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A neural network encoder-decoder for time series prediction: Application 
on 137Cs particulate concentrations in nuclearized rivers 
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A B S T R A C T   

Monitoring the impact of human activities on the environment is a major challenge as many pollutants can be 
found in the different ecosystems. This is the case of the caesium-137 that has been present in the environment 
for many decades as a result of atmospheric tests, accidents such as Chernobyl and release from nuclear in-
dustries. With the recent advance in data-driven models, this study evaluate the relevance of a deep learning tool 
for reconstructing caesium-137 chronics particulate concentration in rivers. An encoder-decoder neural network, 
“Hierarchical Attention-Based Recurrent Highway Networks”(HRHN), is proposed notably for its ability to 
extract the most relevant temporal and spatial information from the databases. Three monitoring stations were 
studied, one on the Rhône River and two on the Loire River, all of them downstream nuclear industries in these 
catchments affected by the global fallout and the accident of Chernobyl. The objective is to predict the future 
concentration from a set of variables providing past information on water discharge, washout flux and industrial 
radioactive releases. Once optimised, the model generates first results in agreement with the real concentration 
curves by correctly following the main trends, with a NSE of 0.89, 0.53 and 0.35 respectively for the Rhone 
station and the two stations on the Loire. The main reason of inaccuracies is due to the quantity of data available. 
The originality of this model is its capacity to make predictions on different catchment areas. In fact the training 
was conducted on the Rhône station as the range of the concentration was higher (from 265.4 to 2700.0 Bq/kg) 
and the testing on the two Loire station. Another encoder-decoder model DA-RNN (Dual-Stage Attention-Based 
Recurrent Neural Network) was also evaluate in order to compare the performance of an alternative architecture, 
without convolution layer. The conclusion is that HRHN remains more powerful in the predictions on the 3 
systems. With these first interesting results for HRHN, further investigations should be taken into account for 
other pollutants than caesium-137 to better understand the robustness of the model.   

1. Introduction 

The presence of artificial radioactive materials in the environment 
has been proved since decades, particularly following atmospheric nu-
clear testing, and accidents such as Fukushima and Chernobyl (Tracy 
et al., 2013). Understanding the fate of these contaminants and their 
resiliencies is therefore essential as most of them have a long half-time 
and remains on ecosystems especially those coming from the nuclear 
industries (Hirose and Povinec, 2022; Kashparov et al., 2019). This is the 
case for caesium-137 (137Cs), which will persist in the soil affected by 
these fallouts in catchment areas for 30 years and contaminate aquatic 
environments through the erosion of soil (Lepage et al., 2016). More-
over, 137Cs is also emitted into rivers during authorized discharges from 
nuclear facilities (Eyrolle et al., 2020a). Therefore, its behaviour in 

hydrosystems has been studied for many years (Konoplev et al., 2020; 
Kryshev, 1995; Takahashi et al., 2017; Yoshimura et al., 2015) and a 
large number of models have been developed to understand its transport 
in watercourse (Ikenoue et al., 2023; Iwasaki et al., 2015; Konoplev 
et al., 2020; Tomczak et al., 2021). 

The recent development in artificial intelligence methods and their 
implementation in several libraries (e.g. scikitlearn library on Python) 
(Oludare Isaac et al., 2018) brings new tools able to estimate the con-
centration of various pollutants or hydrological quantities by using 
existing databases (Yaseen, 2021). Indeed, a number of these methods 
are effective in identifying non-linear relationships or structures in the 
data allowing to realize predictions on the quantity studied with a good 
accuracy and a high speed of execution. In recent years, there has been a 
significant number of articles with a review of machine learning and 
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deep learning methods applied to river monitoring and water quality 
(Rajaee et al., 2020). For examples on neural network methods, Adap-
tive Neuro-Fuzzy Inference Systems (ANFIS) have been applied to 
various domains of water quality forecasting (Tiwari et al., 2018). A 
MultiLayer Perceptron (MLP) gives satisfactory responses in the 
modelling of pH with hydrometeorological data such as discharge and 
solar radiation (Moatar et al., 1999) and a SVM (Support Vector Ma-
chine) were used to predict the nitrate concentration in river water 
(Stamenković et al., 2020). A decision tree model was applied for the 
forecast of sediment yield generated within a watershed (Goyal, 2014). 
However, there are very few papers applying these methods to the 
prediction of radionuclide concentrations in the environment (Dragović, 
2022). A few attempts have been made, such as (Shuryak, 2022) who 
uses RF (Random Forest) to predict the concentration of 137Cs in 
terrestrial plants, or (Kulahci et al., 2006) which constructs an MLP for 
the prediction of two outputs on alpha and beta radioactivity. To our 
knowledge, there is no study on the use of data models to predict 137Cs 
concentrations in a nuclearized river. Notably, there are no deeper 
networks applied to this topic or the use of the temporality of the data 
because these networks are sometimes developed in communities 
outside environmental sciences. 

The development of neural networks applied to time series has 
grown rapidly in recent years especially encoder-decoder network 
(EDN) (Cho et al., 2014a, 2014b). The basic principle of EDNs is to 
compress the information of exogenous time series into a latent repre-
sentation (to highlight important characteristics) via the encoder, and 
then decompress it to predict future values via the decoder. The nature 
of the layers composing the encoder and decoder can be of different 
types (convolutional, recurrent, …). For example, in the paper (Fawaz 
et al., 2019), the authors present a convolutional encoder to extract 
features from the time series and then a convolutional decoder to 
reconstruct the series from these features for time series classification. In 
(Yang et al., 2019), the authors propose an EDN architecture based on a 
convolutional encoder and an recurrent decoder for traffic flow pre-
diction. EDNs that combine convolutional and recurrent layers allow 
efficient modelling of time sequences for prediction. This combination 
allows robust features to be extracted from the time series and longterm 
relationships in the sequence to be modelled, which is particularly 
important for time series prediction tasks. A other work on time series 
prediction is the DA-RNN (Dual-Stage Attention-Based Recurrent Neural 
Network) model (Qin et al., 2017), the encoder exploits an input 
attention mechanism to adaptively extract relevant input features at 
each time step by referring to the previous encoder's hidden states. And 
the decoder uses a classical attention mechanism to select relevant en-
coder's hidden states across all time steps. These two attention mecha-
nism's are well integrated within a recurrent neural network.These 
attention mechanisms allow the most important parts of the time 
sequence to be highlighted. This is particularly useful for complex time 
series, where models may need to understand the relationship between 
distant elements in the sequence. The article (Tao et al., 2016) provides 
an architecture which combines a set of very interesting aspects (of the 
previously mentioned architectures): use of convolution, recurrent net-
works and an attention mechanism. The proposed architecture is the 
encoder-decoder neural network Hierarchical attention-based Recurrent 
Highway Networks (HRHN), a model that has not yet been seen in the 
environmental literature (Chen and Li, 2020; Shoham and Permuter, 
2018; Zhang et al., 2017) and has several advantages over other neural 
networks, including: 

• Attention hierarchy: HRHN uses an attention hierarchy that iden-
tifies the most important parts of the inputs at each hierarchical 
level, which can improve prediction performance.  

