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Generalized Portrait Quality Assessment
Nicolas Chahine, Sira Ferradans, Javier Vazquez-Corral, Jean Ponce

Abstract—Automated and robust portrait quality assessment
(PQA) is of paramount importance in high-impact applications
such as smartphone photography. This paper presents FHIQA,
a learning-based approach to PQA that introduces a simple
but effective quality score rescaling method based on image
semantics, to enhance the precision of fine-grained image quality
metrics while ensuring robust generalization to various scene
settings beyond the training dataset. The proposed approach is
validated by extensive experiments on the PIQ23 benchmark and
comparisons with the current state of the art. The source code
of FHIQA will be made publicly available on the PIQ23 GitHub
repository at https://github.com/DXOMARK-Research/PIQ2023.

Index Terms—Blind image quality assessment, Portrait quality
assessment, Deep learning.

I. INTRODUCTION

SMARTPHONES have significantly altered the landscape
of photographic practices, with a notable emphasis on por-

trait photography. As the consumer base becomes increasingly
discerning, there is a clear escalation in expectations regarding
the quality of portrait images. This trend pushes a correspond-
ing advancement in camera technology driving manufacturers
to focus on improving image quality, which usually involves
developing costly image quality assessment (IQA) protocols
for optimizing camera performance. Consequently, automated
IQA methods are employed to cut the cost of smartphone
camera tuning.

Traditional IQA [11, 16, 17, 19] offers relevant insights
about image quality but often doesn’t capture the complexities
of modern camera systems and weakly correlates with human
perception [2]. Deep learning-based IQA has emerged as a
promising alternative leveraging the widespread availability
of modern smartphone images and image quality datasets.
Popular datasets like LIVE [19], CSIQ [11], and TID [16,
17] present a large amount of synthetically distorted images,
but they don’t encapsulate the multifaceted nature of modern
smartphone camera systems. “In-the-wild” collections, includ-
ing LIVE Challenge [4], KonIQ-10k [6], and PaQ-2-PiQ [23],
offer a better representation of real-world conditions, but their
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Fig. 1. Diagram of FULL-HyperIQA (FHIQA). The figure illustrates how
FHIQA processes input images, extracts semantic information, and adapts the
quality prediction based on scene-specific evaluations.

uncontrolled data collection and subjective labeling make them
less suited for rigorous digital camera evaluations. Recently,
datasets such as PIQ23 [1] have emerged, offering a setting
tailored to portrait photography including diverse scenes, each
independently annotated by image quality experts. The PIQ23
dataset is crafted to achieve high precision in annotations by
employing two key strategies: a) utilizing pairwise compar-
isons for image annotation, a method known for enhancing
consistency in IQA experiments [12, 15]; and b) categorizing
images by content into distinct scenes to harness the human
visual system’s precision when evaluating images with shared
content. Notably, the PIQ23 dataset distinguishes itself with
a comprehensive array of portrait images sourced from over
100 smartphone models, encompassing 50 varied scenarios
that represent a wide range of photographic conditions.

Blind IQA (BIQA) has gained significant interest in recent
years, as it offers universal metrics for quality assessment
without the need for pristine reference images, often scarce
in practical photography scenarios. BIQA methods, based on
convolutional neural networks (CNN) [8, 10, 25], have shown
marked improvements over their classical counterparts, due to
their ability to extract perceptual quality information [5, 13,
14, 18, 22]. However, many existing BIQA methods exhibit
limitations in capturing scene-specific semantics, often treating
diverse scenes with a one-size-fits-all approach. Given that
image quality is inherently subjective and varies under differ-
ent conditions, numerous studies underscore the significance
of integrating semantic information into the assessment of
image quality, tackling a challenge known as domain shift
[21, 24, 26, 27]. This is often achieved through a semantics-
aware multitasking framework [1, 2, 3, 7, 20]. Moreover, the
variability of quality scales across IQA datasets introduces
ambiguities, complicating the aggregation of IQA insights. As
a result, most BIQA methods struggle to generalize to new
conditions, underscoring a critical challenge in cross-domain

https://github.com/DXOMARK-Research/PIQ2023


2

image quality evaluations.
In tackling the limitations of current BIQA methodolo-

gies, such as combining IQA knowledge and limitations on
generalization, this work presents FULL-HyperIQA (FHIQA),
an advancement over prior HyperNetwork models ([20, 1]).
FHIQA not only considers scene-specific semantics in predict-
ing image quality but also merges knowledge across various
scenes for improved generalization. This approach offers a
context-aware IQA method, better suited to adapting to new,
unfamiliar conditions.

