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1. Introduction 1.1. Horn's conjecture. -Let A and B be two square matrices of the same order. A natural question (also coming out in physics for example) is to know the relations between the eigenvalues of A, B and A + B. If A and B are diagonalizable and commute, then they are simultaneously diagonalizable and the spectrum of their sum is well known. In this text we will study the more delicate case of Hermitian matrices with complex coefficients and the related Horn conjecture. This problem and Horn's conjecture (proven in 1999) are exposed in some famous papers [START_REF]Eigenvalues, invariant factors, highest weights, and Schubert calculus[END_REF][START_REF] Brion | Restriction de représentations et projections d'orbites coadjointes [d'après Belkale, Kumar et Ressayre[END_REF][START_REF] Kumar | A survey of the additive eigenvalue problem (with appendix by M. Kapovich)[END_REF]. A pedagogical introduction can be found in [START_REF] Bhatia | Algebraic geometry solves an old matrix problem[END_REF].

Since Hermitian matrices have real eigenvalues, we will see the spectrum of these matrices as tuples with real entries ranked in decreasing order. The previous question can now be reformulated : what are the families (Λ 1 , Λ 2 , Λ 3 ) of real tuples such that Λ 1 (resp. Λ 2 ) is the spectrum of an Hermitian matrix A (resp. B) and that Λ 3 is the spectrum of -(A + B) ? In 1962, Alfred Horn conjectured about the fact that a set of finite inequalities defined by induction are sufficient to describe all possible spectrums for Hermitian matrices and their sum [START_REF] Horn | Eigenvalues of sums of Hermitian matrices[END_REF].

For all i ∈ N * we denote [i] the set of integers j ∈ N such that 1 ⩽ j ⩽ i. Let r ∈ N * . We denote by R r ⩾ the set of all λ := (λ(i)) i∈[r] ∈ R r such that λ(1) ⩾ • • • ⩾ λ(r). For all λ ∈ R r ⩾ we denote O λ the set of all hermitian matrices of order r and of real spectrum with multiplicities λ (this notation comes from the fact that this set is an orbit for the conjugation by the unitary matrices subgroup). We will consider an arbitrary number of matrices, not necessarily three : let s ∈ N * . We define the Kirwan cone as the set of all Λ ∈ (R r ⩾ ) s such that there exists s hermitian matrices with a sum equal to 0 and spectrums corresponding to the s real sequences Λ 1 , . . . , Λ s :

LR(r, s) := Λ ∈ (R r ⩾ ) s | 0 ∈ s l=1 O Λ l .
We will consider linear equations for the elements of the Kirwan cone LR(r, s). Let λ ∈ R r , d ∈ [r] and J ⊂ [r] a subset of cardinality d. We denote |λ| := r j=1 λ(j) and |λ| J := j∈J λ(j). We identify J with the unique strictly growing map [d] → [r] of image J and we denote µ(J) := (J(d) -d, . . . , J(1) -1) ∈ R d ⩾ . Let 1 d := (1) k∈[d] be the constant sequence equal to 1. Theorem 1.1 (Horn's conjecture). -Let Λ ∈ (R r ⩾ ) s . The tuple Λ is in LR(r, s) if and only if the two following conditions hold :

1. s l=1 |Λ l | = 0 ; 2. for all d ∈ [r -1] and all s-tuple (J l ) l∈[s] ∈ [r] s of subsets of cardinality d such that (µ(J 1 ), . . . , µ(J s-1 ), µ(J s ) -(s -1)(n -r)1 r ) ∈ LR(d, s), This theorem confirms Horn's conjecture and gives less than r s +1 equations to describe the cone LR(r, s). The inductive description of these inequalities is simple enough to allow us to compute them for small dimensions (see section 5). The first proof of Horn's conjecture is found in two main works by Anton A. Klyachko in 1998 [START_REF] Klyachko | Stable bundles, representation theory and Hermitian operators[END_REF] (using the geometric invariants theory) and by Allen Knutson and Terence Tao in 1999 (about the saturation property using combinatorics) [START_REF] Knutson | The honeycomb model of GL n (C) tensor product I: Proof of the staturation conjecture[END_REF]. A stronger theorem is presented in [START_REF] Belkale | Local systems on P 1 -S for S a finite set[END_REF] and [START_REF] Knutson | The honeycomb model of GL n (C) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone[END_REF] (we will see an application in section 5).

Saturation property.

-There exists an interesting relation between the Kirwan cone LR(r, s) and representation theory [START_REF] Knutson | The honeycomb model of GL n (C) tensor product I: Proof of the staturation conjecture[END_REF]. Let U(r) be the set of all unitary matrices of order r and Z r ⩾ be the semi-group R r ⩾ ∩ Z r . For all λ ∈ Z r ⩾ we denote V (λ) the irreducible representation of U(r) with the highest weight λ. For any representations V of U(r) we denote V U(r) the linear subspace of U(r)-invariant vertors of V . Theorem 1.2 (Knutson-Tao, Saturation property)

For all Λ ∈ (Z r ⩾ ) s , Λ ∈ LR(r, s) if and only if ( s l=1 V (Λ l )) U(r) ̸ = {0}.
The original proof of this theorem can be found in [START_REF] Knutson | The honeycomb model of GL n (C) tensor product I: Proof of the staturation conjecture[END_REF] and another can be found in [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF]. A generalization to quivers was presented in [START_REF] Derksen | Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients[END_REF].

Remark 1.3. -We denote LR Z (r, s) := LR(r, s) ∩ (Z r ) s . The set LR Z (r, 3)
is the semigroup made of all highest weights triplets (λ, µ, ν) such that the Littlewood-Richardson coefficient dim (V (λ) ⊗ V (µ) ⊗ V (ν)) U(r) is strictly positive.

1.

3. A refinement of Horn's conjecture. -Remark that we are handling many s-sequences of elements in the same set. For any set X, we consider the natural left action of the symmetric group S s on the Cartesian product X s : for all σ ∈ S s and x :

= (x l ) l∈[s] ∈ X s we denote σ • x := (x σ -1 (l) ) l∈[s] . Let σ ∈ S n . Definition 1.4. -Let X be a set. An element x := (x l ) l∈[s] ∈ X s is σ-stable if x = σ • x. For all subset A ⊂ X s , the set of all σ-stable elements in A is denoted A σ .
Theorem 1.1 gives a set of inequalities to describe the cone LR(r, s) ; checking these inequalities on the σ-stable s-tuples J allows us to describe LR(r, s) σ . But theorem 1.5 below assures that a smaller number of these inequalities is enough to describe the cone LR(r, s) σ . Remark that the second condition in theorem 1.1 is not adapted to σ-stability ; for all s-stuples J := (J l ) l∈[s] ∈ [r] s of subsets of cardinality d we denote

M(J ) := µ(J l ) -(r -d) s -1 s 1 d l∈[s] ∈ (R d ⩾ ) s .
This new notation is interesting because J is σ-stable if and only if M(J ) is σ-stable. Theorem 1.5 (Refined Horn's conjecture). -Let Λ ∈ (R r ⩾ ) s be a σstable tuple. The tuple Λ is in LR(r, s) σ if and only if the following conditions hold :

