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ABSTRACT

Unsupervised data representation and visualization using tools from topology is an active and
growing field of Topological Data Analysis (TDA) and data science. Its most prominent line of
work is based on the so-called Mapper graph, which is a combinatorial graph whose topological
structures (connected components, branches, loops) are in correspondence with those of the data
itself. While highly generic and applicable, its use has been hampered so far by the manual tuning of
its many parameters—among these, a crucial one is the so-called filter: it is a continuous function
whose variations on the data set are the main ingredient for both building the Mapper representation
and assessing the presence and sizes of its topological structures. However, while a few parameter
tuning methods have already been investigated for the other Mapper parameters (i.e., resolution,
gain, clustering), there is currently no method for tuning the filter itself. In this work, we build
on a recently proposed optimization framework incorporating topology to provide the first filter
optimization scheme for Mapper graphs. In order to achieve this, we propose a relaxed and more
general version of the Mapper graph, whose convergence properties are investigated. Finally, we
demonstrate the usefulness of our approach by optimizing Mapper graph representations on several
datasets, and showcasing the superiority of the optimized representation over arbitrary ones.

Keywords Mapper Graph, Data Visualization, Topological Data Analysis, Persistent Homology

1 Introduction

Mapper graphs and TDA. The Mapper graph introduced in [1] is an essential tool of Topological Data Analysis
(TDA), and has been used many times for visualization purposes on different types of data, including, but not limited to,
single-cell sequencing [2, 3], neural network architectures [4, 5], or 3D meshes [6, 7]. Moreover, its ability to precisely
encode (within the graph) the presence and sizes of geometric and topological structures in the data in a mathematically
founded way (through the use of algebraic topology) has also proved beneficial for highlighting subpopulations of
interest, which are usually detected as peculiar topological structures of significant sizes, and identifying the key
features that best explain such subpopulations against the rest of the Mapper graph. This general pipeline has become a
key component in, e.g., biological inference in single-cell data sets, where differentiating stem cells can usually be
recovered from branching patterns in the corresponding Mapper graphs [8].
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Parameter selection. However, it has quickly become clear that the Mapper graph is quite sensitive to its parameters,
in the sense that the structure of the graph can vary a lot under (even small) changes of its parameters. As such, several
pipelines based on Mapper graphs actually involve brute force optimization: they first compute a grid of Mapper graphs
corresponding to many different sets of parameters, and then they pick the best one, either by manual inspection or with
arbitrary criteria—leading to prohibitive running times. In order to deal with this issue, several methods have been
proposed in the literature for either assessing the statistical robustness of a given Mapper graph with respect to the
distribution of the studied dataset [9, 10], or for tuning the Mapper parameters automatically [11]. Unfortunately, most
tuning methods involve simple heuristics that only work for some, but not all Mapper parameters; in particular, the
so-called filter parameter has never been treated, to the best of our knowledge. This is mostly because it is a general
continuous function, and can thus vary in a much wilder parameter space than the other Mapper parameters.

In another line of work, ensemble methods have recently been proposed to combine Mapper graphs over multiple
parameter sets, rather than trying to find the best one [12, 13], so as to be able to produce outputs that are more robust.
However, this imposes to aggregate families of completely different filter functions, with no guarantees on the resulting
graph. In this work, we follow a different approach, and rather attempt at identifying an "optimal" filter function by
minimizing specific loss functions.

Another approach related to our work is [14], where an alternative way of constructing Mapper graphs is proposed using
a fuzzy clustering algorithm. Even though we also adopt a probabilistic approach (that allows, e.g., a point to belong to
disconnected intervals in the cover of the filter range), the underlying probabilistic formalism that we use is new, while
there is none in [14]. In particular, we introduce stochastic assignment schemes and we address the parameter selection
problem within this framework.

Contributions. Our contribution is three-fold:

• We introduce Soft Mapper: a generalization of the combinatorial Mapper graph in the form of a probability
distribution on Mapper graphs,

• We propose a filter optimization framework adapted to a smooth Soft Mapper distribution with provable
convergence guarantees,

• We implement and showcase the efficiency of Mapper filter optimization through Soft Mapper on various data
sets, with public, open-source code in TensorFlow.

The following of the article is organized as follows: in Section 2 we recall the basics on the Mapper algorithm, then in
Section 3 we detail the Soft Mapper construction, which is the main focus of this work. We provide several interesting
special cases of Soft Mapper in Section 4, before introducing topological losses that are specific to Mapper graphs in
Section 5. We then present our optimization setting, in which a parameterized family of Mapper filter functions is
optimized, in Section 6, and we apply it on 3-dimensional shapes and single cell RNA-sequencing data in Section 7.
Finally, we discuss the results of this article and present possible future work directions in Section 8.

2 Background on Reeb and Mapper graphs

Reeb graphs. Mapper graphs can be understood as numerical approximations of Reeb graphs, that we now define. Let
X be a topological space and let f : X → R be a continuous function called filter function. Let ∼f be the equivalence
relation between two elements x and y in X defined by: x ∼f y if and only if x and y are in the same connected
component of f−1(z) for some z in f(X). The Reeb graph Rf (X) of X is then simply defined as the quotient space
X/ ∼f .