• Recurrence and long-term connectivity: HRHN uses recurrent layers 
that allow for long-term memory of previous inputs 

• Convolution layers: the use of convolution layers allows the detec-
tion of local patterns in the time series and the extraction of relevant 
features at different time scales.  

• Use of highway gates: HRHN uses highway gates that allow the 
amount of information that is passed between layers to be controlled, 
which can facilitate the training of complex models. 

The ambition of this study is to propose a model based on the HRHN 
that can understand the dynamic of the 137Cs concentration in the river 
with different sources: accidental events (like Chernobyl) or standard 
events (chronic releases from nuclear facilities). Thereafter, the aim is to 
predict the future concentration of 137Cs in SPM (Suspended Particulate 
of Matter) for different rivers from a set of variables providing past in-
formation on water discharge, washout flux and release data. The paper 
is organized as follows. The section 2 of this paper presents the different 
data sets studied for the rivers and the temporal modelling strategy 
chosen. The section 3 presents the HRHN neural network. Section 4 and 
5 presents respectively the optimization of the model and the sensitivity 
analysis of HRHN. The section 6 presents an alternative to HRHN, the 
DA-RNN model. Section 7 presents respectively the most relevant results 
and a discussion on the results. Finally, the article ends with the section 
conclusion in section 8. 

2. Material and methods 

2.1. Presentation of the studied watersheds 

Datasets from two rivers are used in this study: the Rhône and the 
Loire Rivers. They are the most nuclearised rivers in France with several 
nuclear industries (Eyrolle et al., 2020b; Goutal et al., 2008) among 
them 5 nuclear power plants (NPP) and a nuclear waste reprocessing site 
on the Rhône River and 5 nuclear power plants (NPP) on the Loire River. 
These two rivers are also the receptacle of artificial radionuclides 
drained from soils mainly marked by atmospheric fallout from military 
nuclear tests (between 1945 and 1980) and the Chernobyl accident 
(1986)(Meusburger et al., 2020; Roussel-Debel et al., 2007). 

The Rhône watershed (97,800 km2) is characterised by a strong cli-
matic and geological heterogeneity that leads to a strong variation of 
annual SPM fluxes (from 1.4 Mt. to 18.0 Mt./year (Delile et al., 2020; 
Poulier et al., 2019)), while the Loire basin (117,500 km2) has an annual 
variation in these flux ranging from 0.3 to 1.2 Mt./year (Moatar and 
Dupont, 2016). 

Three monitoring stations are considered, one on the RhÃ'ne River 
and two on the Loire River (Fig. 1).  

• Rhône-Vallabregues: the station of Vallabrègues downstream the 
Marcoule reprocessing center from 1983 to 04-01 to 2007-01-01 

• Loire-Ouzouer: the station of Ouzouer in the Loire River (down-
stream the Dampierre and Belleville NPP) from 1987 to 06-01 to 
2006-12-01  

• Loire-Muides: the station of Muides in the Loire River (downstream 
the Saint-Laurent-Des-Eaux, Dampierre and Belleville NPP) from 
1987 to 06-01 to 2006-12-01 

2.2. Variables of the three systems 

In order to predict the 137Cs concentration variable (endogenous 
variable) in suspended particulate matters, the hydrological character-
istics (water discharge) and the 137Cs sources (quantity of nuclear in-
dustry release and washout flux) were considered as exogenous 
variables. All the chronicles studied have a monthly time step. The 
endogenous variable is the variable to be predicted. The exogenous 
variables are to explain the behaviour of the endogenous variable. 
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2.2.1. Suspended particulate matter data 
Measurements of 137Cs are taken from the monitoring of releases 

from the facilities set up in the 1980s. Sediment traps were used to 
collect SPM every month then SPM samples were slowly (approx. 2 
weeks) evaporated (80 ◦C) to dryness, ashed and put into tightly closed 
plastic boxes (17mL or 60mL) for gamma-ray spectrometry measure-
ments (20–60 g) using low-background and high-resolution (High Purity 
Germanium detectors). Results are expressed in Bq/kg and each sample 
was measured for 3 days to achieve detection limits around 0.5 Bq/kg. 

The Fig. 2 shows the different trends in concentrations according to the 
sites studied. Over the period studied (1983–2007), the average con-
centration of 137Cs in the Rhône-Vallabregues station was 265.4 Bq/kg, 
with a maximum of 2700.0 Bq/kg in December 1985 and a minimum of 
4.8 Bq/kg in April 2001. The Loire-Ouzouer system over the period 
studied (1987–2007) had an average 137Cs concentration of 15.1 Bq/kg, 
with a maximum of 130 Bq/kg in September 1987 and a minimum of 
3.2 Bq/kg in August 2006. The Loire-Muides station over the period 
studied (1987–2007) had an average 137Cs concentration of 21.3 Bq/kg, 

Fig. 1. Location of the studied monitoring stations in the Rhône and Loire Catchments. Total inventory of 137Cs was estimated by (Roussel-Debel et al., 2007).  

Fig. 2. Concentration of 137Cs in SPM collected in the three studied stations, (A) Rhône-Vallabregues, (B) Loire-Ouzouer, (C) Loire-Muides and (D) the 
three compiled. 
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with a maximum of 740 Bq/kg in January 1990 and a minimum of 2.3 
Bq/kg in July 2004. 

