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FIXATION FOR U-ISING AND U-VOTER DYNAMICS WITH FROZEN VERTICES

LAURE MARÊCHÉ

Abstract. The zero-temperature stochastic Ising model is a special case of the famous stochastic Ising model of sta-
tistical mechanics, and the voter model is another classical model in this field. In both models, each vertex of the graph
Zd can have one of two states, and can change state to match the state of its neighbors. In 2017, Morris [20] proposed
generalizations of these models, the U-Ising and U-voter dynamics, in which a vertex can change state to match the state
of certain subsets of vertices near it. These generalizations were inspired by similar generalizations in the related model
of bootstrap percolation, where Balister, Bollobás, Duminil-Copin, Morris, Przykucki, Smith and Uzzell [5, 7, 8] were
able to establish a very impressive universality classification of the generalized models. However, there have been very
few results on the U-Ising and U-voter dynamics. The only one is due to Blanquicett [6], who obtained a few encouraging
advances on the important question of fixation, which is only partially solved for the zero-temperature stochastic Ising
model: will all vertices eventually settle on a given state or will them oscillate forever between the two states? In this
work, we tackle a question which was solved for the zero-temperature stochastic Ising model by Damron, Eckner, Kogan,
Newman and Sidoravicius [11]: fixation when a fraction of the vertices of Zd are frozen in one of the states. For d = 1
and 2, in most cases we prove that if all frozen vertices are in the same state, all vertices eventually settle at this state.
Moreover, if vertices can be frozen in both states but the proportion of vertices frozen in the second state is small enough,
we were able to establish a universality classification identifying the models in which all vertices settle in a given state.

MSC2020: Primary 60K35; Secondary 82C20, 82C22, 60J27.
Keywords: U-Ising dynamics, U-voter dynamics, fixation, frozen vertices, universality classification, zero-temperature
stochastic Ising model, voter model, bootstrap percolation.

1. Introduction

The voter model is a statistical mechanics model introduced by Holley and Liggett in [16], which can represent the
evolution of the opinion of a population of individuals which are influenced by their neighbors, and tend to change
their opinion to agree with them. In the most basic form of the voter model, individuals are represented by vertices
of the graph Zd, d ∈ N∗, called sites. Each site can have one of two opinions, called states, which we denote by + and
−, and each site, at rate 1, chooses randomly the state of one of its 2d neighbors and adopts it. This model is simple,
yet interesting, and it received a lot of attention (see [18], especially the Notes and References part).

A closely related model is the zero-temperature stochastic Ising model, a special case of the famous stochastic Ising
model, which describes the behavior of a magnetic material. In the zero-temperature stochastic Ising model, each
vertex of Zd can be either at state + or at state −, and tries to agree with its neighbors, but the dynamics is different.
A site will change state at rate 1 if more than d of its neighbors have the opposite state, at rate 1/2 if exactly d of its
neighbors have the opposite state, and will never change state otherwise. This model was also studied a lot (see the
review in Section 5 of [20], as well as [17] and the references within it).

One of the most important questions about the zero-temperature stochastic Ising model is that of fixation. For
a given site, is there a time after which it remains forever in state + (or −), in which case we say it fixates at +
(respectively at −) at this time? Or is there always a later time at which the site changes state, in which case it
is called a flipper? If all vertices are initially independently at + with some probability p ∈ (0, 1), in dimension 1
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the results of Arratia [1] prove that almost surely all sites are flippers. However, in higher dimension, the problem is
harder. It is conjectured that for d ≥ 2, if p = 1/2 almost surely all sites are flippers, and if p > 1/2 almost surely
all sites fixate at + (since the model is symmetric, this would imply that for p < 1/2 almost surely all sites fixate at
−), but this conjecture is far from proven. Almost sure fixation at + for all sites was only proven for p close to 1, by
Fontes, Schonmann and Sidoravicius [13], and the fact that almost surely all sites are flippers for p = 1/2 was proven
only in dimension 2, by Nanda, Newman and Stein [21].

In order to understand better the zero-temperature stochastic Ising model, Chalupa, Leath and Reich [10] introduced
another model they called bootstrap percolation. In bootstrap percolation, any site of Zd can be either healthy or
infected, infected sites ramain infected, and a healthy site becomes infected when it has at least a given number r of
infected neighbors. Bootstrap percolation is very helpful in the study of the zero-temperature stochastic Ising model,
because it can be seen that the vertices that can be put at + in the latter are those that can be infected by the former
when r = d and the initial infected sites are the sites initially at +. Bootstrap percolation turned out to be very
interesting in itself, and a lot of work was done on it (see Sections 2 to 4 of [20] for a review).

A natural generalization of bootstrap percolation is the following, often called U-bootstrap percolation. An update
family on Zd will be a collection U = {X1, ..., Xm} such that m ∈ N∗ and for each i ∈ {1, ...,m}, Xi is a finite
nonempty subset of Zd \ {0}. The Xi, i ∈ {1, ...,m} are called update rules. Let U be such an update family, it allows
us to define the following U-bootstrap percolation dynamics. Each site of Zd can still be either healthy or infected,
and sites change state in discrete time according to the following rules: for each t ∈ N∗, a site that was infected at
time t − 1 remains infected at time t, and a site x that was healthy at time t − 1 is infected at time t if and only if
there exists X ∈ U so that all sites of x+X were infected at time t− 1. The bootstrap percolation with r neighbors
is the U-bootstrap percolation dynamics corresponding to U = {sets of r neighbors of the origin}.

The diversity of the possible update families makes U-bootstrap percolation hard to study. However, Balister,
Bollobás, Duminil-Copin, Morris, Przykucki, Smith and Uzzell, in their impressive works [5, 7, 8], were able to
establish a universality classification of the two-dimensional update families, dividing them into supercritical, critical
and subcritical families and characterizing the behavior of U-bootstrap percolation for each class of update families.
Later, Balister, Bollobás, Hartarsky, Morris, Smith and Szabó [2, 3, 4, 15] proved a similar classification in higher
dimension. The update family corresponding to the bootstrap percolation with d neighbors, hence to the classical
zero-temperature stochastic Ising model, belongs to the critical class.

In light of this understanding of U-bootstrap percolation, Morris [19] introduced generalizations of the voter model
and of the zero-temperature stochastic Ising model in the spirit of U-bootstrap percolation, called U-voter dynamics
and U-Ising dynamics. These models are Markov continuous-time dynamics in which each vertex of Zd can be either
in state + or in state −. Independently for each x ∈ Zd, we consider a Poisson point process with intensity 1, called
the clock at x. When the clock at x has a point at some t, we say the clock at x rings at time t. The U-Ising dynamics
is then defined as follows (the definition introduced in [19] was slightly different, but it is equivalent): for each x ∈ Zd,
when the clock at x rings, if there exists X ∈ U so that all sites in x +X have the state opposite to the state of x,
then x flips its state to agree with them; otherwise, nothing happens. The U-voter dynamics is defined thus: for each
x ∈ Zd, when the clock at x rings, an update rule X ∈ U is chosen uniformly at random. If all sites in x+X are in
the same state and disagree with the state of x, x changes its state to agree with them, otherwise nothing happens.
The fact that these dynamics are well defined is not obvious, but is classical, and one can use the arguments in part
4.3 of [22] to prove it.

The question of fixation in the U-Ising and U-voter dynamics was asked by Morris in [19], but even less is known
about it than about fixation in the classical zero-temperature stochastic Ising model. The only work in this direction
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is that of Blanquicett [6], which showed that for some two-dimensional critical update families, if sites are initially
independently at + with a probability close enough to 1, then almost surely all sites fixate at +. Obtaining results
about fixation for all update families is expected to be even harder than for the classical zero-temperature stochastic
Ising model.

In this paper, we tackle a fixation problem which was solved for the zero-temperature stochastic Ising model and
study it for the U-Ising and U-voter dynamics. This question is that of fixation with frozen vertices. A dynamics with
frozen vertices is defined as follows. Let ρ+, ρ− ≥ 0 be so that ρ++ρ− < 1. Sites of Zd will independently be frozen at
+ with probability ρ+, frozen at − with probability ρ−, and unfrozen with probability 1− ρ+ − ρ−. The initial states
of the unfrozen sites are then defined according to a distribution µ, which may depend on the choice of the frozen
vertices. The dynamics is then run as explained above, with clocks and choices of update rules independent from the
choice of frozen vertices and the initial states, with the difference that frozen vertices cannot change state and always
remain in the state they are frozen at.