1.

s l=1 |Λ l | = 0 ; 2. for all d ∈ [r -1] and all s-tuple (J l ) l∈[s] ∈ [r] s of subsets of cardinality d such that M(J ) ∈ LR(d, s) σ , s l=1 |Λ l | J l ⩽ 0. Proof. -See subsection 4.2.
This is the main result of this paper. Some computations are presented in section 5 in the case s = 3 and σ = (1 2 3) (i.e. with triplets of three equal spectrums). For example, theorem 1.1 gives 539 inequalities to describe LR(6, 3) while theorem 1.5 gives only 10 of them to describe the triplets

(λ, λ, λ) of LR(6, 3). Example 1.6. -Let λ ∈ R 6 . The representation V (λ)⊗V (λ)⊗V (λ) admits a nonzero U (6)-invariant vector if and only if λ(1) ⩾ • • • ⩾ λ(6) and        λ(1) + λ(2) + λ(3) + λ(4) + λ(5) + λ(6) = 0, λ(1) + λ(5) + λ(6) ⩽ 0, λ(2) + λ(4) + λ(6) ⩽ 0, ( * ) λ(3) + λ(4) + λ(5) ⩽ 0.
Remark that inequalitie ( * ) is in fact a consequence of the others : we can remove ( * ) from the example. This shows that the number of inequalities given by theorem 1.5 is not minimal. We will see how to reduce this number again in Belkale's theorem 2.7 and in the main theorem 3.1.

Acknowledgements. -I would like to thank my doctoral advisor Paul-Émile Paradan for his ideas and constant help during the writing of this paper.

Notations and settings. -Most of the notations we use come from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF].

-We fix s ∈ N * (the size of the tuples we study) and σ ∈ S s (the permutation preserving the tuples we want to describe). -For all n, r ∈ N * such that n ⩾ r, Subsets(r, n) denote the set of all subsets of [n] made of r elements and Subsets(d, r, s) denote the Cartesian product Subsets(d, r) s . -In all this paper, m, d, r, n will be positive integers satisfying the three inequalities m ⩽ d ⩽ r ⩽ n, I (resp. J ) (resp. K) will be an element of Subsets(r, n, s) (resp. of Subsets(d, r, s)) (resp. of Subsets(m, d, s)), U will be a complex vector space of finite dimension n and V will be a r-dimensional linear subspace of U .

-We denote by Gr(r, U ) the Grassmannian of all r-dimensional linear subspaces of U and we denote by Flag(U ) the set of all complete flags E := (E(i)) 

Ω I (E) := {V ∈ Gr(r, U ) | ∀j ∈ [r], rk(V ∩ E(I(j))) ⩾ j} the corresponding Schubert subvariety. Its dimension is dim I := r j=1 (I(j) -j)
(see the beggining of section 4 in [START_REF]Eigenvalues, invariant factors, highest weights, and Schubert calculus[END_REF] or lemma 3.1.7 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]) and its class in the integral cohomology ring H * (Gr(r, U )) is denoted by ω I ; the dimension dim I and the cohomology class ω I only depends on I and does not depend on the flag E.

The class of the point [pt] is in H 2r(n-r) (Gr(r, U )) and, more precisely,

H 2r(n-r) (Gr(r, U )) = Z[pt]. With a = r(n -r) -dim I, ω I ∈ H 2a (Gr(r, U )).
We will be interested in the product of such cohomology classes. Definition 2.1. -Let Intersecting(r, n, s) (resp. Intersecting 0 (r, n, s)) (resp. Intersecting 00 (r, n, s)) be the set of all I ∈ Subsets(r, n, s) such that s l=1 ω I l is not null (resp. is a multiple of the class of a point) (resp. is the class of a point) in H * (Gr(r, U )). The elements of Intersecting(r, n, s) are intersecting.

This is the point of view from [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF]. In [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], I is said to be intersecting if, for all E := (E l ) l∈[s] ∈ Flag(U ) s , the intersection

Ω I (E) := s l=1 Ω I l (E l )
is nonempty : these two definitions are equivalent. The first one can be seen as the most natural one and the second one as the easier one. 

edim I := r(n -r) - s l=1 (r(n -r) -dim I l ).
A geometrical interpretation of the expected dimension is discussed in subsection 1.1 of [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF] and in lemma 2.15 of [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. Let I ∈ Subsets(r, n, s), E ∈ Flag(U ) and E ∈ Flag(U ) s . Since Ω I (E) is of dimension dim I, this subvariety is locally described by dim Gr(r, U ) -dim I = r(n -r) -dim I equations. Assume that I is intersecting, i.e. Ω I (E) is nonempty. Let C be an irreducible component of Ω I (E). It is locally described by s l=1 (r(n -r) -dim I l ) equations and its dimension is at least edim I. In fact, there is an equality if the intersection is proper. As we see in definition-proposition 2.14, there is

a dense subset Good(U, s) of Flag(U ) s such that, if E ∈ Good(U, s) and I is intersecting, any irreducible component of Ω I (E) is of dimension edim I. Remark 2.5. -We have Intersecting 0 (r, n, s) = {I ∈ Intersecting(r, n, s) | edim I = 0} .
2.1.2. The theorem. -Belkale's theorem tells us that a tuple is intersecting (a geometric property) if and only if it satisfies Horn's inequalities (an arithmetic property defined by induction). We give a refinement of Belkale's theorem in subsection 3.1.

For all d ∈ [r] and J ∈ Subsets(d, r), we denote IJ the composition of maps I • J ∈ Subsets(d, n). Let I ∈ Subsets(r, n, s). For all d ∈ [r] and J ∈ Subsets(d, r, s) we denote IJ := (I l J l ) l∈[s] wich is an element of Subsets(d, n, s). Example 2.6. -If I = {2, 3, 4} and J = {2}, then IJ = {3}. Theorem 2.7 (Belkale). -Let I ∈ Subsets(r, n, s). The following assertions are equivalent.

1. The tuple I is intersecting.

2. We have edim I ⩾ 0 and, for all d ∈ [r -1] and J ∈ Intersecting(d, r, s), edim IJ ⩾ edim J .

3. We have edim I ⩾ 0 and, for all d ∈ [r-1] and J ∈ Intersecting 0 (d, r, s), edim IJ ⩾ 0.

4. We have edim I ⩾ 0 and, for all d ∈ [r-1] and J ∈ Intersecting 00 (d, r, s), edim IJ ⩾ 0.

Proof. -See subsection 2.3

In [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF], the fact that the expected dimension is non negative is the codimension condition (0.1). Using example 2.3, we could have included this first inequality in the set of the others by taking d = r (we will use this in subsection 2.3).

Thanks to remark 2.5, the third assertion of the theorem allows us to compute Intersecting(r, n, s) by induction with an easy computation. In [START_REF] Ressayre | A Cohomology-Free Description of Eigencones in Types A, B, and C[END_REF], the author gives "an inductive algorithm to decide if a given Littlewood-Richardson coefficient equals to one or not". In section 5 we will use [Buc] to do some computations.

