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Abstract

Dirichlet Process Mixture Models (DPMMs) are
widely used to address clustering problems. Their
main advantage lies in their ability to auto-
matically estimate the number of clusters dur-
ing the inference process through the Bayesian
non-parametric framework. However, the infer-
ence becomes considerably slow as the dataset
size increases. This paper proposes a new dis-
tributed Markov Chain Monte Carlo (MCMC)
inference method for DPMMs (DisCGS) using
sufficient statistics. Our approach uses the col-
lapsed Gibbs sampler and is specifically designed
to work on distributed data across independent
and heterogeneous machines, which habilitates
its use in horizontal federated learning. Our
method achieves highly promising results and no-
table scalability. For instance, with a dataset of
100K data points, the centralized algorithm re-
quires approximately 12 hours to complete 100
iterations while our approach achieves the same
number of iterations in just 3 minutes, reducing
the execution time by a factor of 200 without
compromising clustering performance. The code
source is publicly available at https://github.
com/redakhoufache/DisCGS.

Keywords: Federated learning, Distributed comput-
ing, Dirichlet process mixture models, Markov Chain
Monte Carlo, Bayesian non-parametric

1 Introduction

Clustering is an unsupervised learning method that
aims to partition data into clusters such that elements

of the same cluster are similar while those of different
clusters are dissimilar. It plays a crucial role in var-
ious domains, such as data analysis, pattern recogni-
tion, and data mining. To address clustering problems,
mixture models have emerged as popular generative
probabilistic models. They assume the existence of
a mixture of distributions over the observation space,
where each cluster is associated with a latent compo-
nent distribution. The flexibility of mixture models
allows researchers and practitioners to analyze and in-
terpret data effectively.

Dirichlet Process Mixture Models (DPMMs) rep-
resent an extension of mixture models into Bayesian
non-parametric models. DPMMs assume a mixture
model with an infinite number of latent components
and make a prior distribution over the model param-
eters. In literature, two common processes are used
to represent the Dirichlet Process (DP). The first is
the Chinese Restaurant Process (CRP) [1], which in-
duces a distribution over the space of partitions. The
second representation is known as the Stick-Breaking
(SB) process [25], which provides a construction of
the Dirichlet Process distribution. In [21], the authors
proved that each of these representations could be de-
rived from the other.

The Gibbs Sampling algorithm [24] is a fa-
mous MCMC method that performs the inference of
DPMM’s parameters. This algorithm iteratively up-
dates the membership vector and the parameters as-
sociated with each cluster. When the prior conjugacy
assumption holds, it becomes possible to integrate out
the parameters. Consequently, the inference process

https://github.com/redakhoufache/DisCGS
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only requires sampling the memberships, leading to a
variant known as collapsed Gibbs sampling.

While the DPMM has the advantage of automati-
cally estimating the number of clusters and discover-
ing new structures, its inference process becomes pro-
hibitively slow and non-scalable when the number of
observations is large. This poses a significant incon-
venience for handling massive datasets and limits the
applicability of the DPMM in real-world scenarios.

Distributed computing consists in distributing data
across multiple workers; the workers could be compo-
nents in the edge network, cores in a cluster, comput-
ers in a network, processors in a computer, etc. This
distribution enables them to execute parallel compu-
tations independently. It presents an opportunity to
accelerate computations and circumvent memory lim-
itations, making it particularly suitable for handling
large datasets.

Federated Learning (FL), a pioneering concept in-
troduced by [14], revolutionized large-scale distributed
learning by harnessing the machine intelligence resid-
ing in local devices. Federated learning is used to train
machine learning models directly on edge devices or
computing nodes. In the following, we will refer to a
component of the edge network or a network node as a
”worker”. One of the defining characteristics of FL is
that the data distributions may possess very different
properties across the workers. Hence, any potential
FL clustering method is explicitly required to be able
to work under the heterogeneous data setting. There-
fore, the availability of DPMM models tailored to these
distributions becomes an indispensable requirement in
our case. However, due to its highly decentralized na-
ture, FL poses numerous statistical and computational
challenges. In addition, the complexity of the cluster-
ing problem increases significantly when applied in a
federated context. Furthermore, in many real-world
applications, data is actually stored at the edge, span-
ning nodes, phones, and computers.

In this paper, we address a specific DPMM prob-
lem that arises in federated learning, contributing to
the advancement of this exciting field. We propose
a new distributed MCMC-based approach for DPMM
inference (DisCGS) using sufficient statistics. It is im-
portant to emphasize that our approach focuses on a
specific inference algorithm for the DPMM, the Col-
lapsed Gibbs Sampler proposed in [24]. The scalability
of this algorithm has not been addressed yet.

We highlight our key contributions as follows: (1)
In the federated context, we have developed a new
formulation of distributed MCMC inference of the
DPMM using the Master/Worker architecture. The
data is evenly distributed among the workers, ensuring
a balanced workload. The workers operate indepen-
dently and do not share information with each other.

