

How to calibrate all your experiments with a single reference ?

Guillaume Laurent

Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université, 4 place Jussieu, 75005 Paris, France guillaume.laurent@sorbonne-universite.fr

Journées RMN solide GBP/GS, Montpellier, France, 25/01/2024

How do you calibrate the chemical shifts?

How do you calibrate radiofrequency?

CHEMICAL SHIFT CALIBRATION

RADIOFREQUENCY CALIBRATION

Chemical shift calibration

How we used to calibrate chemical shifts

One reference sample per studied nucleus

Chemical Shift Ranges and Standards for Selected Nuclei

Nucleus	Spin	Chemical Shift Range δ [ppm]	Standard	Nucleus	Spin	Chemical Shift Range δ [ppm]	Standard
¹ H	1/2	12 to -1	SiMe ₄	⁴³ Ca	7/2	40 to -40	CaCl ₂
⁶ Li	1	5 to -10	1M LiCl in H ₂ O	⁵¹ V	7/2	0 to -2000	
⁷ Li	3/2	5 to -10	1M LiCl in H ₂ O	⁶⁷ Zn	5/2	100 to -2700	ZnClO ₄
¹¹ B	3/2	100 to -120	$Bf_3 \cdot OEt_2$	⁷⁷ Se	1/2	1600 to -1000	SeMe ₂
¹³ C	1/2	240 to -10	SiMe ₄	⁹³ Nb	9/2	0 to -2000	NbCl ₆
¹⁵ N	1/2	1200 to -500	MeNO ₂	⁹⁹ Ru	3/2	3000 to -3000	RuO ₃ /CCI ₄
170	5/2	1400 to -100	H ₂ O	¹¹⁹ Sn	1/2	5000 to -3000	SnMe ₄
¹⁹ F	1/2	100 to -300		¹²¹ Sb	5/2	1000 to -2700	Et ₄ NSbCl ₆
²³ Na	3/2	10 to -60	1M NaCl in H ₂ O	¹²⁹ Xe	1/2	2000 to -6000	XeOF ₄
²⁷ AI	5/2	200 to -200	$[AI(H_2O)_6]^{3+}$	¹³³ Cs	7/2	300 to -300	CsBr
²⁹ Si	1/2	100 to -400	SiMe ₄	¹⁹⁵ Pt	1/2	9000 to -6000	Na ₂ PtCl ₆
³¹ P	1/2	230 to -200	H ₃ PO ₄	¹⁹⁹ Hg	1/2	500 to -3000	HgMe ₂

Unified scale for chemical shifts

NMR NOMENCLATURE. NUCLEAR SPIN PROPERTIES AND CONVENTIONS FOR CHEMICAL SHIFTS

(IUPAC Recommendations 2001)

R. K. Harris et al., Pure Appl. Chem. 73, 1795–1818 (2001).

Further conventions for NMR shielding and chemical shifts IUPAC recommendations 2008 ☆

R. K. Harris et al., Pure Appl. Chem. 80, 59-84 (2008).

Isotope	Frequency	Reference	Reference compound		
	ratio, Ξ /%	compound	conditions ^a		
_					
¹ H	100.000 000	Me ₄ Si	$\text{CDCl}_3, \varphi = 1 \%$		
	100.000 000 ^b	DSS methyl signal	D_2O		
^{2}H	15.350 609	(CD ₃) ₄ Si	neat		
³ H	106.663 974	Me_4Si-t_1			
³ He	76.178 976 ^c	He	gas		
⁶ Li	14.716086	LiCl	D_2O , 9.7 mol/kg		
⁷ Li	38.863 797	LiCl	$\tilde{D_{2}O}$, 9.7 mol/kg		
⁹ Be	14.051 813	$BeSO_4$	$\tilde{D_{2}O}$, 0.43 mol/kg		
$^{10}\mathbf{B}$	10.743 658	$BF_3.Et_2O$	$\tilde{\text{CDCl}}_3, \varphi = 15 \%$		
$^{11}\mathbf{B}$	32.083 974	$BF_3.Et_2O$	$\text{CDCl}_3, \varphi = 15 \%$		
¹³ C ^d	25.145 020	Me_4Si	$CDCl_3, \varphi = 1 \%$		
	25.144 953 ^b	DSS methyl signal	D_2O		
^{14}N	7.226317	MeNO ₂	neat/CDCl ₃ ^e		
^{15}N	10.136767	MeNO ₂	neat/CDCl ₃ ^e		
	10.132 912 ^b	NH ₃ (liquid)	external		
¹⁷ O	13.556457	$D_2 O$	neat		
¹⁹ F	94.094 011	CCl ₃ F			
²¹ Ne	7.894 296	Ne	gas, 1.1 MPa		