The classical zero-temperature stochastic Ising model with frozen vertices on Zd was studied by Damron, Eckner,
Kogan, Newman and Sidoravicius in [11] (see also [12], where a dynamics with a single frozen vertex is considered).
They proved that if ρ+ > 0 and ρ− = 0 (no sites frozen at −), even if the probability that a site is frozen at + is very
small and for any initial states of the unfrozen sites, almost surely all sites fixate at +. They also showed that for any
ρ+ > 0, if ρ− is small enough, the connected components of sites that do not fixate at + (that is flippers and sites
that fixate at −) are almost surely finite. This is in contrast with the dynamics without frozen vertices, for which [13]
implies that all sites fixate at − if the initial probability that a site is frozen at + is small enough.

In this work, we generalize the results of [11] and improve on them in both the U-Ising and the U-voter dynamics. In
the two-dimensional case, we managed to extend the findings not only to the class of dynamics which can be expected
to behave like the classical zero-temperature stochastic Ising model, that is those with critical update families, but
also to all those with subcritical update families and some with supercritical update families. We first prove that if
ρ− = 0, almost surely all sites fixate at + (Theorem 5). Moreover, we show that if ρ− is small enough, there exists a
deterministic time so that sites that have not fixated at + at this time form finite connected components (Theorem 7).
This result is new even for the classical zero-temperature stochastic Ising model, and highlights the difference with the
dynamics without frozen sites, since Camia, De Santis and Newman [9] proved that for the zero-temperature stochastic
Ising model without frozen sites, at any time the connected components of + are finite almost surely. Finally, we
study the possible existence of flippers. In the zero-temperature stochastic Ising model, if ρ− > 0 it is not hard to
see, as [11] did, that there is almost surely an infinite number of flippers. However, this is not the case for all update
families. We were able to establish a universality classification sorting the update families into two classes so that if
the update family belongs to the first class there is almost surely an infinite number of flippers, but if it belongs to
the second class, when ρ− > 0 is small enough, almost surely there is no flipper (Theorem 9). We also deal with the
one-dimensional case, which is simpler but not trivial, and prove similar results (Theorems 2 and 3).

The proofs rely partly on the important idea already present in [11] that if a suitably chosen polygon has sites
frozen at + around its corners, once the polygon is filled with + by the dynamics, all the vertices inside have fixated
at +. However, this only works for non-supercritical update families, and even then the implementation of this idea
is notably more difficult and technical that in [11] because of the great variety of the update families. Dealing with
supercritical update families and proving there are no flippers for a portion of the update families requires entirely
novel arguments, outlined in Section 2.3.

This work unfolds as follows. We begin in Section 2 by giving more notation, stating the results and sketching the
proofs. Section 3 contains the construction of the polygons used for the non-supercritical update families. In Section
4, we prove that the probability a given region of Z2 is susceptible of fixating easily at + is high. In Section 5 we show
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our fixation results in the two-dimensional case (Theorems 5 and 7). In Section 6 we determine which two-dimensional
update families exhibit flippers (Theorem 9). Finally, in Section 7 we deal with the one-dimensional case (Theorems
2 and 3).

2. Notation and results

Since the one-dimensional case is the simplest one, we begin by spelling out our results for this case, in Subsection
2.1. We then state our two-dimensional results in Subsection 2.2. In Subsection 2.3, we give an outilne of our proofs.
Finally, in Subsection 2.4 we gather some notation that will be used throughout the paper.

2.1. One-dimensional case. This case is much simpler than the two-dimensional one, but it still demands some
arguments. One first needs to see the connection between the U-Ising and U-voter dynamics and the U-bootstrap
percolation with the same update family. One can see by recursion that each site that can be at state + at some time
in the U-Ising or U-voter dynamics can be infected by the U-bootstrap percolation with initially infected sites the sites
initially at state +. Indeed, if a site x switches its state to +, there is an update rule X so that the sites of x + X
were at + before the switch. Therefore, for fixation at + to be possible for all sites of Z, this U-bootstrap percolation
process must be able to infect all sites in Z, and this depends on the properties of the update family. One-dimensional
update families are classified as follows.

Definition 1. A one-dimensional update family U is called
• supercritical if there exists X ∈ U so that X ⊂ N∗ or X ⊂ −N∗;
• subcritical otherwise.

If the update family is subcritical, the U-bootstrap percolation process is unable to infect all sites of Z, since when
we have a large interval of initially healthy sites, no site of this interval can be infected. Consequently, for subcritical
update families, the U-Ising and the U-voter dynamics will be unable to put at + all sites of Z. We thus study fixation
at + only for supercritical update families. If there are no sites frozen at −, we were able to prove that fixation at +
occurs for all sites of Z, which is the following result.

Theorem 2. If U is a supercritical one-dimensional update family, in the U-Ising and the U-voter dynamics, if
0 < ρ+ < 1 and ρ− = 0, for any choice of initial distribution µ, almost surely all sites fixate at +.

If there are sites frozen at −, one cannot expect fixation at + for all sites of Z. However, it is not a priori obvious
whether there will be flippers that change state an infinite number of times, or if all sites end up fixating either at +
or at −. This actually depends on the update family, and we were able to show the following universality classification
which describes the possible behaviors and is valid for both subcritical and supercritical update families.

Theorem 3. If U is a one-dimensional update family, in the U-Ising and the U-voter dynamics, if 0 < ρ+ < 1 and
0 < ρ− < 1− ρ+, for any choice of initial distribution µ, there are two possible cases:

• if U contains two disjoint update rules, almost surely there is an infinite number of flippers;
• if U contains no disjoint update rules, almost surely there is no flipper.

2.2. Two-dimensional case. This case is much more complex than the one-dimensional case, in part because update
families are more diverse. In order to state our results, we need to explain the classification of the two-dimensional
update families introduced in [8] by Bollobás, Smith and Uzzell. Let U be an update family on Z2. We denote ⟨·, ·⟩
the scalar product on R2. For any direction u ∈ S1, for any a ∈ R, we define Hu = {x ∈ R2 : ⟨x, u⟩ < 0} as the open
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•
•

×0

{(−1, 0), (−1, 1)}

•
•

×0

{(−1, 0), (−1,−1)}

Figure 1. A two-dimensional supercritical update family with no disjoint update rules: U =
{{(−1, 0), (−1, 1)}, {(−1, 0), (−1,−1)}}. The bullets represent the sites contained in the update rules.

half-plane opposed to u. We say u is a stable direction for U when there exists no X ∈ U so that X ⊂ Hu; otherwise
u is called unstable. We then have the following.

Definition 4. The update family U on Z2 is called
• supercritical if there exists an open semicircle of unstable directions;
• critical if it is not supercritical, but there exists a semicircle containing a finite number of stable directions;
• subcritical otherwise.

As in the one-dimensional case, a site can be put at + by the U-Ising or the U-voter dynamics only if it can be
infected in the U-bootstrap percolation with initially infected sites the sites initially at +. Moreover, it was proven
in [5] by Balister, Bollobás, Przykucki and Smith that if U is subcritical, there exists qc(U) > 0 so that if sites are
initially independently infected with probability q < qc(U), then the U-bootstrap percolation is unable to infect all
sites of Z2. Therefore we do not study subcritical models if the probability ρ+ that a site is frozen at + is smaller
than qc(U). Actually, technical reasons prevent us to prove our results for all ρ+ > qc(U), so, like many results for
subcritical update families, ours will hold for ρ+ > q̃c(U), where q̃c(U) ≥ qc(U) was introduced by Hartarsky in [14]
and is conjectured to be equal to qc(U) (its exact definition can be found in equation (4) of [14]). When there are no
sites frozen at −, we have the following result of fixation at + for all sites of Z2.

Theorem 5. Let U be a two-dimensional update family. In the U-Ising and the U-voter dynamics, if one of the
following holds: U is supercritical, contains no disjoint update rules and 0 < ρ+ < 1, or U is critical and 0 < ρ+ < 1,
or U is subcritical and q̃c(U) < ρ+ < 1, then if ρ− = 0, for any choice of initial distribution µ, almost surely all sites
fixate at +.

