Mariem Ben Fadhl

Gil Utard

An Anonymous Data Control Access Protocol in Distributed Storage Systems

Keywords: Access rights, Anonymity, Cloud Storage System

In this paper, we describe a new access control mechanism for distributed data on cloud or peer-to-peer storage systems. The purpose of this protocol is to ensure that only the data owner or a user with rights are able to recover, modify or even delete it anonymously, and be able to delegate access to other users with revocation capability.

I. INTRODUCTION

Today, thanks to the introduction of the blockchain technology, a new business model is arising in the market for Cloud Storage Service. New actors, such as Sia [START_REF] Vorick | Sia: Simple decentralized storage[END_REF], Filecoin [START_REF] Lab | Filecoin: A decentralized storage network[END_REF] or Storj [START_REF] Wilkinson | Storj: A peerto-peer cloud storage network[END_REF] are proposing new open architectures to small data centre players, allowing the provision of their space storage to new clients for a specified time. In this new storage marketplace, when a client puts a file to store, he buys storage space with a specific smart-contract crypto-currency. Usually, the data is encrypted by the client before storing it. To ensure the integrity of the data stored, the smart contract is such that the storer agent is paid only after the retention period (after a check of the data integrity). To avoid data retention by the storer, another smart contract may be introduced to pay the storer when it sends back requested data. This incentive mechanism allows a high level of trust of the storers: another mechanism may be introduced to ban malicious storers, and some data redondancy is used to face it.

Moreover, anonymity must be provided by this system to ensure some privacy. Some anonymous routing protocols may be introduced (like onion routing) for this goal. The present paper focuses on how to restrict access to data to a client who is anonymous. Other concerns, such as smart-contract management, or anonymous routing, are outside the scope of this paper. The interested reader can consult previously cited papers.

These new architectures are based on the peer-to-peer (P2P) paradigm. Despite their increased use, the lack of control due to the absence of any centralized authority makes the security services difficult to implement, and has limited the adoption of these systems, especially by industry. Cryptography can solve the confidentiality problems, but does not restrict access to sensitive data. The use of keys to encrypt data protect the data and avoid disclosure of the data, but may induce user privacy issues. Moreover, the keys have to be managed in a distributed environment. Data access control and user privacy becomes a necessity.

The access to the shared resources in a storage system can include two main aspects: the ability to store data and the ability to access to data anonymously, to preserve privacy.

In the new market model, storing the data is performed through a transaction between the user and the storer. This transaction is supported by the underlying crypto-currency. The use of an anonymous crypto-currency, such as CoinJoin [START_REF] Maurer | Anonymous coinjoin transactions with arbitrary values[END_REF], ZCash [START_REF] Peck | A blockchain currency that beat s bitcoin on privacy [news[END_REF] or Monero [START_REF] Van Saberhagen | Cryptonote v 2.0[END_REF], allows preserving the user privacy. The stored data is then identified by the anonymous transaction ID, and not by an user ID.

In the present paper, we focus on access to data while preserving users' privacy. We present a new mechanism derived from a remote integrity protocol, allowing the control of anonymous data access rights.

The remainder of this paper is organized as follows. Section II discusses some related work. Then we present some previous work on integrity from which we extracted the cryptographic material of our solution. We propose then the new mechanism for realizing anonymous access control. The we show how to use it to check the integrity of any data modification by the owner. We then introduce an Access Control List allowing to delegate access to some designed users. Finally we present some avenues for future research.

II. RELATED WORKS

Traditional access control models, such as ACL or RBAC [START_REF] Ferraiolo | Role-Based Access Control (RBAC): Features and Motivations[END_REF], generally rely on central servers for authorization operations. Access control policies are defined on a single authority. This simplifies the control of access rights. This scheme is not suitable for the specificities of a distributed environment.

One trivial solution is to use an asymmetric public key protocol, where each file is stored with the public key of the data owner. On access demand, the storer create a challenge based on the associated public key, the owner answers thanks to the private key. The main drawback of this solution is that to insure anonymity, one pair of private/public keys must be generated for each stored file and managed to a dedicated wallet. Otherwise all files stored by a specific user may be tracked by a malicious peer. Moreover, in the case where the memory is a scarce resource, it may be problematic to store one key for each stored file: think, for instance, of an IoT infrastructure, where Internet objects store the generated data in the cloud.

Access policies for personal data can be stored in a blockchain [START_REF] Zyskind | Decentralizing Privacy: Using Blockchain to Protect Personal Data[END_REF]. That protocol describes the interactions between a user and a service (fore example, a mobile application). This service wants to collect data about the user. The blockchain is used as an intermediary between these two parts. It manages the access rights defined by the user, stores the encrypted data in a distributed hash table (DHT), and redistribute the data to authorized services. This allows the user to control data access. However using a DHT will slow data access times, which makes its implementation difficult. Moreover, the authors don't mention user anonymity but rather data privacy.