Main objects and relations

. -Here we present a very brief resume of the objects used to prove Belkale's theorem 2.7. We are following the presentation made in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. Let n ∈ N * and U a complex vector space of finite dimension n.

2.2.1. Intersecting tuples. -Let r ∈ [n]. Lemma 2.8. -For all d ∈ [r], Intersecting(r, n, s) • Intersecting(d, r, s) ⊂ Intersecting(d, n, s).
This comes from proposition 1 in [START_REF]Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients[END_REF] or from lemma 2.16 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. Lemma 2.9. -For all I ∈ Intersecting(r, n, s), edim I ⩾ 0. This is lemma 4.2.6 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF] which is proven using dominance in algebraic geometry.

2.2.2.

Harder-Narasimhan lemma on slopes. -First, we want to prove that an intersecting tuple satisfies Horn's inequalities. Definition 2.10.

-Let E ∈ Flag(U ) s , r ∈ [n] and V ∈ Gr(r, U ). The Schubert position of V with respect to E is the tuple Pos(V, E) ∈ Subsets(r, n, s) such that, for all l ∈ [s] and j ∈ [r], Pos(V, E) l (j) = min j ′ ∈ [r] | dim E l (j ′ ) ∩ V = j .
For all I ∈ Subsets(r, n, s) we denote

Ω 0 I (E) := {V ∈ Gr(r, U ) | Pos(V, E) = I} . Definition 2.11. -Let r ∈ [n] and θ ∈ (R r ) s . The slope associated to θ is defined by, for all d ∈ [r] and all J ∈ Subsets(d, r, s), slope θ (J ) := 1 d s l=1 j∈J l θ l (j) ∈ R. For all V ∈ Gr(r, U ), F ∈ Flag(V ) s and W ∈ Gr(d, V ) we denote slope θ (V, F) := slope θ (Pos(V, F)).
The Harder-Narasimhan lemma 2.12 refers to a classic method used in algebraic geometry. Here, it allows us to compute expected dimensions in a convenient way. Remark that, with the notations µ, S, V, F, w and Ṽ from section 6 of [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF], µ(S, Ṽ ) = -slope -w (V, F). Lemma 2.12 (Harder-Narasimhan). -Let r ∈ [n], V ∈ Gr(r, U ) a linear subspace, F ∈ Flag(V ) s and θ ∈ (R r ) s such that, for all l ∈ [s], θ l is increasing. There exists a unique linear subspace W * of V such that

slope θ (W * , F) = min W ∈Gr(V ),W ̸ ={0} slope θ (W, F ) =: m * , 0 < dim W * = max W ∈Gr(V ),slope θ (W,F )=m * dim W =: d * .
This is a slightly stronger result than the one found in lemma 4.3.4 from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF] but the proof is exactly the same. A version of the Harder-Narasimhan lemma is also used in subsection 6.1 of [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF].

For all r ∈ [n], I ∈ Subsets(r, n) and I ∈ Subsets(r, n, s) we denote

λ(J) := (n -r + j -I(j)) j∈[r] ∈ R r ⩾ and Λ(I) := (λ(I 1 ), . . . , λ(I s-1 ), (j -I s (j)) j∈[r] ) which is an element of (R r ⩾ ) s . A link with M is seen in remark 4.5. Lemma 2.13. -Let r ∈ [n] and d ∈ [r]. Let I ∈ Subsets(r, n, s) and J ∈ Subsets(d, r, s). Then we have edim IJ -edim J = d slope -Λ(I) (J ).
It corresponds to the equation following equation (6.1) in [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF]. This is also lemma 4.3.9 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], proven by a direct computation. Definition-Proposition 2.14. -There is a dense subset Good(U, s) of Flag(U ) s which satisfies the following properties.

1. For all E ∈ Good(U, s) and r ∈ [n],

Intersecting(r, n, s) = {Pos(V, E); V ∈ Gr(r, U )} .

Let r ∈

[n] and I ∈ Intersecting(r, n, s). For all E, E ′ ∈ Good(U, s), Ω 0 I (E) and Ω 0 I (E ′ ) have the same number of irreducible components and each one of them is of dimension edim I.

3. For all I ∈ Intersecting(r, n, s) and E ∈ Good(U, s),

Ω 0 I (E) is dense in Ω I (E).
This comes from propositions 1.1 and 2.3 from [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF]. It is also proven in lemma 4.3.1 from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF].

Remark that, because of the geometrical interpretation of the expected dimension we discussed after definition 2.4, this proposition gives us lemma 2.9 again. Lemma 2.15. -Let r ∈ [n] and I ∈ Subsets(r, n, s) such that, for all d ∈ [r] and J ∈ Intersecting 00 (d, r, s), edim IJ ⩾ 0. Then we have ∀d ∈ [r], ∀J ∈ Intersecting(d, r, s), edim IJ ⩾ edim J .

A proof can be found in section 6.1 from [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF]. This lemma is also proposition 4.3.10 from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF] (with the remark following it). It is a consequence of the Harder-Narasimhan lemma 2.12, lemma 2.13 and definitionproposition 2.14 : we will adapt this proof to obtain the refined lemma 3.9. This is corollary 4.3.11 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. We will adapt this proof to obtain lemma 3.10. Remark that lemma 2.9 is a direct consequence of example 2.3 and lemma 2.16.

2.2.3.

Dimensions and positions of any tuple. -We have already defined the expected dimension of a tuple and we will see two other dimensions : the true dimension in definition 2.18 and the kernel dimension in definition 2.21. Both are integers. Finally, we introduce the kernel position of a given tuple in definition 2.23 : it is another tuple. Let r ∈ [n] and I ∈ Subsets(r, n, s).

Let d ∈ [r]. For all I ∈ Subsets(r, n) and J ∈ Subsets(d, r) we denote

I J := {(IJ)(k) -J(k) + k; k ∈ [d]} ∈ Subsets(d, n -r + d).
For all J ∈ Subsets(d, r, s) we denote

I J := (I J l l ) l∈[s] . Lemma 2.17. -Let m ∈ [d], J ∈ Subsets(d, r, s) and K ∈ Subsets(m, d, s). We have edim I J K -edim K = edim (IJ K) -edim(J K).
This is proven by a direct computation in relation 4.2.10 from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. Let V ∈ Gr(r, U ) and Q ∈ Gr(n -r, U ) such that U = V ⊕ Q. We denote

B := Flag(V ) s × Flag(Q) s .
As in definition 2.2 from [START_REF] Belkale | Geometric proofs of Horn and saturation conjectures[END_REF], we denote L(V, Q) the C-linear maps from V to Q and, for all (F, G) ∈ B, the nonempty set

L I (F, G) := s l=1 {φ ∈ L(V, Q) | ∀j ∈ [r], φ(F l (j)) ⊂ G l (I l (j) -j)} .
We also denote This comes from the last relation of section 3 in [START_REF] Sherman | Geometric proof of a conjecture of King, Tollu, and Toumazet[END_REF]. This is also equation 5.3.3 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], proven with topological arguments. Remark 2.27. -While the algebraic varieties B, P(I), P t (I) and P kt (I) depends on V, Q, U (and I), the integers edim I, tdim I, kdim I and the tuple kPos(I) only depends on I.

