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ABSTRACT

Achieving net zero carbon emissions by 2050 requires the integration of increasing
amounts of wind power into power grids. This energy source poses a challenge to
system operators due to its variability and uncertainty. Therefore, accurate fore-
casting of wind power is critical for grid operation and system balancing. This
paper presents an innovative approach to short-term (1 to 6 hour horizon) wind
power forecasting at a national level. The method leverages Automated Deep
Learning combined with Numerical Weather Predictions wind speed maps to ac-
curately forecast wind power.

1 INTRODUCTION

To meet the 2050 net zero scenario envisaged by the Paris Agreement (United Nations Convention
on Climate Change, 2015), wind power stands out as a critical energy source for the future. Re-
markable progress has been made since 2010, when global electricity generation from wind power
was 342 TWh, rising to 2,100 TWh in 2022 (International Energy Agency (IEA), 2023). The IEA
targets approximately 7,400 TWh of wind-generated electricity by 2030 to meet the zero-emissions
scenario. However, to realize the full potential of this intermittent energy source, accurate forecasts
of wind power generation are needed to efficiently integrate it into the power grid.

Research in wind power forecasting has developed a wide range of methods (Giebel and Karinio-
takis, 2017; Tawn and Browell, 2022), including statistical (Riahy and Abedi, 2008), physical (Lange
and Focken, 2006), hybrid (Shi et al., 2012), and deep learning (DL) (Wang et al., 2021) approaches.
These methods use a variety of data sources, including historical wind power records, geospatial
satellite data, on-site camera imagery, and numerical weather prediction (NWP) forecasts. Among
these, typical NWP-based methods primarily focus on using local time series of wind speed fore-
casts for local wind power prediction (Piotrowski et al., 2022). However, NWP forecasts produce
richer outputs, notably spatial predictions of physical quantities such as wind speed and direction
over large scale grids (e.g. national or regional). Predicting aggregated (e.g national or regional)
wind power from such fine-grained spatial information appears promising and is largely unexplored
in the literature (Higashiyama et al., 2018). Thus, we propose to explore how wind speed maps com-
bined with suitable machine learning models can capture complex patterns, improving large scale
wind power predictions.

In this work, we propose to leverage the spatial information in NWP wind speed maps for national
wind power forecasting by exploiting the capabilities of DL models. The overall methodology is
illustrated in Figure 1. To fully exploit DL mechanisms potential, we introduce WindDragon, an
adaptation of the DRAGON1 (Keisler et al., 2023) framework. WindDragon is an Automated Deep
Learning (AutoDL) framework for short-term wind power forecasting using NWP wind speed maps.
WindDragon’s performances are benchmarked against conventional computer vision models, such

* Equal contribution
1https://dragon-tutorial.readthedocs.io/en/latest/index.html
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as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), as well as standard
baselines in wind power forecasting. The experimental results highlight two findings:

• The use of full NWP wind speed maps coupled with DL regressors significantly outper-
forms other baselines.

• WindDragon demonstrates superior performance compared to traditional computer vision
DL models.

Predicted  wind 
speed map

Numerical Weather Predictions (NWP) 6-hours ahead

Step 2: Pass the wind 
speed maps through the 
proposed regressor 

Prediction of the regional wind 
power generation

For a given hor izon h : 

Step 1: Get wind speed 
maps predictions from 
the NWP model

Deep Learning
regressor

Figure 1: Global scheme for wind power forecasting. Every 6 hours, the NWP model produces
hourly forecasts. Each map is processed independently by the regressor which maps the grid to the
wind power corresponding to the same timestamp.

2 WINDDRAGON: A FRAMEWORK FOR REGRESSION ON WIND SPEED MAPS

Deep Learning models have the ability to capture complex spatial patterns, which makes them well
suited for modeling non-linear relationships between meteorological features and wind energy pro-
duction. These models are especially useful when wind farms are scattered across the map (see
Figure 3) and wind speed has significant variance across locations.
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Figure 2: WindDragon’s
meta model for wind power

forecasting

CNNs and ViTs, both prominent in computer vision, might under-
perform in the context of wind speed map regression for global wind
power forecasting. By learning local and spatial patterns, CNNs effi-
ciently map structured inputs to numerical values. However, CNN’s
shift-invariant property (Zhang, 2019) can hinder wind power fore-
casting because identical wind speeds at different map locations do
not equate to the same power generation due to the uneven distribu-
tion of wind farms. Conversely, ViTs excel at image classification by
segmenting images into patches and applying self-attention mecha-
nisms, but the size of the considered datasets (less than 20000 points
for the training dataset) might limit their effectiveness. Given these
concerns, the use of AutoDL frameworks to automatically identify
the most appropriate DL architecture is a promising solution.