Mapper graphs. The Mapper was introduced in [1] as a discrete and computable version of the Reeb graph Rf (X ).
Assume that we are given a point cloud Xn = {X1, . . . , Xn} ⊆ X with known pairwise dissimilarities, as well as a
filter function f computed on each point of Xn. The Mapper graph can then be computed with the following generic
version of the Mapper algorithm:

1. Cover the range of values Yn = f(Xn) with a set of consecutive intervals I1, . . . , Ir that overlap, i.e., one has
Ii ∩ Ii+1 ̸= ∅ for all 1 ≤ i ≤ r − 1.

2. Apply a clustering algorithm to each pre-image f−1(Ij), j ∈ {1, ..., r}. This defines a pullback cover
C = {C1,1, . . . , C1,k1 , . . . , Cr,1, . . . , Cr,kr} of Xn.

3. The Mapper graph is defined as the nerve of C. Each node vj,k of the Mapper graph corresponds to an element
Cj,k of C, and two nodes vj,k and vj′,k′ are connected by an edge if and only if Cj,k ∩ Cj′,k′ ̸= ∅.
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3 Soft Mapper construction

In this section, we introduce our new construction Soft Mapper, which generalizes Mapper graphs and can be used for
non-convex optimization. In order to do so, we first provide a general formalization of the Mapper construction that
does not require overlapping intervals and filter functions. Then, we use this formalization to define Soft Mapper, which
essentially consists in a distribution on regular Mapper graphs.

3.1 Mapper graphs built on latent cover assignments

Let Xn = {x1, ..., xn} be a point cloud lying in a metric space (X, d) and let r ∈ N⋆. For instance, Xn can be obtained
from sampling Xn according to some distribution µ. Then, let Clus be a clustering algorithm on (X, d), that is assumed
to be fixed in the following of this work.

Latent cover assignments. Any binary matrix e ∈ {0, 1}n×r is then called an r-latent cover assignment of Xn,
where ei,j = 1 must be understood as point xi belonging to the j-th element of a latent cover of the data. For instance,
in the standard version of Mapper presented in Section 2, the latent cover is obtained from a family of pre-images of
intervals that cover the range of the filter function.

The procedure to compute a Mapper graph given an r-latent cover assignment e ∈ {0, 1}n×r is straightforward: simply
replace f−1(Ij) by {xi : ei,j = 1} in the generic Mapper algorithm in Section 2, then derive the pullback cover using
the clustering algorithm Clus, and finally compute the Mapper graph as the nerve of the pullback cover.

Mapper function. Let K be the set of simplicial complexes of dimension less or equal to 1 (i.e., graphs) and such
that their sets of vertices (i.e., their 0−skeletons) are subsets of the power set P(Xn). We define the Mapper complex
generating function as:

MapComp : {0, 1}n×r −→ K,

where MapComp takes a latent cover assignment as input and creates the corresponding Mapper graph.

3.2 Cover assignment scheme and Soft Mapper

Now, we define stochastic schemes for generating latent cover assignments, that we call cover assignment schemes.
Definition 3.1. A cover assignment scheme is a double indexed sequence of random variables

A = (Ai,j)1≤i≤n
1≤j≤r

such that each Ai,j is a Bernoulli random variable conditionally to Xn. Let pi,j(Xn) be the parameter of the Bernoulli
distribution of (Ai,j |Xn), which is thus a function of the point cloud Xn.

Note that, in Definition 3.1, the Bernoulli variables Ai,j are not assumed to be independent nor identically distributed.
Moreover, pi,j(Xn) can depend only on its associated point xi, or on the whole point cloud Xn.
Definition 3.2. Let A be a cover assignment scheme. The Soft Mapper of A is defined as the associated distribution of
Mapper complexes, which corresponds to the push forward measure of the distribution of A by the map MapComp.

4 Examples of cover assignment schemes

We now give example strategies to define cover assignment schemes, beginning with the one that corresponds to the
standard Mapper construction defined in Section 2.

4.1 Standard cover assignment scheme

Let f : Xn → R be a filter function and let (Ij)1≤j≤r be a finite cover of the image f(Xn) of f . The standard Mapper
graph is then defined as MapComp(e∗), where for every 1 ≤ i ≤ n and 1 ≤ j ≤ r:

e∗i,j = 1 if f(xi) ∈ Ij .

The cover assignment scheme A∗, in this case, is such that every entry A∗
i,j follows a Dirac distribution on 1 if

f(xi) ∈ Ij , and a Dirac distribution on 0 otherwise. In other words, the parameters of the Bernoulli distributions satisfy
pi,j(Xn) = pi,j(xi) = 1 if f(xi) ∈ Ij , and 0 otherwise, that is

P(A∗ = e|Xn) =

{
1 if e = e∗,

0 otherwise.

3
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In this degenerated situation, the random variables A∗
i,j are all independent conditionally to Xn, and A∗

i,j conditionally
to Xn is equal to A∗

i,j conditionally to xi.
Remark 4.1. An alternative and relevant approach for the standard Mapper graph is to define the intervals Ij via the
quantiles of the distribution of f(Xn). In this case, the random variables A∗

i,j do not only depend on xi, but also on the
whole point cloud Xn.