P(I) := {(F, G, φ) ∈ Flag(V ) s × Flag(Q) s × L(V, Q) | φ ∈ L I (F, G)} .
2.3. The proof. -Let (1.), (2.), (3.) and (4.) be the four assertions of Belkale's theorem 2.7.

What we have already proven. -Let r ∈ N * and n ⩾ r. By lemma 2.16, (1.) ⇒ (2.). By remarks 2.2 and 2.5, (2.) ⇒ (3.) ⇒ (4.). To prove the last implication (4.) ⇒ (1.) we follow the proof by induction on r ∈ N * given in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF].

Starting the induction. -For all r ∈ N * and n ⩾ r, we define Horn(r, n, s) as the set of all I ∈ Subsets(r, n, s) such that ∀d ∈ [r], ∀J ∈ Intersecting 00 (d, r, s), edim IJ ⩾ 0.

Remark that, because of example 2.3, for all I ∈ Subsets(r, n, s), ∀J ∈ Intersecting 00 (r, r, s), edim IJ ⩾ 0 ⇔ edim I ⩾ 0. By example 4.3.12 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], H(1) is true. Let r ⩾ 2 such that H(r -1) is true. Let n ⩾ r.

Contraposition and conclusion. -Let I ∈ Subsets(r, n, s) not intersecting and d := kdim I. We want to prove that I does not satisfy one of the Horn inequalities. If edim I < 0, I is not in Horn(r, n, s) (using example 2.3). Assume that edim I ⩾ 0.

By lemma 2.22, d ∈ [r -1] and we can consider the kernel position J := kPos I. Using lemma 2.19 and Sherman's relation 2.26, since I is not intersecting, then I J is not intersecting either. By induction hypothesis H(r-1), since d ⩽ r -1, I J is not in Horn(d, n -r + d, s) : there exists m ∈ [d] and K ∈ Intersecting 00 (m, d, s) such that edim I J K < 0. Using the formula of lemma 2.17, edim I(J K) -edim J K < 0.

By lemma 2.24, J is intersecting. But K is also intersecting : by lemma 2.8 we deduce that J K is intersecting. Thus, by the contrapositive of lemma 2.15, there exists d ∈ [r] and J ∈ Intersecting 00 ( d, r, s) such that edim I J < 0 : hence I is not in Horn(r, n, s). From this we deduce H(r) and, by induction, Belkale's theorem 2.7. Remark that, for all ρ ∈ S s , the map I ∈ Subsets(r, n, s) σ → ρ • I ∈ Subsets(r, n, s) ρσρ -1 is a bijection. Let c 1 , . . . , c p be the disjoint cycles of σ ranked by increasing length

A refinement of

l 1 ⩽ • • • ⩽ l p . We have Subsets(r, n, s) σ = p m=1
Subsets(r, n, s) cm and the only thing interesting about σ is its type (l 1 , . . . , l p ) which is a partition of the integer s = l 1 + • • • + l p . From now on, we could replace σ by its conjugate (1

• • • l 1 ) . . . (s -l p • • • n).
The theorem below is a refinement of Belkale's theorem 2.7 which will allow us to prove theorem 1.5 using Belkale's method.

Theorem 3.1. -Let I ∈ Subsets(r, n, s) σ . The following assertions are equivalent.

1. The tuple I is intersecting.

2. We have edim I ⩾ 0 and, for all J ∈ r-1 d=1 Intersecting(d, r, s) σ , edim IJ ⩾ edim J .

3. We have edim I ⩾ 0 and, for all J ∈ r-1 d=1 Intersecting 0 (d, r, s) σ , edim IJ ⩾ 0.

4. We have edim I ⩾ 0 and, for all J ∈ r-1 d=1 Intersecting 00 (d, r, s) σ , edim IJ ⩾ 0. Proof. -The first assertion comes from the fact that the product is commutative in definition 2.1. The second one is a direct consequence of lemma 2.8 and remark 3.5.

In relation with slopes and the Harder

-Narasimhan lemma. - Remark 3.7. -Let θ ∈ (R r ) s . For all d ∈ [r] and J ∈ Subsets(d, r, s), slope θ (J ) = slope σ•θ (σ • J ) and slope -Λ(I) (J ) = µ -Λ(σ•I) (σ • J ).
Lemma 3.8. -Let θ, F, d * and W * as in the Harder-Narasimhan lemma 2.12. Assume that F ∈ Good(U, s) and that, for all J ∈ Subsets(d * , r, s), we have µ θ (J ) = µ θ (σ • J ). Then the position Pos(W * , F) is intersecting and σ-stable.

Proof. -Let J * := Pos(W * , F). Since F is good, J * is intersecting. In addition to this, σ • J * is also intersecting and there exists W ∈ Gr(d * , V ) such that σ • J * = Pos(W, F ). The linear subspace W is of dimension d * and, by hypothesis,

slope θ (W * , F) = slope θ (W, F)
By unicity in the Harder-Narasimhan lemma 2.12, W = W * hence J * = σ • J * .

Lemma 3.9. -Assume that I is σ-stable and that, for all d ∈ [r] and J ∈ Intersecting 00 (d, r, s) σ , edim IJ ⩾ 0. Then we have

∀d ∈ [r], ∀J ∈ Intersecting(d, r, s) σ , edim IJ ⩾ edim J . Proof.
-Using example 2.3, the conclusion of the lemma holds for d = r. Assume that there exists d ∈ [r -1] and J ∈ Intersecting(d, r, s) σ such that edim IJ < edim J i.e., using lemma 2.13, slope -Λ(I) (J ) < 0.

Let V ∈ Gr(r, U ) and F ∈ Good(V, s). Since J is intersecting, there exists a nonzero W ∈ Gr(V ) such that J = Pos(W, F). From this we deduce that slope -Λ(I) (W, F) < 0.

Using the Harder-Narasimhan lemma 2.12, there exists a unique nonzero W * of minimal slope m * with respect to -Λ(I) and maximal dimension d * . Remark that, because of the last equation, m * < 0. By remark 3.7 and lemma 3.8,

J * := Pos(W * , F) ∈ Intersecting(d * , r, s) σ . For all W ′ ∈ Ω 0 J * (F), dim W ′ = d * and slope -Λ(I) (W ′ , F ) = m * . Since W * is unique, Ω 0 J * (F) = {W * } .
From this and definition-proposition 2.14 we have Ω J * (F) = {W * }. Since F is generic, s l=1 ω (J * ) l is the class of a point, i.e. J * ∈ Intersecting 00 (d * , n, s). In particular, edim J * = 0 i.e. edim IJ * = edim IJ * -edim J * i.e., using lemma 2.13,

edim IJ * = d * m * < 0.
This is in contradiction with the hypothesis on I.

