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Abstract
Vision Transformers (ViTs) are highly accurate Machine Learning
(ML) models. However, their large size and complexity increase the
expected error rate due to hardware faults. Measuring the error
rate of large ViT models is challenging, as conventional microar-
chitectural fault simulations can take years to produce statistically
significant data. This paper proposes a two-level evaluation based
on data collected through more than 70 hours of neutron beam ex-
periments andmore than 600 hours of software fault simulation.We
consider 12 ViT models executed in 2 NVIDIA GPU architectures.
We first characterize the fault model in ViT’s kernels to identify
the faults more likely to propagate to the output. We then design
dedicated procedures efficiently integrated into the ViT to locate
and correct these faults. We propose MaxiMum corrupted values
(MaxiMals), an experimentally tuned low-cost mitigation solution
to reduce the impact of transient faults on ViTs. We demonstrate
that MaxiMals can correct 90.7% of critical failures, with execution
time overheads as low as 5.61%.

1 Introduction
Transformers are state-of-the-art ML models that excel in various
autonomous system tasks such as language processing, image clas-
sification, radar processing, and instance segmentation. When used
in vision applications, ViTs selectively focus on essential features
in a given frame using attention mechanisms instead of treating all
features equally. Thanks to their ability to learn a wide range of
concepts from data, ViTs are especially useful for complex appli-
cations like autonomous driving [1] and industrial automation [2].
However, given the complexity of the models and the high number
of parameters (which can exceed 1 trillion [3]), ViTs need to be
executed on large hardware accelerators, such as Graphic Process-
ing Units (GPUs). GPUs are the most suitable hardware architec-
ture to train and use large ViT models due to their flexibility and
high-performance computing capabilities. GPU vendors have sig-
nificantly improved their products’ computing power, frameworks,
and hardware reliability. Modern GPUs feature a tailored Single Er-
ror Correction Double Error Detection (SECDED) Error Correction
Codes (ECC) in the main GPU memories [4]. Despite ECC in main
memories, as we show in this paper, GPUs executing ViTs can still
present high neutron-induced fault rates due to their extensive com-
puting resources. Additionally, the probability of multiple parallel
units being simultaneously affected compromises the reliability
of ViT-based systems, posing a threat to ViT-based autonomous
safety-critical applications.

Assessing the reliability of ViTs is exceptionally challenging
due to the complexity of both the hardware and software frame-
work. While radiation experiments are used as a realistic error rate
estimation source [5], they do not allow for tracking fault propa-
gation. Contrarily, with fault simulation, we can pinpoint specific
fault sites [6]–[8]. However, fault models are synthetic and pro-
vided by the user. It is thus essential to ensure that simulation fault
models are realistic to avoid drawing misleading conclusions or
implementing ineffective hardening solutions. Recent works show
that the results obtained from different fault simulation levels, such
as microarchitectural and software, can vary up to one order of
magnitude [6], if the fault model does not realistically represent
real-world errors. In this paper, we adopt a cross-layer analysis
(novel for ViTs), combining radiation and software fault simula-
tion approaches, to obtain realistic and traceable insights into ViT
reliability.

Unfortunately, traditional mitigation strategies, such as modular
redundancy [9] and Algorithm-Based Fault Tolerance (ABFT) [5],
become nearly impractical when adapted to large Transformers,
since there are billions (even trillions) of parameters and gigabytes
of memory to manage and protect. Even a simple float value restric-
tion, applied across all layers of a ViT model, imposes a significant
68.61% overhead [8]. Thus, novel and effective solutions are re-
quired to enhance ViT’s reliability, such as the one we propose in
this paper.

We propose protecting against faults most likely to affect ViT’s
accuracy. To identify the faults to correct, we expose two NVIDIA
GPU architectures to neutron beams for over 70 hours (equivalent
to 700,000 years of terrestrial operation), measuring the error rate
of 6 large ViT models (with and without ECC) and characterizing
the fault model of ViT kernels. Then, we conduct over 600 hours
of software fault simulation using the NVIDIA Fault Injector [10]
tuned with the experimentally observed fault models. We track
fault propagation and identify the faults that are more likely to
corrupt the ViT inference. Based on our cross-layer analysis, we
propose a low-cost and effective fault-tolerant mechanism, named
Maximum corrupted Malicious values (MaxiMals), that corrects only
the critical corrupted floating-point values in the inference. Notably,
MaxiMals incurs a low average overhead of 5.61% in execution time
and requires minimal model modifications while reducing up to
90.7% of misclassifications (61.41% on average).