2.2.2. Water discharge data 
The discharge values for the three monitoring stations (Fig. 3) were 

obtained from the “HydroPortail” national database (https://hydro. 
eaufrance.fr/rechercher/entites-hydrometriques) and are expressed in 
m3/s. They are collected at the station closest to the sampling site: for 
Rhone-Vallabregues, the hydrometric site is Beaucaire (code site: V720 
0005), for Loire-Muides, the hydrometric site is Blois (code site: K447 
0010) and for Loire-Ouzouer, the hydrometric site is Giens (code site: 
K418 0010). The data is retrieved in daily format and then transformed 
into monthly data to respect the scale of other variables by selecting the 
maximum and minimum dischage water during the month and the 
monthly average. The Fig. 3 shows the monthly minimum discharges 
water for each site (graphs (A),(B) and (C)) and a comparison of the 
minimum discharges water for the 3 sites (graph (d)). To improve the 
visibility of the graph, only the minimum discharge is shown. For the 
Rhône-Vallabregues station over the period studied (1983–2007), the 
average water discharge is 1694.8 m3/s, with the highest discharge at 
10900 m3/s in December 2003 and the lowest discharge at 322 m3/s in 
January 1990. For the Loire-Ouzouer station over the period studied 
(1987–2007), the average water discharge is 310.7 m3/s, with a 
maximum discharge of 3130 m3/s in December 2003 and a minimum 
discharge of 30.8 m3/s in August 1991. For the Loire-Muides station over 
the period studied (1987–2007), the average dischagre is 329.4 m3/s, 
with a maximum discharge of 2940 m3/s in December 2003 and a 
minimum discharge of 28 m3/s in July 2006. 

2.2.3. Release data 
The NPP are allowed to release radioactive effluent directly into river 

(Eyrolle et al., 2020b). Such release must respect concentration 
thresholds and be carried out under normal hydrological conditions 
(baseflow), excluding low-level water and flood. For 137Cs, the main 
source of liquid effluent in the Rhône River is the reprocessing center of 
Marcoule which represent most of the annual emission. The installation 
of the liquid effluent treatment (STEL) plant at the Marcoule site earlier 
in the 90s has significantly reduced the quantity releases (Fig. 4-(A)). 
The STEL is responsible for reception, treatment of liquid radioactive 
effluents from the site and discharge of decontaminated liquid effluent 

into the Rhône River, after filtration and control. In the Loire River the 
releases come only from the NPPs and only the following NPP were 
studied Dampierre, Belleville Saint-Laurent-des-Eaux. To be more pre-
cise, for Loire-Ouzouer this is the chronicle of cumulative releases from 
Dampierre and Belleville and for Loire-Muides the chronicle of cumu-
lative release from Saint-Laurent-des-eaux, Dampierre and Belleville. 
The Fig. 4 shows the different trends in releases according to the sites 
studied. For the Rhône-Vallabregues over the period studied 
(1983–2008), the average release was 59,997.6 MBq, with a maximum 
release of 360,000 MBq in June 1985 and a minimum release of 476 
MBq in August 2002. For the Loire-Ouzouer station over the period 
studied (1987–2007), the average release was 91.3 MBq, with a 
maximum release of 1500 MBq in August 1987 and a minimum release 
of 2.71 MBq in August 1991. For the Loire-Muides station over the 
period studied (1987–2007), the average release was 112.9 MBq, with a 
maximum release of 1564 MBq in August 1987 and a minimum release 
of 3 MBq in February 2006. 

2.2.4. Washout flux data 
The purpose of this variable is to represent the pollution from phe-

nomena outside the river. Washout refers to the washing of the atmo-
sphere and the soil during rainfall (Borzilov et al., 1988; Khanbilvardi 
et al., 1999). This phenomenon pollutes run-off water and contaminates 
rivers. Raw washout data is not available. This is why we propose to 
estimate he data on the 137Cs washout flux by the work done by (Vrel, 
2012). This washout flux is expressed in MBq/s and is obtained by the 
convolution product of the atmospheric deposition flux and a transfer 
function (characteristic response of the river after a point contamina-
tion) (Delmas et al., 2017; Vrel, 2012). It should be noted that this 
calculation was made using atmospheric data from the Seine River, a 
large french catchment, as data specific to the Rhône and Loire Rivers 
were not available. The contribution of bombs is negligible because they 
are outside our study period (or at the very end for Marcoule, where 
releases mask them). It is assumed that the impact of Chernobyl on all 
French rivers may result in a peak in 1986 of washout fluxes and then 
decrease (Roussel-Debel et al., 2007). Only the amplitude of this peak 
could vary according to the river. Inventory of 137Cs in soil at the date of 
1986 were used to correct the flux data (Roussel-Debel et al. (2007), 
Fig. 1). The estimated inventories in Bq were respectively for the Seine, 
the Rhône and the Loire Rivers 3.9473× 1014, 9.3965 × 1014 and 
5.73821× 1014. Therefore, the flux data estimated from the Seine were 

Fig. 3. Water discharge (min) measured (A) Rhône, (B) Loire-Ouzouer, (C) Loire-Muides and (D) comparison of minimum discharge water for the 3 sites.  
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multiplied by 138% in the case of the Rhône River and by 45% in the 
case of the Loire River. In fact, while the fallout from the nuclear test was 
almost homogeneous in France, the Chernobyl fallout was more 
important in the Eastern France (including the Rhône Catchment) than 
the Western France (Fig. 1). The Fig. 5 shows the different trends in 
concentrations according to the sites studied. The peak of washout flux 
was respectively 125 MBq/s and 5.5 MBq/s for the Rhône-Vallabregues 
and the Loire-Ouzouer stations while the last values concidered were 
lower than 0.05 MBq/s. 

2.2.5. Selected variable and transformation 
Three explanatory variables are retained: washout flux, releases and 

minimum discharge water. More details on the choice of these variables 
are explained in section 5. The data have been transformed using the 
PowerTransform library (Yeo and Johnson, 2000) because of the high 
level of asymmetry in the distribution of the data especially for the re-
leases and washout flux variables. Power transforms are a technique for 
transforming numerical input or output variables to have a more 
Gaussian probability distribution. In addition, this transformation of the 
data also provides systems on a more comparable scale, particularly 
with regard to the very high releases from the reprocessing center. This 
is often described as removing a skew in the distribution, although more 
generally described as stabilizing the variance of the distribution. Power 
Transformer is used with the Yeo-Johnson transform. The optimal 

Fig. 4. Releases measured for (A) Rhône-Vallabregues (Marcoule reprocessing center), (B) Loire-Ouzouer (the Dampierre NPP and Belleville NPP), (C) Loire-Muides 
(the Dampierre NPP, Belleville NPP and Saint-Laurent-Des-Eaux NPP) and (D) the three compiled. 

Fig. 5. Washout flux estimated for (A) Rhône, (B) Loire-Ouzouer, (C) Loire-Muides and (D) the three compiled.  
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parameter for stabilizing variance and minimizing skewness is estimated 
through maximum likelihood. 

This transformation, followed by a standardisation, will be applied 
when training the model. The transformation and standardisation pa-
rameters are calculated from selected training base. 