The DRAGON framework. DRAGON (Keisler et al., 2023) is an
AutoDL framework which automatically generates well-performing
deep learning models for a given task. Compare to other AutoDL
frameworks (Liu et al., 2019; Hutter et al., 2019; Zimmer et al., 2020;
Deng et al., 2022), DRAGON provides a flexible search space, which
can be used on any task. It allows the extension of the possibilities
in terms of architectures and is adapted when the type of architecture to use is unclear or when
high performance is sought by tuning hyperparameters. We used several tools from the generic
framework to adapt it for wind power forecasting from wind speed maps.
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WindDragon: adapting the DRAGON framework for wind power forecasting. The neural
networks in DRAGON are represented as directed acyclic graphs, with nodes representing the layers
and edges representing the connections between them. In our case, a value ŷt ∈ R is predicted from
a 2D map Xt ∈ Rm×n. The search space is then restricted to a specific family of constrained
architectures, as represented in Figure 2. A first graph processes 2D data and can be composed
by convolutions, pooling, normalization, dropout, and attention layers. Then, a flatten layer and
a second graph follow. This one is composed by MLPs, self-attention, convolutions and pooling
layers. A final MLP layer is added at the end of the model to convert the latent vector to the desired
output format. We optimized the solutions from our search space using an evolutionary algorithm,
as detailed Appendix A.

3 EXPERIMENTS

Datasets. The wind speed maps used are 100-meter high forecasts at a 9 km resolution provided
by the HRES 2 model from the European Centre for Medium-Range Weather Forecasts (ECMWF).
The maps are provided at an hourly time step and there are 4 forecast runs per day (every 6 hours).
Only the six more recent forecasts are used here as the forecasting horizon of interest is six hours.
The hourly french regional and national wind power generation data came from the french TSO3.

Data preparation. The national forecast of wind power generation is obtained by summing the
forecasts of the 12 administrative regions of Metropolitan France. According to our first experi-
ments, this bottom-up technique produced better results than predicting national production directly.
The division of a national map into regions is a challenge, as shown in Figure 3 as wind turbines
are not evenly distributed across the regions. Therefore, we selected areas around each wind farm
in the region and took the convex hull of all the considered points. The result is a seamless map
that includes local wind turbines with no gaps to disrupt the models. Installed capacity data for each
region - corresponding to the maximum wind power a region can produce - is available and updated
every three months. It was collected and used to scale the wind power target. Years from 2018 to
2019 are used to train the models, and data from 2020 is used to evaluate how the models perform.

Figure 3: Data preparation for the region Auvergne-Rhône-Alpes. The wind farms are represented
in red. The first image shows the distribution of wind farms across the administrative region.

We use the following baselines to compare hourly forecasts for an horizon h (h ∈ {1, ..., 6}):

• Persistence: Predicts wind power generation at future time t + h as equal to the observed
generation at current time t.

• XGB on Wind Speed Mean: Forecasts wind power at t + h using a two-step approach:
(i) Compute the mean wind speed for the considered region at t+ h using NWP forecasts.
(ii) Apply an XGBoost regressor (Chen and Guestrin, 2016) to predict power generation
based on the computed mean wind speed.

• Convolutional Neural Networks (CNNs). Forecasts wind power at t+ h using the NWP
predicted wind speed map. CNNs can efficiently regress a structured map on a numerical
value by learning local and spatial patterns (LeCun et al., 1995).

2https://www.ecmwf.int/en/forecasts/datasets/set-i
3https://www.rte-france.com/eco2mix
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• Vision Transformers (ViTs) Forecasts wind power at t+h using the NWP predicted wind
speed map. The map is segmented into patches and a self-attention mechanism is used to
capture the dependencies between these patches (Dosovitskiy et al., 2020).

The implementation details of the baselines are described in Appendix B.

We compute two scores: Mean Absolute Error (MAE) in Megawatts (MW), showing the absolute
difference between ground truth and forecast, and Normalized Mean Absolute Error (NMAE), a
percentage obtained by dividing the MAE by the average wind power generation for the test year.

Results. We run experiments for each of the 12 French metropolitan regions and then aggregate
the predictions to derive national results. The national prediction results are presented in Table 1,
while detailed regional results can be found in Table 2 (Appendix C).

Table 1: National results: sum of the regional forecasts for each models. The best results are
highlighted in bold and the best second results are underlined.