Remark 6. There are a number of non-trivial supercritical update families with no disjoint update rules, for example
U = {{(−1, 0), (−1, 1)}, {(−1, 0), (−1,−1)}} (see Figure 1). For the other class of supercritical update families, those
containing two disjoint update rules, it is not clear whether fixation occurs. Indeed, as proven in Section 5.3 of [8],
one can find a finite set of sites which, if initially infected, allows the U-bootstrap percolation dynamics to propagate
the infection to an infinite number of sites. Therefore, even if there is only a finite set of sites at − in the U-Ising or
the U-voter dynamics, this dynamics can potentially propagate the − to an unlimited number of sites, by switching
to − the sites that get infected in the order they get infected (see Remark 13 for a more detailed construction).

Except when mentioned otherwise, connectedness will be connectedness for the usual graph structure of Z2. When
the probability ρ− that a site is frozen at − is small, we were able to prove the existence of a deterministic time after
which the connected components of sites that have not yet fixated at + are finite.

Theorem 7. Let U be a two-dimensional update family. In the U-Ising and the U-voter dynamics, if one of the
following holds: U is supercritical, contains no disjoint update rules and 0 < ρ+ < 1, or U is critical and 0 < ρ+ < 1,
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or U is subcritical and q̃c(U) < ρ+ < 1, then there exists ρ−0 = ρ−0 (U , ρ+) > 0 so that for any 0 ≤ ρ− ≤ ρ−0 , for any
choice of initial distribution µ, there exists a deterministic time T = T (U , ρ+) < +∞ such that almost surely for any
t ≥ T , the connected components of sites that have not fixated at + at time t are finite.

Remark 8. This cannot hold in the one-dimensional setting, since a single − is enough to break the connexity, and for
any time there is a positive probability that a site initially at − has not yet received a clock ring allowing it to switch
to + before this time.

Theorem 7 means that “most” sites fixate at +, but does not imply all sites fixate at +. If ρ− > 0, we can expect
some sites not to fixate at +, but it is not obvious whether there will be flippers. We were able to answer this question
and to establish a universality classification of the update families describing the possible behaviors, which is the
following.

Theorem 9. Let U be a two-dimensional update family. In the U-Ising and the U-voter dynamics, if one of the
following holds: U is supercritical, contains no disjoint update rules and 0 < ρ+ < 1, or U is critical and 0 < ρ+ < 1,
or U is subcritical and q̃c(U) < ρ+ < 1, then for 0 < ρ− ≤ ρ−0 , for any choice of initial distribution µ, there are two
possible cases:

• if U contains two disjoint update rules, almost surely there is an infinite number of flippers;
• if U contains no disjoint update rules, almost surely there is no flipper.

Remark 10. The U-Ising and U-voter dynamics are symmetric with respect to + and −, therefore similar theorems
hold with the roles of + and − reversed.

Remark 11. The results of [11] for fixation in the classical zero-temperature stochastic Ising model with frozen vertices
are also valid in dimension d ≥ 3, and a universality classification was proved for U-bootstrap percolation in dimension
d ≥ 3, by Balister, Bollobás, Hartarsky, Morris, Smith and Szabó [2, 3, 4, 15]. As in the two-dimensional case, update
families are sorted according to the structure of the set of their stable directions, which are defined similarly, but
with half-spaces instead of half-planes. Despite this, our arguments cannot be extended to higher dimension, even for
update families in the same class as that of the classical zero-temperature stochastic Ising model. Let us explain why
in the three-dimensional case. In this case, the update family corresponding to the zero-temperature stochastic Ising
model is U = {sets of 3 neighbors of the origin}. For this update family, a cube filled with + whose corners are frozen
at + has fixated at +, and this fact is the core of the argument of [11]. However, if one adds to this update family the
update rule {(1,−1, 0), (−1, 1, 0)}, then the set of stable directions remains the same, but one can see that the sites
on the vertical edge of the cube with maximal abscissa and ordinate may switch to − even if the cube is filled with
+. Therefore even complete knowledge of the set of stable directions is not enough. This suggests that the question
of fixation in higher dimension may be much more complex than in the two-dimensional case.

2.3. Outline of the proofs. We first explain the arguments used for the two-dimensional case. Their cornerstone is
finding regions of Z2 so that once the dynamics fills the region by chance, all sites in the region have fixated at +. For
the classical zero-temperature stochastic Ising model, this was accomplished in [11] by noticing that if a square has its
four corners frozen at +, once the square is filled with +, all its sites have fixated at +. We extend this idea not only
to critical update families (the class corresponding to the classical zero-temperature stochastic Ising model), but also
to subcritical update families, by constructing a polygon such that if its “enlarged corners” are made of sites frozen at
+, once the polygon is filled with +, all its sites have fixated at +. This is done in Section 3. For supercritical update
families, it is impossible to construct such a polygon (see Remark 13), hence we need a new mechanism. For this, we
notice that if there are no disjoint update rules, when a site x is put at +, there exists X ∈ U so that x+X is made
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of sites at +. As long as x + X is at +, for any X ′ ∈ U , since X and X ′ are not disjoint, x + X ′ contains at least
a site of x +X, so x +X ′ is not entirely at −, thus x cannot be put at − before one of the + of x +X disappears.
Therefore a site x that is put at + thanks to sites x+X frozen or fixated at + will fixate at +, and fixation at + will
propagate from the frozen sites. Thanks to these arguments, if the configuration of frozen sites is favorable, we can
construct regions whose sites fixate at +.

This will allow us to prove our fixation results, which is done in Section 5. Indeed, we can show that the probability
that the configuration of frozen sites is favorable is so high (Proposition 16) that most of Z2 will be favorable. Most
of Z2 thus fixates rather quickly, which allows to find a deterministic time T such that the connected components of
sites that have not fixated at + at time T are finite, which is Theorem 7. We even obtain a slightly stronger result
(Theorem 18), which yields that after time T , the dynamics only evolves on finite connected components isolated from
each other by sites that have fixated at +. If ρ− = 0, once by chance the dynamics has filled one of these components
with +, none of its sites can ever filp to − anymore, which allows to prove almost sure fixation at + for all sites
(Theorem 5).

Proving Theorem 9 about the existence of flippers requires an additional novel argument, given in Section 6. If
there are two disjoint update rules X and X ′ and if ρ− > 0, it is easy to see there will be an infinite number of
flippers, since a site x with x+X frozen at + and x+X ′ frozen at − will be a flipper. However, proving that there is
no flipper if there are no disjoint update rules is more complex. To do this, we consider the dynamics in each of the
aforementioned finite connected components. Then we craft events such that if one of these events occurs, all sites in
the component have fixated at +, and prove that almost surely one of these events will occur sooner or later.

In the one-dimensional case, the arguments are similar, but simpler. Indeed, one does not need to construct regions
which, once filled with + by the dynamics, have fixated at +. Instead, we notice that there is an infinite number of
large intervals of sites frozen at +, and that their complement is composed of finite connected components that cannot
interact with each other. Once we make this observation, the arguments that prove Theorems 5 and 9 allow to prove
Theorems 2 and 3, which is done in Section 7.

2.4. Notation. We gather here some notation which will be used throughout the paper. For any set A, we denote
by |A| the cardinal of A. We recall that ⟨·, ·⟩ is the scalar product on R2. ∥.∥2 will denote the Euclidean norm on
R2, and we will use the distance on R2 associated to it. We denote also by ∥.∥∞ the sup norm. For any direction
u ∈ S1, for any a ∈ R, we denote Hu(a) = {x ∈ R2 : ⟨x, u⟩ < a} the translation of the open half-plane Hu by a, and
H̄u(a) = {x ∈ R2 : ⟨x, u⟩ ≤ a} the corresponding closed half-plane.

Except in Section 7, U will be an update family on Z2. We assume U is either non-supercritical, or supercritical
and contains no disjoint update rules. Since q̃c(U) can also be defined for supercritical and critical update families and
is 0 for them (see Theorem 3.1 of [14]), we will often write “ρ+ > q̃c(U)” as a more compact way to write “ρ+ > 0 if U
is supercritical and contains no disjoint update rule or if U is critical, and ρ+ > q̃c(U) if U is subcritical”. We define
a constant r = r(U) = max{∥x∥2 |x ∈ X,X ∈ U} which represents the range of U . From now on, the U-bootstrap
percolation with respect to the update family U will simply be called “bootstrap percolation”. We also define bootstrap
percolation on a domain D ⊂ Z2, which will always have healthy boundary conditions: the dynamics is the same as the
U-bootstrap percolation dynamics explained in the Introduction, except that sites in Z2 \D remain always healthy.
We notice that the bootstrap percolation dynamics is monotone: if one starts the dyamics with more infected sites,
at any later time there will be more infected sites.