APPENDIX 1: RECOMMENDED VALUES OF *Ξ* FOR VARIOUS NUCLIDES^a

https://nmr.chem.ucsb.edu/protocols/refppm.html

Chemical shifts

Radiofrequency

$$SR_2 = [BF_1 * 10^6 + SR_1] * \frac{\Xi_2}{\Xi_1} - BF_2 * 10^6$$

Bruker TopSpinVarian VnmrJ1H in first procnoset_refxiref \rightarrow SR for all other procnos \rightarrow 1D, 2D,...

Chemical shifts

Radiofrequency

Solid-state NMR calibration

¹H: broad peak, imprecise \rightarrow ¹³C: narrow peaks, more precise **1.82 ppm / 38.48 ppm ? No, values from neat TMS 1.71 ppm / 37.77 ppm ? OK, values from 1 % TMS in CDCI**₃

Adamantane temperature

Chemical shifts

 $T = -7.15 + 686.9 (\Delta \delta - 9) - 0.72 (\Delta \delta - 9)^{2}$ $\delta(CH) = 37.7531 + 8.14 * 10^{-4} * T + 4.91 * 10^{-6} * T^{2}$ $\delta(CH_{2}) = 28.7425 - 6.33 * 10^{-4} * T + 4.55 * 10^{-6} * T^{2}$

Radiofrequency

R. Hoffman, J. Magn. Reson. 340, 107231 (2022).

Radiofrequency calibration

How we used to calibrate radiofrequency

Radiofrequency

Chemical shifts

- Nutation on X nucleus
- Reference sample
- Difficult for low gamma and/or low abundance
- Direct polarization or polarization transfer

Using the heteronuclear Bloch-Siegert shift of protons for B_1 calibration of insensitive nuclei not present in the sample

I. Hung, P. Gor'kov, Z. Gan, J. Magn. Reson. 310, 106636 (2020).

What is the Bloch-Siegert shift ?

Chemical shifts

Magnetic Resonance for Nonrotating Fields

F. BLOCH AND A. SIEGERT* Department of Physics, Stanford University, Stanford University, California (Received January 19, 1940)

It is shown that in the lowest order correction the shape of the resonance curve is unchanged but that it is shifted by a percentage amount $H_1^2/16 H_0^2$ where H_1 is the effective amplitude of the oscillating field.

F. Bloch, A. Siegert, Phys. Rev. 57, 522-527 (1940).

Radiofrequency

L. I. Sacolick et al., Magn. Reson. Med. 63, 1315–1322 (2010).

I. Hung et al., J. Magn. Reson. 310, 106636 (2020).

Chemical shifts

Radiofrequency

RF field strength

$$RF_{2} = \frac{SF_{2}}{SF_{1}} * \sqrt{\frac{SF_{1}}{\tau * 4 * 10^{-6}} * \left[1 - \left(\frac{SF_{2}}{SF_{1}}\right)^{2}\right]}$$

Conclusion

CHEMICAL SHIFT CALIBRATION

Absolute referencing with Xi

RADIOFREQUENCY CALIBRATION

Calibration without the nucleus

POSSIBLE EXPERIENCES

Post-C7, SR4₁², D-HMQC, PRESTO

42 µs

¹H in TMS

0 ppm

500 MHz

 v_{H}

 $v_c = \Xi_c / \Xi_H^* v$

13C

²H ~7.24 ppm in CDCl₃

 ^{2}H

Oppm Oppm Oppm

15N

 ^{2}H

0 ppm

0 MHz

31**P**

0 ppm

 $v_{\rm P} = \Xi_{\rm P} / \Xi_{\rm D} * v_{\rm D}$

 $v_{p} = \Xi_{p} / \Xi_{H} * v_{H}$

Increasing chemical shift

Increasing shielding

 $v_{H} = \Xi_{H} / \Xi_{D}^{*} v_{D}$

NMR has strongly evolved

Acknowledgments

Frederic Perras Takeshi Kobayashi Alexander Paterson Scott Southern

IOWA STATE UNIVERSITY Aaron Rossini Rick Dorn

Christian Bonhomme Thierry Azaïs Ieva Goldberga Adam Nelson Baptiste Rigaud Cristina Coelho Claire Troufflard Régina Maruchenko Franck Lacour