4.2 Smooth relaxation of the standard cover assignment scheme

Given some δ > 0, we can now define a cover assignment scheme Aδ that approximates the cover assignment scheme
A∗ arising from the standard Mapper graph, but that also enjoys useful smoothness properties in the optimization setting
that we will consider in the next section. Specifically, using the same notations as before, and denoting each element of
the cover with Ij = [aj , bj ], consider, for each j ∈ {1, ..., r}, the function qj : X −→ [0, 1] defined with:

x 7→


1, if f(x) ∈ [aj , bj ]

exp(1− 1/(1− (ai−f(x)
δ )2)), if f(x) ∈ [aj − δ, aj ]

exp(1− 1/(1− ( f(x)−bi
δ )2)), if f(x) ∈ [bj , bj + δ]

0, otherwise

Now, define Aδ = (Aδ,i,j)1≤i≤n
1≤j≤r

to be the random variable in {0, 1}n×r such that for every (i, j) ∈ {1, ..., n} ×

{1, ..., r}:
Aδ,i,j | Xn ∼ B(qj(xi)),

with the Aδ,i,j’s being jointly independent conditionally to Xn. As for the standard cover, the Bernoulli parameter
pi,j = qj(xi) depends on its associated point xi and also on the chosen filter f .

Moreover, notice that for every xi ∈ Xn and j ∈ {1, ..., r}:

qj(xi) −−−→
δ→0

{
1, if f(xi) ∈ Ij
0, otherwise,

and this shows that Aδ
L−−−→

δ→0
A∗. Note that even though we can approximate the standard Mapper graph in this way, we

do not always want to do so. For example, there could be cases where δ needs to be large enough so as to account for
some uncertainty on the bounds of the cover (Ij)1≤j≤r.
Remark 4.2. Note that the same relaxed construction can be made for a multi-dimensional Mapper, i.e., for filter
functions taking values in Rd [15], by making slight adjustments to the definition of qj using the Euclidean norm.

An additional example of a possible cover assignment scheme, which does not imply the existence of a filter function,
is given in Appendix A.

5 Topological risk of Soft Mappers

We now switch to the problem of designing filter functions automatically for Mapper graphs using Soft Mapper. To
answer this ill-posed problem, we propose to look for filter functions that are optimal with respect to some topological
criteria associated to their (Soft)Mapper graphs. In particular, we focus on topological losses based on persistent
homology.

5.1 Topological signature for Mapper graphs

Persistent homology. Persistent homology is a powerful tool that allows to encode the topological information
contained in a nested family of simplicial complexes, also called a filtered simplicial complex, see for instance [16] for
a general introduction. It traces the evolution of the homology groups of the nested complexes across different scales,
producing topological descriptors that are, in particular, useful in machine learning pipelines [17]. In the context of
Mapper graphs, a variation of persistent homology called extended persistent homology has been proved useful, as
applying it on Mapper graphs produces descriptors called extended persistence diagrams. These diagrams only require
to define a filtration function on the graph, and are made of points in the Euclidean plane, each point encoding the
presence and size (w.r.t. the filtration function) of a particular topological structure of the Mapper graph (such as a
connected component, a branch or a loop). See Section 2 of [18] for a brief introduction to extended persistence and
[19] for a detailed presentation.
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We now define a filtration function on Mapper graphs in order to compute extended persistence diagrams. Let F(Xn,R)
be the space of real valued functions defined on the point cloud Xn. For a function F ∈ F(Xn,R), we first associate a
filtration ϕ to some K ∈ im(MapComp) with:

∀σ ∈ K : ϕ(σ) = max
c∈σ

∑
x∈c F (x)

card(c)
,

that is, node filtration values are defined as the average filter values of the data points associated to the node, and
edge filtration values are computed as the maximum of their node values. Then, we compute the extended persistence
diagram (which we consider as a subset of R2 ) of the filtered simplicial complex (K,ϕ). We denote by MapPers the
function that takes a Mapper graph and a scalar function on Xn, and then outputs the persistence diagram:

MapPers : K×F(Xn,R) −→ P(R2).

Persistence specific loss. Now, we introduce a generic notation for a loss function—or, more simply, a statistic—that
associates a real value to any extended persistence diagram. Denoting PD as the set of subsets of R2 consisting of a
finite number of points outside the diagonal ∆ = {(x, x) : x ∈ R}, such a function can be written as ℓ : PD −→ R.

5.2 Statistical risk of the topological signature associated to Soft Mapper

We finally compute the loss associated to a Mapper graph with the function

L : {0, 1}n×r ×F(Xn,R) −→ R
(e, F ) 7−→ ℓ (MapPers (MapComp(e), F )) .

Then, we define the risk of a Soft Mapper MapComp(A) by integrating the loss according to the distribution of the Soft
Mapper, or equivalently according to the distribution of the cover assignment scheme:

E (L(A,F )|Xn) =
∑

e∈{0,1}n×r

L(e, F ) · P(A = e|Xn).