In the remainder of this paper, we will work with the U-voter dynamics, since the arguments for the U-Ising dynamics
are similar and simpler. If at some time a given site is at + (respectively at −) and it is impossible for it to switch
to − (respectively to +) again without having two clocks ring at the same time (which has probability 0), we say the



8 LAURE MARÊCHÉ

0
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Figure 2. Droplets D(a) and D′(a) in the case m = 3.

site is well fixed at + (respectively at −) at this time. Almost surely, once a site is well fixed, it has fixated. For all
t ≥ 0, we denote by Ft the σ-algebra of everything that happens in the dynamics up to time t, including the initial
states of the sites and which sites are frozen.

3. Non-supercritical update families: good droplets

In this section, we assume the update family U is not supercritical. The section is devoted to the construction of a
polygon so that if its “enlarged corners” are frozen at +, once all the sites inside the polygon are at +, they have fixated
at +. We will call such a polygon “good droplet”. We now give the necessary notation. Since U is not supercritical,
there is no open semicircle of unstable directions, which implies that there exist m = 3 or 4 stable directions u1, ..., um
such that the origin of R2 is contained in the interior of the convex envelope of u1, ..., um. We assume that m is minimal,
and that u1, ..., um are numbered counterclockwise. A droplet will a polygon with sides orthogonal to u1, ..., um: for
any a > 0, we set D(a) =

⋂m
i=1 H̄−ui(a) (see Figure 2). We stress that these droplets are different from those that are

generally used in the study of bootstrap percolation, which are of the form D′(a) =
⋂m

i=1Hui(a) (see also Figure 2).
D′(a) satisfies that if the only initial infected sites are inside D′(a), there will never be infected sites outside D′(a),
as the first such site x that would be infected would be outside an Hui(a) while the update rule x+X that infects it
would be inside Hui(a), which is impossible since ui is a stable direction. Thus the sites inside D′(a) cannot influence
the sites outside. To define D(a), we replaced the ui by −ui because we want the opposite: prevent the sites outside
the droplet to influence sites inside the droplet. However, sites “at the corners” of D(a) will be surrounded mostly by
sites in D(a)c, so they can be influenced by sites in D(a)c. This is why we will require the sites “at the corners” to be
frozen.

In order to specify which sites exactly need to be frozen, we need more notation. We identify {1, ...,m} with Z/mZ,
so um+1 = u1. For any i ∈ {1, ...,m}, we set Ci,i+1(a) = (H̄−ui(a) \H−ui(a − r)) ∩ (H̄−ui+1(a) \H−ui+1(a − r)) (see
Figure 3) an “enlarged corner of D(a) between the side of the polygon orthogonal to ui and the side orthogonal to
ui+1”. We say the droplet D(a) is good when for all i ∈ {1, ...,m}, all the sites of Ci,i+1(a) are frozen at +, and for
any x ∈ Z2, we say x + D(a) is good when for all i ∈ {1, ...,m}, all the sites of x + Ci,i+1(a) are frozen at +. The
following result is one of the most important ingredients for our proofs.
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H̄−u2(a)

H−u2(a− r)

H̄−u1(a) H−u1(a− r)

D(a)

C1,2(a)

u2

u1

r

r

Figure 3. A representation of C1,2(a) = (H̄−u1(a) \H−u1(a− r))∩ (H̄−u2(a) \H−u2(a− r)), here the
“bottom left corner of D(a)”. C1,2(a) is the shape with the solid thick outline, and D(a) the shape with
the dashed thick outline. H̄−u1(a) and H−u1(a− r) are represented with hatchings: H−u1(a− r) is the
region with dense hatchings, and H̄−u1(a) contains both this region and the region with the spaced
hatchings. Similarly, H−u2(a− r) is the region in dark gray and H̄−u2(a) contains both this region and
the region in lighter gray.

Proposition 12. There exists a0 = a0(U , u1, .., um) < +∞ so that for any a ≥ a0, if D(a) is good, if no site of D(a)
is frozen at −, and if at some time t ≥ 0 all sites in D(a) are in state +, then all sites in D(a) are well fixed at + at
time t.

Proof. We prove the statement by contradiction. If some site of D(a) is not well fixed at + at time t, there exists
x ∈ D(a) such that x can be the first site in D(a) to switch its state to − after time t. Then by the definition of
the dynamics, there exists X ∈ U so that all sites in x + X are at − just before the switch. We will prove this is
geometrically impossible. Since x is the first site in D(a) to change state, x+X ⊂ D(a)c. Moreover, all sites in x+X
are at distance at most r from x, therefore x belongs to some H̄−ui(a) \H−ui(a− r). Furthermore, since Ci−1,i(a) and
Ci,i+1(a) are frozen, x does not belong to them, hence x ∈ H−ui−1(a − r) and x ∈ H−ui+1(a − r). If m = 3, we then
have x ∈ H−uj (a− r) for all j ̸= i.

We now show it in the case m = 4, where we have to deal with j = i + 2. Since D(1) has four sides of positive
length, there exists some ε = ε(u1, u2, u3, u4) > 0 so that H̄−u1(1 − ε) ∩ H̄−u3(1 − ε) ∩ H̄−u2(1) ∩ H̄−u4(1) has still
four sides of positive length. Then D(1) ∩ (H̄−u1(1) \H−u1(1− ε)) and D(1) ∩ (H̄−u3(1) \H−u3(1− ε)) are disjoint,
thus D(a) ∩ (H̄−u1(a) \ H−u1(a − aε)) and D(a) ∩ (H̄−u3(a) \ H−u3(a − aε)) are disjoint. If a ≥ r/ε, this implies
D(a) ∩ (H̄−u1(a) \ H−u1(a − r)) and D(a) ∩ (H̄−u3(a) \ H−u3(a − r)) are disjoint. Similarly, one can find some
ε′ = ε′(u1, u2, u3, u4) > 0 so that if a ≥ r/ε′, D(a) ∩ (H̄−u2(a) \ H−u2(a − r)) and D(a) ∩ (H̄−u4(a) \ H−u4(a − r))
are disjoint. We set a0 = max(r/ε, r/ε′), then if a ≥ a0, since x ∈ D(a) ∩ (H̄−ui(a) \ H−ui(a − r)), we have
x ̸∈ D(a) ∩ (H̄−ui+2(a) \H−ui+2(a− r)), thus x ∈ H−ui+2(a− r)). Consequently, x ∈ H−uj (a− r) for all j ̸= i.
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Since x ∈ H−uj (a − r) for all j ̸= i, we have x + X ∈ H−uj (a) for all j ̸= i. But x + X ⊂ D(a)c, hence
x+X ⊂ H̄−ui(a)

c = Hui(−a). However, x ∈ H̄−ui(a), so ⟨x, ui⟩ ≥ −a, hence x+X ⊂ x+Hui , which contradicts the
fact that ui is a stable direction, and ends the proof. □

Remark 13. If U is supercritical, a similar construction is impossible. Indeed, it was proven in Section 5.3 of [8] that
for supercritical update families, one can find a finite set of sites such that the bootstrap percolation dynamics starting
with only these sites initially infected will propagate the infection at an unlimited distance along a given direction. In
the U-voter dynamics, if such a set of sites is at − and is positioned so that this direction points to a side of D(a), even
if these sites are far away from D(a), the − may propagate from these sites and enter D(a). Indeed, we can denote
x1, x2, ... the sites that are infected by this bootstrap percolation dynamics in the order they are infected, excluding
those that are already at −, and X1, X2, ... the respective update rules allowing to infect them. If there are successive
clock rings at x1, x2, ... and the update rules chosen are X1, X2, ..., these sites will switch to −.

We also prove a technical lemma on the Ci,i+1(a) that will be needed later.

Lemma 14. There exists ã0 = ã0(U , u1, .., um) < +∞ so that for any a ≥ ã0, for any i ∈ {1, ...,m}, Ci,i+1(a) ⊂ D(a).