Instead, they communicate solely with the master, ex-
changing minimal information. (2) Each worker exe-
cutes a local collapsed Gibbs sampler, which enables
the discovery of local clusters and the inference of a
local DPMM. Then, the sufficient statistics associated
with each local cluster are sent to the master. (3)
At the master level, a global collapsed Gibbs sampler
is performed using only sufficient statistics. This al-
lows the synchronization and estimation of the global
DPMM and global clustering structure without ac-
cessing the content of each cluster. Theoretical back-
ground and computational details are provided. The
general workflow of our model is illustrated in Figure
1. (4) We conduct several experiments to validate our
method’s merits and scalability with the number of
nodes on large datasets. For a dataset of 100K data
points, the centralized collapsed Gibbs sampler takes
12 hours to perform 100 iterations, whereas our ap-
proach does in just 3 minutes. (5) Distributing the
collapsed Gibbs sampler for DPMMs is a crucial in-
termediate step towards the distribution of Bayesian
non-parametric coclustering [18] and Multiple coclus-
tering [10].

Figure 1: DisCGS workflow. Workers have only ac-
cess to their own local data. Each worker infers a
local DPMM and discovers local tables (clusters). Suf-
ficient statistics are sent from each worker to the mas-
ter, which infers the global DPMM and estimates the
global partition. The global model is shared to each
worker.

2 Related Work

Clustering problems in federated learning have drawn
attention in recent studies. For instance, [15] intro-
duced an approach for federated K-Means clustering,
[27] proposed a Federated Fuzzy c-Means algorithm.
In [13], the authors presented a federated clustering
method using probabilistic models.

Several parallelized and distributed approaches
have been proposed to address the slow inference of



DPMMs. [17] introduced a reparameterization of the
Dirichlet Process that facilitates the learning of clus-
ters representing the data and super-clusters defin-
ing the granularity of parallelization. [31] incorporated
auxiliary variables into the Dirichlet Process and Hi-
erarchical Dirichlet Process to establish a conditional
independence structure, enabling a parallel Gibbs sam-
pler without the need for approximations. However, [7]
demonstrated that these approaches are impractical
due to extremely unbalanced data distributions. An-
other parallelized MCMC sampler was proposed by [3],
which combines a non-ergodic, restricted Gibbs sam-
pler in the workers with split/merge proposals [12] at
the master level to ensure ergodicity. However, this
method is implemented only for a single machine. This
approach is extended in [5] to a distributed version
across multiple machines using a distributed-memory
model.

In [8], the authors proposed a distributed inference
algorithm for DPMMs based on a slice sampler de-
veloped by [29]. They addressed the scalability by
developing a distributed architecture that estimates
the Dirichlet Process and Hierarchical Dirichlet Pro-
cess mixture models. [30] presented a scalable estima-
tion method for DPMMs in a distributed architecture.
Their approach allows the creation of new components
locally in individual computing nodes and proposes
a probabilistic consolidation scheme for merging the
created components. In the [19], the authors intro-
duced another distributed Markov Chain Monte Carlo
(MCMC) inference method based on the Gibbs sam-
pler. Their approach performs a local Gibbs sampler
to infer new local clusters and a new Gibbs sampler on
the means of each cluster to synchronize the cluster-
ing. However, this method assumes a Dirichlet Pro-
cess Gaussian mixture model with known variances.
This assumption emphasizes known variances within
and between clusters due to the prior, which limits
the method’s applicability.

The concept of using sufficient statistics is well-
known and has been widely used to distribute the
DPMM inference in many works, including [5,8,20,30].
However, it has not been applied to distribute the
Collapsed Gibbs Sampler, which constitutes the main
focus of this paper. Moreover, none of the existing
methods is exploitable to enhance the scalability and
the distribution of Bayesian non-parametric cocluster-
ing [18] and Multiple coclustering [10]. Moreover, to
the best of our knowledge, no prior work has been pro-
posed on federated clustering using Dirichlet Process
models.

3 Background

Model definition

Let n and d be two positive integers, x =
(x1, · · · , xn)T ∈ Rn×d the observed data, where (·)T
denotes the transpose operator. Let z = (z1, · · · , zn)
be the membership vector, where zi is a latent vari-
able such that zi = k means that the observation xi
belongs to the cluster k. The DPMM assumes that the
observed data are generated according to the following
model:

xi | {zi = k, θk}
i.i.d.∼ f (xi, θk) , ∀i ∈ {1, · · · , n}

θk
i.i.d.∼ G0, ∀k ∈ {1, 2, · · · }

zi
i.i.d.∼ Mult (π) , ∀i ∈ {1, · · · , n}

π ∼ SB(α).

