

14th European Adhesion Conference (EURADH) 7th World Congress on Adhesion and Related Phenomena (WCARP) *

10 - 13 September 2023 - Garmisch-Partenkirchen, Germany

Visco-hyperelastic modeling of aeronautical sealant in pure bonded and hybrid bolted/bonded joints

Presented by: Co-Authors: Minh Nhat TO Éric PAROISSIEN Frédéric LACHAUD Valérie NASSIET Bouchra HASSOUNE Maëlenn AUFRAY Hélène WELEMANE - ICA, LGP, CIRIMAT (FR)

- ICA, Toulouse (FR)
- ICA, Toulouse (FR)
- LGP, Tarbes (FR)
- LGP, Tarbes (FR)
- CIRIMAT, Toulouse (FR)
- LGP, Tarbes (FR)

INSTITUT CLÉMENT ADER

Minh Nhat TO, nhat.to@isae-supaero.fr, +33 (0)7.89.96.78.18

Content

- 1. Introduction
- 2. Methodology
- 3. Visco-hyperelastic parameters determination
- 4. Assessment of joint behavior
- **5.** Conclusion & Perspectives

I. Introduction

PhD context

I. Introduction

Problematic

- Hybrid bolted/bonded joints offer many advantages over pure bolted or bonded joints.
- In aerospace industry, **bolted-sealed joints** with very **small stiffness sealant** are widely used.
- ✓ With recent developments, sealant can play a part in the mechanical function, contributing in relieving stress thanks to its viscoelastic nature
- \Rightarrow How can the load transferred by the sealant in a bolted-sealed joint be determined?
- Linear elasticity has difficulty representing rubber-like sealant large time-dependent deformations.
- ⇒ How can the complex visco-hyperelastic sealant behavior be accounted ?

Relative adhesive shear modulus

I. Introduction

Objective

• Propose a methodology to evaluate load transferred by the sealant based on numerical and experimental tests

• Present the process of determining viscohyperelastic parameters of sealant and their applications on pure bonded and bolted-sealed joints

- Sealant: **PR 1782 C 2**

is a two-part product based on a liquid polysulfide polymer polymerized with manganese dioxide. The putty takes 12 hours for curing under ambient conditions. [LJF-1]

According to thermomechanical analysis (TMA), the shear modulus of sealant in the rubbery/elastomeric state is constant over the experimental temperature range: [18; 24°C].

- Substrates: Aluminum 2024-T3
- Bolt EN3115-3-5 [AEC-1] & Nut ASNA2531-3 (Steel alloys)

Mechanical characterization of sealant

Uniaxial tensile (UAT) test

Pure shear (**PS**) test

Rectangular specimen and PS test setting-up

Dumbbell specimen and UAT test setting-up

[ISO-1 ISO 37:2005(E)] [MEU-1 Meunier, L. (2007)]

Test speed selection

Uniaxial Tensile Test

Pure Shear Test

- Elastomeric behavior is very sensitive to test speed: same local strain rate for both tests
- Monitoring by Digital Image Correlation (DIC)
 - For a local strain rate of 0.065 s⁻¹
 - UAT at 250 mm/min
 - PS at 80 mm/min

III. Visco-hyperelastic parameters determination

Mechanical characterization of sealant

Relaxation test: in the first phase, displacement increases with time until the elongation ratio reaches 2, then deformation is kept constant and the machine continues to capture the reaction force of the specimen.

III. Visco-hyperelastic parameters determination

Hyperelastic parameters

<u>Idea</u>: For each hyperelastic model, the engineering stress equations are determined as a function of the hyperelastic coefficients and elongation λ by taking the differential of the strain energy density **W** while using the assumptions specific to each test.

✓ The Mooney-Rivlin model with 5 coefficients is selected for this research.

Viscoelastic parameters

Generalized Maxwell model with 3 Maxwell arms

Maxwell arm	E _i [MPa]	т _i [S]	g i
i = 1	0.0620	1	0.0725
i = 2	0.1382	10	0.1615
i = 3	0.1472	100	0.1722

Joint tests

The test speed is **0.5 mm/min** for both the pure bonded joint and the bolted-sealed joint tests.

The relationship between applied force and local displacement at the center point of the middle substrate in the overlap zone is evaluated.

FE models

Pure bonded joint:

2D plane strain and 3D models for the comparison

- \Rightarrow Simulation tests are carried out using the 2D plane strain model to save calculation time.
- <u>Bolted-sealed joint:</u> 3D model

FE models

■ Substrates & bolt:

Boundary conditions:

Applied displacement: 0,15 mm

- □ Evaluate joint behavior under low loads corresponding to fatigue state.
- □ Chosen according to the mesh resolution, sealant material law and convergence capability.

Material	Material properties	
AI 2024-T3	E = 72 GPa, v = 0.33	
Steel alloys	E = 21 GPa, v = 0.33	
Contact "bolt-hole"	μ = 0.3	

Sealant:

Materials:

VHE	Visco-hyperelastic: 5-coeff Mooney-Rivlin + Prony series
HE	Pure hyperelastic : 5-coeff Mooney-Rivlin

<mark>15</mark>/18

- Greater influence of the sealant for small thickness of sealant layer
- VHE represents better the joint behavior than HE

Assessment of load transferred by the sealant

• Bolt load transfer rate (τ) : is defined by the ratio of the load supported by the bolt to the total load applied.