Our contribution is a new BIQA model, FHIQA, focusing
on, a) precision in quality metrics, meaning, the capacity
to generate highly granular results thus enabling the differ-
entiation of closely matched cameras; and b) generality by
extending the scope of previous work to tackle image content
(scenes) not encountered during training. Our comprehensive
tests on a newly introduced PIQ23 test split demonstrate
FHIQA’s enhanced generalization capabilities over existing
BIQA benchmarks.

II. METHOD

We present FULL-HyperIQA (Fig. 1), an enhanced version
of SEM-HyperIQA [1], with a specific focus on adapting to
scenes not encountered during training.

a) Scene-specific rescaling: SEM-HyperIQA combines
the HyperIQA architecture [20], which integrates semantic
information, with multitasking, which allows scene-specific
quality score rescaling. Semantic features from multiple ran-
dom crops are concatenated and fed to a multi-layer perceptron
(MLP) that predicts the scene category for the image (s).
Then, the predicted category is passed to a smaller MLP that
predicts a multiplier asi and offset bsi to adapt the predicted
quality score of each patch, qi, to its respective scene quality
scale, such as q̂si = asi qi+ bsi , where q̂si is the rescaled quality
score of patch i. The final image quality score is computed by
averaging the individual patch scores. This approach provides
a good basis for solving the problem of domain shift and
scene-specific rescaling. However, SEM-HyperIQA does not
explicitly allow generalization to new scenes, since it relies
on predicting a single category for each image, supposing we
only use images from known scenes.

b) Understanding new content: The novelty of FHIQA
lies in its approach to quality score rescaling. Instead of
adjusting the final score based solely on the scene predicted for
the image, FHIQA utilizes the entire scene prediction vector.
This vector can be interpreted as the set of coordinates in
the vectorial space of scenes defined in the training set. The
coordinate (or weight) of each scene indicates how similar
the input is to that scene. For the scenes of the training set,
the input image is assigned a one-hot vector corresponding
to that scene (Os in Fig. 1). During training, the model is
trained to predict the scene in the image and to align the
predicted pre-quality score (Qp ∈ R in Fig. 1) with the scene
scale, by passing the predicted classification vector as input
to the rescaling layer. The only difference is that we split the
predicted classification vector into separate one-hot encodings
and then rescale the pre-quality score on each of the training

scenes. The final quality score is obtained by weighting the
rescaled scores with the predicted classification vector. Finally,
our main concern is to generalize the quality predictions to
scene categories that were not included in the training set. We
hypothesize that the information needed for this is naturally
encoded in the class prediction weights. In short, if the scene
classification vector considers an input image to be closer to
one scene category, its quality score should also be closer to
that category. Mathematically, we can define our hypothesis
as follows:

Qf =

∑k
i=1 Psi(a

s
iQp + bsi )∑k

j=1 Psj

, where (1)

• Qf is the final quality score for the input image.
• Psi denotes the weight that the input image belongs to

scene si.
• asi and bsi are the multiplier and offset, respectively, for

the scene si.
• Qp is the pre-quality score predicted by the fully con-

nected layer.
To optimize this approach, instead of considering all scenes,
only the top k scenes are considered. The weights are then
normalized, and a weighted average is taken based on these
top k scenes to produce the final quality score for the input
image.