The decentralized access control scheme in clouds of [START_REF] Ruj | Decentralized access control with anonymous authentication of data stored in clouds[END_REF] addresses user revocation and ensures the authenticity and the privacy of the stored data while preserving user privacy. The authors use attribute-based signature scheme [START_REF] Maji | Attribute-Based Signatures: Achieving Attribute-Privacy and Collusion-Resistance[END_REF] to ensure anonymous authentication. Key distribution is done by using many key distribution centres (KDCs). Unlike the existing research about the cloud which only allows read permission, this scheme provides authentication and other rights for users.

Merkle's puzzles [START_REF] Merkle | Secure communications over insecure channels[END_REF] and zero-knowledge proofs are used to ensure authentication with controlled anonymity in P2P systems [START_REF] Wierzbicki | Authentication with controlled anonymity in P2p systems[END_REF]. This protocol allows a peer to securely store data on another peer and to change it anonymously. This scheme requires a superpeer to generate the necessary keys for the calculation of a zero-knowledge proof. Only the owner is able to modify the previously stored file. Intermediate nodes ensure the communication between peers to provide anonymity. The authors present a novel authentication method successfully ensuring anonymity and accountability. However, the use of a superpeer, a trusted authority is similar to a trusted third party scheme. Thus the superpeer should be honest. Our contribution consists in removing the role of a superpeer, while keeping the same security goal. In the present paper, we extend this mechanism using a flat model without any hierarchies.

III. BACKGROUND: REMOTE INTEGRITY CHECKING

Our new mechanism is based on a remote integrity protocol presented in [START_REF] Deswarte | Remote integrity checking[END_REF]. In this protocol, a verifier, typically the data owner, generates a challenge to the data storer. The storer is obliged to use the entirety of the data to compute the proof. Thus this protocol is deterministic and allows an unlimited number of verification.

The security of the protocol is derived from the discrete logarithm problem proposed by Diffie-Hellman algorithms [START_REF] Diffie | New directions in cryptography[END_REF]. Let F be the file to store, and N be a public RSA modulus, the product of two secret prime numbers p and q, which may be known by the data owner. a) Storage phase: The owner chooses a random integer a between 2 and N -2, and computes a checking value M = a F mod N where F denotes the value of the file F to be stored and is considered as a big integer.

b) Verification phase:

To check if the storer holds the file F, the data owner chooses a random value r (the domain is the same as a) and computes his challenge A = a r mod N , which is sent to the storer. The storer computes the proof B = A F modN using the challenge and the whole file. Then, the data owner verifies that M r = B, i.e. (a F) r mod N = (a r) F mod N . Note that in this scheme a does not need to be secret, and r is kept secret from the storer thanks to the discrete logarithm problem. We also note that the totient φ(N) must also be kept secret from the storer.

IV. ANONYMOUS DATA ACCESS

We extend the previous protocol to be used on the Owner side. In our case, the value of a is secret and will be stored on the Owner side. It is denoted by s. The Storer now becomes the verifier. The aim of this protocol is to allow the owner of the stored data to protect access to the data without disclosing his identity. Only the owner is thus able to prove his eligibility to retrieve his data, change it or even delete it anonymously.

A. Exclusive Anonymous access

After the anonymous authentication described above, a peer can either store its (PUT operations) data or retrieve it (GET operations). These two processes should be made anonymously. All communications between the concerned peer may be done using an onion routing protocol like APFS [START_REF] Scarlata | Responder anonymity and anonymous peer-to-peer file sharing[END_REF]. To facilitate the description of the protocol, we do not present the tail nodes and we assume that the path established between the storer and the owner is anonymous.

a) Storage Phase: The owner chooses a random secret s and sends the file F with the associated credential S = s F mod N . This credential is a zero-knowledge value and will enable the owner to access or modify the file later.

b) Verification phase: The owner sends a GET request to recover his file F. The verifier (the Storer) chooses a random challenge r which is sent to the owner. The owner then computes the proof P = s r mod N using the challenge sent and the secret s. Using the stored file F and the value of S, the verifier checks the proof received, S r mod N = P F mod N , i.e.

(s F) r mod N = (s r) F mod N , before sending the file.

Note that in this scheme, the value s needs to be secret, whereas the exponent r is public. The security of the protocol is not strictly based on the discrete logarithm problem, but on the reverse discrete logarithm problem, which is known to be as hard as the prime factorization problem [START_REF] Bender | A Short Course in Discrete Mathematics[END_REF].

V. AUTHENTICITY OF DATA MODIFICATIONS

Here, we present an extension of the previous protocol to validate file modification by the owner. When the Owner demands to modify his file F , it sends F , the new value S , and the hash of the old file. The verifier chooses a random challenge r. The owner then computes the proof P using the challenge sent and the secret s. The hash allows the verifier to find the concerned file. Using the stored file F , the value of S and the new versions F and S , the verifier checks the received proof. The file will be replaced if the proof is correct. The new protocol is summarized in Figure 1.

Note that this protocol checks not only if the sender is the owner, but also checks the integrity of the new file sent. This protects us from a man in the middle attack, where the file is modified during the transfer.

VI. DATA SHARING AND MANAGEMENT OF ACCESS RIGHTS

In the previous schemes, only the peer who has stored the file (the Owner) is authorized to access and modify the file. In this section we expand our mechanism to allow data sharing between different nodes, where the kind of access (read, write, modify, delete) can be set for each peer.