Here, both the distribution of A and the risk are conditional to Xn. Note that the risk could also be integrated with
respect to the distribution of Xn. However, in this article, we only consider the non-integrated version of the risk.

6 Conditional risk optimization with respect to parameters

Now that we have properly defined risks associated to Soft Mapper distributions, we study in this section the convergence
properties of filter optimization schemes minimizing such risks.

6.1 Problem setting

Let us introduce a parameterized family of functions {fθ : Xn → R, θ ∈ Rs}. In order to simplify notations, we
assume in the following of the article that the function F used to compute persistence diagrams and the filter function fθ
used to design cover assignments are the same, F = fθ. Let A be a cover assignment scheme whose joint distribution
Pθ depends on the filter function fθ; that is the Bernoulli parameters pi,j may depend on the filter function values and
the parameters θ. Note that this dependency is not only true for marginals of the distribution of the cover assignment
scheme, but also eventually for its dependency structure.

Our goal is to find the optimal set of parameters θ̄ that minimizes the topological risk associated to MapComp(A),
when fθ is used to define the filtration values on the Mapper graphs. In other words, if we denote:

L : Rs −→ R
θ 7−→ Eθ(L(A, fθ)|Xn), (1)

our aim is to find a minimizer of L. Note that in the definition of L, the expectation depends on θ because the distribution
of A also depends on it.

In order to prove guarantees about minimizing L, we follow [20], which uses the theoretical background introduced
in [21], in which the authors prove that stochastic gradient descent algorithms converge under certain conditions. To
use this framework, it suffices to prove two points (see Corollary 5.9. in [21] and Appendix B):

5



Mapper Optimization

• L is definable in an o-minimal structure,
• L is locally Lipschitz.

Remark 6.1. When the cover assignment scheme is defined as the standard cover assignment scheme corresponding to
the standard Mapper graph (see Section 4.1), this problem amounts to finding an optimal fθ that can be used to compute
Mapper graphs. We will see however that convergence of the optimization problem in this case is without guarantees,
which constitutes the main motivation for defining our smooth relaxation Soft Mapper (see Section 4.2).

6.2 Theoretical guarantees on the convergence of a gradient descent scheme

Under regularity assumptions on the parameterized family of filter functions F = {fθ : Xn −→ R, θ ∈ Rs}, we now
show that the risk L in Equation (1) is definable and smooth.
Theorem 6.2. Suppose that there exists an o-minimal structure S such that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable in S and is locally Lipschitz,

• for every m ∈ N, the restriction of ℓ to the set of (extended) persistence diagrams of size m is definable in S
and is locally Lipschitz,

• for every e ∈ {0, 1}n×r, the function θ 7→ Pθ(A = e|Xn) is definable in S and is locally Lipschitz.

Then L is definable in S and is locally Lipschitz.
Remark 6.3. Our proof of Theorem 6.2 is given in Appendix C in the case where regular persistent homology is used,
but it can be extended in a straightforward way to extended persistence diagrams, as extended persistent homology on a
simplicial complex K can be equivalently seen as regular persistent homology on the cone on K (see chapter VII.3 in
[16]). Moreover, defining the filtration on the coned complex also extends naturally by using affine transformations.

Under the assumptions of Theorem 6.2, it is then possible to give guarantees on the convergence of a stochastic gradient
descent scheme to some critical points of L. This only requires additional, but mild and not very restrictive technical
conditions regarding the stochastic gradient descent algorithm itself (see Appendix D).

6.3 Discussing the assumptions of Theorem 6.2

In this section, we discuss the assumptions of Theorem 6.2, and provide usual cases in which they are satisfied.

Assumption 1. The first assumption concerns the smoothness of the parameterized family of functions {fθ : Xn −→
R, θ ∈ Rs} and its regularity with respect to the set of parameters θ. As mentioned before, following the result of
[22], semi-algebraic functions (for example polynomial, rational, minimum and maximum functions), the exponential
function and functions defined as compositions and usual operations between them are all definable in a same o-minimal
structure. Furthermore, choosing continuously differentiable functions is sufficient to also have the local Lipschitz
property.
As such, the family of linear functions {fθ : x 7→ ⟨x, θ⟩, θ ∈ Rs} satisfies the assumption, as well as the family of
parameterized fully-connected neural networks since they are defined by composition between matrix products (which
are polynomial) and activation functions involving exponential, maximum and hyperbolic functions.

Assumption 2. The second assumption concerns the persistence-based loss ℓ, that is used to compute the topological
risk. In [20], the authors list a number of possible functions for ℓ that satisfy our second assumption. For example, ℓ
can be the total persistence, which quantifies the information given by a persistence diagram, defined as:

{(ui, vi)}1≤i≤n 7−→
n∑

i=1

|ui − vi|.

It can also be computed from persistence landscapes [23] or from the bottleneck distance to a target persistence
diagram [20].