Under this model assumption, an observation xi is
generated by first drawing zi from the Multinomial
distribution parameterized by the vector of weights
π = (πk)∞k=1 (also called the mixture proportions),
and then xi is sampled from f(xi, θzi), where f(·, θk)
is the parameterized component distribution associ-
ated to the cluster k. The components parameters θk
follow a prior distribution G0 (also called the base dis-
tribution); in the multivariate Gaussian case, we have
θk = (µk,Σk). We let Θ = {θk, k > 1} be the set of
components parameters. The mixture proportions fol-
low the Stick-Breaking process [25] parameterized by
a concentration parameter α > 0. We recall that the
Stick-Breaking process is defined as follows:

πk = vk

k−1∏
k′=1

(1− vk′) , vk
i.i.d.∼ Beta (1, α) .

We have πk > 0 for every k > 1 and
∑∞
k=1 πk = 1. It is

proved by [25] that the distribution G =
∑∞
k=1 πkδθk

(where θk are sampled i.i.d according to G0 and δ is the
indicator function) follows the Dirichlet Process with
a concentration parameter α and a base distribution
G0, noted DP (α,G0). In the following, we denote
Ω = (α,G0) the hyper-parameter set.

Inference.

The Gibbs Sampling algorithm [24] is a popular algo-
rithm used for the DPMM inference based on Monte-
Carlo sampling. It alternates between updating the
membership vector and updating the parameters as-
sociated with each cluster. In the membership up-
date step, the Gibbs sampling simulates the posterior
distribution p(z | x,Θ,Ω) by sampling each zi from
the conditional distribution p(zi | x, z−i,Θ,Ω), where
z−i = {zl, l 6= i} is the set of the remaining member-
ships. In the parameter update step, the component



parameter of each cluster k is updated by sampling ac-
cording to the posterior distribution p(θk|xk, G0), with
xk = {xi, zi = k} the set of observations that belong
to cluster k. The computing of such distributions is
analytically tractable when G0 is the conjugate prior
to the density f .

The collapsed Gibbs sampler, which corresponds to
the third algorithm proposed in [24] skips the param-
eter sampling step because under the conjugacy as-
sumption, it is possible to integrate out the param-
eters θk which allows to directly compute the pre-
dictive (prior and posterior) without the parameter’s
values. Each membership zi is sampled according to
p(zi | z−i,x,Ω) ∝:{

nkp(xi | zi = k,xk, G0), existing cluster k,(1)

αp(xi | Ω), new cluster, (2)

where nk is the cardinal of cluster k. The posterior
predictive p(xi | zi = k,xk, G0) and prior predictive
p(xi | Ω) can be obtained by integrating over θ.

In the multivariate Gaussian case with unknown
mean and variance, we choose the Normal Inverse
Wishart [9] (NIW) to be the conjugate prior G0, with
hyper-parameters λ0 = (µ0, κ0,Ψ0, ν0), where µ0 ∈ Rd
is the prior mean, κ0 ∈ R is the number of prior mea-
surements, ν0 is the degrees of freedom and Ψ0 ∈ Rd×d
is the precision matrix. In this case, the probabilities
in equations 1 and 2 can be computed analytically [22].

To summarize, the collapsed Gibbs sampler is an
efficient MCMC method because it avoids component
parameter sampling. This technique, known as Rao-
Blackwellization, is due to the Rao-Blackwell theorem
[2]. This theorem ensures that the estimator’s variance
obtained by integrating out θ is always lower than or
equal to the one of a direct estimator. This theorem
remains true in collapsed Gibbs sampling [16].

4 The proposed method

The collapsed version of the Gibbs sampling inference
inspires our approach. The main objective of DisCGS
is to make the inference scalable while keeping the
MCMC’s precision and the DPMM’s flexibility. Our
approach consists in distributing the data evenly over
the workers and alternating at each iteration between
two steps: Worker level and Master level. Below, we
provide a theoretical detailed of the collapsed Gibbs
samplers executed at each level. The workflow of our
approach is described in figure 1

4.1 DisCGS at worker level

We denote by xj = {xj1, · · · , x
j
nj} the set of observa-

tions assigned to the j-th worker, nj the cardinal of
xj , and zj = {zj1, · · · z

j
nj} the local membership vec-

tor such that zji = k means that the observation xji

(assigned to the worker j) belongs to the local cluster
k.

In this level, the local memberships are updated one
by one using the collapsed version of Gibbs sampling
detailed in section 3. Each zji is updated by sampling

from p(zji | z
j
−i,x

j ,Ω) ∝{
njkp(xji | z

j
i = k,xjk, G0), existing cluster k,(3)

αp(xji | Ω), new cluster, (4)

where njk is the size of cluster k in worker j and xjk
is the contents of cluster k in worker j. The posterior
and prior predictive distributions are computed ana-
lytically using the same global prior G0, as detailed
in [22]. After updating the local membership vector,
we compute the sufficient statistics [26] associated with
each cluster. In the multivariate Gaussian case, the
sufficient statistics (T jk , S

j
k) for a cluster xjk are given

by [9]:

T jk =
1

njk

∑
x∈xj

k

x ∈ Rd, (5)

Sjk =
∑
x∈xj

k

(x− T jk )(x− T jk )T ∈ Rd×d. (6)

Finally, sufficient statistics and the sizes of each
cluster are sent to the master. The DisCGS inference
process at the worker level is described in Algorithm
1.

