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Abstract 1	
Von Willebrand factor (VWF) modulates factor VIII (FVIII) clearance and the anti-2	
FVIII immune response. Despite the high affinity that defines the FVIII/VWF 3	
interaction, association/dissociation kinetics dictates 2-5% FVIII being present as free 4	
protein. To avoid free FVIII when studying the FVIII-VWF complex in vivo, we 5	
designed a FVIII-nanobody fusion protein, with the nanobody part being directed 6	
against VWF. This fusion protein, designated FVIII-KB013bv, had a 25-fold higher 7	
affinity compared to B-domainless FVIII (BDD-FVIII) for VWF. In vitro analysis 8	
revealed full cofactor activity in one-stage clotting and chromogenic assays 9	
(activity/antigen ratio 1.0±0.3 and 1.1±0.3, respectively). In vivo, FVIII-013bv 10	
displayed a two-fold increased mean residence time compared to BDD-FVIII (3.0h 11	
versus 1.6h). In a tail clip-bleeding assay performed 24h after FVIII infusion, blood 12	
loss was significantly reduced in mice receiving FVIII-KB013bv versus BDD-FVIII 13	
(15±7 microliter versus 194±146 microliter; p=0.0043). Unexpectedly, when 14	
examining anti-FVIII antibody formation in FVIII-deficient mice, the immune-response 15	
towards FVIII-KB013bv was significantly reduced compared to BDD-FVIII (1/8 versus 16	
14/16 mice produced anti-FVIII antibodies after treatment with FVIII-KB013bv and 17	
BDD-FVIII, respectively). Our data show that a stabilized interaction between FVIII 18	
and VWF is associated with a prolonged survival of FVIII and a reduced immune 19	
response against FVIII.  20	
 21	
Key points: 22	
- The fusion between factor VIII and anti-VWF nanobodies increases affinity for VWF 23	
25-fold without compromising FVIII activity 24	
- Stabilized VWF binding results in a 2-fold enhanced circulatory survival of FVIII and 25	
reduced anti-FVIII antibody formation 26	
  27	
 28	

29	
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Introduction 1	
Factor VIII (FVIII) is a protein pre-cofactor critical to coagulation. Following its 2	
secretion, FVIII circulates bound to von Willebrand factor (VWF), which is important 3	
to stabilize FVIII and to prevent its premature degradation and clearance.1-5 VWF 4	
also modulates anti-FVIII antibody development in hemophilia A-patients, in part by 5	
regulating FVIII uptake by antigen-presenting cells.6-8 Noteworthy, FVIII is 6	
endocytosed following binding of the VWF-FVIII complex to the surface of antigen-7	
presenting cells, whereas VWF is protected from internalization.9  8	
 9	
The molecular basis of VWF-FVIII complex formation is elucidated in great detail, 10	
and involves interactions between the VWF D’-D3 region and two regions within 11	
FVIII: the acidic region a3 including sulfated-Tyr1680 (Tyr1699 in HGVS-numbering), 12	
and the C-terminal C1-C2 domains.10-12 About 2-5% of FVIII circulates as free protein 13	
despite its high affinity for VWF (0.2-1.5 nM), and is cleared faster than VWF-bound 14	
FVIII.12-18 The pool of free FVIII is maintained via continuous release of FVIII from the 15	
FVIII-VWF complex.19 Investigating the VWF-FVIII complex in vivo is therefore 16	
complicated by the constitutive presence of free FVIII, which displays differential 17	
clearance and uptake by antigen-presenting cells compared to VWF-bound FVIII. To 18	
minimize the contribution of free FVIII, we designed a FVIII-variant containing a 19	
nanobody against the VWF D’-D3 domain. Promoted by this nanobody, an ultra-20	
stable FVIII-VWF complex is formed, resulting in a prolonged FVIII survival and 21	
reduced anti-FVIII immune response. 22	
 23	

24	
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Study design 1	
An extensive description of the experimental procedures is given in the 2	
Supplementary Materials. 3	
 4	
Clearance  5	
F8-deficient mice were given FVIII (250U/kg) and residual FVIII activity was 6	
determined using a chromogenic assay in plasma taken between 3 min and 48h. 7	
 8	
Tail clip assay 9	
F8-deficient mice were given FVIII (500U/kg) and after 24h the terminal 3mm of the 10	
tail was amputated. Blood loss was monitored over 30 min.  11	
 12	
Formation of anti-FVIII antibodies 13	
F8-deficient mice were given 4 FVIII injections (50U/kg) at a weekly interval, and a 5th 14	
injection at day 40. The presence of anti-FVIII antibodies was analyzed in plasma 15	
taken at day 43. 16	
 17	