Assumption 3. Finally, the third assumption concerns the cover assignment scheme A. More specifically, it requires
the regularity and smoothness of the success probabilities that give the distribution of A.
Interestingly, this assumption does not hold for the standard cover assignment scheme. For example, consider the
elementary example where Xn ⊂ R and A is the standard cover assignment scheme, which is degenerate at eθ, and
which corresponds to the linear filter function fθ : x 7→ ⟨x, θ⟩ and a cover (Ij) of its image. Fix a non-zero positive point
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x ∈ Xn (a similar argument can be made if it is negative) and a left hand bound aj of one of the intervals. Denoting
θ0 =

aj

x , we have that θ 7→ Pθ(A = eθ0 |Xn) is discontinuous at θ0, since ∀ϵ > 0 : ⟨x, θ0 − ϵ⟩ = x · (θ0 − ϵ) < aj ,
and therefore, Pθ0−ϵ(A = eθ0 |Xn) = 0.

This constitutes the main motivation for introducing our smooth cover assignment scheme because the functions
θ 7→ Pθ(A = e|Xn) are in this case products of the functions qj , which are smooth with respect to the parameters (if
our first assumption holds).

6.4 Computing the conditional risk in practice

Algorithm 1 Soft Mapper Optimization Algorithm
Require: Initial parameter set θ0, Number of Monte Carlo random samples M , Learning rate sequence (αi)i, Random

noise sequence (ξi)i, Number of epochs N .
for 0 ≤ i ≤ N − 1 do

for 1 ≤ m ≤M do
e← sample from Pθi
yi,m ← an element of the sub-differential in θi of Le : θ 7→ L(e, fθ)

end for
yi ← 1

M

∑M
m=1 yi,m

θi+1 ← θi − αi(yi + ξi)
end for
return θN

Computing the conditional risk L(θ), for a fixed θ ∈ Rs, can be costly in practice since it requires computing the loss
L(e, fθ) for every possible cover assignment e ∈ {0, 1}n×r. As such, we estimate L(θ) with Monte Carlo methods.
Note that this is possible here because the distribution Pθ of the cover assignment scheme is indeed explicitly defined and
known at each step of the gradient descent. If M is a non-zero integer and (e(m))1≤m≤M is a sequence of independent
realizations of the cover assignment scheme A, then the Monte Carlo approximation of the conditional risk is:

L̃(θ) =
1

M

M∑
m=1

L(e(m), fθ).

The law of large numbers gives:
L̃(θ) a.s−−−−→

M→∞
L(θ).

Moreover, the coordinates of A follow a Bernoulli conditional distribution, making repeated random sampling straight-
forward, at least when the marginal distributions of Pθ are assumed to be independent.

For a fixed point cloud Xn, a chosen family of parameterized conditional probabilities θ 7→ Pθ(·|Xn) and a family of
parameterized filters θ 7→ fθ, our corresponding optimization algorithm is detailed in Algorithm 1.

7 Numerical Experiments

In this section, we illustrate the efficiency of optimizing filter functions with Soft Mapper. In particular, we show
that Mapper graphs computed from an optimized filter function (computed with gradient descent on Soft Mapper) are
generally much better structured than Mapper graphs obtained from arbitrary filters (as is usually done in the Mapper
applications). We present applications on 3D shape data in Section 7.1 and on single-cell RNA sequencing data in
Section 7.2. Our code is available in the following Github repository [24].

7.1 Mapper optimization on 3D shapes

A first application where we can use the Soft Mapper optimization setting is finding linear filters in order to skeletonize
3-dimensional shapes with Mapper graphs. Here, our dataset Xn consists each time of a point cloud embedded in R3.
The different point clouds we study are displayed (as meshes) in Figure 1. The parametric family of functions is linear,
i.e., equal to {fθ : x 7→ ⟨x, θ⟩, θ ∈ R3}, and the cover assignment scheme Aδ is the smooth relaxation of the standard
case, with δ = 10−2 · (maxx∈Xn fθ(x)−minx∈Xn fθ(x)). The cover of the image space is given by r intervals of the
same length, such that consecutive intervals have a percentage g of their length in common. The clustering algorithm
for the three shapes is KMeans. The values of r (also called resolution), g (also called gain) and the number of clusters
in the KMeans algorithm, for each 3-dimensional shape, are summarized in Table 2 of Appendix E.

7
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Objective. Intuitively, the optimal directions to filter the 3-dimensional shapes (in a topological sense) are:

• for the human: the vertical direction,

• for the octopus: the parallel direction to its tentacles,

• for the table: the perpendicular direction to its upper surface,

as these directions induce Mapper graphs with more topological structures. We will therefore measure the quality of our
results by comparing our optimized directions θ̄ to the ones cited above. To find θ̄, we use the total (regular) persistence
as a persistence specific loss ℓ and we run Algorithm 1 with N = 200 and M = 10, each time taking the diagonal as the
initial direction, i.e. θ0 = ( 1√

3
, 1√

3
, 1√

3
)T . The learning curves for each 3-dimensional shape are displayed in Figure 2,

and the correlations between the optimized directions and those we identified as intuitively optimal are summarized in
Table 1. As one can see from the table, we are able to recover these intuitive directions with gradient descent.