For each stored file F , the Owner stores a second file ACL F describing the access control to F . This ACL file stores information about access rights and will be described below. The owner can therefore assign rights to other users. It can choose many secrets rather than one and calculates a zeroknowledge value for each secret. Each zero-knowledge value corresponds to one access right. For example, it can choose three secrets: one for reading, the second for writing, and the third for deleting. The file is stored with the pre-computed zero-knowledge values.

These chosen secrets corresponding, to each right can be sent than to every authorized peer selected by the owner. Transferring this secret can be done using securing channels.

A. Access Right Allocation

The owner can create files corresponding to each stored data, defining the access rights policy for each user. Only the owner and the data Storer are able to access or modify this file. This can be verified using the same method previously described in Section IV-A: The Owner associates a specific secret number to the access list file.

Users privacy should be preserved. Thus this file should not reveal any information about the identity of the listed users. Each user is represented by a random pseudo. The file contains the list of pseudos associated with the corresponding precomputed zero-knowledge values. These pseudos are public. Eavesdroppers cannot use these pseudos to access the stored data because they don't know the secrets.

B. Revocation

Thanks to the protocol described in Section V, the owner can safely modify or delete the list of authorized users if necessary. In this case, it asks the Storer to update the access rights policy. The Storer makes the necessary changes by assigning a new right to a previous user, removing rights, or adding new users.

To illustrate our solution, consider the following example, shown in Figure 2. The owner shares the data file F with nodes A and B according the following rights :

• node A can read, delete and modify the file F ;

• node B can read the file F . The Storer stores not only the data file but also the access rights file, which contains the list of users and the associated rights. This file is associated with a zero-knowledge value P AR computed by the owner. Only the owner is able to modify the file. Users store the secrets allowing them to prove their access rights. This is done using the protocol described in Section IV-A. Each right is represented by a zero-knowledge value: r for reading, w for modifying and d for deleting. Figure 3 illustrates the control access mechanism. The owner wants to deprive nodes B the ability to read the file. It should first modify the access control file and send it to the Storer. The Storer should verify the identity of the owner for each modification of the access rights file as described previously in Section V. Thus the owner should correctly response to the Storer challenge using the stored secret S AR . If this succeeds, the Storer stores the new version of the file and the new value P AR . Node B can no longer read the file.

VII. EVALUATION

We consider the encryption time to be an important metric for security costs. The computing time is related to the size of the stored file. The file should be fully considered to ensure that it was not modified by the Storer. For small files, like ACL files, this cost may be insignificant, but stored files may be several Megabytes or Gigabytes. Different methods may be used for this purpose, depending on the security and performance requirements of the system.

To estimate the computing time of the zero-knowledge values (i.e. s F , F being the big number represented by its bitfield), we use square and multiply algorithms and the GMP big number library. However, the time for checking access rights may take several minutes on a current computer for a ten Megabyte file, and this time is in the size of the file. This execution time is too long to be of practical use. Using hash files or elliptic curve encryption instead of the file may reduce significantly the time overhead: The time is indeed negligible using the hash of the file and is about a few hundred milliseconds for a file up to 80 Megabytes. Using elliptic curve encryption is 100 times faster than using the full file.

VIII. DISCUSSION

Our work offers the data owner the possibility of controlling access rights. In order to access the stored data, an attacker has know the secrets chosen by the data owner. The difficulty is defined by the choice of the RSA module. The size of this module should be large enough to ensure a high level of security. We have also shown that zero-knowledge value calculation can be reduced using the elliptic curve algorithm. The use of Diffie-Hellman is still possible and the time overhead can be reduced by splitting data by using erasure code, for example, like Reed Solomon. Small fragments are used instead of large data. The ACL file overhead will not noticeably affect the traffic speed or the storage space. Moreover, communication requires only a small number of exchanged messages. Our approach is therefore an acceptable alternative regarding the data overhead. IX. CONCLUSION A storage system based on distributed platforms faces several challenges, among which are access control requirements, which have been addressed in this paper. Users should own and control their data without compromising security or using trusted third party services. We have presented an access control protocol for distributed storage systems, which are environments mainly characterized by the lack of any centralized authority.

This protocol allows anonymous control of read/write access to data stored in a cloud/P2P storage system. It permits the system to delegate access rights to other users with revocation. Our system is also able to check the integrity of data transferred for modification.

We evaluated the cost of this protocol and showed that cryptographic primitives can be too costly for an efficient implementation. We proposed some improvements and have show that they reduce drastically this cost.

Our future investigation will be two-fold. On the cryptographic side, we would like to see how we can use cryptographic pairing techniques to solve these same problems, and what is the performance of such techniques. On the software side, the next step of our research will be to evaluate how such a system can be implemented in the usual cloud storage API, like Amazon S3 or OpenStack SWIFT.

FFig. 1 .

 1 Fig. 1. Anonymous modification with integrity checks.

Fig. 2 .Fig. 3 .Fig. 4 .

 234 Fig. 2. Assigning access rights to different users