2.2.6. Problem formalisation and modelling choices 

In order to formalise the problem, let 
(

xj
t

)

t∈[1,T],j∈[1,3]
the exogenous 

series and 
(
yt
)

t∈[1,T] the endogenous series where t is the monthly time 
step between the beginning and the end of the chronicle and j the 
number of the exogenous variables. Time series can be modelled by F 
using a number of techniques, including:  

• Regression models fit a mathematical function to the observed data to 
predict the values of the variable to be predicted from the values of 
the explanatory variables(ex. linear regression, logistic regression).  

• Smoothing models use a weighted combination of past observations to 
predict future values (ex. single exponential smoothing).  

• ARIMA method used to model stationary time series. They use the 
structure of the time series to determine the relationships between 
past and future values.  

• Neural network models is a mathematical model composed of layers of 
interconnected artificial neurons that are able to learn from exam-
ples provided in the training phase. There are several types of neural 
networks, including feedforward neural networks, recurrent neural 
networks and convolutional neural networks. 

In our framework, neural networks are chosen for our modelling for 
several reasons. The objective of time series forecasting is to generate 
the future series yT based on the historical observations y1, y2,⋯, yT− 1. 
However, the observations yT are often related to some exogenous 

variables 
(

xj
t

)

j∈[1,3],t∈[1,T− 1]
. For this reason, different models have been 

proposed for time series prediction with access to the exogenous data. 
The objective is therefore to determine the model F for predict the time 
serie of the 137Cs concentration at time T from history of exogenous 
variables (x1,…, xT− 1) and the target variable (y1, .…, yT− 1): 

yT = F((x1, .…, xT− 1), (y1,…, yT − 1))

By their training capacity, neural network can learn complex pat-
terns from the data, including non-linear relationships between vari-
ables. Neural network models can also be configured to take into 
account specific characteristics of the time series, such as trends, sea-
sonality and cycles. Because of the adaptability of neural networks, they 
can be trained on real-time data, allowing them to adapt quickly to 
changes in data patterns. 

3. Neural network for time serie prediction: Hierarchical 
attention-based Recurrent Highway Networks (HRHN) 

The article (Tao et al., 2016) provides an architecture which com-
bines a set of very interesting aspects: use of convolution, recurrent 
networks and an attention mechanism. The proposed architecture is the 
encoder-decoder neural network Hierarchical attention-based Recurrent 
Highway Networks (HRHN). 

3.1. Architecture of HRHN 

The different layers of the HRHN architecture are detailed in this 
section (Fig. 6):  

• Encoder with:  
– Convolutional network 1D (CNN-1D) (Lecun and Bengio, 1995): to 

learn the spatial relationships between the different values of the 
exogenous series. Applying a 1D convolution involves sliding a 

convolution kernel over the input data by multiplying the values of 
the kernel with the values in the series. The aim is to detect different 
patterns and structures in the series (seasonal events, non- 
perceptible peaks in the raw series). The key strength of CNN is 
that it automatically learns the feature representation by convolving 
the neighboring inputs and summarizing their interactions. Max 
pooling (Aggarwal, 2018) is also performed between successive 
convolutional layers, which can reduce the size of feature maps so as 
to avoid overfitting and improve efficiency.  

– Recurrent Highway Network (RHN) (Zilly et al., 2016): to learn 
the temporal relations between the results of the previous among 
convolved input features. The main idea behind recurrent networks 
is to use an internal memory to store information about previous 
processing steps. In this way, the network can take into account the 
historical context to better understand the inputs and produce more 
accurate outputs. However, classical recurrent networks can 
encounter difficulties when training long sequences due to the 
“vanishing gradient” phenomenon. Indeed, the longer the sequence, 
the more the backpropagation of the error can become diluted and no 
longer effective in adjusting the network parameters. To solve this 
problem, other recurring structures have been proposed like RHN. 
The RHN network is an extension of the LSTM ((Long-Short-Term- 
Memory) networks. Highway connections allow data to “skip” layers 
that do not contribute significantly to the final prediction, which 
facilitates training by allowing gradients to propagate more easily 
through the layers. More specifically, the RHN uses gates to control 
the flow of data between the layers of the network. These gates are 
non-linear functions that take as inputs the outputs of the previous 
layer and the outputs of the current layer, and determine how much 
data should be passed to the next layer. By using these gates, the RHN 
can learn to “ignore” some layers that are not useful for the final 
prediction. The transformation gate acts as a selection and control of 
information from history, and a transport gate can transport infor-
mation between hidden states without any activation function 
(Schmidhuber, 1992).  

• Attention mechanism: 

Fig. 6. A graphical illustration of HRHN. In the encoder, convolution extracts 
the “spatial” information of the exogenous inputs in time slice format (set of 
exogenous series taken at time t). Then an RHN reads the convolved features 
(w1,w2,…,wT− 1) and models their temporal dependencies at different semantic 
levels. Using a hierarchical attention mechanism, the decoder selects the most 
relevant spatio-temporal features of exogenous data. The context vector ct that 
feeds into the decoder RHN is obtained by concatenating all attentions. The 
decoder RHN capture the long-term dependencies of target series and produce 
the future prediction yT (Tao et al., 2016). 
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– Attention mechanism (Bahdanau et al., 2014): is a neural layer 
allowing the model to learn to weight the information provided by 
the encoder according to their importance at a given time in relation 
to the decoding of the target series. The model learns to focus on the 
most relevant elements in the input sequence for the prediction task.  

• Decoder with:  
– Recurrent Highway network (RHN) (Zilly et al., 2016): of the same 

structure as the one present in the encoder 

For more details on the theory of the elements discussed we refer the 
reader to the reference book (Goodfellow et al., 2016). This architecture 
involves a large number of hyperparameters related to the different 
types of layers (convolutional or recurrent) and therefore a large number 
of parameters. As a reminder, a parameter is internal to the neural 
network. It will evolve during the whole training process A hyper-
parameter is external to the training process, it defines the properties of 
the network. It remains static during the training process. 

The HyperBand algorithm is proposed for optimisation and is 
described in the next section. 

During the training of the model, the data is then standardized. In 
section 4, one of the three datasets will be defined as a training base, on 
which the standardizaion parameters will be calculated and applied to 
the other two datasets considered as test base. The best result of the 
optimisation will allow us to determine the base that will be used for 
training. 