Qualitative assessment. One can see, in Figures 3 and 4, that the regular Mapper graphs built with the initial and
final (optimized) filter functions show clear improvement in the ability of the graphs to act as skeletons of the original
point clouds. As such, we see that optimizing the Soft Mapper corresponding to the smooth relaxation of the standard
cover assignment scheme succeeds in identifying optimal filter functions. The third shape, representing a table, is
particularly interesting. Indeed, the optimal direction that we captured is different from the first and the second principal
components computed by PCA, since the principal plane of the point cloud is given by the surface of the table. Hence,
there is a contrast between the topological criteria that we use, which is the total persistence, and the maximum variance
criteria used by PCA.

Figure 1: Meshes of 3-dimensional point clouds representing from left to right: a human, an octopus and a table.

Figure 2: Learning curves for the 3-dimensional shapes corresponding, from left to right, to: the human, the octopus
and the table.

8



Mapper Optimization

Human Octopus Table
0.9999 -0.9984 0.9993

Table 1: Correlation between the optimized directions and the optimal ones, for each 3-dimensional shape.

Figure 3: Regular Mapper graphs computed with the initial filter function, corresponding, from left to right, to: the
human, the octopus and the table. Vertices are colored using the mean value of the filter function in the corresponding
clusters.

Figure 4: Regular Mapper graphs computed with the optimized filter function, corresponding, from left to right, to: the
human, the octopus and the table. Vertices are colored using the mean value of the filter function in the corresponding
clusters.

7.2 Mapper optimization on RNA-sequencing data

We now apply Mapper optimization on the human preimplantation dataset of [25], which can also be found in the
tutorial of the scTDA Python library. The dataset consists of n = 1, 529 cells form 88 human preimplantation embryos,
sampled at 5 different timepoints. The dataset can be accessed in the following link [26], and it contains the expression
levels for p = 26, 270 genes for each individual cell. The information of the sampling timepoint for each cell is also
given, but we do not include it during optimization. The dataset is first preprocessed using the Seurat package in R
(gene counts for each cell are divided by the total counts for that cell and multiplied by 104, and then they are natural-log
transformed using log(1 + ·)), which produces a normalized dataset Xn ⊆ Rp. The parametric family of filter functions
we wish to optimize is also linear here, i.e. equal to {fθ : x 7→ ⟨x, θ⟩, θ ∈ Rp}, and the cover assignment scheme Aδ

is the smooth relaxation of the standard case with δ = 10−5 · (maxx∈Xn fθ(x)−minx∈Xn fθ(x)). The cover of the
image space is given by 25 intervals of the same length, such that consecutive intervals have a percentage of 30% of
their length in common. The clustering algorithm used is agglomerative clustering and its threshold is fixed using a
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Hausdorff distance heuristic: we first compute the Hausdorff distance between Xn and a randomly sampled subset of
Xn of size n/3 ≈ 500, then we manually tune the threshold using factors of this distance until we get Mapper graphs of
reasonable size.

Objective. To find θ̄, we use the total extended persistence as a persistence specific loss ℓ and we run Algorithm 1
with N = 200 and M = 10, taking the diagonal as the initial direction, i.e. θ0 = ( 1√

p , ...,
1√
p )

T . The learning curve in
displayed in Figure 8 of Appendix E. The regular Mapper graphs computed using the initial and the final filter functions
are displayed in Figure 5, and are colored with respect to the time component (which was not included in the training
dataset).

Figure 5: Regular Mapper graphs for the human preimplantation dataset computed using: in the left the initial filter
function and in the right the optimized filter function. Vertices are colored using the mean value of the sampling
timepoint in the clusters.

Qualitative assessment. One can see that the data representation in the Mapper graph produced by the optimized
filter function fits the time structure better than with the initial function. In order to confirm this, we isolate each subset
of cells having the same sampling timepoint and we plot their respective estimated densities with respect to the initial
and the optimized filter function values, in Figure 6. One can see that the optimized filter that we captured is capable of
sorting the cells with respect to time, especially at the early timepoints. The reduced performance in this aspect for the
later timepoints is, in our guess, due to slowing down of the cell differentiation process. Furthermore, the comparison, in
Table 3 of Appendix E, between Pearson’s correlation coefficients also show that the optimized filter is more correlated
to time.
We also verify that the branches in our optimized Mapper graph correspond to the same two genes, HTR3E for the early
timepoints and CDX1 for the later ones, that were identified by [27], see Figure 7. We also identified a few nodes in the
branch containing the cells which were sampled in the early stages, that do not contain a high expression level for the
HTR3E gene. This could potentially point out another subpopulation of cells with distinct genomic profiles, and that
our optimized Mapper graph has captured. An additional experiment using single cell RNA-sequencing data is given in
Appendix F.

Figure 6: Estimated density of each subset of cells having the same sampling timepoint, with respect to: in the left the
initial filter function values and in the right the optimized filter function values. Colors indicate the sampling timepoint
in days.
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Figure 7: Regular Mapper graph computed using the optimized filter function, colored using the mean normalized
expression of: in the left gene HTR3E and in the right gene CDX1.