Lemma 3.10 (Horn inequalities). -Assume that I is intersecting and σstable. Let d ∈ [r] and J ∈ Intersecting(d, r, s) σ . We have edim IJ ⩾ edim J . Proof. -For all d ′ ∈ [r] and all J ′ ∈ Intersecting(d ′ , r, s) σ , using lemma 2.8 IJ ′ is intersecting and, using lemma 2.9, edim IJ ′ ⩾ 0. Particularly, I satisfies the hypothesis of lemma 3.9 and edim IJ ⩾ edim J .

3.2.3.

In relation with tuples dimensions and the kernel position. -We use the notations of subsubsection 2.2.3. Lemma 3.11. -1. For all E ∈ Flag(U ) s and (F, G) ∈ B, we have 4. Assume that tdim I ⩾ 1. We have kPos(σ•I) = σ•kPos(I). In particular, if I is σ-stable, then so is kPos I. Proof. -We prove the first point of the lemma by reindexing the intersections defining the sets

Ω 0 σ•I (σ • E) = Ω 0 I (E) and L σ•I (σ • F, σ • G) = L I (F, G). 2. Let (F, G) ∈ B and φ ∈ L(V, Q). The triplet (F, G, φ) is in P(I) (resp. P t (I)) (resp. P kt (I)) if and only if (σ • F, σ • G, φ) is in P(σ • I) (resp. P t (σ • I)) (resp. P kt (σ • I)).
Ω 0 σ•I (σ • E) and L σ•I (σ • F, σ • G).
In the same way, we prove that the expected dimension is invariant by reindexing the defining sum. In the rest of this proof we consider the now proven equation

( * ) ∀(F, G) ∈ B, L σ•I (σ • F, σ • G) = L I (F, G).
We have Let (F, G) ∈ B and φ ∈ L(V, Q). We have seen that kdim I = kdim(σ • I) and that (F, G, φ) ∈ P t (I) if and only if

B = (σ -1 • F, σ -1 • G); (F, G) ∈ B .
(σ • F, σ • G, φ) ∈ P t (σ • I). Hence (F, G, φ) ∈ P kt (I) if and only if (σ • F, σ • G, φ) ∈ P kt (σ • I).
From this we deduce that, for all l ∈ [s] and k ∈ [kdim I], the integers kPos(I) σ -1 (l) (k) and kPos(σ • I) l (k) are the minimum of the same set, hence are equal. Finally, kPos(σ • I) = σ • kPos(I).

Remark 3.12. -Using lemma 2.24 and the fourth point of lemma 3.11, if I is σ-stable and kdim I ⩾ 1, then kPos(I) ∈ Intersecting(kdim I, n, s) σ .

3.3. Adaptation of Belkale's proof. -We prove the main theorem 3.1 juste like we proved Belkale's theorem 2.7 in subsection 2.3, using the point of view of [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF].

What we have already proven. -Let r ∈ N * and n ⩾ r. By lemma 3.10, (1.) ⇒ (2.). By remarks 2.2 and 2.5, (2.) ⇒ (3.) ⇒ (4.). We prove the last implication (4.) ⇒ (1.) by induction on r ∈ N * .

Sarting the induction. -In subsection 3.2 we have seen the adaptation of the necessary tools to the σ-stable case : the main ones are lemma 3.9 (playing the role of lemma 2.15) and remark 3.12 (about the σ-stability of the kernel position). For all r ∈ N * and n ⩾ r, we define Horn σ (r, n, s) as the set of all I ∈ Subsets(r, n, s) σ such that

∀d ∈ [r], ∀J ∈ Intersecting 00 (d, r, s) σ , edim IJ ⩾ 0.
In fact, because of remark 3.4, for all I ∈ Subsets(r, n, s),

∀J ∈ Intersecting 00 (r, r, s) σ , edim IJ ⩾ 0 ⇔ edim I ⩾ 0.
For all r ∈ N * we denote by H(r) the assertion

∀d ∈ [r], ∀n ⩾ d, Horn σ (d, n, s) ⊂ Intersecting(d, n, s) σ . By Belkale's theorem 2.7 in the case r = 1, for all n ∈ N * , Horn(1, n, s) is a subset of Intersecting(1, n, s) hence, by intersecting with Subsets(1, n, s) σ , H(1) is true. Let r ⩾ 2 such that H(r -1) is true. Let n ⩾ r.
Contraposition and conclusion. -Let I ∈ Subsets(r, n, s) σ not intersecting and d := kdim I. We want to prove that I does not satisfy one of the Horn inequalities. Just as in subsection 2.3, we can suppose that d ∈ [r -1] and we know that, with J := kPos(I), I J is not intersecting. But, using remarks 3.12 and 3.5, I J is σ-stable and we can use the induction hypothesis H(r -1) : since d ⩽ r -1, I J is not in Horn σ (d, n -r + d, s). Hence there exists m ∈ [d] and K ∈ Intersecting 00 (m, d, s) σ such that edim I J K < 0. Using the formula of lemma 2.17, edim I(J K) -edim J K < 0. By remarks 3.12 and 3.5 again, J K is σ-stable. In addition to this, just like in subsection 2.3, J K is intersecting. Thus, by the contrapositive of lemma 3.9, there exists d ∈ [r] and J ∈ Intersecting 00 ( d, r, n) σ such that edim I J < 0 : hence I is not in Horn σ (r, n, s). From this we deduce H(r) and, by induction, the main theorem 3.1.

The Kirwan cone with repetitions

4.1. Back to Horn's conjecture. -The link between Belkale's theorem 2.7 and Horn's conjecture is presented in subsection 6.3 of [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. We will use it to prove corollary 4.7. Let n ∈ N * and r ∈ [n]. Theorem 4.1 (Klyachko, Horn inequalities). -For all Λ ∈ (R r ⩾ ) s , the following assertions are equivalent.

1. The tuple Λ is in the Kirwan cone LR(r, s). Proof. -We adapt the proof of corollary 6.3.3 from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. Let Λ be a σ-stable element of (R r ⩾ ) s . Assume that Λ ∈ LR(r, s) : just as in [BVW18] (corollary 2.13), the trace s l=1 |Λ l | is null and, for all d ∈ [r -1], Λ satisfies the Horn inequalities for all tuples in Intersecting(d, r, s) hence for all tuples in Intersecting(d, r, s) σ . We deduce that (1.) ⇒ (2.). The second implication (2.) ⇒ (3.) is clear.