Algorithm 1 DisCGS inference at worker level

1: Input: Dataset xj , concentration parameter α
and prior G0.

2: For i← 1 to nj do:
3: Remove xji from its local cluster.

4: Compute p(zji | zj−i,x
j ,Ω) as defined by eq.

3 and 4.
5: Sample zji .

6: Add xji to its new cluster.
7: For k ← 1 to K do:
8: Compute the sufficient statistics (T jk , S

j
k) us-

ing eq. 5 and 6.
9: Output: Sufficient statistics
{(T j1 , S

j
1) · · · , (T jK , S

j
K)} and cluster sizes

(nj1, · · · , n
j
K).

4.2 DisCGS at master level

The master receives from each worker the sample size
of each cluster and its associated sufficient statis-
tics. The objective is to estimate the membership
vector z = (z1, · · · , zn) and update the prior hyper-
parameters of each cluster.



In this level, the observations are assigned by batch;
a batch corresponds to a set of observations that be-
long to the same cluster. In fact, instead of assigning
the observations one by one to their clusters, we as-
sign a group of observations that already share the
same local cluster (i.e., at the worker level) to a global
cluster at the master level. Hence, the observations
assigned to the same global cluster will share the same
label. We sample the global membership zjh of the

cluster xjh (the local cluster h of worker j) according

to p(zjh | z
−j
−h,x,Ω) ∝{

nkp(xjh | z
j
h = k,xk, G0), existing cluster k,(7)

αp(xjh | G0), new cluster, (8)

In practice, the joint posterior predictive and the
joint prior predictive distributions (equations 7 en 8
respectively) are computed analytically by only using
sufficient statistics, i.e. without having access to the
content of cluster xjh. In fact, we have:

p
(
xjh | Ω

)
= π−n

j
h

d
2 · κ

d/2
0(

κjh

)d/2 · Γd

(
νjh/2

)
Γd (ν0/2)

· |Ψ0|ν0/2∣∣∣Ψj
h

∣∣∣νj
h/2

where | · | is the determinant, and the hyper-parameter
values (µjh, κ

j
h,Ψ

j
h, ν

j
h) are obtained as follows:

µjh =
κ0µ0 + njhT

j
h

κjh
, κjh = κ0 + njh, νjh = ν0 + njh,

Ψj
h = Ψ0 + Sjh +

κ0n
j
h

κjh

(
µ0 − T jh

)(
µ0 − T jh

)T
,

where T jh and Sjh are the sufficient statistics obtained

from the workers. Moreover, we have p(xjh | z
j
h =

k,xk, G0) =

π
−dn

j
h

2 ·
κ
d/2
k(

κjh

)d/2 · Γd

(
νjh/2

)
Γd (νk/2)

· |Ψk|νk/2∣∣∣Ψj
h

∣∣∣νj
h/2

and the posterior distribution parameters
(µk, κk,Ψk, νk) associated to the global cluster
k, updated from the prior:

µk =
κ0µ0 + nkTk

κk
, κk = κ0 + nk, νk = ν0 + nk,

Ψk = Ψ0 + Sk +
κ0nk
κk

(µ0 − Tk) (µ0 − Tk)
T
.

With Tk and Sk, the aggregated sufficient statistics
obtained when local clusters are assigned to the same

global cluster k are computed as follows:

Tk =
1

nk

∑
j,h| zj

h=k

njh · T
j
h ,

Sk =
∑

j,h| zj
h=k

Sjh +
∑

j,h| zj
h=k

(
nhj · T

j
h · T

j
h

T
)
− nk · Tk · TTk .

The inference process at the master level is described
in Algorithm 2.

Algorithm 2 DisCGS inference at master level

1: Input: Sufficient statistics, cluster sizes, α and
prior G0.

2: For each (j, h) do:
3: Remove xjh from its global cluster.

4: Compute p(zjh | z−h−i ,x
j
h,Ω) ∝ as defined by

eq. 7 and 8.
5: Sample zjh.

6: Add xjh to its new global cluster.
7: Update the membership vector z.
8: Output: Membership vector z.