Specifically, our contributions include:
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• A reliability evaluation of 6 ViTs on 2 GPU architectures using a
neutron beam, discussing the dependence of ViT error rates on
complexity and trade-off of enabling ECC.

• The ViT neutron-induced fault model characterization and how
transient faults affect ViT kernels.

• A detailed analysis of the fault propagation in ViT models based
on fault simulation to unveil which faults affect ViT’s ability to
classify images correctly.

• An efficient hardening technique with minimal model modifica-
tions and low execution time overhead.

2 Background and Contributions
The ViT model, introduced by Dosovitskiy et al. [11], improves
image classification accuracy by treating input images as sequences
of patches. These patches are transformed using linear transforma-
tions before being fed into the model. Additionally, the ViTs have
similar structures across their variants like EVA2 [1], SwinV2 [12],
and MaxViT [13]. Transformers use Encoder Blocks, including
Multi-Layer Perceptrons (MLP), Identity and Normalization layers,
and Multi-Head Attention (MHA) networks. While Normalization,
Identity, andMLP are conventional kernels of ML, theMHAmodule,
the innovation of Transformers, enables attention to image areas for
context understanding. We evaluate the impact of neutron-induced
faults (error rate and model) on each ViT kernel to enable efficient
fault tolerance for ViTs. Our analysis in Section 4 shows that ViT’s
error rate is linearly dependent on memory and computational
resources.

Hardware accelerators for ViT employed on autonomous sys-
tems are susceptible to soft errors caused by faults induced by
ionizing particles, such as high-energy neutrons [14]. These errors
may not damage the device physically but can significantly impact
the output of ViT models, potentially changing their final classifica-
tions. When notmasked, soft errors can propagate to the software
level and causeDetected Unrecoverable Errors (DUEs) or Silent
Data Corruptions (SDCs). DUEs hang the program or crash the
entire system, while SDCs allow the application to complete its ex-
ecution but with an incorrect output and, without a fault-tolerance
method, the failure remains undetected. Particularly concerning
ViT models, SDCs can be further categorized into Tolerable SDCs,
which modify the model output but not the classification outcome,
or Critical SDCs, which causes the model to change the top 1
classification probability, resulting in misclassification. We focus
on correcting Critical SDCs only, to provide efficient mitigation
solutions.

In light of the complexity of ViT models and their high memory
and computational requirements, we have opted for reliability eval-
uation methods that generate accurate data in a feasible amount
of time: physical injection with a neutron beam and instruction-
level fault simulation. Although lower levels of fault simulation,
such as RTL and microarchitectural, can produce more precise
outcomes [6], recent studies indicate that characterizing all the
requisite fault simulations for large ML models could take months
to years [15]. For example, simulating a tiny 5-layer neural net-
work that is around 5.103 times smaller than the smallest model we
assessed (ViT BS32-224) takes approximately 1.2 hours in a GPU
microarchitectural simulator [15]. It would require ≈7 centuries
to simulate 1,000 faults on a GPU microarchitectural simulator for
ViT BS32-224.

In order to provide a comprehensive evaluation, we adopt a cross-
layer strategy that consists of observing, with beam experiments,
how (and how often) the hardware fault propagates to a software
visible state. Then, we propagate this effect in software to track
how it modifies the ViT output. Combining data from neutron beam
experiments with instruction-level simulations therefore provides
valuable insights into the reliability of large ViT models, and how
to enhance their fault tolerance at the application level.

ABFT [5] and value restriction [7], [16] are established approaches
to prevent Critical SDC on ML models. Interestingly, conventional
strategies for large Transformers lead to high overheads due to their
resource-demanding nature. Researchers have adapted ABFT [17]
and range restriction [8] for ViTs. However, a simple range restric-
tion approach for all the layers of a ViT model can add up to 68.61%
overhead on execution time [8]. To address this issue, our proposed
MaxiMals approach is an experimentally tuned method at the ap-
plication level that increases fault tolerance for large ViT models
with low overhead. This is achieved by targeting only critical faults.
We refrain from suggesting hardware design changes, resulting in
costly hardware modifications that could affect performance and
design time. Instead, we efficiently manage hardware faults at the
application level.

3 Evaluation Methodology
This section describes our experimental methodology, error rate
metrics, and reveals how ViT features affect reliability.