4. Model optimization: Determination hyperparameters and 
parameter training 

4.1. Optimisation algorithm and experimental design 

Unlike the original article (Tao et al., 2016), an optimisation is 
perform to determine the best set of hyperparameter values. Optimising 
hyperparameters is an iterative process that often involves testing 
several combinations of values for each hyperparameter to find the best 
values for the specific task. The algorithm used is the Hyperband (Li 
et al., 2018) method inspired by multi-armed bandit problem (available 
on the Keras library). The Hyperband algorithm is a hyperparameter 
optimisation method based on the “successive halving” strategy. Here is 
a brief explanation:  

1. Initial sampling: Hyperband begins by randomly sampling a set of 
hyperparameters for model architectures.  

2. Partial training: Models are partially trained (on a small fraction of 
the data) to quickly eliminate underperforming configurations.  

3. Successive Halving: The remaining configurations are grouped into 
sets of different sizes, and the associated models are trained further. 
The best-performing configurations in each set are promoted to the 
next stage, while the under-performing configurations are 
eliminated. 

4. Repeat: Steps 2 and 3 are repeated until only one configuration re-
mains, which is then considered the best configuration found. 

The key idea behind Hyperband is to explore several configurations 
in parallel while allocating more training resources to promising con-
figurations. This enables a more efficient search of the hyperparameter 
space, particularly when computational resources are limited. In sum-
mary, Hyperband combines an initial random search with a ‘successive 
halving’ strategy to quickly identify promising configurations while 
eliminating those that show inferior performance. 

The detail of the grid of possible combinations is presented. The 
number of convolution layers is lower than that given in the article, the 
network has two convolution layers. Their size and the associated max- 
pooling will be determined in the following interval for each:  

• CNN window size (dim-filter-cnn) ∈ [3,4, 5,6, 7]. The convolution 
window size determines the size of the region over which convolu-
tion is applied at each time step. It is important to choose an 
appropriate window size to capture the relevant temporal patterns in 
the data.  

• the number of filters (nbr-filters-cnn) ∈ [8,16,24,32, 40, 48,56,64,
72,80,88,96,104,112,120,128].The number of filters determines 
how many different patterns the network can learn. The higher the 
number of filters, the more complex the network can be, but this can 
also make training more difficult.  

• max pooling size(dim-max-pooling) ∈ [2, 3,4]. The pooling window 
size determines the region of the input that will be aggregated into a 
single output element. In general, a larger pooling window size re-
duces the spatial resolution of the output, but can also improve the 
robustness of the network to minor variations in the input. In 
contrast, a smaller pooling window size retains more detail of the 
input, but may also make the network more sensitive to noise or 
minor variations. 

As in the article(Tao et al., 2016), the RHN has same structure in the 
encoder and the decoder:  

• hidden layers (nbr-layers-RHN) ∈ [1, 2,3, 4,5]. The hidden layers 
allow the neural network to model non-linear relationships between 
inputs and outputs. Each hidden layer in a deep neural network 
computes a non-linear transformation of the previous layer's outputs, 
allowing the network to learn increasingly abstract and complex 
features as information is propagated through the network.  

• dimension of hidden state (dim-RHN) ∈ [8,16,24,32,40, 48, 56,64,72 
, 80,88,96,104,112,120,128].The dimension of the hidden state 
determines the size of the hidden state vectors that are calculated at 
each time step of the model. A higher dimension of the hidden state 
can allow the model to capture more complex and subtle information 
in the data, but it can also make the model slower to train and require 
more training data. 

The intervals chosen for these different hyperparameters are based 
on the following references (Goodfellow et al., 2016), (Chollet, 2018) 
and documentation available on Tensorflow. The algorithm Hyperband 
has been customised to include optimisation of the number of time steps. 
It's implies that for each combination of selected hyperparameters an 
update of the data size is performed. This hyperparameter linked to the 
data history allows us to determine the quantity of past information 
most relevant to predict the future evolution of the endogenous variable. 
The time step (here monthly) is selected between 3 and 20 months 
(lenght-sequence). 

The aim of the Hyperband algorithm is to propose the most relevant 
hyperparameters and parameters for the model according to a training 
base. It therefore provides a parameterised and hyperparameterised 
model as output. 

For these studies, it is proposed to use the MAE (mean absolute error) 
metric and the NSE (Nash-Sutcliffe efficiency) score for the training 
phase: 

NSE = 1 −
∑T

t=1(yt − ŷt)
2

∑T
t=1(yt − yt)

2 et MAE =

∑T
t=1(|yt − ŷt|)

T 

Two elements will be determined here:  

1. The best training base between Rhône-Vallabregues, Loire-Ouzouer 
and Loire-Muides  

2. The optimal size of the selected training base 

4.1.1. Influence of the training base 
The influence of the training base on the results is seen by swapping 
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the role of training base and test base of each system is swapped. The 
Hyperband algorithm is applied to each database to determine the best 
model (hyperparameters + parameters). This first treatment will allow 
us to identify the most suitable database to be the training base. 

The Table 1 shows the results obtained. The use of the Rhône-Val-
labregues station as training base gives the best results. The Loire- 
Ouzouer and Loire-Muides stations used as a training base are unable 
to make good predictions on the Rhône-Vallabregues station. Indeed, 
their informations are relatively poor to allow a relevant prediction on 
Rhône-Vallabregues station. Moreover, the predictions on Loire- 
Ouzouer and Loire-Muides stations are relatively stable whatever the 
training base used. It should be remembered that the aim of the opti-
misation algorithm is to determine the combination of hyperparameter 
and parameter to minimise the error on the training base and test bases. 
This is why when Loire-Ouzouer station is used as a training base, the 
predictions on its own system are not necessarily improved. Further-
more, the 137Cs concentration time series of the Loire-Muides station is 
characterised by a very strong concentration peak in January 1990 
which differs from the rest of the values taken by the series.This spon-
taneous and intense information is difficult to reproduce accurately in 
the 3 cases presented. Therefore, the prediction performance for this 
system is limited. The Rhône-Vallabregues station is retained as the most 
relevant training base. The hyperparameters and parameters resulting 
from the calculation with Hyperband are also retained. The selected 
hyperparameters are presented in the Table 2. The Adam minimisation 
algorithm is used with a training rate of 0.003. 

4.1.2. Influence of the size of the training base 
The size of the selected base (Rhône-Vallabregues) and its impact on 

the evolution error are then examined. This quantity varies from 20% to 
100% by slice of 10% to see the evolution of the associated error, in 
order to see a stabilisation and then fix the size of the training base. For 
visualization purposes, the results is presented with the NSE error but 
the behaviour is the same for the MAE error (Fig. 7). 