8 Discussion and future work

In this article, we have introduced Soft Mapper, a distributional and smoother version of the standard Mapper graph,
with provable convergence guarantees using persistence-based losses and risks. Our case study in this article was
finding an optimal filter function, among a parameterized family of functions, in order to construct regular Mapper
graphs incorporating an optimized and maximal amount of topological information. We then produced examples
of such optimization processes on real 3D shape and single-cell RNA sequencing data, for which we were able to
obtain structured Mapper representations in an unsupervised way. These representations, especially for the single
cell RNA-sequencing data, are not meant to represent novel or state of the art data representations in their respective
research domains, but as a proof of concept of the practical benefit of our method. Moreover, our construction is not
limited to the choice of a linear family of filter functions or to the filter optimization setting as a whole. Possible future
work includes optimizing non-linear filter functions, based on neural networks or kernel methods, and studying Soft
Mappers based on different cover assignment schemes, like the Gaussian cover assignment scheme defined in Appendix
A.
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A Gaussian cover assignment scheme

In this section, it is assumed that Xn is a point cloud in Rp. Additionally, we consider r centers {c1, ..., cr} ⊆ Rp and r
symmetric, semi-definite and positive matrices {Σ1, ...,Σr} ⊆ Rp×p. For each j ∈ {1, ..., r}, consider the function:

qj : Rp −→ [0, 1]

x 7−→ exp
(
−(x− cj)

TΣ−1
j (x− cj)

)
.

Define A = (Ai,j)1≤i≤n
1≤j≤r

to be a random variable in {0, 1}n×r such that for every (i, j) ∈ {1, ..., n} × {1, ..., r} :

Ai,j | Xn ∼ B(qj(xi)),

and as before we take the Ai,j’s to be jointly conditionally independent.

This cover assignment scheme is similar to Gaussian mixture models, in that its realizations can be seen as a "one-hot
encoding" of the latent variables in a mixture model. However, we can see that a realization of A can have more than
one non-zero entry per line as opposed to a mixture model. Furthermore, mean and variance parameters can be inferred
with an EM algorithm, and estimated proportions can be also involved in the definition of the qj’s.

Note that this strategy of defining a cover assignment scheme does not use a filter function or an overlapping cover
entirely.

B Elements of o-minimal geometry

Definition B.1. An o-minimal structure on the field of real numbers R is a collection (Sn)n∈N where each Sn is a set
of subsets of Rn that satisfies:

1. All algebraic subsets of Rn are in Sn;

2. Sn is a Boolean subalgebra of the powerset of Rn (i.e. stable by finite union, finite intersection and comple-
mentary);

3. if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m;

4. if π : Rn+1 → Rn is the linear projection onto the first n coordinates and A ∈ Sn+1 then π(A) ∈ Sn;

5. S1 is exactly the family of finite unions of points and intervals.

The elementary example of an o-minimal structure is the collection of semi-algebraic sets. An element A ∈ Sn for
some n ∈ N is called a definable set. Furthermore, a map f : A → Rm is called a definable map if its graph (i.e.
{(x, f(x)) : x ∈ A}) is in Sn+m.

Definable maps are stable under addition, product and composition. A function that is coordinate-wise definable is also
definable. Moreover, the result of [22] shows that there exists an o-minimal structure that contains the graph of the
exponential function.

An important property of definable maps is that they admit a finite Whitney stratification. This means that if f : A→ Rm

is definable with A ∈ Sn, then A can be decomposed into a finite union of smooth manifolds such that the restriction of
f to each of these manifolds is a smooth function.

For more details on o-minimal geometry, see [28].

C Proof of Theorem 6.2

Lemma C.1. Let S be an o-minimal structure on R. Assume that the two following conditions are satisfied.

• For every x ∈ Xn, the function θ ∈ Rs 7→ fθ(x) is definable in S and is locally Lipschitz.

• For every m ∈ N, the restriction of the persistence specific loss ℓ to the set of persistent diagrams of size m is
definable in S and is locally Lipschitz.

Then for every e ∈ {0, 1}n×r, the function
Le : θ ∈ Rs 7→ L(e, fθ)

is definable in S and is locally Lipschitz.
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Proof. Let e ∈ {0, 1}n×r. Let K = MapComp(e) with vertex set V . Remember that each vertex c ∈ V is actually a
subset of Xn. We now define three maps to decompose the function Le. First, let us introduce the function

VertexFilt : Rs −→ R|V |

θ 7−→
(∑

x∈c fθ(x)

card(c)

)
c∈V

.

For each coordinate of the function VertexFilt, that is for each c ∈ V , the function θ 7−→ [VertexFilt(θ)]c is a linear
combination of the functions θ 7→ fθ(x). We can therefore see that it is definable in S and locally Lipschitz, by our first
assumption.

Then we introduce

SubFilt : R|V | −→ R|K|

Φ 7−→ (max
c∈σ

Φc)σ∈K ,

and finally Persistence : R|K| −→ R|K| that computes persistence for a filtration that acts on a fixed simplicial complex.
The two functions SubFilt and Persistence are taken from [20], where they are both proven to be definable in every
o-minimal structure and Lipschitz.

Notice that:
Le = ℓ ◦ Persistence ◦ SubFilt ◦ VertexFilt.

Since e, and thus K, are fixed, ℓ can be replaced by its restriction to persistence diagrams of size |K|. Hence, following
our second assumption, Le is definable in S and locally Lipschitz.