Pré-inscription avant le 2 février 2024 sur https://germ2024.sciencesconf.org/

Supplementary materials

Chemical shifts

Radiofrequency

Corrected ¹H chemical shifts

1 % TMS in CDCl₃ at 25°C

Sample	Peak	δ _{0°C} ppm	Slope ^b 10 ⁻³ ppm °C ⁻¹	2nd Order ^b 10 ⁻⁶ ppm °C ⁻²	$\sigma(ext{error})^d$ $^b10^{-3} ext{ ppm}$	Shift at 25 °C ppm	$\mathrm{d}\delta/\mathrm{d}(P_{air})^{b}10^{-3}~\mathrm{ppm}~\mathrm{bar}^{-1}$
Acetone- d_6	TMS	-0.1692	0.084	-2.86	0.3	-0.1689	0.0014
	Acetone- d_5	1.8973	-0.414	-2.18	0.6	1.8856	0.0017
	H ₂ O	2.8459	-8.927	19.08	1.3	2.6346	0.0028
Acetonitrile- d_3	TMS	-0.0011	-0.522		0.6	-0.0141	-0.0002
	CHD ₂ CN	1.9520	-1.031		0.7	1.9262	0.0000
	H ₂ O	2.2278	-5.472	20.08	1.4	2.1036	-0.0008
Benzene-d ₆	TMS	-0.5196	0.434		0.5	-0.5087	0.0000
	H_2O	-0.1527	1.296		1.0	-0.1203	-0.0014
	C_6HD_5	6.6354	0.522		0.6	6.6485	-0.0002
Chloroform-d	TMS	0.01225	-0.490		-	0.0000	0.0010
	H_2O					$\sim 1.55^{c}$	
	CHCl ₃	7.2836	-0.925		0.1	7.2605	0.0010
Deuterium oxide	DSS ^d	-0.0833	0.595	-3.44	1.0	<mark>–0.0706</mark>	
	TMS^d	-0.1099	0.905	-5.77	0.9	-0.0909	
	TSP-d ₄	-0.0944	0.675	-4.56	0.8	<mark>-0.0804</mark>	
	HOD	4.9920	-12.025	26.85	1.2	4.7081	0.0013
Dichloromethane-d ₂	TMS	-0.0122	-0.495		0.9	-0.0246	
	H_2O	1.5774	-3.372		1.8	1.5002	
	CHDCl ₂	5.3260	-1.281		1.4	5.2940	
DMSO- <i>d</i> ₆	TMS	0.0744	-0.545		0.5	0.0608	0.0017
	DMSO- d_5	2.5822	-0.833		0.7	2.5614	0.0012
	H_2O	3.4962	-4.994		2.5	3.3714	0.0015

Chemical shifts Radiofrequency Half-echo vs full-eho

I. Hung et al., J. Magn. Reson. 310, 106636 (2020).

Full echo is more sensitive but can present distortions

(f) $iSRN_n^{\nu} - II: (iSRN_n^{\nu} - I) (iSRN_n^{-\nu} - I), N = 4k, k = 3, 4, 5, ...$

Chimie de la Mation

(g) Spin echo (h) PRESTO-III \mathcal{S}_{270} \mathcal{S}_0 \mathcal{S}_{180} S_{90} \mathcal{S}_{180} \mathcal{S}_0 τ $au_m/4$, $au_m/4$, $au_m/4$, $au_m/4$ S S π π_x $\left(\frac{\pi}{2}\right)_y$ π_x

X. Zhao, W. Hoffbauer, J. Schmedt auf der Günne, M. H. Levitt, Solid State Nucl. Magn. Reson. 26, 57–64 (2004). L. Liang, C. Shang, K. Chen, G. Hou, Journal of Magnetic Resonance. 344, 107310 (2022).