A clear improvement of the predictions and a stabilisation of the 
error can be observed when the training size reaches 50%, corre-
sponding to data from April 1983 to February 1995. Over this period of 
time, two time intervals can be distinguished: the first one from 1983 to 
1992 where high concentrations of 137Cs are found in the SPM of Rhône- 
Vallabregues station which is the result of the fallout from Chernoby in l 
1986 as well as an important period of release from Marcoule. The 
second period from 1992 to 1995 is characterised by a very strong 
decrease in 137Cs concentrations due to the STEL facility installed in 
1992 that improved the treatment of the nuclear wastes. It can be 
assumed that the post-1995 information, which is also characterised by 
lower concentrations does not provide more information on the 
behaviour of the system, which explains the stabilisation of the error. 

5. Sensitivity analysis 

Sensitivity analysis in neural networks with a complex architecture 
remains a delicate subject, notably because of the large number of 
hyperparameters and parameters of these models. It is still today a 
subject in full development (Finale Doshi-Velez, 2017). The Permutation 
feature importance, a simplistic approach is proposed to try to bring 

elements of answer on the importance of the various exogenous vari-
ables. Initially used for random forests, it is applicable to any model 
(Wei et al., 2015). This method has the advantage of not requiring a re- 
training phase for the model or long simulations, which can be costly in 
terms of computing time for HRHN. The concept is straightforward: we 
measure the importance of a feature by calculating the increase in the 
model's prediction error after permuting the feature. A feature (or a 
variable) is “important” if shuffling its values increases the model error, 
because in this case the model relied on the feature for the prediction. A 
feature is “unimportant” if shuffling its values leaves the model error 
unchanged, because in this case the model ignored the feature for the 
prediction. This method is applied to the test set rather than the training 
set to assess the importance of the variables in the ability of the model to 
generalise to the unknown data.If the training set is used to assess the 
importance of variables, this may lead to an overestimation of the 
importance of some variables, as the model has been optimised to 
minimise the error on these specific data. In contrast, the test set is used 
to assess the ability of the model to generalise to new data. By calcu-
lating the importance of the variables on the test set, we can assess the 
importance of the variables in the ability of the model to generalise and 
predict new data. The following Table 3 shows the results obtained. 
They correspond to the average of 100 simulations of Permutation 
feature importance for each variable. 

This sensitivity analysis highlights the importance of two variables: 
the minimum water discharge and release. Initial tests with all the 
discharge water variables (min, max mean) showed a neutral or even 
negative influence of the max and mean discharge. The fluctuations of 
the three discharge data variables are related, so it is possible that the 
max and mean dischage do not provide additional information or even 
redundant information harmful to the algorithm as for debit-max with a 

Table 1 
Study of the NSE and MAE according to the different training bases. The red 
boxes show the results for the training base concerned. 

Training base
Rhône-Vallabregues Loire-Ouzouer Loire-Muides

MAE NSE MAE NSE MAE NSE

Rhône-Vallabregues 70 0.89 4.86 0.53 8 0.35

Loire-Ouzouer 143 0.37 3.9 0.66 9.2 0.16

Loire-Muides 180 0.2 5.5 0.45 8.5 0.25

Table 2 
Values of the hyperameters selected following the optimisation process.  

Hyperparameter nbr- 
filters 
-cnn 

dim- 
filters 
-cnn 

dim-max 
-pooling 

dim- 
RHN 

nbr- 
layer 
-RHN 

Length 
-sequence 

Value [64,8] [5,3] [2,3] 64 4 8  

Fig. 7. Study of the evolution of the NSE error according to the size of the 
training base. 

Table 3 
Results of the sensitivity analysis: percentage importance of each variable.  

Variables Min water discharge Nuclear release Washout flux 

Importance 0.456 0.370 0.172  
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negative score. It was therefore decided to remove these variables from 
our set of input variables. In addition, these initial tests showed a very 
weak influence (only 0.03) of the washout flux in relation to the 
discharge. This sensitivity was a little too close to the characteristics of 
the Rhône-Vallabregues station, which could indicate a tendency to 
overfitting. Indeed, on this site the releases of Marcoule were so large 
that they masked the rest of the contamination. The use of the rescale 
process provides a more independent sensitivity. 

6. DA-RNN (Dual-Stage Attention-Based Recurrent Neural 
Network) 

As in the article Tao et al. (2016), the performance of HRHN is 
compared with another encoder-decoder model, the DA-RNN (Dual- 
Stage Attention-Based Recurrent Neural Network) model, briefly 
mentioned in the introduction. The DA-RNN model is multi-attentive, 
there are two attention mechanisms: ‘spatial attention’ in the encoder 
and ‘temporal attention’ in the decoder. Each of the attention mecha-
nisms is associated with a recurrent layer of the LSTM type Hochreiter 
and Schmidhuber (1997). The spatial attention mechanism processes 
the set of exogenous series and a spatial slice taken for an instant t (i.e. 
the set of values of the exogenous series taken at the same time). The 
objective is to weight the importance of the spatial slice in relation to the 
set of exogenous series. At each time, a weighted spatial slice is ob-
tained, which is processed by an LSTM layer to recover a series of “t” 
hidden states. Subsequently, in the decoder, the temporal attention 
mechanism processes these t hidden states in order to associate a 
weighting on the importance between the different times for the 
calculation of a context vector transmitted to the LSTM layer for the final 
prediction. 

Due to its structure, DA-RNN has much fewer hyperparameters than 
HRHN.The main hyperparameter is the dimension of the LSTM layers, 
the other hyperparameters are related to regularization (drop), to the 
dimensions of the data (batch-size and history length) and finally to the 
training plan. To determine these hyperparameters, the HyperBand al-
gorithm is also used. Table 4 shows the hyperparameters obtained. 

DA-RNN was trained under exactly the same conditions as HRHN: 
same number of epochs, choice of optimizer and same training base 
(Rhone-Vallabregues). The next section presents the results obtained 
with HRHN and the DA-RNN model. 

7. Results 

7.1. Reminder of comparison tools and metrics 

To assess the quality of the predictions obtained, two metrics are 
added added in addition to MAE and NSE: RMSE (root-mean-square 
error) and bias: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1(ŷt − yt)
2

T

√

et Bias =
∑T

t=1(ŷt − yt)

T 

As a reminder, the bias is used to assess whether or not the pre-
dictions are accurate and whether the model tends to over- or under- 
estimate the values of the variable of interest. The lower the bias 
(close to 0), the better the prediction. 