III. DATASET

Since our work focuses on portrait quality assessment, we
have chosen to evaluate our model on PIQ23 [1]. Portrait pho-
tography captures the essence of human emotions, expressions,
and individual characteristics, presenting unique challenges
in the domain of image quality assessment. Recognizing the
need for a specialized benchmarking tool, PIQ23 [1] has been
introduced as a dataset aimed at a more subtle evaluation
of IQA models within the context of portrait photography.
Benchmarking against PIQ23 ensures a comprehensive and
representative evaluation of real-world scenarios for smart-
phone portrait photography. A significant challenge in IQA is
the model’s ability to generalize to multiple scenes, especially
those not encountered during training. To rigorously evaluate
this aspect, we have carefully chosen 15 out of 50 scenes
featured in PIQ23 for testing, and the rest for training. This
selection accounts for approximately 30% of the total images,
uniformly distributed across the different lighting conditions,
encompassing around 1486 out of the 5116 images of PIQ23.
During the scene selection process, we ensured that both sets
captured a rich blend of conditions, i.e., framing, lighting, and
skin tones (Fig. 2).

IV. EXPERIMENTS

A. Baselines methods

We have compared FHIQA with several well-known BIQA
models: DB-CNN [25], HyperIQA [20], MUSIQ [9], and
SEM-HyperIQA [1]. Using their official implementations, we
have fine-tuned these models on the PIQ23 dataset. DB-CNN
and two MUSIQ models were initially trained on the LIVE



3

Fig. 2. Examples from the new scene split for PIQ23. The test set incorporates various framing settings, backgrounds, subject characteristics, and weather
conditions that are significantly distinct from the training set.

Challenge, KonIQ-10k, and PaQ-2-PiQ datasets, respectively.
For all HyperIQA variants, only the Resnet50 backbone was
pre-trained on ImageNet without any subsequent IQA pre-
training. Due to HyperIQA’s input size constraint of 224x224,
we had to modify its architecture to handle resolutions that
are multiples of 224 to be able to train on larger images.

B. Training strategy

We test different training configurations for all the proposed
methods and report the best results. Specifically, we randomly
crop the images to square patches of one of the three following
sizes: 224 (5 patches per image), 672 (3 patches), and 1344
(1 patch). We use Adam stochastic optimization with different
learning rates between 10−6 and 10−4. For HyperIQA, SEM-
HyperIQA, and FHIQA, we adopt different learning rates per
module. For instance, we apply a smaller learning rate for
the Resnet50 backbone compared to the hypernetwork, the
rescaling, and the classification blocks. We fix the training for
300 epochs and adopt a learning rate decay factor of 0.05 for
every 10 epochs. For FHIQA, we experimented with different
values of k (the number of scenes utilized), including 3, 5,
10, and 25. We use early stopping with a patience of 40
epochs. Finally, we use Huber loss for the quality output and
cross-entropy loss for the classification output of multitasking
models. For the latter models, we apply a weighted sum of
losses with a weight of 0.5 for the classification loss and 1.0
for the quality loss.

C. Metrics

To evaluate the performance, we compute Pearson’s linear
correlation coefficient (PLCC), Spearman’s rank correlation
coefficient (SRCC), Kendal’s rank correlation (KRCC), the
averaged correlations, and the mean absolute error (MAE)
between the model outputs and the ground-truth scores. In the
PIQ23 dataset, each scene is annotated individually, thus qual-
ity scores cannot be merged. Therefore, we calculate metrics
for each scene separately. The aggregate performance across
all scenes for a given metric is determined by the median,

MMed = M
(
s
2 )

where s denotes the total number of scenes, and
M(i) represents the i-th smallest scene metric value among the
sorted scenes. For the early stopping, we evaluate our models
on their SRCC performance. It is noteworthy that achieving
a high SRCC doesn’t necessarily correlate with other metrics.
For future works, we might indeed benefit from considering
a mix of metrics for early stopping, as small variations in
correlation might arise due to a variety of factors, such as the
number of images for each scene, score distribution, etc.

