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Abstract

We propose a joint segmentation algorithm for piecewise constant autoregressive (AR) processes
recorded by several independent sensors. The algorithm is based on a hierarchical Bayesian model.
Appropriate priors allow to introduce correlations between the change locations of the observed signals.
Numerical problems inherent to Bayesian inference are solved by a Gibbs sampling strategy. The proposed
joint segmentation methodology yields improved segmentation results when compared to parallel and
independent individual signal segmentations. The initial algorithm is derived for piecewise constant AR
processes whose orders are fixed on each segment. However, an extension to models with unknown
model orders is also discussed. Theoretical results are illustrated by many simulations conducted with

synthetic signals and real arc-tracking and speech signals.
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. INTRODUCTION

In many practical situations, one tools up some process with a collection of sensors, each of which
delivering a time series. When the aim is process monitoring, an important task is to detect abrupt changes
that occur in the sensor signals, and that may be related to a change in the process itself. Important such
cases are in vibration monitoring of gearboxes, segmentation of multiple-track audio, etc. Using several
sensors makes the detection more accurate, but a practical difficulty is about the fusion of the detections
made on each signal. An alternative solution consists of implementing joint abrupt change detection over
all the sensors.

This paper addresses the problem of segmenting correlated signals recorded from several sensors. Of
course, signal segmentation has already received much attention in the signal processing literature (see for
instance the textbooks [1]-[3] and references therein). Recent advances can be mainly divided into two
categories. The first class of methods consists of penalizing a data based criterion in order to avoid over-
segmentation. Different approaches have been recently proposed to determine the appropriate penalization
for segmentation [4]-[6]. The second class of methods relies on Bayesian inference. The choice of
appropriate priors for the unknown parameters induce penalization on the data-driven criterion built from
the likelihood of the observations. The standard Bayesian estimators including the maaifPasteriori
(MAP) and the minimum mean square error (MMSE) estimators can then be derived. The computational
complexity inherent to these change-point estimators is usually bypassed by using Markov chain Monte
Carlo (MCMC) methods [7]-[9]. One recurrent problem with this kind of methodology is hyperparameter
estimation. There are mainly two directions which can be followed to estimate these hyperparameters.
The first approach couples MCMCs with an expectation maximization (EM) algorithm or a stochastic
approximation (SAEM) [10], [11]. The second approach defines non-informative prior distributions for
the hyperparameters introducing a second level of hierarchy within the Bayesian paradigm. This results
in a so-called hierarchical Bayesian model. The hyperparameters are then integrated out from the joint
posterior distribution or estimated from the observed data [9].

The main contribution of this paper is to study a joint segmentation procedure which allows one to
handle signals recorded from different sensors. The proposed approach introduces correlations between
the change-points of the observed signals. More precisely, when a change is detected in one or several
signals at a given time location, the proposed algorithm favors the occurrence of a change at this time
location in the other signals. This change-point correlation is built within a Bayesian framework by

defining appropriate change-point priors. The proposed methodology is very similar to the hierarchical
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Bayesian curve fitting technique studied in [9]. However, the segmentation procedure studied in this paper
allows joint segmentation of signals recorded by different sensors, contrary to the algorithm proposed in
[9]. This is to our knowledge the first time a fully Bayesian algorithm is developed for joint segmentation

of piecewise constant autoregressive (AR) processes.

A. Notations and problem formulation

In this paper, we consider that sensors deliver signals (also referred to asbservationy whose
sample size is. Individual signals are denoted in vector formyas= [y;1,...,y;n| for j=1,...,J,
wherey;; is the sample of signagl at time:. Each of theJ signals is modeled as a piecewise constant

AR process as follows:

p
Yii = Y Qi kali-t + € (1)
=1

wherek = 1,..., K; is the segment index which refers to one of gheportions where the AR process
is stationary. In each of thesk; segments, for signalj, the set of AR parameters is denoted in
vector form asa; = [aj,1, .- .,aj,k,p]T. The poles of the AR processes are supposed to be inside the
unit circle, ensuring stationarity and causality on each segment. The segfkentthe signal#; has
boundaries denoted by; ;1 + 1,1, ] wherel;;, is the time index immediately after which a change
occurs, with the convention tha, = 0 andl; x, = n. Finally, e; = [e;1,...,¢;,] is a vector of i.i.d.
zero mean Gaussian noise samples. The noise veegtors. ,e; are assumed independent.