Taylor diagrams will also be used to analyze predictions. Taylor di-
agrams Taylor (2001) are used to graphically summarise the degree of 
correspondence between a model (or a set of models) and observations. 

The similarity between two models is quantified in terms of the corre-
lation, the root mean square difference (RMSD) and the amplitude of 
their variations (represented by their standard deviations). These dia-
grams are particularly useful for assessing the multiple aspects of com-
plex models or for measuring the relative competence of different 
models. Simulated models that match observations well are located 
closest to the point marked ‘observation’ on the x-axis. Models that have 
relatively high correlation and low RMSD are considered to perform 
best. 

7.2. HRHN and DA-RNN results 

In this section, the graphics (Fig. 8) present the prediction obtained 
with the optimised HRHN and the optimised DA-RNN with the Rhône- 
Vallabregues as training base. 

Observation-measurement representations can be used to quickly 
visualise the general behaviour of the prediction in relation to the x = y 
curve. 

For HRHN, the results of the predictions are in agreement with re-
ality, the main trends are well reproduced. However, it can be seen that 
the peaks are well monitored but not always with the right amplitude: 
overestimation at the end of the Loire-Muides chronicle, underestima-
tion of the 1990 peak at Loire-Ouzouer and underestimation of the peaks 
at the beginning of the chronicle at Rhone-Vallabrègues. 

For the DA-RNN, the model cannot correctly minimise the error on 
the training set. The prediction on the training set is quite poor with 
permanent underestimation.On the system of Loire-Ouzouer, this is also 
a permanent overestimation. Finally on the system of Loire-Muides, the 
peak of 1990 has an amplitude closer to the measured values but is 
shifted with respect to the observations. 

The Table 5 compares three metrics: RMSE, MAE and NSE and the 
bias. In general, HRHN performs better than DA-RNN. For both models, 
the system that is least well predicted is Loire-Muides. Both models are 
in difficulty because of the 1990 peak. The DA-RNN bias shows that DA- 
RNN underestimates predictions on the training set but overestimates 
predictions on the test sets. Generalization to different hydrological 
systems seems difficult for this model in particular because of the dif-
ficulties encountered during the training phase. For the HRHN model, 
there is a slight over-prediction of the training set with an under- 
prediction on the test sets. However, the bias for HRHN remains rela-
tively low for all the systems. 

We present Taylor diagrams (Fig. 9) for the two models HRNN and 
DA-RNN relative to the set of training observations, from the two test 
bases.The Table 6 summarises the results obtained. 

For the Rhône-Vallabregues: the correlation between the HRHN 
models and the observations is stronger than for the DA-RNN model and 
the RMSD error is lower for HRHN. The standard deviation of the DA- 
RNN predictions is well below the standard deviation of the observa-
tions, indicated by the red arc at 442 Bq/kg. It is remarkable that the 
HRHN model provides the same standard deviation as the observations. 
The DA-RNN model has too little spatial variability compared with the 
observations, since its standard deviation is well below the standard 
deviation of the observations. The model closest to the observations 
would be the one with the lowest root mean square errors, i.e. the HRHN 
model. 

For the Loire-Muides: the correlation between the HRHN models and 
the observations is once again stronger than for the DA-RNN model and 
the RMSD error is lower in the case of HRHN. The standard deviation of 
the DA-RNN predictions is well below the observed standard deviation, 
indicated by the red arc at 51Bq/kg. The HRHN model also has a stan-
dard deviation well below that of the observations. Despite this, we 
prefer the HRHN model, which has a lower RMSD and a high correlation 
with the observations. 

For the Loire-Ouzouer: the correlation between the HRHN model and 
the observations is once again stronger than the DA-RNN model. In 
addition, the centred RMSD error is lower for the HRHN model. The 

Table 4 
Values of the hyperameters of DA-RNN 
following the optimisation process.  

dim-LSTM 8 
lenght-sequence 4  
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standard deviation of the DA-RNN predictions is lower than the standard 
deviation of the observations, indicated by the red arc at 9.8 Bq/kg. It is 
remarkable that the HRHN model provides the same standard deviation 
as the observations. The DA-RNN model has too little spatial variability 
compared with the observations, since its standard deviation is less than 

the standard deviation of the observations. The model closest to the 
observations would be the one with the smallest squared errors, i.e. the 
HRHN model. 

Fig. 8. For the three systems Rhone-Vallabregues, Loire-Ouzouer and Loire-Muides respectively: on the left, the time serie of the prediction of the concentrations of 
Cs137 (Bq/kg) in SPM, on the right, a comparison of observation and prediction. 
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7.3. Discussion 

The visualization of the results (Taylor diagram and analysis of the 
metrics) clearly show that HRHN is better suited to our study than DA- 
RNN. The appearance of negative values in the prediction of the DA- 
RNN model on the training set (Fig. 8, Rhone-Vallabregues) un-
derlines the difficulty of the optimisation, even though it was carried out 
under exactly the same conditions as HRHN. This negative data may 
demonstrate that the DA-RNN model does not correctly capture the 
complex relationships present in the data. The main difference between 
the DA-RNN model and HRHN is the processing of model inputs (release, 
water discharge and washout flux) at the encoder level. In the DA-RNN 
model, there are a spatial attention mechanism and in HRNN a convo-
lution layer. These two elements aim to analyze in a “spatial” manner 
(by association with a spatial cut for the attention mechanism or by filter 

for the convolution) the series of inputs in order to identify patterns and 
extract the input information. For the problem considered, given the 
results, the convolution layers seem more suitable for predicting 
caesium-137 concentrations. Better characterization of the input data 
allows better prediction of the target variable. Several advantages of 
convolution layers can be mentioned to explain this improvement:  

• Time translation invariance: convolution layers are able to capture 
temporal patterns independently of their exact location in the 
sequence. This provides a degree of temporal translation invariance, 
which is essential for modelling sequential data.  

• Reducing temporal dimensionality: The use of subsampling 
(pooling) with convolution layers reduces the temporal 

Table 5 
Values of the metric and bias for HRHN and DA-RNN.  

Modèle Rhone-Vallabregues DA- 
RNN | HRHN 

Loire-Ouzouer DA- 
RNN | HRHN 

Loire-Muides DA- 
RNN | HRHN 

RMSE 270|161 19|6.9 53|46 
NSE 0.63|0.89 − 3|0.6 − 0.07|0.25 
MAE 150|70 21|4 23|8.5 
Bias − 29.1 |0.95 19.1|-0.068 14.9|-3.46  

Fig. 9. Taylor diagram showing a statistical comparison with the observations of the two models HRHN and DA-RNN predictions on the training set (Rhône-Val-
labregues) and on the two test sets (Loire-Muides and Loire-Ouzouer). The purple contours indicate the RMSD value. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Values of the Correlation, RMSD and Standard deviation for HRHN and DA-RNN.  