18	
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Results and discussion 1	
To improve FVIII-VWF complex formation, we used the notion that antibodies often 2	
have low dissociation rates, and that small-sized nanobodies display high-affinity 3	
antigen binding. From our library of anti-VWF nanobodies20, we isolated three 4	
nanobodies that recognize the FVIII-binding D’D3-region (Fig. 1A), while leaving FVIII 5	
binding to VWF unaffected. These nanobodies have slow dissociation rates 6	
(apparent dissociation rate constants (koff,app): 2.0±1.1x10-5 s-1, 0.6±0.5x10-5 s-1, and 7	
2.2±1.2x10-5 s-1 for KB-VWF-008, -011 and -013, respectively; Fig. 1B). These values 8	
are about 100-fold lower compared to the average koff, reported in different studies for 9	
the FVIII-VWF interaction (i.e. koff,app=2.2±0.3x10-3 s-1, range 2.3x10-4 s-1 to 6.6x 10-3 10	
s-1).16-18,21,22  11	
 12	
Although KB-VWF-011 had the lowest koff,app, KB-VWF-013 was fused with FVIII, 13	
because its cross-reactivity with murine VWF facilitates in vivo experiments. In this 14	
fusion protein, named FVIII-KB013bv, two copies of KB-VWF-013 are replacing B-15	
domain residues Gln744-Arg1648, allowing FVIII to be secreted as a single chain 16	
protein (Fig. 1C-D; Supplementary Fig. S1). Natural thrombin-activation sites at 17	
Arg372, Arg740 and Arg1689 are maintained. Consequently, thrombin generates 18	
similar proteolytic products upon activation of FVIII-KB013bv as for B-domainless 19	
FVIII (BDD-FVIII), while the nanobody portion is released (Fig. 1D). Probably, this 20	
nanobody portion will remain bound to VWF in vivo. FVIII-KB013bv exhibits full 21	
cofactor activity in one-stage clotting and chromogenic activity assays 22	
(activity/antigen ratios: 1.0±0.3 (n=5) and 1.1±0.3 (n=5), respectively; Supplementary 23	
Table S1). When comparing VWF binding in an ELISA, FVIII-KB013bv was about 40-24	
fold more efficient than BDD-FVIII, with half-maximal binding being 4.0±2.1 ng/ml 25	
(2.1±1.1x10-11 nM) and 170±22 ng/ml (1.1±0.1x10-9 nM; Fig. 1E), respectively. Kinetic 26	
measurements revealed an apparent affinity constant of 13±11 pM, 25-fold more 27	
efficient compared to BDD-FVIII (330±127 pM; Supplementary Fig. S2). Based on 28	
this affinity, we calculated that 0.14% of FVIII-KB013bv is present as free protein in 29	
plasma, compared to 3.3% of FVIII (Supplementary Materials). Binding of FVIII-30	
KB013bv but not BDD-FVIII to VWF was preserved after introduction of a 31	
Tyr1680Phe mutation (Supplementary Fig. S3), which eliminates natural VWF 32	
binding in FVIII. Thus, FVIII-KB013bv has full cofactor activity in vitro, and binds 33	
more efficiently than BDD-FVIII to VWF.  34	
 35	
We then tested survival of FVIII-KB013bv in F8-deficient mice, that have normal 36	
VWF:Ag levels (Supplementary Fig. S4). Compared to BDD-FVIII, the mean 37	
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residence time for FVIII-KB013bv was increased about 2-fold (1.6h (95%-CI: 1.3-1	
2.1h) and 3.0h (95%-CI: 2.4-4.2h) for BDD-FVIII and FVIII-KB013bv, respectively; 2	
p=0.044; Fig. 2A). Since FVIII-KB013bv remains associated to VWF, these data 3	
support the view that FVIII is cleared as part of the FVIII-VWF complex rather than as 4	
free protein.1,23 The prolonged survival was confirmed in a tail clip-assay performed 5	
24h after injection. In our hands, this model requires 0.2U/ml FVIII to arrest bleeding, 6	