D. Results

The results presented in Tab. I and Fig. 3 offer several
significant insights. A deep look into the performance metrics
reveals that FHIQA is consistently competitive across the
different attributes. It stands out and outperforms other models
for “Overall”, demonstrating its comprehensive assessment
capabilities and semantic understanding. Specifically, for the
“Overall” attribute, we utilize the entire image, in contrast to
other attributes where the evaluation is confined solely to the
face region. Therefore, where semantic understanding matters
the most, FHIQA proves that it can adapt the knowledge from
the training set to generalize to new conditions. Furthermore,
when looking at the three attributes altogether, our model
is best in 7 out of 15 cases and second best in 6 others.
On the one hand, where other HyperIQA variants perform
consistently worse, FHIQA stands out as a better solution for
generalization, even when compared to MUSIQ, which is pre-
trained on IQA datasets. On the other hand, MUSIQ variants
also display compelling performances. The PaQ-2-PiQ pre-
trained variant dominates in “Exposure”. In contrast, DB-CNN
doesn’t fare as well as the other models. In summary, while
different models exhibit strengths in specific areas, FHIQA,
with no prior IQA pre-training, stands out, emphasizing its
generalization and contextual assessment capabilities across a
diverse range of attributes and conditions.

E. Understanding new content

Fig. 4 illustrates the distribution of FHIQA’s predicted
classes for unfamiliar conditions. These distributions highlight



4

TABLE I
PERFORMANCE METRICS OF VARIOUS IQA MODELS ON PIQ23. THE RESULTS ARE PRESENTED AS THE MEDIAN ACROSS SCENES FOR EACH METRIC.

Model\Attribute
Overall Exposure Details

SRCC PLCC KRCC MAE SRCC PLCC KRCC MAE SRCC PLCC KRCC MAE

DB-CNN (LIVE C) 0.59 0.64 0.43 1.04 0.69 0.69 0.51 0.91 0.59 0.51 0.45 0.99
MUSIQ (KonIQ-10k) 0.76 0.75 0.57 0.95 0.74 0.70 0.55 0.93 0.71 0.67 0.52 0.88
MUSIQ (PaQ-2-PiQ) 0.74 0.74 0.54 1.09 0.79 0.78 0.59 0.87 0.72 0.77 0.53 0.90
HyperIQA* 0.74 0.74 0.55 0.99 0.69 0.68 0.50 0.86 0.70 0.67 0.50 0.94
SEM-HyperIQA* 0.75 0.75 0.56 1.03 0.72 0.70 0.53 0.97 0.73 0.65 0.55 0.88
SEM-HyperIQA-CO* 0.74 0.74 0.55 1.04 0.70 0.70 0.52 0.94 0.75 0.71 0.55 0.85
FULL-HyperIQA* 0.78 0.78 0.59 1.12 0.76 0.71 0.57 0.85 0.74 0.72 0.55 0.80
*ImageNet, backbone only; best; second best.

Fig. 3. Comparative analysis of IQA models based on the averaged correlation metrics distribution across all scenes and for the three attributes of PIQ23.

Fig. 4. Histograms showing the classification distribution across training scenes for various unseen testing conditions. The same testing scene can be projected
to multiple training scenes with similar features, showcasing the necessity to consider multiple scenes for inference on new conditions.

the significance of semantic discovery when generalizing an
IQA measure for unseen content. For instance, scene 17
depicts a man at his computer desk in a lowlight setting.
The model projects this scene onto related contexts like desk
scenes, library settings, and other lowlight scenarios. FHIQA
leverages these diverse classification distributions to derive a
quality assessment that integrates various content perspectives,
rather than restricting itself to a singular scene or content. This
approach recognizes the pivotal role of scene semantics in
determining image quality. The model’s robust performance
across all attributes —particularly its standout results on
“Overall”— points to the need for future IQA models to offer
content-specific evaluations that are both precise and nuanced.

V. CONCLUSION

In this paper, we have introduced Full-HyperIQA (FHIQA),
a novel BIQA method focused on scene generalization. We

hypothesize that the information needed for generalization is
naturally encoded in the class prediction weights and that
the quality of unfamiliar conditions can be extracted based
on similar conditions in the training set. Our model obtains
competitive or top performance on all attributes of PIQ23,
demonstrating the effectiveness of our approach. This paper
underscores the pivotal role of semantic understanding in
achieving effective generalization for image quality assess-
ment, particularly in portrait scenarios. We advocate for the
IQA community to move towards content-specific evaluations,
especially in the field of smartphone photography, with the
emergence of AI-driven image enhancement, which challenges
the traditional IQA methodologies. FHIQA represents a step
in this direction, setting the stage for future IQA models that
can adapt to varied scenarios and quality criteria.
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