⇒ Sealant material identification allows for bolted-sealed joint behavior modeling and the determination of load transferred by the sealant.

V. Conclusion & Perspectives

- Visco-hyperelastic coefficients can be determined from several test data (UAT and PS) using the presented optimization method.
- Only PS experimental data would be needed to predict the force transfer distributions in double-lap joints.
- □ The more complex the sealant material model, the lower the convergence capability of the numerical simulation.

- Increasing the load transferred by sealant could help to improve the fatigue life of the bolted-sealed joint
- An idea for increasing the fatigue strength of an bolted-sealed joint by reinforcing the sealant formulation will be developed.

14TH EURADH & 7TH WCARP 2023

THANK YOU Any questions?

Contact: Minh Nhat TO, nhat.to@isae-supaero.fr, +33 (0)7.89.96.78.18

REFERENCES

STITUT CLÉMENT ADER

[AEC-1] AECMA, prEN6115-P5 (Aerospace Series, Bolts), European Association of Aerospace Industries (2007)

[ATR-1] A. Atre, W. S. Johnson, Analysis of the effects of interference and sealant on riveted lap joints, Journal of Aircraft (2007), vol. 44, No. 2

[AUS-1] P.E. Austrell, Modeling of Elasticity and Damping for Filled Elastomers, Report TVSM 1009 (1997).

[BON-1] L. Boni et A. Lanciotti, Fatigue behavior of double lap riveted joints assembled with and without interfay sealant, Fatigue & Fracture of Engineering Materials and Structures 34 (2010) 60-71

[BRI-1] L.C. Brinson, T.S. Gates, Comprehensive Composite Materials, 2000

[CAB-1] M. Cabello et al, A non-linear hyperelastic foundation beam theory model for double cantilever beam tests with thick flexible adhesive, International Journal of Solids and Structures (2015),

[DEC-1] C. Dechwayukul et al, Analysis of the effects of thin sealant layers in aircraft structural joints, AIAA journal (2003), vol. 41, No. 11

[HOA-1] C.T. Hoang-Ngoc, E. Paroissien, Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive, International Journal of Adhesion & Adhesives 30 (2010) 117–129

[ISO-1] ISO 37:2005(E): Rubber, vulcanized or thermoplastic: Determination of tensile stressstrain properties

[KAM-1] N. Kamnerdtong, The shear properties of a polymer sealant and analyses of the distorsion and fatigue of sealed countersunk riveted lap joints, PhD thesis (2001)

[KEL-1] G. Kelly. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Journal of Composite Structures 2006; 72:119–29.

[LJF-1] Le Joint Français, PR 1782 C Mastic d'étanchéité réservoirs structuraux interposition faible densité, Édition 10/2011

[MEU-1] L. Meunier et al. Caractérisation du comportement mécanique d'élastomères silicones chargés et non chargés. 18ème Congrès Français de Mécanique, Aug 2007, Grenoble, France. hal-01978979

Toulouse

[MOO-1] M.A. Mooney. A theory of large elastic deformation. Journal of Applied Physics. 1940; 11(9):582-592.

http://dx.doi.org/10.1063/1.1712836.

[MOR-1] D.C. Moreira, L.C.S. Nunes, Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation, Polymer Testing 32 (2013) 240–248

[NIU-1] Michael .C.Y. Niu. Airframe Structural Design

[OGD-1] R.W. Ogden. Large deformation isotropic elasticity on the correlation of theory and experiment for the incompressible rubber-like solids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1972; 326(1567):565584.

[PAR-1] E. Paroissien, F. Lachaud et al. Simplified stress analysis of hybrid (bolted/bonded) joints, International Journal of Adhesion and Adhesives 77 (2017) 183–197

[PAR-2] Paroissien, E. Modélisation simplifiée des transferts d'effort dans les assemblages boulonnés et/ou collés, Mémoire d'Habilitation à Diriger des Recherches, Université de Toulouse III Paul Sabatier (FR). (2020)

[RIV-1] R.S. Rivlin. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Philosophical Transitions of the Royal Society of London A. (1951) 243(865), pp. 251-288.

[ROS-1] P.L. Rosendahl, From Bulk to Structural Failure: Fracture of Hyperelastic Materials (2020)

[SAS-1] M. Sasso, G. Palmieri, G. Chiappini, D. Amodio, Characterization of hyperelastic rubberlike materials by biaxial and uniaxial stretching tests based on optical methods, Polymer Testing 27 (2008) 995–1004

[SHA-1] M. Shahzad et al. Mechanical Characterization and FE Modelling of a Hyperelastic Material, Materials Research. 2015; 18(5): 918-924.

[WIL-1] M. L. Williams, Structural analysis of viscoelastic materials, AIAA Journal (1964) vol 2: 785-808