WindDragon CNN ViT XGB on mean Persistence

MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE

France 346.7 7.7 % 369.0 8.1 % 385.7 8.5 % 416.7 9.2 % 779.7 17.3 %

The results in Table 1 highlight three key findings:

(i) Improved performance with aggregated NWP statistics. Using the average of NWP-
predicted wind speed maps coupled with an XGB regressor significantly outperforms the
naive persistence baseline.

(ii) Gains from full NWP map utilization. More complex patterns can be captured by us-
ing the full predicted wind speed map, as opposed to just the average, thereby improving
forecast accuracy. In this context, both the ViT and CNN regressors applied to full maps
yielded gains of 31 MW (7.4%) and 47 MW (11.5%), respectively, over the mean-based
XGB.

(iii) WindDragon’s superior performances. WindDragon outperforms all baselines, showing
an improvement of 22 MW (6%) over the CNN. On an annual basis, this corresponds to
approximately 193 GWh, which is equivalent to the annual consumption of a French town
of 32,000 inhabitants 4. Refer to Appendix A for WindDragon’s architecture example.

In Figure 4, we present the aggregated national wind power forecasts using both WindDragon and
the CNN baseline during a given week. While both models deliver highly accurate forecasts, it’s
important to highlight that DRAGON demonstrates superior accuracy, particularly in predicting high
peak values. See Appendix C.2 for visual comparisons of all baselines performances.
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Figure 4: Wind power forecasts for a week in January 2020. The figure displays the ground truth as
dotted lines, and the forecasts from the two top-performing models, WindDragon and the CNN.

4based on the average European per capita consumption (Statista Research Department, 2022)
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4 CONCLUSION AND IMPACT STATEMENT

In this paper, we have presented two key findings that show great promise. First, using NWP wind
speed forecasts as a map significantly improves forecast accuracy compared to using only aggregated
values. Second, our framework, WindDragon, shows superior performance to all other baseline
models. The significant improvement provided by WindDragon is particularly critical in light of the
increasing reliance on wind energy, driven by the pursuit of the net-zero scenario.

Future work could adapt our methodology for photovoltaic (PV) systems, applying it to solar radia-
tion maps generated by NWP models. While current deep learning research in PV primarily focuses
on short-term nowcasting (Le Guen, 2022), our method holds promise for extending the forecasting
horizon, potentially improving the efficiency and reliability of solar power predictions.
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A WINDDRAGON

Search algorithm. The DRAGON framework contains operators, namely mutation and crossover,
which are commonly used in meta-heuristics such as the evolutionary algorithm and the simulated
annealing, to optimize graphs. The mutation operators are used to add, remove, or modify nodes and
connections in the graph, as well as to modify the operations and their hyperparameters within the
nodes. Crossover involves exchanging parts of two graphs. The mutation and crossover operators
were utilised to construct a steady-state (asynchronous) evolutionary algorithm. Compare to the
original algorithm, this version enhances efficiency on HPC by producing two offsprings from the
population as soon as a free process is available, rather than waiting for the entire population to be
evaluated (Liu et al., 2018).

With the division by region, we slightly modified the generic evolutionary algorithm in WindDragon
to avoid having to run an optimisation by region, which would be very costly. In this context,
a deep neural network f from our search space Ω is parametrized by its architecture α and its
hyperparemeters λ. Once α and λ have been settled, the model is trained on the data to optimize the
weights θ. We assumed that the architecture α and the hyperparameters λ would be broadly similar
across regions. Therefore, we modified our evolutionary algorithm to process all regions at the same
time. We create and evolve α and λ independently of the region, and, to optimize the weights θ,
we randomly select the region on which the model would be train and evaluate. In order not to
penalize models that have been evaluated on regions that are difficult to predict, we use a global loss
function, which consists in dividing the loss obtained on the region ℓregion by the loss of our baseline
CNN model on that region, Lregion. During the optimisation, for each region, we progressively save
the best model evaluated on it. The pseudo code for our steady-state evolutionary algorithm can be
found Algorithm 1.