4.3 Collapsed Gibbs sampler in federated
learning

In federated learning, the observations are distributed
on different workers ”components”. This corresponds
to the horizontal decomposition of the dataset. In this
context, each worker is initialized with the same global
model, which is identical to the model present on the
server. Then, each worker updates its model using its
private data through the collapsed Gibbs sampler de-
tailed in section 4.1; this step allows the estimation
of the local clusters and the local model. Then, the
sufficient statistics and cluster sizes associated with
each local cluster are computed and transmitted to
the master ”server”. The master proceeds to update
the global model and to estimate the global cluster-
ing structure without having access to the data. This
process is achieved using the collapsed Gibbs sampler
detailed in section 4.2. These updates are then shared
with each worker, which allows them to update the lo-
cal model with the global model. This iterative process
continues alternating between the worker and master
steps until the global model is fully estimated.

5 Experiments

To evaluate the effectiveness of our approach, we con-
duct three types of experiments on synthetic and real-
world datasets. Firstly, we compare our distributed
algorithm with other state-of-the-art clustering algo-
rithms in terms of clustering performance and con-
vergence rate. Secondly, we compare the execution



time and clustering performance of our distributed al-
gorithm DisCGS and the centralized CGS (Collapsed
Gibbs Sampler from [24]) on synthetic datasets of dif-
ferent sizes. Lastly, we investigate the scalability of
DisCGS by increasing the number of nodes while keep-
ing the number of observations fixed. For this pur-
pose, we execute our distributed algorithm on 106 data
points multiple times, varying the number of cores.

5.1 Implementation settings and distributed
environment

In the following experiments, we use an uninforma-
tive prior NIW for both CGS and DisCGS algorithms.
Therefore, both methods are implemented by setting
the NIW hyper-parameters as follows: µ0 and the ma-
trix precision Ψ0 are respectively set to be empirical
mean vector and covariance matrix of all data, as we
want them as uninformative as possible. κ0 and ν0 rep-
resents our confidence in µ0 and Ψ0, are set to their
lowest values, which are 1 and d+1, respectively, where
d is the dimension of the observation space. The ini-
tial state is a one-cluster partition. Finally, we have
executed the distributed algorithms using the Neowise
machine (1 CPU AMD EPYC 7642, 48 cores/CPU)
hosted by the cluster grid5000 1. The centralized al-
gorithm is executed on the same machine using one
core.

5.2 Clustering performance

To evaluate the clustering performance of our algo-
rithm, we compare our approach with two distributed
algorithms for the DPMM inference: M-R2 [8] and
SubC3 [5], and two parallelized clustering algorithms:
Kmeans and GMM (for both methods, we have used
the Spark Mllib implementation). These two paramet-
ric methods require the number of clusters. To ensure
a fair comparison of the clustering quality with our ap-
proach, we set the number of clusters in these methods
equal to the one inferred by DisCGS. It is important to
mention that SubC and M-R are the only approaches
of distributed inference for DPMM for which open-
source working code is available.

All the executions are performed on the Neowise
machine by distributing the data evenly on 32 cores. In
this experiment, we use 8 different datasets described
in table 1. Due to the smaller size of the EngyTime
dataset, we distributed the data only on two workers.
The image datasets are encoded using a variational

1https://www.grid5000.fr/w/Grid5000:Home
2The code source is taken from: https://github.com/

wangruohui/distributed-dpmm
3The code source is taken from: https://github.com/

BGU-CS-VIL/DPMMSubClusters.jl/tree/master

Figure 2: Unlabeled (left) and labeled data (right),
after 100 iterations of DisCGS on a synthetic dataset
with overlapped clusters, ARI = 0.85, NMI = 0.89,
and ACC = 0.91. The number of estimated clusters is
7.

auto-encoder, and each image is encoded into an 8-
dimensional vector.

To evaluate the clustering performance, we com-
pute the three clustering metrics: Adjusted Rand In-
dex (ARI) [11], Normalized Mutual Information (NMI)
[28], and clustering accuracy (ACC) [33].

Table 2 reports the mean and the standard devi-
ation of the clustering metrics, ARI, NMI, and ACC,
achieved by each method on each dataset over 10 trials.
The results show that our proposed method (DisCGS)
outperforms other methods or achieved the second-
best score in almost all the datasets for the three clus-
tering metrics. It is important to note that in this ex-
periment, we only focus on comparing the clustering
performance of the different methods; we do not com-
pare the execution times of the three methods because
the other approaches proposed an inference algorithm
that differs from the collapsed Gibbs sampler.

Figure 2 illustrates the estimated clusters obtained
by our distributed approach on the synthetic 10K
dataset. This figure represents the best partition
achieved over the ten trials. The purpose of using
this dataset is to evaluate DisCGS’s performance when
confronted with complex datasets that exhibit over-
lapping clusters. The results demonstrate that our
method performs remarkably well even when dealing
with such datasets. DisCGS achieved an ARI, NMI,
and ACC score of 0.85, 0.89, and 0.91, respectively. It
estimated seven clusters, while the number of clusters
is six.