System Under Test: We performed fault simulations and beam
experiments on two NVIDIA GPU architectures, Pascal (Quadro
P2000) and Ampere (RTX A2000). The Quadro P2000 is built with
TSMC 16𝑛𝑚 FinFET, featuring an L1 cache of 48KB per Streaming
Multiprocessor (SM), an L2 cache of 1280 KB, and 1024 CUDA cores.
The RTX A2000 is built with TSMC 7𝑛𝑚 FinFET, featuring an L1
cache of 128 KB per SM, an L2 cache of 3MB, and 3328 CUDA cores.
Both GPUs have 256 KB registers per SM and a power consumption
of up to 75W. Our beam experiments only focus on GPU core errors
(beam spot set to 2cm diameter to avoid affecting onboard DRAM).
The RTX A2000 has SECDED ECC to protect the register file and
cache memories. Tests were conducted with ECC ON for some ViTs
to assess ECC efficacy.

We evaluated 12 ViT models from the HuggingFace library
(v0.8.19) [18]. The models belong to 4 families: Original ViT [11],
EVA2 [1], SwinV2 [12], and MaxViT [13]. The models differ in size
and input patches. For the experiments, we used a Python program
with PyTorch v2.0.0 to load the ViT and perform inferences on a
batch of random images from the ImageNet dataset [19]. Table 1
shows essential features of the evaluated models, including their
GPU memory usage, accuracy, execution time, and the min and
max Identity layers’ output values used for the MaxiMals imple-
mentation.

Physical Fault Injection: We measured the neutron-induced
error rate on a subset of ViTs from Table 1 by exposing the GPUs
to a neutron beam. As we could not assess all 12 configurations
due to beam time limitations, the original ViT configurations were
prioritized. The beam experiments provide the Failure In Time
(FIT), which is calculated by dividing the number of errors by the
neutron fluence and then multiplying by the terrestrial neutron
flux (13 × 109). The experiments were done at the ChipIR facility
of the Rutherford Appleton Laboratory, UK. Figure 1 shows the
installed setup, consisting of GPUs aligned with the neutron beam
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Table 1. ViTs’ memory size, accuracy, execution times for Pascal
(P.) and Ampere (A.) GPUs and profiled values.

Size Acc. Time (ms) Value Range
(MB) (%) P. A. min max

ViT
[11]

BS32-224 339 73.6 31 7 -32.8 37.6
B16-224 333 84.5 135 24 -35.1 63.5
B16-384 340 85.4 461 72 -55.6 67.0
L14-224 1164 87.9 488 106 -231.3 124.6
H14-224 2479 88.2 1644 216 -83.4 90.9

EVA2
[1]

B14-448 350 88.6 812 161 -904.2 483.7
L14-448 1176 89.9 2686 509 -342.6 327.6

SwinV2
[12]

B-256 372 86.2 182 53 -18.6 19.0
B-384 431 87.1 579 172 -18.6 18.5
L-256 787 86.9 404 92 -22.5 22.7

MaxViT
[13]

L-384 845 87.9 938 282 -66806.8 35259.4
L-512 856 88.0 1762 518 -83250.6 40806.9

and connected to the motherboard. The beam setup utilizes Python
scripts to monitor and execute ViT models on a server outside
the beam room, while the software is designed to recover from
device hangs and restart the program if it fails to respond within a
set timeframe. The same ViT model is run on the GPU for several
iterations, and any differences between the outputs and a previously
saved output are recorded as Tolerable SDC or Critical SDC. The
codes used on the beam experiments are disclosed1.

Software Fault Simulation: We used the NVIDIA Bit Fault
Injector (NVBitFI) [10] for the instruction-level fault simulation.
NVBitFI allows simulating faults at the Shader Assembly level
(SASS), i.e., GPU kernel at the assembly level. NVBitFI allows choos-
ing different fault models and sites to evaluate the ViT models.
While injecting random bit flips in software fault injection is not
accurate [6], injecting in software an experimentally-tuned fault
model (i.e., the observed manifestation of the hardware fault in a
software visible state) has been proved accurate for GPUs [20]. We
inject faults in general-purpose registers, memory load instructions,
and arithmetic floating-point operations. We used different bit fault
models derived from beam experiments, detailed in Section 4. We
simulate 1,750 faults per ViT model, equivalent to more than 600
hours of simulations. The failures (SDCs and DUEs) are counted
similarly to beam experiments. With fault simulations, we measure
the Program Vulnerability Factor (PVF) for each ViT model. The
PVF is the probability of an injected fault propagating from the
assembly instruction to the application output [21].

4 Fault Effects on ViT Models
In this section, we analyze the ViT’s FIT rate and identify the causes
of Critical SDCs. We show that single-bit flip fault simulations are
insufficient for ViT reliability assessment.