and according to the pharmacokinetic parameters, BDD-FVIII levels are about 7	
0.07U/ml compared to 0.27U/ml for FVIII-KB013bv 24h after infusion of 500U/kg. 8	
Indeed, blood loss was significantly higher in BDD-FVIII versus FVIII-KB013bv 9	
treated mice (194±146µl (n=5) versus 15±7µl (n=6); mean±SD; p=0.0043; Fig. 2B). 10	
Importantly, prolonged expression of FVIII-KB013bv at supra-physiological levels 11	
(4U/ml) did not induce an increase in thrombotic makers (D-dimer, thrombin-12	
antithrombin complexes; Supplementary Fig. S5). Apparently, improved FVIII-VWF 13	
binding is associated with prolonged circulatory survival of FVIII, and FVIII-KB013bv 14	
is functionally active in vivo. Furthermore, the nanobody fragment that remains bound 15	
to VWF does not seem to impair VWF function. 16	
 17	
VWF may reduce the development of anti-FVIII antibodies.6,7 However, both free and 18	
VWF-bound FVIII are present in in vivo studies, making it difficult to distinguish 19	
whether free or VWF-bound FVIII favors antibody development. We tested if 20	
improved complex formation affects inhibitor development. FVIII-deficient mice 21	
received repeated doses of BDD-FVIII or FVIII-KB013bv (50 U/kg; Fig. 2C). Of note, 22	
all dosing was based on Units activity/weight basis. Since BDD-FVIII and FVIII-23	
KB013bv have different molecular weights (166kDa vs 196kDa), this may have 24	
resulted in different protein dosing/mouse. The presence of anti-FVIII antibodies was 25	
detected in 14 of 16 mice (87.5%) treated with BDD-FVIII, with a median titer of 12.7 26	
µg/ml (Fig. 2C). In contrast, only one mouse out of 8 (12.5%) treated with FVIII-27	
KB013bv developed anti-FVIII antibodies (p=0.0056 vs BDD-FVIII). A Bethesda-28	
assay was used to measure inhibitory antibodies in a subset of the samples 29	
(Supplementary Fig. S6). Mice having inhibitory antibodies were also positive in the 30	
ELISA-assay. In none of the mice (treated with BDD-FVIII or FVIII-KB013bv) the 31	
presence of anti-nanobody antibodies was detected. These data suggest that 32	
enhanced VWF binding may result in reduced anti-FVIII antibody formation.  33	
When the FVIII-VWF complex binds to antigen-presenting cells, VWF predominantly 34	
remains at the cell-surface, while FVIII is internalized and presented by the MHCII-35	
complex (Fig. 2D).7,9 Our data suggest that improved VWF binding prevents 36	
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internalization and subsequent presentation of FVIII by the MHCII-complex (Fig. 2E). 1	
These data are further compatible with the immunogenic pathway (which involves eg. 2	
CD206, but not LRP1) being different from the catabolic pathway (which involves 3	
LRP1 among others, but not CD206).5,24,25 Why receptors contribute to FVIII uptake 4	
in some cell-types but not others is currently unknown, but deserves further studies.  5	
  6	
Together, our data indicate that increased VWF-binding favors FVIII survival and 7	
reduces anti-FVIII antibody formation. From a therapeutic perspective, it would be 8	
interesting to combine this FVIII-nanobody fusion protein with long-acting VWF (eg. 9	
PEGylated-VWF) to further prolong FVIII half-life, perhaps beyond the 1.5-1.8-fold 10	
limitation that is observed with current FVIII-variants with an extended half-life (FVIII-11	
Fc and PEG-FVIII).1  12	