5.3 Convergence

In this experiment, we examine the convergence of
both likelihood and ARI score of three methods: Dis-
CGS, CGS (Collapsed Gibbs Sampler), and SubC.
These evaluations are performed on three datasets:
Synthetic 100K, Fashion-mnist, and Balanced. It’s
important to note that only CGS and SubC share the
same model assumption as DisCGS, resulting in a com-
parable likelihood.

https://www.grid5000.fr/w/Grid5000:Home
https://github.com/wangruohui/distributed-dpmm
https://github.com/wangruohui/distributed-dpmm
https://github.com/BGU-CS-VIL/DPMMSubClusters.jl/tree/master
https://github.com/BGU-CS-VIL/DPMMSubClusters.jl/tree/master


Dataset n d K Description

EngyTime 4096 2 2 Synthetic dataset generated from two Gaussian mixtures.
Synthetic 10K 10000 2 6 Synthetic dataset generated from Gaussian components of dimension 2.
Mnist 70000 8 10 Handwritten digits, Lecun et al.
Fashion mnist 70000 8 10 Zalando’s article images [32].
Letter 103600 8 26 Handwritten letters [4].
Balanced 131600 8 47 Both of handwritten digits and letters [4].
Digits 280000 8 10 Handwritten digits [4].
UrbanGB 360177 3 469 Coordinates (longitude and latitude) of road accidents [6].

Table 1: The description of the datasets used to evaluate the clustering performance of our distributed inference
approach. n denotes the size, d the dimension, K the true number of clusters.

Dataset DisCGS M-R SubC GMM Kmeans

EngyTime
ARI 0.94∓ 0.07 0.47∓ 0.04 0.87∓ 0.00 0.73∓ 0.13 0.54∓ 0.20
NMI 0.92∓ 0.07 0.42∓ 0.02 0.79∓ 0.00 0.67∓ 0.09 0.56∓ 0.11
ACC 0.96∓ 0.04 0.75∓ 0.04 0.97∓ 0.00 0.85∓ 0.11 0.68∓ 0.20

Synthetic 10K
ARI 0.80∓ 0.06 0.10∓ 0.01 0.38∓ 0.07 0.80∓ 0.07 0.75∓ 0.03
NMI 0.86∓ 0.04 0.12∓ 0.01 0.61∓ 0.08 0.88∓ 0.04 0.85∓ 0.01
ACC 0.88∓ 0.06 0.29∓ 0.01 0.38∓ 0.08 0.85∓ 0.08 0.76∓ 0.05

Mnist
ARI 0.72∓ 0.01 0.20∓ 0.07 0.66∓ 0.04 0.39∓ 0.02 0.26∓ 0.01
NMI 0.74∓ 0.00 0.38∓ 0.08 0.79∓ 0.01 0.69∓ 0.01 0.62∓ 0.00
ACC 0.79∓ 0.01 0.30∓ 0.06 0.71∓ 0.03 0.38∓ 0.02 0.23∓ 0.01

Fashion-Mnist
ARI 0.45∓ 0.02 0.35∓ 0.02 0.40∓ 0.02 0.41∓ 0.02 0.37∓ 0.02
NMI 0.60∓ 0.01 0.54∓ 0.01 0.60∓ 0.01 0.59∓ 0.02 0.57∓ 0.01
ACC 0.55∓ 0.02 0.45∓ 0.03 0.48∓ 0.01 0.52∓ 0.04 0.48∓ 0.01

Letter
ARI 0.30∓ 0.01 0.07∓ 0.03 0.23∓ 0.05 0.30∓ 0.01 0.20∓ 0.00
NMI 0.56∓ 0.01 0.23∓ 0.05 0.47∓ 0.06 0.61∓ 0.00 0.52∓ 0.00
ACC 0.41∓ 0.01 0.14∓ 0.04 0.31∓ 0.06 0.33∓ 0.01 0.24∓ 0.01

Balanced
ARI 0.35∓ 0.00 0.02∓ 0.01 0.05∓ 0.02 0.35∓ 0.01 0.22∓ 0.00
NMI 0.59∓ 0.00 0.17∓ 0.06 0.31∓ 0.04 0.63∓ 0.00 0.54∓ 0.00
ACC 0.46∓ 0.01 0.07∓ 0.02 0.10∓ 0.02 0.44∓ 0.02 0.30∓ 0.01

Digits
ARI 0.55∓ 0.01 0.28∓ 0.14 0.74∓ 0.05 0.46∓ 0.02 0.36∓ 0.01
NMI 0.71∓ 0.01 0.51∓ 0.14 0.79∓ 0.02 0.71∓ 0.01 0.63∓ 0.00
ACC 0.58∓ 0.00 0.38∓ 0.09 0.81∓ 0.05 0.44∓ 0.03 0.34∓ 0.01

UrbanGB
ARI 0.63∓ 0.01 0.12∓ 0.05 0.09∓ 0.00 0.67∓ 0.05 0.49∓ 0.06
NMI 0.68∓ 0.01 0.21∓ 0.07 0.24∓ 0.00 0.77∓ 0.01 0.81∓ 0.01
ACC 0.45∓ 0.01 0.29∓ 0.02 0.29∓ 0.00 0.53∓ 0.02 0.54∓ 0.02

Table 2: The mean and the standard deviation of the
three clustering metrics, ARI, NMI, and ACC, over 10
runs on different datasets. The best result within each
row is marked as bold, and the runner-up is under-
lined.