Proof. If m = 3, D(a) has 3 sides, and if m = 4 then D(a) has four sides, since if D(a) had less than four sides, the
directions orthogonal to these sides would contain 0 in the interior of their convex envelope, which would contradict the
minimality of m. We notice that for each i ∈ {1, ...,m}, for all a > 0 the Ci,i+1(a) are translations of each other. We
denote di = max{∥y−y′∥2 | y, y′ ∈ Ci,i+1(1)} the diameter of the Ci,i+1(a). For each i ∈ {1, ...,m}, we denote by ci,i+1

the site that is the “corner of D(1) between the side of the polygon orthogonal to ui and the side orthogonal to ui+1”,
defined by ⟨ci,i+1,−ui⟩ = 1 and ⟨ci,i+1,−ui+1⟩ = 1. Since D(1) has m sides, for each j ̸= i, i+ 1, ⟨ci,i+1,−uj⟩ < 1. If
we choose ã0 ≥ max{di, di

1−⟨ci,i+1,−uj⟩ | i, j ∈ {1, ...,m}, j ̸= i, i+ 1}, then for a ≥ ã0, i ∈ {1, ...,m} and j ̸= i, i+ 1, the
points in Ci,i+1(a) are at distance at most di of aci,i+1, hence are in H̄−uj (a⟨ci,i+1,−uj⟩+ di) ⊂ H̄−uj (a). We deduce
Ci,i+1(a) ⊂ D(a). □

4. Easily fixating regions: good blocks

The aim of this section is to describe regions of Z2, called good blocks (Definition 15), favorable enough so that we
can prove they will likely fixate at +, and to prove that the probability a region is favorable is very high (Proposition
16). From now on, we consider both non-supercritical update families and supercritical update families with no disjoint
update rules. For any L ∈ N∗, we denote BL = {−L, ..., L}2. A block is a set of the form x+BL where x ∈ Z2. The
definition of a good block will differ according to whether U is supercritical or not. If U is not supercritical, we set
M = max{∥x∥2 |x ∈ D(1)} and M ′ = max{∥x∥2 |x ∈ D′(1)}, where D(1) and D′(1) were defined at the beginning of
Section 3. For reasons that will be apparent later, we set K = 25 is U is supercritical and K = (2⌈(4M +1)M ′⌉+1)2

if U is not supercritical.

Definition 15. Let L ∈ N∗. For any x ∈ Z2, one says the block x + BL is good when the following conditions are
satisfied.

• If U is supercritical and contains no disjoint update rules, all sites in x + BL are infectable by the bootstrap
percolation in x + B2L (with healthy boundary conditions) and initial infected sites the sites frozen at + in
x+B2L, and there is no site frozen at − in x+B2L.

• If U is not supercritical, all sites in x+D(3L) are infectable by the bootstrap percolation with initial infected
sites the sites frozen at + in x + D(4L), there is no site frozen at − in x + D′(4LM + 1), and there exists
2L ≤ a ≤ 3L such that x+D(a) is good.
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We remind the reader that the constants a0, ã0 were defined in Proposition 12 and Lemma 14. In the following,
when we say a quantity depends on u1, ..., um, this dependence will only apply for non-supercritical U .

Proposition 16. For any q̃c(U) < ρ+ < 1, there exists ρ−0 = ρ−0 (U , u1, ..., um, ρ+) > 0 and L0 = L0(U , u1, ..., um, ρ+) ≥
r, with L0 ≥ max(a0, ã0) if U is not supercritical, such that for any 0 ≤ ρ− ≤ ρ−0 and for any x ∈ Z2, we have P(x+BL0

is not good) ≤ 1/25K .

Proof. Let q̃c(U) < ρ+ < 1. We will deal differently with the non-supercritical case and with the supercritical case,
though we need bootstrap percolation technology in both cases.

Case U supercritical with no disjoint update rules.
To deal with this case, we will use the tools developed in [8] for supercritical bootstrap percolation. Since U is

supercritical, there exists an open semicircle of unstable directions. We denote its center by u ∈ S1. We consider
rectangles oriented in direction u: denoting u⊥ ∈ S1 a direction orthogonal to u, for any a, b > 0, the rectangle oriented
in direction u with width a and length b will be R(a, b) = {x ∈ R | − a/2 ≤ ⟨x, u⊥⟩ ≤ a/2, 0 < ⟨x, u⟩ ≤ b}. It was
proven in Section 5.3 of [8] that there exist some a > 0, b > 0, c < +∞ depending only on U so that for any x ∈ Z2,
if x + R(a, b) is initially infected, for any b′ > b the rectangle x + R(a, b′) is infectable by the bootstrap percolation
in x + R(a, b′ + c) (the latter part is not explicitly stated in [8], but can be seen in the proofs). Consequently,
if L is large enough depending on a, b, c, for any x ∈ Z2, y ∈ x + BL, if there exists 1 ≤ n ≤ L/(2b) so that
y − nbu + R(a, b) is initially infected, then y is infectable by the bootstrap percolation in x + B2L (with healthy
boundary conditions). Therefore, if we denote By = {y is not infectable by the bootstrap percolation in x+B2L with
initial infected sites the sites frozen at + in x+B2L} and k the maximum number of sites in a translation of R(a, b),
which is bounded, then P(By) ≤ (1− (ρ+)k)⌊L/(2b)⌋. Thus P(∪y∈x+BL

By) ≤ (2L+ 1)2(1− (ρ+)k)⌊L/(2b)⌋. We choose
L0 = L0(U , u1, ..., um, ρ+) ≥ r so that (2L0 + 1)2(1− (ρ+)k)⌊L0/(2b)⌋ ≤ 1/25K+1, hence P(∪y∈x+BL0

By) ≤ 1/25K+1. If
we now set ρ−0 = 1/(25K+1(4L0 + 1)2), then for any 0 ≤ ρ− ≤ ρ−0 , we have P(x+BL0 is not good) ≤ 1/25K .

Case U non-supercritical.
Let x ∈ Z2. We first study the probability of finding a good droplet x+D(a). We assume L ≥ ã0. Lemma 14 yields

that for n ∈ {1, ..., ⌊L/(r + 1)⌋}, the x + Ci,i+1(2L + n(r + 1)) are contained in x +D(2L + n(r + 1)), and by their
definition they are contained in x+D(2L+(n−1)(r+1))c. This implies the events {x+D(2L+n(r+1)) is good} for
n ∈ {0, ..., ⌊L/(r + 1)⌋} depend on disjoint sets of sites hence are independent. Furthermore, we notice that for each
i ∈ {1, ...,m}, for all a > 0 the Ci,i+1(a) are translations of each other. We denote ki the maximum number of sites
in any translation of Ci,i+1(1), which is bounded, and k =

∑m
i=1 ki. Then P(

⋂⌊L/(r+1)⌋
n=1 {x +D(2L + n(r + 1)) is not

good}) ≤ (1− (ρ+)k)⌊L/(r+1)⌋. If we choose L1 = L1(U , u1, ..., um, ρ+) ≥ ã0 so that (1− (ρ+)k)⌊L1/(r+1)⌋ ≤ 1/(3 · 25K),
for all L ≥ L1 we have P({∃ 2L ≤ a ≤ 3L, x+D(a) is good}c) ≤ 1/(3 · 25K).

We now consider the probability that sites are infectable. To deal with it, we use Theorem 3.5 of [14], which states
that since ρ+ > q̃c(U), there exists a constant c = c(U , ρ+) so that for any n ∈ N, we have P(0 is not infectable by the
bootstrap percolation starting from sites frozen + in Bn) ≤ e−cn. Moreover, for y ∈ x+D(3L), we have y+B⌊L/

√
2⌋ ⊂

x + D(4L), hence P(y is not infectable starting from sites frozen + in x + D(4L)) ≤ P(y is not infectable starting
from sites frozen + in y + B⌊L/

√
2⌋) ≤ e−c⌊L/

√
2⌋. In addition, remembering the definition of M,M ′ at the beginning

of the section, there are at most (6ML+1)2 sites in x+D(3L), hence P(
⋃

y∈x+D(3L){y is not infectable starting from

sites frozen + in x +D(4L)}) ≤ (6ML + 1)2e−c⌊L/
√
2⌋. We then set L0 = L0(U , u1, ..., um) ≥ max(L1, a0, 1) so that

(6ML0 + 1)2e−c⌊L0/
√
2⌋ ≤ 1/(3 · 25K). If we now set ρ−0 = 1

3·25K(2(4L0M+1)+1)2
, then for any 0 ≤ ρ− ≤ ρ−0 , we have

P(x+BL0 is not good) ≤ 1/25K . □
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Remark 17. It is in the proof of Proposition 16 that we need ρ+ > q̃c(U) instead of ρ+ > qc(U) for subcritical dynamics.