The tuple Λ satisfies the Horn inequalities :

To prove that (3.) ⇒ (1.), we use the main theorem 3.1. First we consider the case of integers. Assume that Λ ∈ (Z r ⩾ ) s , that s l=1 |Λ l | = 0 and that, for all d ∈ [r -1] and J ∈ Intersecting 00 (d, r, s

) σ , s l=1 |Λ l | J l ⩽ 0. Let a ∈ N * be greater than |Λ 1 (s)| , . . . , |Λ n-1 (s)| and |Λ n (1)| . Let Λ := (Λ 1 + a1 r , . . . , Λ s-1 + a1 r , Λ s -(s -1)a1 r ) ∈ (Z r ⩾ ) s .
By definition of a and Λ, Λs (1) ⩽ 0 and, for all l ∈ [s-1], Λl (r) ⩾ 0. In addition to this, with n := r + as, n -r ⩾ max{ Λ1 (1), . . . , Λs-1 (1), -Λs (r)}. Hence there exists (a unique) I ∈ Subsets(r, n, s) such that Λ = Λ(I). We now want to show that I is in fact a σ-stable intersecting tuple of expected dimension 0. First, remark that Λ = (λ(I l ) -a1 r ) l∈ [s] . Then, since Λ is σ-stable, I is σ-stable.

Secondly, remark that, for all d ∈ [r] and all J ∈ Subsets(d, r), |1 r | J = d. From this we know that s l=1 | Λl | = s l=1 |Λ l | hence, using lemma 2.13, edim I = 0. In the same way, for all d ∈ [r -1] and J ∈ Intersecting 00 (d, r, s) σ ,

s l=1 | Λl | J l = s l=1 |Λ l | J l hence edim IJ ⩾ edim J = 0.
Finally, I is of expected dimension 0 and, by the main theorem 3.1, I is intersecting. By corollary 4.6, Λ ∈ LR(r, s) and, by remark 4.4, Λ ∈ LR(r, s).

Let K σ (r, s) be the set of all σ-stable Λ ∈ (R r ⩾ ) s such that s l=1 |Λ l | = 0 and, for all d ∈ [r -1] and J ∈ Intersecting 00 (d, r, s) σ , s l=1 |Λ l | J l ⩽ 0. At the beginning of the proof we have seen that LR(r, s) σ ⊂ K σ (r, s). Then we have proven that K σ (r, s) ∩ (Z r ) s is a subset of LR(r, s) σ . But LR(r, s) is invariant under rescaling by any

x ∈ R + so K σ (r, s) ∩ (Q r ) s ⊂ LR(r, s) σ . Since K σ (r, s) is a polyhedral cone, its euclidean closure is K σ (r, s) ∩ (Q r ) s = K σ (r, s).
On the other hand, LR(r, s) σ is closed for the euclidean topology. Finally, we have the converse inclusion K σ (r, s) ⊂ LR(r, s) σ and LR(r, s) = K σ (r, s).

A. MÉDOC

Remark 4.8. -Using corollary 4.7, if Λ ∈ (R r ⩾ ) s is σ-stable and satisfies the Horn inequalities for a set of tuples containing r-1 d=1 Intersecting 00 (d, r, s) σ , then Λ is in LR(r, s). See example 4.9 below. Remark 4.9. -As in example 4.3, if s = 3 and σ = (1 2 3), corollary 4.7 and the main theorem 3.1 gives a convenient description of the set LR Z (r, 3) σ . Let λ ∈ Z r ⩾ . The triplet (λ, λ, λ) is in LR Z (r, 3) σ if and only if |λ| = 0 and, for all d ∈ [r -1] and J := (J, J, J) ∈ Intersecting 0 (d, r, 3) σ , |λ| J ⩽ 0. Finally, together with corollary 4.10, this gives us an inductive description of LR Z (r, 3) σ . Corollary 4.10. -For all I ∈ Subsets(r, n, s), I ∈ Intersecting 0 (r, n, s) σ if and only if M(I) ∈ LR(r, s) σ . Proof. -The tuple I is σ-stable if and only if M(I) is σ-stable. We conclude by corollary 4.6. Theorem 1.5 is a consequence of corollaries 4.7 and 4.10. This refinement of Horn's conjecture is a consequence of the refinement of Belkale's theorem 2.7.

5.

Examples for s = 3 and σ = (1 2 3) 5.1. Numbers of equations. -In this subsection we consider the following questions for small values of r : how to describe (with a list of inequalities) the triplets (Λ 1 , Λ 2 , Λ 3 ) of real spectra Λ l (1) ⩾ • • • ⩾ Λ l (r) such that there exists Hermitian matrices X 1 , X 2 , X 3 of order r, of spectra Λ 1 , Λ 2 , Λ 3 and of sum X 1 + X 2 + X 3 = 0 ? and if Λ 1 = Λ 2 = Λ 3 ? This correspond to Horn's conjecture with s = 3 and σ = (1 2 3). In the tabular below, we compute some of the following numbers using the main theorem 3.1 and [Buc].

-The integer l 0 (r, 3) is the number of inequalities given by theorem 1.1 to describe LR(r, 3) : the 3(r-1) inequalities Λ l (i+1) ⩾ Λ l (i) (for all l ∈ [3] and i ∈ [r -1]) ; the two inequalities 3 l=1 |Λ l | ⩽ 0 and 3 l=1 |Λ l | ⩾ 0 ; the inequalities 3 l=1 |Λ| J l ⩽ 0 for all J ∈ d∈[r-1] Intersecting 0 (d, r, 3). -The integer l min (r, 3) is the minimal number of inequalities taken from the previous ones to describe the cone LR(r, 3). Using the Belkale-Knutson-Tao-Woodward theorem 5.2, if r ⩾ 2 we remove the inequalities

3 l=1 |Λ| J l ⩽ 0 for all d ∈ [r -1] and J / ∈ Intersecting 00 (d, r, 3). If r = 2, we also remove the three inequalities Λ l (2) ⩾ Λ l (1) (for all l ∈ [3]).
-The integer l 0 σ (r, 3) is the number of inequalities given by theorem 1.5 to describe the cone LR(r, 3) σ , i.e. the element of the form (λ, λ, λ) in LR(r, 3) : the r -1 inequalities λ(i + 1) ⩾ λ(i) (for all i ∈ [r -1]) ; the two inequalities |λ| ⩽ 0 and |λ| ⩾ 0 ; the inequalities 3 l=1 |Λ| J l for all J ∈ d∈[r-1] Intersecting 0 (d, r, 3) σ . Clearly, l σ (r, 3) ⩽ l(r, 3) = l Id (r, 3).

-The integer l 00 σ (r, 3) is the smaller number of inequalities we found in corollary 4.7 to describe the cone LR(r, 3) σ . We remove from the previous inequalities the ones of the form 3 l=1 |Λ| J l ⩽ 0 for all d ∈ [r -1] and J / ∈ Intersecting 00 (d, r, 3). We do not know if they are irredudant. Let Λ ∈ (R r ) 3 . The tuple Λ is in LR(r, 3) if and only if the following conditions hold :

1. for all l ∈ [3] and i ∈ [r -1], Λ l (i + 1) ⩾ Λ l (i) ; 2. In addition to this, all of these inequalities are essential. Proof. -The fact that these inequalities are enough to describe LR(r, s) comes from Klyachko's theorem 4.1. The fact that these inequalities are essential is theorem 4 from [START_REF] Knutson | The honeycomb model of GL n (C) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone[END_REF]. 5.2. Equations. -For all r, d ∈ N such that 1 ⩽ d < r ⩽ 5 we give the list of the elements (J 1 , J 2 , J 3 ) ∈ Intersecting 00 (d, r, 3) (remember example 5.1) up to permutation ; the σ-stable ones are in bold. Other examples can be found in appendix A from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF] and in subsection 1.3 from [START_REF] Klyachko | Stable bundles, representation theory and Hermitian operators[END_REF] 

sl=1

  |Λ l | J l ⩽ 0. Proof. -See subsection 4.1.