Figure 3 illustrates the evolution of the log-
likelihood and ARI score at each iteration. We observe
that our algorithm converges almost at a similar rate
as the centralized CGS algorithm and is much faster
than SubC, which takes more iterations to converge.
This is because our algorithm is able to discover new
local clusters inside each worker. Whereas, in SubC,
the number of clusters is fixed when performing the
restricted Gibbs sampler in each worker, and new com-
ponents are only discovered at the master level during
the split step. Thus, more iterations are required to
generate enough components to model the data. This
phenomenon is also observed in [30]. Overall, our algo-
rithm converges really fast and maintains a stable ARI
score over the iterations. Whereas the CGS and SubC
may downgrade their ARI score after some iterations,
as can be observed for the Fashion-Mnist dataset.

Figure 3: Log-likelihood and ARI score every iteration

5.4 Comparison of the distributed and cen-
tralized collapsed Gibbs sampler

In this experience, we compare the execution time and
clustering performance of the distributed collapsed
Gibbs sampler (DisCGS) and the centralized collapsed
Gibbs sampler (CGS) from [24], we execute both al-
gorithms on synthetic datasets of different sizes (from
n = 20K to n = 100K) generated from K = 10 Gaus-
sian components of dimension 2. The centralized ver-
sion is too slow; running over 100K observations would
take too much time. We use 32 cores for this experi-
ment.

Figure 4 illustrates, using a logarithmic scale, the
execution time for M = 100 iterations of both the dis-
tributed and centralized inference methods. The re-
sults show that our distributed algorithm significantly
outperforms the centralized approach. For instance,
when considering 100K data points, the centralized
algorithm takes approximately 12 hours to complete



Figure 4: Running time (in logarithmic scale) for 100
iterations of DisCGS and CGS inference for DPMM
on synthetic datasets of different sizes.

100 iterations, whereas our approach achieves the same
number of iterations in just 3 minutes, reducing the ex-
ecution time by a factor of 200. Table 3 presents the
clustering metrics (ARI, NMI, and ACC) obtained by
each algorithm on each dataset. The results indicate
that our approach consistently achieves high scores
and outperforms the centralized algorithm in almost
all cases. We observe that using the dataset of size
40K, the centralized algorithm obtained slightly higher
ARI and NMI scores than the distributed algorithm.
This is not surprising since both approaches sample
the memberships from an approximation of the poste-
rior distribution, resulting in noisy inferred partitions.
These samples can be aggregated after a given num-
ber of burn-in iterations with a consensus partition
estimation. Overall, the findings confirm that the dis-
tributed inference does not compromise the clustering
performance while considerably reducing the execution
time.

Dataset size
ARI NMI ACC

Dis. Cen. Dis. Cen. Dis. Cen.

20K 0.99 0.89 0.99 0.96 0.99 0.89
40K 0.96 0.99 0.97 0.99 0.99 0.97
60K 0.91 0.89 0.92 0.96 0.92 0.89
80K 0.94 0.89 0.96 0.96 0.91 0.89
100K 0.91 0.89 0.94 0.89 0.91 0.89

Table 3: Clustering metrics ARI, NMI, and ACC ob-
tained by the distributed (Dis.) and centralized (Cen.)
inference on synthetic datasets of different sizes.

5.5 Distributed algorithm scale-up

In this experiment, we use n = 106 data points gen-
erated from K = 10 components of two-dimensional
Gaussian. We run our distributed inference several
times by increasing the number of cores from 8 to 48.

Figure 5 represents the running time as a function of
the number of cores. We observe that the running time
decreases when the number of cores increases, showing
that our algorithm scales efficiently with the number
of workers. Figure 6 shows the clusters (labels) in-

Figure 5: Running time (hours) as a function of the
number of cores of DisCGS on 106 data points.

ferred by our approach on 106 data points distributed
across 32 cores. As depicted, our approach successfully
identifies meaningful and coherent clusters, resulting
in high ARI, NMI, and ACC scores of approximately
0.98. Similar results were observed when distributing
the data on different numbers of cores. Additionally,
it has inferred 14 clusters while the ground truth is 10.
However, only 10 of them are significant clusters, and
the 4 others are only ”outliers”. Moreover, the cluster-
ing performance and the number of clusters depend on
the auto-encoder. Also, the number of clusters might
be influenced by the concentration parameter α [23].