5. Fixation at +: proof of Theorems 5 and 7

The goal of this section is to prove Theorem 5, which states fixation at + of all sites if ρ− = 0, and Theorem 7,
which claims the existence of a deterministic time at which the connected components of sites not fixated at + are
finite. In order to do that, we begin by showing Theorem 18, which roughly states that for any 0 ≤ ρ− ≤ ρ−0 , there
exists a deterministic time so that the connected components of blocks containing sites not well fixed at this time are
finite. This result is stronger than Theorem 7, and is central in the proof of Theorems 5 and 9, since it allows to
consider only the dynamics in these finite connected components. At the end of this section, we prove Theorem 5.
To state Theorem 18, we consider the blocks 2L0x + BL0 for all x ∈ Z2, denoting BL0(x) = 2L0x + BL0 . Blocks
BL0(x) and BL0(y) will be considered neighbors when ∥x − y∥∞ = 1, which gives a graph with an associated notion
of connectedness. We then have the following.

Theorem 18. For any q̃c(U) < ρ+ < 1, there exists T0 = T0(U , u1, ..., um, ρ+) < +∞ deterministic so that for any
0 ≤ ρ− ≤ ρ−0 , for any choice of initial distribution µ, almost surely the connected components of blocks containing sites
that are not well fixed at + at time T0 are finite.

Proof. We first give the idea of the proof. We will lower bound the probability that the dynamics fills a good block
with + in a time interval of length 1, which allows to find T0 so that for any good block, the probability that the
dynamics fills the block with + before time T0 is very high. We also show that roughly, if the sites of a good block
are at + at some time, they are well fixed at + at this time, which will be Claim 19. Since by Proposition 16 blocks
are likely to be good, the probability that a given block is full of sites well fixed at + at time T0 is then close to 1
(to shorten the notation, for any T > 0, we say a block is T -fixed when all its sites are well fixed at + at time T ).
We then want to use the following classical percolation argument: if there is an infinite connected component of non
T0-fixed blocks, for any integer n there is a path of length n of such blocks, which has probability tending to 0 when n
tends to +∞. However, one has to be careful in proving the latter part, since the events that the blocks are T0-fixed
are not independent.

We now give the rigorous argument. We set q̃c(U) < ρ+ < 1, 0 ≤ ρ− ≤ ρ−0 , µ an initial distribution. It is enough
to find T0 so that for any x ∈ Z2, almost surely the connected component of non T0-fixed blocks containing BL0(x) is
finite. Let x ∈ Z2, T > 0. If BL0(x) is contained in an infinite connected component of non T -fixed blocks, for all n > 0
there exists a non T -fixed path of legnth n starting from BL0(x), that is a sequence BL0(x) = BL0(x1), ..., BL0(xn)
of non T -fixed blocks such that the xi, i ∈ {1, ..., n} are all different and for each i ∈ {1, ..., n − 1}, BL0(xi+1) is a
neighbor of BL0(xi). There are at most 8n possible such paths, hence it is enough to find T0 so that 8nmaxγ P(γ is
non T0-fixed) tends to 0 when n tends to +∞, where the max is taken on all possible paths of length n starting from
BL0(x) and all x ∈ Z2.

Let γ be a path of length n starting from BL0(x). We will study maxγ P(γ is non T0-fixed). We first need some
notation. Remembering the definition of K,M,M ′ at the beginning of Section 4, if U is supercritical, we can find
blocks BL0(x1), ..., BL0(x⌊n/K⌋) in γ so that for xi ̸= xj we have 2L0xi+B2L0 and 2L0xj+B2L0 disjoint, and if U is not
supercritical, we can find blocks BL0(x1), ..., BL0(x⌊n/K⌋) in γ so that for xi ̸= xj we have ∥xi − xj∥∞ > (4L0M+1)M ′

L0

hence 2L0xi + D′(4L0M + 1) and 2L0xj + D′(4L0M + 1) are disjoint. In order to have the same notation in the
supercritical case and the non-supercritical case, we denote Bi = 2L0xi+BL0 , B′

i = 2L0xi+B2L0 if U is supercritical,
and Bi = 2L0xi +D(3L0), B′

i = 2L0xi +D′(4L0M + 1) if U is not supercritical.
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For each i ∈ {1, ..., ⌊n/K⌋}, we will define events Gi,ℓ, ℓ ∈ N such that all sites in BL0(xi) are at + at time ℓ
if Gi,ℓ occurs. We assume BL0(xi) is good. Then we can prove that all sites in Bi are infectable by the bootstrap
percolation in B′

i with healthy boundary conditions and initial infected sites the sites frozen at + in B′
i. Indeed, if U

is supercritical this comes from the definition of a good block. If U is not supercritical, this is because sites in Bi are
infectable by the bootstrap percolation starting from sites frozen at + in 2L0xi +D(4L0) ⊂ B′

i, hence starting from
sites frozen at + in B′

i, and in the bootstrap percolation starting from sites frozen at + in B′
i, all sites outside B′

i
remain healthy since 2L0xi +D′(4L0M + 1) is constructed so the infection cannot escape it. Consequently, in both
cases there exists mi ∈ N, a sequence xi,1, ..., xi,mi of distinct sites in B′

i and a sequence Xi,1, ..., Xi,mi of update rules
so that all sites in Bi are either equal to one of the xi,j or frozen at +, for each j ∈ {1, ...,mi}, xi,j +Xi,j ⊂ B′

i, and
all sites of xi,j + Xi,j are either some xi,j′ , j

′ < j or frozen at +. For each ℓ ∈ N∗, we denote Gi,ℓ the event “in the
time interval (ℓ− 1, ℓ], there are successive clock rings at each xi,j that is at − at time ℓ− 1, in increasing order, the
update rule chosen for xi,j is Xi,j , and no other clock ring happens in B′

i”. If Gi,ℓ happens, sites xi,1, ..., xi,mi are at +
at time ℓ (this uses the fact that none of them is frozen et −), so all sites in BL0(xi) are at + at time ℓ. Moreover, we
have the following.

Claim 19. If xi,1, ..., xi,mi are at + at time ℓ then all sites in BL0(xi) are well fixed at + at time ℓ.

Proof of Claim 19. If U is not supercritical, if xi,1, ..., xi,mi are at + at time ℓ, then all sites in 2L0xi+D(3L0) are at +
at time ℓ. Moreover, there exists 2L0 ≤ a ≤ 3L0 such that 2L0xi+D(a) is good. By Proposition 12 and the invariance
by translation of the dynamics, all sites in 2L0xi +D(a) are well fixed at + at time ℓ, hence all sites in BL0(xi) are
well fixed at + at time ℓ. If U is supercritical and contains no disjoint update rules, we assume by contradiction that
xi,1, ..., xi,mi are at + at time ℓ but some sites among xi,1, ..., xi,mi are not well fixed at + at this time. Then there
exists an xi,j that can be the first of them to change its state to − after time ℓ. Sites in xi,j +Xi,j are either frozen
at + or some xi,j′ , j

′ < j, hence are at + at the time of the switch. But U has no disjoint update rules, thus for any
X ∈ U , xi,j + X contains at least a site at + at the time of the switch, therefore xi,j cannot change its state to −.
We deduce that if xi,1, ..., xi,mi are at + at time ℓ, then xi,1, ..., xi,mi are well fixed at + at time ℓ, hence all sites in
BL0(xi) are well fixed at + at time ℓ. □

We now study P(Gi,ℓ|Fℓ−1) for any i ∈ {1, ..., ⌊n/K⌋}, ℓ ∈ N∗. We denote b′ the number of sites in B′
i (which does

not depend on i). If BL0(xi) is good then conditionally on Fℓ−1, the probability that Gi,ℓ occurs is the probability that
in a time interval of length 1, on a given set of sites of cardinal at most b′, there are successive clock rings, on another
given set of sites of cardinal at most b′ there are no clock rings, and when making a given number of update rules
choices, smaller than b′, the results follow a given sequence. This is bigger than the probability of having successive
clock rings on b′ sites and no clock rings on b′ other sites in a time interval of length 1, and obtaining a given sequence
in b′ update rules choices. Therefore there exists ε = ε(U , u1, ..., um, ρ+) > 0 so that for any i ∈ {1, ..., ⌊n/K⌋}, ℓ ∈ N∗,
we have 1{BL0

(xi) is good}P(Gi,ℓ|Fℓ−1) ≥ 1{BL0
(xi) is good}ε.