Recall the assumptions in Theorem 6.2 :

Suppose that there exists an o-minimal structure S and we have that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable in S and is locally Lipschitz.
• for every m ∈ N, the restriction of ℓ to the set of persistent diagrams of size m is definable in S and is locally

Lipschitz.

• for every e ∈ {0, 1}n×r, the function θ 7→ Pθ(A = e|Xn) is definable in S and is locally Lipschitz.

By Lemma C.1 and following the first two assumptions, we know that for every e ∈ {0, 1}n×r, the function Le : θ 7→
L(e, fθ) is definable in S and is locally Lipschitz. Now, for every θ ∈ Rs:

L(θ) =
∑

e∈{0,1}e×r

L(e, fθ) · Pθ(A = e|Xn).

As such, L is a sum of products between functions that are definable in S and locally Lipschitz. We conclude that L is
itself definable in S and locally Lipschitz.

Note that the local Lipschitz property is stable by product (as opposed to the global Lipschitz property). This is due to
the fact that the product of two Lipschitz and bounded functions is Lipschitz, and the fact that we can always limit the
neighborhoods of points in Rs to bounded ones.

D Technical conditions for Stochastic Gradient Descent

We are in the setting where we use stochastic gradient descent to minimize a function L. If we write the iterates of the
algorithm as:

xk+1 = xk − αk(yk + ξk),

where

yk ∈ Conv
{

lim
z→xk

∇L(z) : L is differentiable at z
}
,

consider the following three conditions:

1. for any k, αk ≥ 0,
∑∞

k=1 αk = +∞ and
∑∞

k=1 α
2
k < +∞;

2. supk ∥xk∥ < +∞, almost surely;
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3. Conditionally on the past, ξk must have zero mean and have a second moment that is bounded by a function
p : Rs −→ R which is bounded on bounded sets.

Note that the last condition is satisfied by taking a sequence of independent and centered variables with bounded
variance, which are also independent of the past iterates (xk)k and (yk)k.

According to [21], under these three conditions together with the condition that L is definable in an o-minimal structure
and locally Lipschitz, then (L(xk))k converges almost surely to a critical values and the limit points of (xk)k are critical
points of L.

E Additional Figures and Tables for the experiments

Parameter Human Octopus Table
Resolution 25 10 10

Gain 0.3 0.3 0.35
Number of clusters 3 8 8

Table 2: Resolution, gain and number of clusters parameters that are used to compute the Mapper for each 3-dimensional
shape.

Figure 8: Learning curve for the human preimplantation dataset.

Filter Correlation with time P-value
Initial 0.1330 1.7596e-07

Optimized -0.7549 4.0503e-282
Table 3: Pearson’s correlation between the initial filter and time, and the optimized filter and time for the human
preimplantation dataset. The associated p-values, obtained from testing the null hypothesis that the true correlation
coefficient is zero, are also presented.

F Mouse embryonic fibroblasts reprogramming dataset

We consider the mouse embryonic fibroblasts (MEF) reprogramming dataset of [29]. It consists of p = 19, 089 gene
expressions for 251, 203 MEF cells, densely sampled across 18 days, with 39 individual timepoints. The experiment
involves adding Doxorubicine (Dox) to the cells on day 0, withdrawing it at day 8, and then transferring them to either a
serum-free N2B27 2i medium or maintaining them in serum.

Objective. We would, therefore, want to produce a representation, using our Soft Mapper optimization, that accounts
for the time component (like in Section 7.2) and for the divergence in the treatment that the cells received at day 8. In
order to achieve this, we first take a uniformly sampled subsample of the dataset of size n = 1, 500 and we use the same
preprocessing procedure as with the human preimplantation dataset. Similarly, we consider the same settings (linear
family of filter functions, smooth cover assignment scheme, agglomerative clustering, diagonal initial parameter set and
extended total persistence), and we run Algorithm 1 with N = 300 and M = 10. The learning curve is displayed in
Figure 9.
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Figure 9: Learning curve for the MEF reprogramming dataset.

Qualitative assessment. By looking at the standard Mapper graphs corresponding to the initial and the optimized
filter functions in Figure 10, one can see that the optimized Mapper graph represents the time component better and that
it shows two major branches, which point to the two phases that appear in day 8 of the experiment. These observations
are confirmed by the improvement in the Pearson’s correlation coefficients with respect to time between the initial and
the optimized filter function values in Table 4. We also color the optimized Mapper graph in Figure 11 using the three
phases in the experiment (Dox, 2i and Serum), each mapped to a different color channel.

Figure 10: Classical Mapper graphs for the MEF reprogramming dataset computed using: in the left the initial filter
function and in the right the optimized filter function. Vertices are colored using the mean value of the sampling
timepoint in the corresponding clusters.

Filter Correlation with time P-value
Initial -0.0560 2.9882e-02

Optimized -0.4015 3.2090e-59
Table 4: Pearson’s correlation between the initial filter and time, and the optimized filter and time. The associated
p-values, obtained from testing the null hypothesis that the true correlation coefficient is zero, are also presented.
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Figure 11: Standard Mapper graph computed using the optimized filter function, colored by mapping each phase to a
color channel: Dox in green, Serum in blue and 2i in red.
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