Modèle Rhone-Vallabregues 
DA-RNN | HRHN 

Loire-Ouzouer 
DA-RNN | HRHN 

Loire-Muides 
DA-RNN | HRHN 

Correlation 0.8|0.92 0.53|0.74 0.2|0.9 
RMSD 260|171 8|7 51|37 
Standard 

deviation 
353|442 7|9.6 24|15  
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dimensionality of the data, which is useful for simplifying the model 
and avoiding overfitting. 

• Ability to learn sequential patterns: By stacking multiple convo-
lution layers, models can learn hierarchies of sequential patterns, 
where the first layers detect simple patterns and subsequent layers 
combine these patterns to detect more complex patterns. 

• Reuse of temporal patterns: Temporal patterns learned by convo-
lution filters in one part of the sequence can be reused in other parts 
of the sequence. This makes it easier to generalise the model to 
different parts of the sequence. 

However, convolution can also present difficulties in capturing some 
features. Indeed, the poor detection of the 1990 peak at the Loires- 
Muides site on HRHN prediction could be explained by the convolu-
tion filter being unsuitable for detecting very spontaneous and chroni-
cally isolated phenomena. Indeed, we only find one event of this type in 
the chronicle of Loire-Muides. 

8. Conclusion 

In this article, a multivariate modelling by a neural network encoder 
decoder the Hierarchical Attention-Based Recurrent Highway Networks 
Tao et al. (2016)is proposed for the prediction of 137Cs concentrations in 
SPM. This model extracts the maximum of information from past 
exogenous variable from river (water discharge, release and washout 
flux) with encoder part using convolution layer and recurrent layer 
(RHN) to generate a latent representation. A layer of Hierarchical 
Attention weighs the importance of this representation. Then the 
decoder part processes this representation with the past history of the 
target variable using an recurrent layer (RHN) for predict the future 
concentration of 137Cs. 

The model has been fully implemented on Python and the hyper-
parameters of the model were optimised using the custom HyperBand 
algorithm which allows to optimize the network architecture with the 
optimal length of the history. 

Once optimised, the model generates first results in agreement with 
the real concentration curves by correctly following the main trends on 
different rivers. 

The originality of this work lies in the fact that it is able to provide 
predictions for different hydrological system. In fact, the three explan-
atory variables retained (discharge data, release and washout flux) are 
the three major components influencing the concentration of 137Cs 
whatever the river studied (Eyrolle et al., 2020b).So the HRHN model 
has demonstrated its robustness by being applicable to several rivers 
(Loire and Rhone) and several geographical sites with a limited number 
of variables. Another DA-RNN encoder-decoder architecture was 
implemented to confirm the relevance of the HRHN architecture. But 
DA-RNN's spatial attention mechanism is less efficient than the con-
volutional layers. Better performance was obtained with HRHN on all 3 
systems. Finally, the sensitivity analysis should be improved to better 
capture the richness of the model. There are several ways of improving 
the model's predictions. The addition of covariates with information on 
tributaries could be an interesting possibility, as Lepage et al. (2023) has 
shown, the importance of information on tributaries, and more precisely 
the discharge. Furthermore, the calculation of the washout flux remains 
an estimate, and having values closer to the true values would probably 
improve the model. 
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K. Pelé et al.                                                                                                                                                                                                                                     

https://doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0100
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0100
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0100
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0105
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0105
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0105
https://doi.org/10.1016/j.jenvrad.2019.106025
https://doi.org/10.1111/j.1752-1688.1999.tb04182.x
https://doi.org/10.1111/j.1752-1688.1999.tb04182.x
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0120
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0120
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0120
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0125
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0125
https://doi.org/10.1007/s10967-006-0230-6
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0135
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0135
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0140
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0140
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0140
https://doi.org/10.1016/j.jenvrad.2023.107294
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0150
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0150
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0150
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0155
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0155
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0155
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0160
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0165
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0165
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0165
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0165
https://doi.org/10.1016/j.heliyon.2018.e00938
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0175
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0175
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0175
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0175
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0180
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0180
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0180
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0185
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0185
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0185
https://doi.org/10.1016/j.scitotenv.2006.12.037
https://doi.org/10.1016/j.scitotenv.2006.12.037
https://doi.org/10.1162/neco.1992.4.2.234
https://doi.org/10.1162/neco.1992.4.2.234
https://arxiv.org/abs/1805.09238
https://doi.org/10.1016/j.jenvrad.2021.106772
https://doi.org/10.2166/ws.2020.104
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0215
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0215
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0215
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0220
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0220
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1029/2000JD900719
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0230
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0230
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0235
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0235
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0235
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0235
https://doi.org/10.1016/j.jenvrad.2013.02.015
https://doi.org/10.1016/j.jenvrad.2013.02.015
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0245
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0245
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0245
https://doi.org/10.1016/j.ress.2015.05.018
https://doi.org/10.1016/j.ress.2015.05.018
https://doi.org/10.1587/transinf.2018EDP7330
https://doi.org/10.1587/transinf.2018EDP7330
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0260
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0260
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0260
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0260
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0265
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0265
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0270
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0270
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0270
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0270
https://doi.org/10.1109/icip.2017.8296359
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0280
http://refhub.elsevier.com/S1574-9541(24)00005-0/rf0280

	A neural network encoder-decoder for time series prediction: Application on 137Cs particulate concentrations in nuclearized ...
	1 Introduction
	2 Material and methods
	2.1 Presentation of the studied watersheds
	2.2 Variables of the three systems
	2.2.1 Suspended particulate matter data
	2.2.2 Water discharge data
	2.2.3 Release data
	2.2.4 Washout flux data
	2.2.5 Selected variable and transformation
	2.2.6 Problem formalisation and modelling choices


	3 Neural network for time serie prediction: Hierarchical attention-based Recurrent Highway Networks (HRHN)
	3.1 Architecture of HRHN

	4 Model optimization: Determination hyperparameters and parameter training
	4.1 Optimisation algorithm and experimental design
	4.1.1 Influence of the training base
	4.1.2 Influence of the size of the training base


	5 Sensitivity analysis
	6 DA-RNN (Dual-Stage Attention-Based Recurrent Neural Network)
	7 Results
	7.1 Reminder of comparison tools and metrics
	7.2 HRHN and DA-RNN results
	7.3 Discussion

	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