Figure 6: Unlabeled data (left) and labeled data
(right), after M = 100 iterations of DisCGS on 106

data points, using 32 cores, ARI = 0.98, NMI = 0.98,
and ACC = 0.98. The number of inferred clusters is
14.

6 Conclusion and perspectives

This article presents a novel distributed MCMC infer-
ence method, called DisCGS, for DPMMs. DPMMs
are highly useful for clustering problems, especially
when the number of clusters is unknown. However, the
inference process of DPMMs tends to become signifi-
cantly slow as the dataset size increases. To overcome
this limitation, our proposed DisCGS is specifically de-
signed to handle distributed data across independent
and heterogeneous machines, making it suitable for
horizontal federated learning scenarios, i.e., when the
workers are the different components of the edge net-
work. The experimental results showed highly promis-
ing outcomes. The proposed method significantly re-
duces the inference time while maintaining accurate



results. Our ongoing research exploits the DisCGS
approach to massively distribute the Non-Parametric
Latent Block Model (NPLBM) [18] and the multiple
Coclustering model.
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P. Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence, 2016.

[15] H. H. Kumar, K. V R, and M. K. Nair. Feder-
ated k-means clustering: A novel edge ai based
approach for privacy preservation. In IEEE In-
ternational Conference on Cloud Computing in
Emerging Markets (CCEM), pages 52–56, 2020.

[16] J. S. Liu, W. H. Wong, and A. Kong. Covariance
structure of the gibbs sampler with applications
to the comparisons of estimators and augmenta-
tion schemes. Biometrika, 81(1):27–40, 1994.

[17] D. Lovell, J. Malmaud, R. Adams, and V. Mans-
inghka. Clustercluster: Parallel markov chain
monte carlo for dirichlet process mixtures. In In
Workshop on Big Learning, NIPS, 2012.

[18] E. Meeds, S. Roweis, E. Meeds, and S. Roweis.
Nonparametric bayesian biclustering, 2007.

[19] K. Meguelati, B. Fontez, N. Hilgert, and
F. Masseglia. Dirichlet process mixture models
made scalable and effective by means of massive
distribution. pages 502–509, 04 2019.

[20] K. Meguelati, B. Fontez, N. Hilgert, and
F. Masseglia. Dirichlet Process Mixture Mod-
els made Scalable and Effective by means of
Massive Distribution. In SAC 2019 - 34th
ACM/SIGAPP Symposium on Applied Comput-
ing, pages 502–509, Limassol, Cyprus, Apr. 2019.
ACM/SIGAPP.



[21] J. W. Miller. An elementary derivation of the chi-
nese restaurant process from sethuraman’s stick-
breaking process, 2018.

[22] K. P. Murphy. Conjugate bayesian analysis of the
gaussian distribution. def, 1(2σ2):16, 2007.

[23] K. P. Murphy. Machine learning : a probabilistic
perspective. MIT Press, Cambridge, Mass. [u.a.],
2013.

[24] R. M. Neal. Markov chain sampling meth-
ods for dirichlet process mixture models. Jour-
nal of Computational and Graphical Statistics,
9(2):249–265, 2000.

[25] J. Sethuraman. A constructive definition of
dirichlet priors. Statistica Sinica, 4(2):639–650,
1994.

[26] S. Silvey. Statistical Inference. CRC Press, 2017.

[27] M. Stallmann and A. Wilbik. Towards federated
clustering: A federated fuzzy c-means algorithm
(FFCM). CoRR, abs/2201.07316, 2022.

[28] A. Strehl and J. Ghosh. Cluster ensembles - a
knowledge reuse framework for combining multi-
ple partitions. Journal of Machine Learning Re-
search, 3:583–617, 01 2002.

[29] S. G. Walker. Sampling the dirichlet mixture
model with slices. Communications in Statistics -
Simulation and Computation, 36(1):45–54, 2007.

[30] R. Wang and D. Lin. Scalable estimation of
dirichlet process mixture models on distributed
data. In International Joint Conference on Arti-
ficial Intelligence, 2017.

[31] S. Williamson, A. Dubey, and E. Xing. Par-
allel Markov chain Monte Carlo for nonpara-
metric mixture models. In S. Dasgupta and
D. McAllester, editors, Proceedings of the 30th In-
ternational Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Re-
search, pages 98–106, Atlanta, Georgia, USA, 17–
19 Jun 2013. PMLR.

[32] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

[33] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang.
Image clustering using local discriminant models
and global integration. IEEE Transactions on Im-
age Processing, 19(10):2761–2773, 2010.


	Introduction
	Related Work
	Background
	The proposed method
	DisCGS at worker level
	DisCGS at master level
	Collapsed Gibbs sampler in federated learning

	Experiments
	Implementation settings and distributed environment
	Clustering performance
	Convergence
	Comparison of the distributed and centralized collapsed Gibbs sampler
	Distributed algorithm scale-up

	Conclusion and perspectives
	Acknowledgments