13	
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Figure legends 1	
Figure 1: Anti-VWF nanobodies in a FVIII-nanobody fusion protein 2	
Panel A: Immobilized nanobodies (5 µg/ml) were incubated with hVWF, mVWF, 3	
proteolytic fragment SpII (i.e. VWF residues 2129-2813), fragment SpIII (residues 4	
764-2128), D’-D3-HPC4 (residues 764-1247) and A1-A2-A3-HPC4 (residues 1260-5	
1874). Bound proteins were probed using polyclonal anti-VWF antibodies or with 6	
monoclonal antibody HPC4 and detected via peroxidase-mediated hydrolysis of 7	
TMB. Plotted are OD-values corrected for binding of the proteins to albumin-coated 8	
wells (mean±SD; n=3).  Panel B: Association and dissociation of hVWF (25µg/ml, 9	

grey lines or 250 µg/ml, black lines) to immobilized nanobodies (10µg/ml) was 10	
analyzed via BLI-analysis using Octet-QK-equipment. Association was allowed for 11	
600s and dissociation was monitored during 900s. Representative sensorgrams for 12	
each nanobody are presented. Panel C: Schematic representation of FVIII-KB013bv, 13	
in which FVIII B-domain residues Gln744-Arg1648 are replaced by two copies of 14	
nanobody KB-VWF-013. Original thrombin activation sites and VWF binding sites are 15	
conserved in this protein, while Arg1648 is no longer present. Panel D: Purified FVIII-16	
KB013bv and BDD-FVIII (1 µg/ml) were incubated in the absence or presence of 17	
thrombin (10 nM) for 30min at 37°C, and analyzed via Western blotting using 18	
polyclonal anti-FVIII and anti-nanobody antibodies. Sc-FVIII: single chain FVIII; FVIII-19	
HC: FVIII heavy chain; FVIII-LC: FVIII light chain. Panel E: Wells coated with purified 20	
VWF (10µg/ml) were incubated with FVIII-KB013bv (0-25ng/ml; grey symbols) or 21	

BDD-FVIII (0-1 µg/ml; white symbols). Bound FVIII was probed using peroxidase-22	
labeled monoclonal anti-FVIII antibody 833 and detected via peroxidase-mediated 23	
hydrolysis of TMB. Plotted are typical binding curves of an experiment performed in 24	
duplicate. Half-maximal binding values were calculated from three independent 25	
experiments, and were 4.0±2.1 ng/ml and 170±22 ng/ml for FVIII-KB013bv and BDD-26	
FVIII, respectively.  27	
 28	
Figure 2: In vivo analysis of FVIII-KB013bv 29	
Panel A: FVIII-deficient mice were given BDD-FVIII (open circles) or FVIII-KB013bv 30	
(closed circles) at a dose of 250 U/kg via tail vein injection, then blood samples were 31	
taken at various timepoints, and plasma was analyzed for residual FVIII activity. 32	
Plotted are FVIII activities relative to the activity at t=3 min, which was arbitrarily set 33	
at 100%. Each data point represents mean±SD of 3-5 mice, and each mouse was 34	
bled 1-2 times. Panel B: FVIII-deficient mice received BDD-FVIII or FVIII-KB013bv 35	
(500 U/kg) via tail vein injection, and 24h after injection a tail clip-bleeding assay was 36	
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performed. Clipped tails were immersed into saline at 37°C, and blood was collected 1	
for 30 min. Blood loss for each individual mouse is indicated. Panel C: Mice were 2	
given BDD-FVIII or FVIII-KB013bv (50 U/kg) at days 0, 7, 14, 21 and 40 via tail vein-3	
injection. At day 43, blood samples were taken, and plasma was analyzed for the 4	
presence of murine anti-FVIII antibodies. Briefly, wells coated with BDD-FVIII were 5	
incubated with murine plasma, and bound murine antibodies were detected via 6	
peroxidase-labeled polyclonal goat anti-mouse antibodies. As standard, a 7	
monoclonal anti-FVIII antibody was used. The limit of detection (LOD) in this assay 8	
was 0.1 µg/ml. The immune-response for each individual mouse is presented. 9	
Statistical analyses were performed using a Mann-Whitney test. Panel D: According 10	
to Sorvillo et al., the VWF-FVIII complex separates at the cellular surface of antigen-11	
presenting cells, with FVIII being endocytosed and most of the VWF molecules 12	
remaining outside the cell. Panel E: Based on the model described by Sorvillo et al., 13	
we anticipate that the complex between FVIII-KB013bv and VWF will not dissociate, 14	
and consequently there will be reduced uptake of FVIII-KB013bv by antigen-15	
presenting cells. Fewer FVIII-derived peptides will then be presented to T-cells, and 16	
in turn, there will be reduced development of anti-FVIII antibodies.  17	
 18	

 19	

 20	
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