ViT’s FIT rate: Figure 2 shows the experimentally measured
SDC (Tolerable and Critical) and DUE FIT rates for the tested ViTs
configurations. Values are reported with 95% confidence intervals
considering a Poisson distribution.

All ViTs show high DUE FIT rates, on average, 20.50 for Pascal
and 32.57 for Ampere ECC OFF. Investigating the cause for DUEs,
we found that, when ECC is OFF, on average, 59.39% of the DUEs for
Pascal and 78.14% of the DUEs for Ampere are caused by memory
faults, such as incorrect memory address accesses and unaligned
1https://github.com/diehardnet/maximals

P A
Neutron beam

Motherboards Ethernet
connection

Figure 1. P2000 (P) and A2000 (A) GPUs on ChipIR beamline.

memory operations. The differences in the DUE rate for Pascal and
Ampere are attributed to the lower resources available on Pascal,
forcing more global memory accesses and warp scheduling stress.
On Ampere GPU, when ECC is ON, the DUE FIT rate increases by
an average of 1.84× due to exceptions triggered by uncorrectable
double-bit flips detected by ECC. Those faults account, on average,
for 77.10% of the total DUEs.

As shown in Figure 2, whereas the DUE FIT rate does not sig-
nificantly depend on the model, the SDC FIT rates directly depend
on the ViT model complexity and the related GPU resource utiliza-
tion. The average SDC FIT rate for the Pascal GPU is 6.66, with the
highest SDC FIT rate being 9.55 (EVA2 B14-448). For Ampere GPU,
when ECC is OFF, the average SDC FIT is 30.74, and the highest is
50.62 (H14-224). The trend is less evident for Pascal, for which we
observe only a slight increase in the SDC rate. This is justified by
resource saturation in the Pascal GPU (even the smaller ViT uses
all GPU resources), while in the Ampere GPU, bigger models use
more parallel resources, increasing the SDC FIT rate.

The likelihood of Critical SDCs occurring depends on various
ViT characteristics like weight values, accuracy, and activation
layers. Despite the high accuracy and significant data redundancy
of ViTs, Critical SDCs can still occur, as shown in Figure 2. This is
particularly evident in the case of large models, such as EVA2 B14-
448 and ViT L14-224, which exhibit a percentage of Critical SDC
of 33.33% and 37.33%, respectively. Models with many residual
connections and linear operations, like EVA2, can have higher
criticality than other models due to the ease with which errors
can propagate between the layers. Interestingly, H14-224 has a low
Critical SDC rate when executed with ECC OFF, 7.14% for Pascal
and 6.17% for Ampere. This can be attributed to the model having
a massive amount of parameters (2.48GB), making it less likely for
the corruption of a single or a small group of parameters to result
in Critical SDCs.

When ECC is ON, the SDC FIT rates are reduced by 71.51%.
Nonetheless, even with ECC ON, the ViT L14-224 still experiences
Critical SDCs in 10.0% of the cases. ECC does not provide full
protection from Critical SDCs and increases the DUE rate. Thus,
alternative hardening solutions are required.

ViT’s Fault Models: We analyze the reliability of the most
common ViT kernels (MLP, Attention, and the Encoder Block) to
unveil the leading causes of Critical SDCs. Table 2 shows data from

https://github.com/diehardnet/maximals
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Figure 2. Pascal and Ampere GPUs experimentally measured Tol-
erable and Critical SDC, and DUE FIT rates for the ViTs.

beam experiments for the kernels extracted from the L14-224 model
on a single inference on Pascal GPU. We compute SDC and DUE
FIT rates, the percentage of Not a Number (NaN ) and ±infinity (inf )
values observed in all the experiments, and the maximum difference
between fault-free and corrupted outputs, for each kernel.

The SDC FIT rates for kernels (on average, 20.49) are higher than
the FIT rate of most ViT modules. This is not surprising, since an
SDC in a kernel of the ViT still needs to propagate through the ViT
model, and it can still be masked in the downstream Encoder Blocks.
That is, we are not yet considering the propagation probability of
these faults in the ViT model. Conversely, the DUE FIT rate is
comparable to the ViT model’s (30.08 on average). This is because a
DUE in a kernel will hang the kernel execution and, consequently,
the application in which the kernel is being used. In other words,
when a crash/hang occurs, it cannot be masked.