  Remark 2.2. -Definition 2.1 gives us Intersecting 00 (r, n, s) ⊂ Intersecting 0 (r, n, s) ⊂ Intersecting(r, n, s). Example 2.3. -We have the simple case Subsets(n, n, s) = Intersecting 00 (n, n, s) = ([n]) l∈[s] . Definition 2.4. -The expected dimension of a tuple I ∈ Subsets(r, n, s) is

  Lemma 2.16 (The Horn inequalities). -Let r ∈ [n] and d ∈ [r]. Let I ∈ Intersecting(r, n, s) and J ∈ Intersecting(d, r, s). Then we have Horn's inequality edim IJ ⩾ edim J .

Definition 2 .

 2 18. -The true dimension of I is min (F ,G)∈B dim L I (F, G) and denoted tdim I. Lemma 2.19. -We have tdim I ⩾ edim I and the tuple I is intersecting if and only if this is an equality. This is the first point of lemma 2.4 and the equivalence (α) ⇔ (γ) of proposition 2.3 from [Bel06]. Example 2.20. -If tdim I = 0 and edim I ⩾ 0, then I is intersecting. By fixing the true dimension we now consider the nonempty (since tdim I is a reached minimum) set P t (I) := {(F, G, φ) ∈ P(I) | dim L I (F, G) = tdim I} . Definition 2.21. -The kernel dimension of I is min (F,G,φ)∈Pt(I) dim Ker φ and is denoted kdim I. Lemma 2.22. -If edim I ⩾ 0 and kdim I ∈ {0, r}, I is intersecting. This comes from lemma 5.3.4 and corollary 5.2.6 in [BVW18]. By fixing the kernel dimension we finally consider the nonempty (since kdim I is a reached minimum) set P kt (I) := {(F, G, φ) ∈ P t (I) | dim Ker φ = kdim I} . Definition 2.23. -Assume kdim I ⩾ 1. The kernel position of I is the unique tuple kPos(I) ∈ Subsets(kdim I, r, s) such that, for all l ∈ [s] and all k ∈ [kdim I], kPos(I) l (k) = min (F ,G,φ)∈P kt (I) Pos(Ker φ, F l )(k). Lemma 2.24. -If 1 ⩽ kdim I ⩽ r -1, kPos(I) is intersecting. This is corollary 5.2.10 in [BVW18]. Remark 2.25. -Using lemma 2.24 and the first point of definitionproposition 2.14, the kernel position of a given tuple is indeed the Schubert position of a linear subspace of U with respect to a sequence of flags on U . Lemma 2.26 (Sherman's relation). -If 1 ⩽ kdim I ⩽ r -1, 0 ⩽ tdim I -edim I ⩽ tdim(I kPos I ) -edim(I kPos I ).

For

  all r ∈ N * we denote by H(r) the assertion ∀d ∈ [r], ∀n ⩾ d, Horn(d, n, s) ⊂ Intersecting(d, n, s).

  Belkale's theorem 3.1. Main theorem. -We have introduced the action of the symmetric group S s in subsection 1.3. Let n ∈ N * and r ∈ [n].

  Proof. -See subsection 3.3.Example 3.2. -If σ = Id, theorem 3.1 is Belkale's theorem 2.7. Example 3.3. -The set Intersecting(5, 10, 3) is made of 718, 738 elements while Intersecting(5, 10, 3) (1 2 3) is made of 49 elements (and none of them is of expected dimension null). Remark 3.4. -As in example 2.3 we haveSubsets(n, n, s) = Intersecting 00 (n, n, s) σ = ([n]) l∈[s] .3.2. The action of the symmetric group. -In this new subsection, we explain how some of the objects and relations of[START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF] (introduced in subsection 2.2) behave accordingly to the action of S s . Let n ∈ N * and r ∈ [n]. Let I ∈ Subsets(r, n, s).3.2.1.In relation with operations on tuples. -We are interested in σstability. Let d ∈ [r] and a tuple J ∈ Subsets(d, r, s). Remark 3.5. -The two operations we have seen on tuples preserves the σ-stability : if I and J are σ-stable, IJ and I J are σ-stable. Lemma 3.6. -The tuple I is intersecting if and only if σ • I is intersecting and Intersecting(r, n, s) σ • Intersecting(d, r, s) σ ⊂ Intersecting(d, n, s) σ .

3.

  The three dimensions on tuples we have seen satisfy edim(σ•I) = edim I, tdim(σ • I) = tdim I and kdim(σ • I) = kdim I.

  From this and equation ( * ) we know that the true dimensions of σ • I and I are the minimum of the same set, hence are equal. Let (F, G) ∈ B and φ ∈ L(V, Q). Because of equation ( * ), (F, G, φ) ∈ P(I) if and only if (σ • F, σ • G, φ) ∈ P(σ • I). From this and equations ( * ) and tdim(σ • I) = tdim I we deduce that (F, G, φ) ∈ P t (I) if and only if (σ • F, σ • G, φ) ∈ P t (σ • I). Thus the kernel dimensions of σ • I and I are the minimum of the same set, hence are equal.

  s l=1 |Λ l | = 0 and, for all d ∈ [r -1] and J ∈ Intersecting(d, r, s), s l=1 |Λ l | J l ⩽ 0. 2. The tuple Λ satisfies the Horn inequalities : s l=1 |Λ l | = 0 and, for all d ∈ [r -1] and J ∈ Intersecting(d, r, s), s l=1 |Λ l | J l ⩽ 0. 3. The tuple Λ satisfies the reduced and symmetric Horn inequalities : s l=1 |Λ l | = 0 and, for all d ∈ [r -1] and J ∈ Intersecting 00 (d, r, s) σ , s l=1 |Λ l | J l ⩽ 0.

  1. -For all d, r ∈ N such that 1 ⩽ d ⩽ r ⩽ 5,Intersecting 0 (d, r, 3) = Intersecting 00 (d, r, 3).

  Theorem 5.2 (Belkale-Knutson-Tao-Woodward)

3

  l=1 |Λ l | = 0 (seen as two inequalities) ; 3. if r ⩾ 3, for all d ∈ [r -1] and all J ∈ Intersecting 00 (d, r, 3),3 l=1 |Λ l | J l ⩽ 0.

.