We are now able to bound the probability that γ is non T -fixed for T ∈ N∗. Indeed, if γ is non T -fixed, for all
i ∈ {1, ..., ⌊n/K⌋}, 1 ≤ ℓ ≤ T so that BL0(xi) is good, (Gi,ℓ)

c occurs. We denote Gγ = {i ∈ {1, ..., ⌊n/K⌋} |BL0(xi) is
good}, and for G ⊂ {1, ..., ⌊n/K⌋} we study P(Gγ = G,∩i∈G,1≤ℓ≤T (Gi,ℓ)

c). In addition, Gi,ℓ depend on clock rings and
update rules choices in B′

i, and the definition of the xi yields that the B′
i are disjoint, hence the Gi,ℓ are independent

conditionally on Fℓ−1. Consequently, P(Gγ = G,∩i∈G,1≤ℓ≤T (Gi,ℓ)
c) ≤ (1−ε)|G|P(Gγ = G,∩i∈G,1≤ℓ≤T−1(Gi,ℓ)

c), hence
P(Gγ = G,∩i∈G,1≤ℓ≤T (Gi,ℓ)

c) ≤ (1 − ε)|G|TP(Gγ = G). Moreover, for any i ∈ {1, ..., ⌊n/K⌋}, the event {BL0(xi) is
good} depends only of the frozen sites inside B′

i (this requires Lemma 14), and the B′
i are disjoint, so these events are

independent. By Proposition 16, we deduce P(Gγ = G,∩i∈G,1≤ℓ≤T (Gi,ℓ)
c) ≤ (1− ε)|G|T (1/25K)⌊n/K⌋−|G|. If we choose
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T0 = T0(U , u1, ..., um, ρ+) < +∞ so that (1− ε)T0 ≤ 1/25K , we obtain P(Gγ = G,∩i∈G,1≤ℓ≤T0(Gi,ℓ)
c) ≤ (1/25K)⌊n/K⌋.

Since there are at most 2n choices for G, this implies 8nP(γ is non T0-fixed) ≤ 8n2n(1/25K)⌊n/K⌋ = 24n(1/25K)⌊n/K⌋,
which decays to 0 when n tends to +∞. This ends the proof of Theorem 18. □

We are now in position to prove Theorem 5.

Proof of Theorem 5. The idea behind the argument is that Theorem 18 shows that at time T0 there are finite connected
components of sites that have not fixated at + in an ocean of sites well fixed at +. When by chance the dynamics
fills one of these connected components with +, no site at − can appear near it, so all sites in the component remain
at + forever. We now give the rigorous argument. Let q̃c(U) < ρ+ < 1, ρ− = 0, and µ be an initial distribution. Let
x ∈ Z2. Thanks to Theorem 18, if x is not well fixed at + at time T0, almost surely x is contained in a block that is
part of a finite connected component C of blocks containing sites not well fixed at + at time T0. Then the blocks in Cc

that are neighbors of elements of C contain only sites well fixed at + time T0. Moreover, Theorem 1 of [5] states that if
all directions are stable, U is subcritical and qc(U) = 1. This implies q̃c(U) = 1, so one cannot choose q̃c(U) < ρ+ < 1.
Therefore in our case there exists an unstable direction u, and some X ∈ U with X ⊂ Hu. We enumerate the sites
in

⋃
B∈C B as x1, ..., xn with ⟨xi, u⟩ nondecreasing. Then, similarly to what was done in the proof of Theorem 18, for

each ℓ ∈ N∗, we define Gℓ the event “in the time interval (T0 + ℓ − 1, T0 + ℓ], there are successive clock rings at each
xi that is at − at time T0 + ℓ − 1, in increasing order, the update rule chosen for xi is X, and no other clock ring
happens in

⋃
B∈C B”. If Gℓ occurs, all sites of

⋃
B∈C B are at + at time T0 + ℓ. They have then fixated at + at time

T0 + ℓ, as the first site y ∈
⋃

B∈C B to switch to state − would need X ′ ∈ U so that the sites of y+X ′ are at state −.
Furthermore, as in the proof of Theorem 18, there exists δ > 0 random depending on FT0 so that for all ℓ ∈ N∗ we
have 1{x not well fixed at T0}P(Gℓ|FT0+ℓ−1) ≥ 1{x not well fixed at T0}δ, thus for all n ∈ N∗ we obtain P(x not well fixed at
T0,

⋂n
ℓ=1 Gc

ℓ ) ≤ E((1− δ)n), which converges to 0 when n tends to +∞ by dominated convergence, thus almost surely
one of the Gℓ occurs. This implies x almost surely fixates at +, which ends the proof of Theorem 5. □

6. Flippers: proof of Theorem 9

This section is devoted to the proof of Theorem 9 on the existence or non-existence of flippers. Let q̃c(U) < ρ+ < 1,
0 < ρ− ≤ ρ−0 , and µ be an initial distribution.

6.1. First case: U contains two disjoint update rules X and X ′. Almost surely, for each x ∈ Z2, t ≥ 0, there
is a clock ring at x after time t so that X is chosen and a clock ring at x after time t so that X ′ is chosen. Moreover,
almost surely there is an infinite number of sites x so that all sites in are x+X is frozen at + and all sites in x+X ′ are
frozen at −. If x is one of these sites, then x is a flipper. Hence almost surely there is an infinite number of flippers.

6.2. Second case: U contains no disjoint update rules. We will show that almost surely there is no flipper. The
idea of the proof is to use Theorem 18, which states that the connected components of blocks with sites not well fixed
at + at time T0 are finite, and to restrict our attention to one of these finite components. We will then prove that in
this component, at some time all the possible flippers switch successively from − to +. Then, if x is one of these sites,
since it was put to +, some x+X with X ∈ U is at +. Then for any X ′ ∈ U , since X and X ′ are not disjoint, x+X ′

contains at least a site of x+X, so x+X ′ is not entirely at −, thus x cannot be put at − hence cannot be a flipper.
We now spell out the rigorous argument. Let x ∈ Z2. If x is well fixed at time T0, then x is not a flipper. Thanks

to Theorem 18, if x is not well fixed at + at time T0, almost surely x is contained in a block that is part of a finite
connected component C of blocks containing sites not well fixed at + at time T0. We denote C→ the set of blocks in Cc

that are neighbors of elements of C. Then
⋃

B∈C→ B contain only sites well fixed at + time T0. In this proof, we will
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need the concept of ⊖-bootstrap percolation and ⊕-bootstrap percolation. The ⊖-bootstrap percolation (respectively
⊕-bootstrap percolation) has the same dynamics as the usual bootstrap percolation, apart that the sites frozen at +
(respectively at −) in the U-voter dynamics are frozen in the healthy state.

Claim 20. For any t ≥ T0, the ⊖-bootstrap percolation process starting from the sites of
⋃

B∈C B that are at − at time
t infects only sites in

⋃
B∈C B.