The MLP kernel produces no inf /NaN values. The MLP algo-
rithm is a sequence of multiplying and accumulating instructions
and being a simpler algorithm, MLP has less chance of generating
inf /NaN values. Contrarily, the Attention kernel is composed of
softmax and division operations. Those operations demand many
cycles to compute and are more prone to yield inf /NaN values,
leading to the highest percentage of corrupted values. Lastly, the
ViT Block reveals much lower inf /NaN percentages in the output
than the Attention kernel. Attention produces many inf /NaN val-
ues, but, due to masking, these values may not propagate through
to the final output of the ViT Block. If corrupted values reach the
output of the Block, they can potentially affect the classification of
the entire ViT model.

Software Fault Simulation: To realistically evaluate which
faults - among those observed in beam experiments on the kernels
- propagate and generate Critical SDCs, we conducted fault simu-
lation campaigns employing multiple fault models. Moreover, the
goal is to identify the models that better represent the neutron-
induced faulty effect. For instance, for FP32 instructions, we used a
customized version of NVBitFI to simulate a more complex fault
model that writes a random value on all the threads on a GPU warp.
Multiple threads fault models accurately emulate GPU faults that
threaten ML models’ reliability, as demonstrated in [20].

Figure 3 shows the average probability for the fault models in-
jected in the 4 ViT families to induce a Critical SDC.We also plot the
results for the MaxiMals hardened version (described in Section 6)
to introduce the efficacy of our method. We include in Figure 3 the
average Critical SDC rate obtained with neutron beam experiments
(for Original ViT and EVA2). The similarity of the rates obtained

Table 2. Experimental data of ViT kernels in the neutron beam
experiments for Pascal GPU.

FIT Rate Inf/NaN
(%)

Max val.
diffSDC DUE

MLP 22.2 ± 6.7 24.8 ± 7.1 0.0% 1.3 × 1034
Attention 13.9 ± 3.2 26.2 ± 4.4 10.5% 6.0 × 1034
Block 25.2 ± 3.6 39.14 ± 4.5 2.9% 1.0 × 1037
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Figure 3. Average Critical SDC per fault model and ViT type.

with beam and fault injection further strengthens the accuracy of
our fault simulation. Figure 3 shows that single-bit flips injected at
the instruction level do not provide a realistic evaluation for ViT
models since most are masked and produce a Critical SDC rate close
to zero, well off the rate obtained with beam experiments. Note that
only 3% of single-bit flip fault injections resulted in values higher
than 106 after the fault mask was applied to the target register. In
contrast, when random values were used, 45% of the fault mask
immediately produced values higher than 106. Random and warp
random values closely match the beam experiment results. Single
particle corruption in shared memory or warp scheduler can cause
faults leading to inf, NaN, and large values. If these faults spread
to ViT structures, they may lead to Critical SDCs. Our hardening
strategy is designed based on these observations.

5 MaxiMals
The previous sections established that inf, NaN, and large values
pose a risk to ViT’s reliability. We modified the Identity layers
within the ViT Block to prevent the propagation of corrupted val-
ues that can generate Critical SDCs. Fig. 4a shows a standard ViT
Encoder Block, while Fig. 4b shows the modified model structures
needed to implement MaxiMals.

Using simple object-oriented programming techniques, the Max-
iMals approach can be easily implemented for any ViT structure.
We create a child class (HardenedIdentity) that extends the default
Identity layer class. Replacing the default Identity object with the
extendedHardenedIdentity allows us to effortlessly harden 12 differ-
ent models described in Table 1 without any compatibility problem.
Then, we execute all the ViTs on the entire ImageNet validation
dataset, store the minimum and maximum output values on the
Identity layers, and use them as bounds to filter corrupted values.
To avoid changing values that are lower/higher false positives, we
multiply the profile values by 1.3. If the corrupted value is detected,
it is replaced by the lowest or highest value in the case of ±inf, and
0 in the case of NaN. MaxiMals can be applied to any of the 120,000
models available on the HuggingFace library that uses the default
PyTorch modules.
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Identity layers neither perform any arithmetic operations nor
have learnable parameters. Thus, the performance impact of the
MaxiMals is proportional to the number of ViT Identity layers.
Table 3 shows the execution time and additional instructions over-
heads added by MaxiMals. Our method has a very low overhead in
terms of execution time, on average, 5.61%. The worst case is the
MaxViT models, which have 384 Identity layers, with a time over-
head of 16.09%. We also use NVIDIA profiling tools (Nvprof/Nsight
Systems) to measure the GPU-executed instructions for each ViT
model for more precise measurements. MaxiMals increases by up
to 3.19% the number of executed instructions.