  7 and this tabular we know that (λ, λ, λ) is inLR(5, 3) if and only if λ(1) ⩾ • • • ⩾ λ(5) and  + λ(2) + λ(3) + λ(4) + λ(5) = 0 λ(2) + λ(5) ⩽ 0 λ(3) + λ(4) ⩽ 0 λ(1) + λ(4) + λ(5) ⩽ 0 λ(2) + λ(3) + λ(5) ⩽ 0Example 5.7. -In example 1.6, we can also see that equation ( * ) is the consequence of the others because ({2, 4, 6} , {2, 4, 6} , {2, 4, 6}) is in Intersecting 0 (3, 6, 2) σ but not in Intersecting 00 (3, 6, 2) σ

  i∈[n] on U . Intersecting tuples. -Let n ∈ N * , r ∈ [n] and I ∈ Subsets(r, n). Let U be a complex vector space of finite dimension n. For all E ∈ Flag(U ) we denote

	2. Belkale's point of view on theorems 1.1 and 1.2
	2.1. Belkale's theorem. -In 2005, Prakash Belkale answered a question
	from William Fulton [Ful98] and proposed a geometric proof of the Horn con-
	jecture [Bel06] using Schubert calculus. Belkale's geometric point of view
	is well adapted to prove the refinement presented in this paper. In 2018,
	Nicole Berline, Michèle Vergne and Michael Walter presented Belkale's proof
	[BVW18] in a different way and the present text is based on this new redac-
	tion.
	2.1.1.

  who shows how some historical equations are consequences of Klyachko's theorem 4.1.Example 5.3. -Description of Intersecting 00 (d, 2, 3) for d ∈ [1]. d J 1 J 2 J 3 1 {1} {2} {2} Example 5.4. -Description of Intersecting 00 (d, 3, 3) for d ∈ [2].Description of Intersecting 00 (d, 4, 3) for d ∈ [3]. {1, 2, 3} {2, 3, 4} {2, 3, 4} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 3, 4} {1, 3, 4} {1, 3, 4} Example 5.6. -Description of Intersecting 00 (d, 5, 3) for d ∈ [4]. {1, 2, 3, 4} {2, 3, 4, 5} {2, 3, 4, 5} {1, 2, 3, 5} {1, 3, 4, 5} {2, 3, 4, 5} {1, 2, 4, 5} {1, 2, 4, 5} {2, 3, 4, 5} {1, 2, 4, 5} {1, 3, 4, 5} {1, 3, 4, 5} Let λ ∈ R 5 . Using corollary 4.

	Example 5.5. -d	{1, 3, 4} {1, 3, 4} J 1 {1, 3, 5}	{2, 3, 5} {2, 4, 5} J 2 {1, 3, 5}	{3, 4, 5} {2, 4, 5} J 3 {3, 4, 5}
	1	{1} {1, 3, 5}	{4} {1, 4, 5}	{4} {2, 4, 5}
		{2} {1, 3, 5}	{3} {2, 3, 5}	{4} {2, 4, 5}
		{3} {1, 4, 5}	{3} {1, 4, 5}	{3} {1, 4, 5}
	2	{1, 2} {1, 4, 5}	{3, 4} {2, 3, 5}	{3, 4} {2, 3, 5}
		{1, 3} {2, 3, 4}	{2, 4} {2, 3, 4}	{3, 4} {3, 4, 5}
		{1, 4} {2, 3, 4}	{1, 4} {2, 3, 5}	{3, 4} {2, 4, 5}
		{1, 4} {2, 3, 5}	{2, 4} {2, 3, 5}	{2, 4} {2, 3, 5}
	4	{2, 3}	{2, 3}	{3, 4}
		{2, 3}	{2, 4}	{2, 4}
	3 d	J 1		J 2		J 3
	1	{1}		{5}		{5}
		{2}		{4}		{5}
		{3}		{3}		{5}
		{3}		{4}		{4}
	2	{1, 2}		{4, 5}		{4, 5}
		{1, 3}		{3, 5}		{4, 5}
		{1, 4}		{2, 5}		{4, 5}
		{1, 4}		{3, 5}		{3, 5}
		{1, 5}		{1, 5}		{4, 5}
		{1, 5}		{2, 5}		{3, 5}
		{2, 3}		{3, 4}		{4, 5}
		{2, 3}		{3, 5}		{3, 5}
		{2, 4}		{2, 4}		{4, 5}
		{2, 4}		{2, 5}		{3, 5}
		{2, 4}		{3, 4}		{3, 5}
		{2, 5}		{2, 5}		{2, 5}
		{2, 5}		{2, 5}		{3, 4}
		d {3, 4}	J 1	J 2 {3, 4}	J 3	{3, 4}
	1 {1} 3 {1, 2, 3}	{3} {3, 4, 5}	{3} {3, 4, 5}
		{2} {1, 2, 4}	{2} {2, 4, 5}	{3} {3, 4, 5}
		2 {1, 2} {2, 3} {2, 3} {1, 2, 5} {1, 4, 5} {3, 4, 5}
		{1, 3} {1, 3} {2, 3} {1, 2, 5} {2, 4, 5} {2, 4, 5}

A. MÉDOC 3. The tuple Λ satisfies the reduced Horn inequalities : s l=1 |Λ l | = 0 and, for all d ∈ [r -1] and J ∈ Intersecting 00 (d, r, s), s l=1 |Λ l | J l ⩽ 0. Proof. -A proof is presented in the first point of corollary 6.3.3 from [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF]. It is also a consequence of corollary 4.7. 

For all λ ∈ R r we denote λ * := (-λ(r), . . . , -λ(1)). Remark 4.4. -Let Λ ∈ (R r ) s . Let I r be the identity matrix of order r and (a 1 , . . . , a s ) ∈ R s such that s l=1 a l = 0.

Remark 4.5. -Let I ∈ Subsets(r, n, s). Using previous remark 4.4, we know that Λ(I) ∈ LR(r, s) if and only if M(I) ∈ LR(r, s).

The proof of corollary 6.3.3 in [BVW18] also gives us the following result which allows an inductive description on r ∈ N * of LR(r, s). Corollary 4.6. -For all I ∈ Subsets(r, n, s), I ∈ Intersecting 0 (r, n, s) if and only if M(I) ∈ LR(r, s). Proof. -By remark 4.5 it is enough to prove that I ∈ Intersecting 0 (r, n, s) if and only if Λ(I) ∈ LR(r, s). Assume that I ∈ Intersecting 0 (r, n, s). Using formula 6.3.1 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], the linear subspace ( n l=1 L(Λ(I) l )) U(s) is nonnull. Hence, by the saturation property seen in Knutson-Tao theorem 1.2, Λ(I) ∈ LR(r, s).

We now prove the converse. Assume that Λ(I) ∈ LR(r, s). By corollary 2.13 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], it satisfies the Horn inequalities. Using the equations of lemma 4.3.9 in [START_REF] Berline | The Horn inequalities from a geometric point of view[END_REF], this means that I ∈ Horn(r, n, s). We conclude by Belkale's theorem 2.7. Theorem 1.1 is a consequence of Klyachko's theorem 4.1 and corollary 4.6. -For all σ-stable Λ ∈ (R r ⩾ ) s , the following assertions are equivalent.

A consequence of the refinement of

1. The tuple Λ is in the Kirwan cone LR(r, s).