large distance between individuals in the population in the
case of the WVCP.

4 Conclusion

The proposed AHEAD (Adaptive HEAD) framework is based on a population
of two individuals and uses learning-driven operator selectors to determine a
pair of local search and crossover to apply during the search process for solv-
ing a given instance of the k-coloring and weight vertex coloring problems. For
both problems, the proposed approach shows advantages over versions without
automatic selection of low-level operators. In the course of these experiments,
we obtained three new best scores for the WVCP with the proposed AHEAD
method, as well as a new best coloring with 404 colors for the very large and
dense graph C2000.9.

The work could be extended by considering a wider variety of complementary
crossover procedures and local searches to be chosen by the high level operator
selection strategy. Future work could also involve coupling the choice of operators
with the setting of critical hyperparameters involved in these operators, such as
the number of local search iterations to be performed at each generation, or the
size of the tabu list.
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