6 Experimental Validation
In this section, we present the validation of MaxiMals. Figure 5
depicts the SDC (Tolerable and Critical) and DUE PVFs for the 12
tested ViTs models, unhardened and hardened versions. The fault
simulations are performed both on Pascal (Fig. 5a) and Ampere
(Fig. 5b) GPUs.

While the unhardened original ViT models exhibit the highest
SDC PVF (on average, 38.97% on Pascal GPU and 34.20% on Ampere
GPU), more complex ViTs like unhardenedMaxViT effectively mask
more faults. MaxViT has the lowest SDC PVF, on average 24.22%
on Pascal GPU and 30.51% on Ampere GPU. However, despite the
masking ability of more complex models, the Critical SDCs still
propagate. For the unhardened models, the MaxViT and EVA2 show
the highest Critical SDC PVF, on average, 16.05% for MaxViT and
14.35% for EVA2. Due to their distinct Transformers architecture,
these models are especially susceptible to faults such as random
and warp random values. MaxViT and EVA2 introduce many im-
provements, such as different normalization layers (e.g., sub-LN),
additional connections for positional information injection, and
convolution blocks before Attention layers. These additional mod-
ules facilitate the propagation of corrupted values, leading to an
increase in Critical SDCs. In contrast, the SwinV2 model manifests
the lowest Critical SDC PVF, on average, 2.40%. SwinV2’s patches
are organized using a "shifted window" that slides through the
input, creating overlapped patches, which add more redundancies
to the represented data, leading to a more reliable model.

MaxiMals reduces the Critical SDC, on average, from 8.50% to
3.28%. For the most complex models, EVA2 and MaxViT, our ap-
proach lowers the Critical SDC PVF, on average, to 1.65% and 8.54%,
respectively. For EVA2 B14-448, the Critical SDCs are reduced by

Table 3. Added overheads for ViT model families (min–max)

Execution Time Instructions
Pascal Ampere Pascal Ampere

ViT 1.7%–3.5% 5.1%–10.0% 1.2%–2.0% 1.0%–1.7%
EVA2 1.3%–5.3% 2.3%–9.4% 0.4%–1.5% 0.4%–1.8%
SwinV2 0.1%–0.5% 0.3%–0.8% 0.1%–0.1% 0.1%–0.1%
MaxViT 9.5%–10.7% 15.3%–16.0% 2.7%–2.7% 3.1%–3.1%

90.70% (from 12.91% to 1.20%). The notable success of the MaxiMals
technique in models like EVA2 and MaxViT can be attributed to the
number of Identity layers (necessary for their complex architecture),
allowing the filtering of corrupted values at a higher frequency.

MaxiMals exhibits lower effectiveness in reducing the Critical
SDCs for SwinV2. The average Critical SDC for SwinV2 models is
reduced by 21.82%. SwinV2 possesses an intriguing characteristic
of having few Identity layers compared to other models (only 5),
lowering the effectiveness of our approach. This observation aligns
with earlier studies that applied value restrictions to SwinV2 [8].
To implement value restriction on SwinV2 models, comprehen-
sive modifications across all layers of the ViT would be necessary,
incurring an impractical overhead of 68.61% [8].

Figure 3 illustrates the efficacy of MaxiMals approach in dealing
with various fault models that generate Critical SDCs. Our proposed
hardening approach is effective in these cases, as it reduces the
Critical SDC, on average, of 65.87% for random value and 57.31% for
warp random value. Note that our method can be further enhanced
for models like SwinV2, where the Identity layers are less frequent.
In the SwinV2 scenario, the Blocks can be selectively strengthened
by increasing the frequency of value restriction operations based
on their criticality without affecting performance.

Ultimately, the proposed MaxiMals has kept the DUE PVF on
fault simulation the same for the unhardened and hardened models,
on average, 2.55% and 2.48%, respectively.

7 Conclusions
We conducted an extensive analysis to understand how transient
errors induced by neutrons can affect ViT models, potentially lead-
ing to Critical SDCs. Despite ViT’s high accuracy, these models are
notably resource-intensive and exhibit high SDC and DUE rates.
Our comprehensive fault propagation analysis shows the impact
of different types of faults on ViT models’ classification accuracy.
Our findings suggest that single-bit flip faults have minimal impact,
while severe faults can significantly degrade accuracy. To address
this, we developed a fault tolerance approach called MaxiMals, tai-
lored explicitly to ViT models. Our approach reduces Critical SDCs
and improves fault tolerance for complex ViT models.
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