Proof. We show this by contradiction. If the claim does not hold, let x′ be a site of (
⋃

B∈C B)c infected by this process
at the first step at which it is possible, then x′ ∈

⋃
B∈C→ B, so x′ is well fixed at + at time T0. Moreover, the

infectability of x′ implies the existence of a sequence x0, ...xn = x′ and X1, ..., Xn ∈ U so that the xj , j ∈ {1, ..., n}
are at + at time t but not frozen at +, and for any i ∈ {1, ..., n}, the sites of xi +Xi are among the xj , j < i or sites
of

⋃
B∈C B at − at time t. If after time t there are successive clock rings at x1, ..., xn, if the updates rules chosen are

X1, ..., Xn, and if there is no other clock ring in any of the xj , j ∈ {1, ..., n} or in
⋃

B∈C B during this time, which is
a possible event, then x′ is at − afterwards, which contradicts the fact it is well fixed at + at time T0 and proves the
claim. □

We will define events Gℓ, ℓ ∈ N∗ so that if one of the Gℓ occurs, there is no flipper in
⋃

B∈C B. For any ℓ ∈ N∗, we
consider all the sites that are at + at time T0 + ℓ − 1 and can be infected by the ⊖-bootstrap percolation starting
from the sites of

⋃
B∈C B that are at − at time T0 + ℓ − 1. All these sites are in

⋃
B∈C B by Claim 20. We denote

them xℓ,1,1, ..., xℓ,1,k1ℓ
, ordered so that for any i ∈ {1, ..., k1ℓ}, there exists Xℓ,1,i ∈ U so that the sites of xℓ,1,i+Xℓ,1,i are

among the xℓ,1,j , j < i or sites of
⋃

B∈C B at − at time T0+ℓ−1. We then define Gℓ,1 as the event “in the time interval
(T0 + ℓ− 1, T0 + ℓ− 1/2], there are successive clock rings at xℓ,1,1, ..., xℓ,1,k1ℓ

in increasing order, the update rules that
are chosen are Xℓ,1,1, ..., Xℓ,1,k1ℓ

, and there is no other clock ring in
⋃

B∈C B”. Furthermore, we consider all the sites of⋃
B∈C B that are at − at time T0+ ℓ−1/2 and can be infected by the ⊕-bootstrap percolation in

⋃
B∈C∪C→ B starting

from the sites of
⋃

B∈C∪C→ B that are at + at time T0 + ℓ − 1/2. We denote them xℓ,2,1, ..., xℓ,2,k2ℓ
, ordered so that

for any i ∈ {1, ..., k2ℓ}, there exists Xℓ,2,i ∈ U so that the sites of xℓ,2,i +Xℓ,2,i are among the xℓ,2,j , j < i or sites of⋃
B∈C∪C→ B at + at time T0+ ℓ−1/2. We then define Gℓ,2 as the event “in the time interval (T0+ ℓ−1/2, T0+ ℓ], there

are successive clock rings at xℓ,2,1, ..., xℓ,2,k2ℓ in increasing order, the update rules that are chosen are Xℓ,2,1, ..., Xℓ,2,k2ℓ
,

and there is no other clock ring in
⋃

B∈C B”. We now set Gℓ = Gℓ,1 ∩ Gℓ,2. We will show the following.

Claim 21. For any ℓ ∈ N∗, if Gℓ occurs, almost surely there is no flipper in
⋃

B∈C B.

Proof. We can show by induction that any site of
⋃

B∈C B that changes its state to − after time T0+ ℓ−1 is infectable
by the ⊖-bootstrap percolation process starting from the sites of

⋃
B∈C B that are at − at time T0 + ℓ − 1. Indeed,

if x′ is the n-th site to do so, there exists X ∈ U so that all sites in x′ + X are at − just before the change. Since
sites in

⋃
B∈C→ B are well fixed at + at time T0, x′ +X ⊂

⋃
B∈C B, and the sites of x′ +X were either at − at time

T0 + ℓ− 1 or changed their state to − after this time. In both cases, by the induction hypothesis they are infectable
by the ⊖-bootstrap percolation starting from the sites of

⋃
B∈C B that are at − at time T0 + ℓ − 1, hence x′ also is,

since it is not frozen at +. A similar argument yields that any site in
⋃

B∈C B that changes its state to + after time
T0 + ℓ − 1/2 is infectable by the ⊕-bootstrap percolation in

⋃
B∈C∪C→ B starting from the sites of

⋃
B∈C∪C→ B that

are at + at time T0 + ℓ− 1/2. Therefore if x′ ∈
⋃

B∈C B is a flipper, it is infectable by these two processes.
We now assume Gℓ occurs. Then Gℓ,1 ensures x′ is at − at time T0 + ℓ − 1/2, and Gℓ,2 ensures x′ switches to +

between times T0+ℓ−1/2 and T0+ℓ. Since x′ is a flipper, it will switch to − after time T0+ℓ. Let x′′ be the first site to
switch to − at some time t ≥ T0+ℓ among the sites of

⋃
B∈C B that switch to + between times T0+ℓ−1/2 and T0+ℓ.
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There exists X ∈ U so that the sites in x′′+X were at + at the time of this switch to +. Since x′′+X ⊂
⋃

B∈C∪C→ B,
since sites in

⋃
B∈C→ B are well fixed at time T0, and by the structure of G2,ℓ, sites in x′′ +X are still at + at time

T0 + ℓ. They are still at + at time t, since if one of them had switched to − before, it would have been infectable by
the ⊖-bootstrap percolation starting from the sites of

⋃
B∈C B that are at − at time T0 + ℓ− 1, thus since Gℓ,1 occurs

it would be at − at time T0 + ℓ− 1/2, thus it would have switched at + between times T0 + ℓ− 1/2 and T0 + ℓ, and
x′′ is the first such site to switch to − after time T0 + ℓ. This implies sites of x′′ +X are at + at time t. Moreover,
we assumed U contains no disjoint update rules, so for any X ′ ∈ U , we have that x′′ +X ′ contains a site of x′′ +X,
which is at + at time t. Hence x′′ cannot switch its state to − at time t, so there is a contradiction, which ends the
proof of the claim. □

We conclude that for any ℓ ∈ N∗, if Gℓ occurs, x is not a flipper. Consequently, it is enough to prove that almost
surely, if x is not well fixed at time T0, one of the Gℓ, ℓ ∈ N∗ occurs. Furthermore, as in the proof of Theorem 18,
there exists δ > 0 random depending on FT0 so that for all ℓ ∈ N∗ we have 1{x not well fixed at T0}P(Gℓ|FT0+ℓ−1) ≥
1{x not well fixed at T0}δ, thus for all n ∈ N∗ we obtain P(x not well fixed at T0,

⋂n
ℓ=1 Gc

ℓ ) ≤ E((1− δ)n), which converges
to 0 when n tends to +∞ by dominated convergence, thus almost surely if x is not well fixed at time T0 one of the Gℓ

occurs, which ends the proof of Theorem 9.

7. One-dimensional case: proof of Theorems 2 and 3

This section is devoted to the proof of Theorems 2 and 3 on one-dimensional update families. In this section, U
will be an update family on Z. As in the two-dimensional case, we define the range of U as r = r(U) = max{|x| |x ∈
X,X ∈ U}. Let 0 < ρ+ < 1. The following obvious fact will be key to our proofs, replacing the two-dimensional
Theorem 18.

Lemma 22. For any x ∈ Z, almost surely there exists xr > x and xℓ < x so that xr +1, ..., xr + r and xℓ− 1, ...xℓ− r
are frozen at +.

Proof of Theorem 2. We want to prove fixation at + for all sites of Z. The argument resembles the one used for the
two-dimensional case: the dynamics in {xℓ, ..., xr} is isolated from what happens outside by the sites frozen at +, and
once by chance {xℓ, ..., xr} is filled with +, then xℓ, ..., xr will remain at +. Here U is supercritical; we assume there
exists an update rule X ∈ U so that X ⊂ N∗ (the case X ⊂ −N∗ is similar). Let x ∈ Z. If xℓ, ..., xr are at + at some
time, they (and thus x) have fixated at + at this time, since for x′ ∈ {xℓ, ..., xr}, X ′ ∈ U , all sites of x′ +X ′ are at +.
We now prove that almost surely there will be some time at which xℓ, ..., xr are at +. For any ℓ ∈ N∗, we set Gℓ the
event “in the time interval (ℓ− 1, ℓ], there are successive clock rings at each site among xr, xr − 1, ..., xℓ that is at − at
time ℓ − 1, in increasing order, the update rule chosen is always X, and no other clock ring happens in {xℓ, ..., xr}”.
If Gℓ occurs, xℓ, ..., xr are at + at time ℓ. Moreover, as in the proof of Theorem 18, there exists δ > 0 depending on
xℓ, xr so that P(Gℓ|Fℓ−1) ≥ δ. Hence P(

⋂n
ℓ=1 Gc

ℓ ) ≤ E((1− δ)n) which tends to 0 when n tends to +∞ by dominated
convergence, so almost surely some Gℓ occurs, then xℓ, ..., xr are at + at time ℓ, therefore x fixates almost surely. □

Proof of Theorem 3. The argument is similar to and simpler than the one in the proof of Theorem 9, with {xℓ, ..., xr}
playing the role of

⋃
B∈C B and {xℓ − r, ..., xℓ − 1}

⋃
{xr + 1, ..., xr + r} playing the role of

⋃
B∈C→ B. □
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