Algorithm 1: Steady-state evolutionary algorithm for multi-regions wind power forecasting
Inputs:
Ω search space
[Lregion1

, . . . ,LregionR
] CNN losses for each region

K population size
T number of iteration

Initialization
Sample K untrained models fα1,λ1 , . . . , fαK ,λK from Ω
For k = 1, 2, . . . ,K

Select a region r to train the model
Train fαk,λk to get the model weights θrk on the region r
Get the loss ℓkr on this region, and set the model loss to ℓk = ℓkr/Lr

If ℓkr is the best loss so far on r, save fαk,λk

θr
k

For t = K + 1,K + 3,K + 5, . . . , T
Select two parents fαk1,λk1 and fαk2,λk2 from the population based on their loss ℓk
Mutate and evolve fαk1,λk1 and fαk2 to fαK+t,λK+t and fαK+t+1,λK+t+1

Select two regions rA and rB
Train respectively fαK+t,λK+t and fαK+t+1,λK+t+1 on rA and rB to optimize θrAK+t and

θrBK+t+1

Get the losses ℓK+t
rA and ℓK+t+1

rB , and set the models losses to ℓK+t = ℓK+t
rA /LrA and

ℓK+t+1 = ℓK+t+1
rB /LrB

If ℓK+t
rA or ℓK+t+1

rB are respectively the best losses so far on rA or rB save f
αT+h,λT+h

θrA or
f
αT+h+1,λT+h+1

θrB

If ℓK+t or ℓK+t+1 are lower than the maximum population loss, we replace the worst model
with the new one
Output:

The best saved model by region
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Figure 5: Dragon automatically found architecture applied on the Grand Est region.

Results. The outputs of WindDragon would be by region the best model found during the optimi-
sation and the prediction of this model. The found architectures vary a bit from a region to another.
An example of the best model for the region Grand Est can be found Figure 5. This architecture uses
self-attention just like in the Transformer (Vaswani et al., 2017), but without the patches that can be
found in the ViT architecture. The model is also a lot smaller than a Transformer, which can explain
why it outperforms the other baselines on this region

B BASELINES DETAILS

The baselines used in Section 3 are explained in more detail below.

Convolutional Neural Network (CNN). Figure 6 shows the architecture of the CNN baseline that
we implemented. We used a simple grid search to optimize the hyperparameters (e.g. the number of
layers, the kernel sizes, the activation functions)
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Figure 6: CNN architecture applied on the Grand Est region.

Vision Transformer (ViT). The Vision Transformer used in this paper is based on SimpleViT’s
(Beyer et al., 2022) architecture. We reused the implementation from lucidrains package 5.

5https://github.com/lucidrains/vit-pytorch
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XGboost on the mean of the NWP wind speed map. Figure 7 shows the two-steps procedure of
the XGboost baseline.

Step 1 : Compute the 
wind speed  mean

inside the convex hull

Step 2 : Applied an 
XGboost regressor

Figure 7: Visual illustration of the XGB two-steps approach on the Auvergne-Rhône-Alpes region.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 REGIONAL RESULTS

Table 2: Regional results. The best results are highlighted in bold and the best second results are
underlined.

WindDragon CNN ViT XGB on mean Persistence

Region MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE

Auvergne-Rhône-Alpes 19.5 14.9 % 19.6 15.0 % 21.6 16.5 % 29.2 22.4 % 28.7 22.0 %
Bourgogne-Franche-Comté 32.9 14.8 % 34.1 15.4 % 37.2 16.8 % 42.3 19.1 % 58.7 26.6 %
Bretagne 36.1 14.1 % 38.0 14.9 % 39.9 15.6 % 47.1 18.4 % 67.2 26.3 %
Centre-Val de Loire 53.3 15.0 % 57.3 16.1 % 59.0 16.6 % 61.9 17.5 % 96.7 27.3 %
Grand Est 125.6 12.5 % 130.5 13.1 % 161.0 16.1 % 148.8 14.9 % 251.2 25.1 %
Hauts-de-France 159.7 12.1 % 167.6 12.7 % 177.0 13.4 % 178.8 13.5 % 320.1 24.2 %
Île-de-France 6.8 22.6 % 7.17 23.7 % 7.4 24.3 % 7.5 24.9 % 9.5 31.5 %
Normandie 29.6 12.7 % 30.8 13.2 % 31.2 13.4 % 36.8 15.8 % 55.9 24.0 %
Nouvelle-Aquitaine 43.1 15.7 % 44.0 16.4 % 48.4 17.6 % 53.7 19.6 % 77.9 28.4 %
Occitanie 51.2 12.3 % 55.8 13.5 % 64.1 15.5 % 91.6 22.1 % 96.3 23.2 %
PACA 3.5 32.4 % 3.5 32.4 % 4.0 37.2 % 4.5 41.4 % 4.3 39.5 %
Pays de la Loire 37.1 13.6 % 39.0 14.3 % 39.9 14.7 % 41.9 15.4 % 74.9 27.5 %
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C.2 WEEKLY COMPARATIVE VISUALS OF ALL BASELINE RESULTS
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(c) Vision Transformer forecast
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(d) Convolutional Neural Network forecast
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(e) WindDragon forecast

Figure 8: Weekly comparative visuals
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