Modeling the observations as AR processes can be motivated as follows: for any continuous spectral
density S(f), an AR process can be found with a spectral density arbitrary clos& p[12, p. 130].
Many authors have followed this viewpoint in change detection algorithms, including [13], [14]. We
assume in a first step that the orders of the AR models in Eq. (1) are all equaltes assumption is
actually only aimed at simplifying the presentation. A more general model, where the (unknown) orders
of the AR models on each segments are assumed unrelated from one segment to another, and from one
signal to another, is derived later in this paper. By using the notation = [xj,,», - ,xj,i/], the set of

equations (1) can be written in the following matrix form:

T _ ) ) T
Yilshoa41:ls0 — 5,k&g,k + ej7lj,k—1+1:lj.k7 (2)
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whereY; ;. denotes a matrix of siz@;, — I —1) x p:

Yjlin—1 Yjlje—1—1 -+ Yjlj_1—p+l
Yjlin—1+1 Yilin1 s Yil o1 —pt2
Yjr= 3)
Yjlie—1 Yjlje—2 - Yjlie—p

This paper proposes a Bayesian framework as well as an efficient algorithm aimed at estimating the

change-point locations ;, from the J observed time serieg;, j =1,...,J.

B. Paper organization

The Bayesian model used for joint change-point detection is presented in Section Il. This model
requires to adjust hyperparameters related to the change-point location, AR parameter and noise variance
priors. The proposed methodology assigns vague priors to the unknown hyperparameters. The hyper-
parameters are then integrated out from the joint posterior or estimated from the observed data. This
results in a hierarchical Bayesian model described in Section Il. An appropriate Gibbs sampler studied
in Section 1l allows one to generate samples distributed according to the change-point posterior. The
sampler convergence properties are investigated through simulations presented in Section V. The initial
algorithm is generalized for AR models whose orders on each signal segment are unknown in Section V.
Section VI studies the performance of the proposed joint procedure for arc-tracking detection and speech

segmentation. Conclusions are reported in Section VII.

II. HIERARCHICAL BAYESIAN MODEL

The joint abrupt change detection problem presented in the previous section is based on the estimation of

the unknown parametets; (numbers of segments);; (change-point Iocations)u;i,C (noise variances,
with o% = [0]271,...,0JZ’K_7]T) and a;; (AR parameter vectors which are denoted jointly As =
{aj1,...,a; x,} for signal#j). A standard re-parameterization consists of introducing indicator variables
rj; (je{1,...,J}, i€ {1,...,n}) such that:

r;; = 1 if there is a change-point at timein signal #j,

rj; = 0 otherwise
with r; , = 1 (this condition ensures that the number of change-points equals the number of segments in
signal#j, thatisK; = Y " , r;;). Using these indicator variables, the unknown parameter vectbris

{641,...,0,}, whered; = (rj,cr§,Aj) andr; = [r;1,...,1;,]. Itis important to note that the parameter
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vectorf belongs to a space whose dimension depends gie.,0 € © = {0,1}"/ x H}.]:l(IRiJr x RP)Ki

This paper proposes a Bayesian approach to the estimation of the unknown parametet. \Ray@asian
inference ord is based on the posterior distributigit|Y), with Y = [y1,... ,yJ]T, which is related
to the observations likelihood and to the parameter priors via Bayesff@&’) « f(Y|0)f(6). The

likelihood and priors used for the joint abrupt change detection are presented below.

A. Approximate Likelihood

Though the likelihood of a single AR model is easy to write exactly, the likelihood pieaewise
stationary AR model is much more complicated, as each stationary segment needs to be initialized
using the samples from the previous segment. In many works, the dependence of the exact likelihood
f(y;10;) on thep first samplesy; ., is omitted, (see [15, p. 186] for more details), and we adopt this
approximation. In other words, by using the independence assumption between the noise esgctors

j€A{1,...,J}, the exact likelihood ofY is approximated as follows:

J
f(Y10) ~ H f(Yip+1nlyiip, 0;)

4)
J K,
~ _Ejk(ry)
~ H H n, k(r;)/2 exp 202 ’
J=1 k=1 277(;'] k 3.k
wheren; ,(rj) = l; 1 — lj k1 is the length of segmen#k in signal#; and
2
Ejk(ry) £ Hij,lj_,k,lJruM - Yj,kaj,kH ; (5)
where||x||? = xTx.
B. Parameter Priors
In our approach, the abrupt changes are detected via the indicator varighjes 1, ..., J (we recall

that there is one variable for each sigiaand one variable for each time indéx 1, ..., n). This section
defines the indicator, variance and AR parameter priors.

1) Indicators: Possible correlations between change locations injtlidserved signals are modeled
by an appropriate prior distributiofi(R|P), whereR = [ry, ... ,rJ]T andP is defined below. Before
being more precise, we definggbobal abrupt change configuratiaas follows: the matriXR is composed
of 0's and 1's, and a global configuration is a specific instance of this matrix. In our formulation, this

corresponds to a specific solution to the joint abrupt change detection problémsaldabrupt change
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configuration denoted (wheree € £ = {0, 1}”), is a specific instance of a columnRf this corresponds
to a the presence/asbsence of abrupt changes at a given time, acrdssighals.

Denote af. the probability of having a local abrupt change configurati@t times, that is, of having
[rl,i, . .,rh]T = €. We first assume that. does not depend on the time indéxAs a consequence,
by assuming thafri;,...,r;;| is independent ofry;,...,r;;] for anyi # i/, the indicator prior
distribution is expressed as:

FRIP) = [ P&™, (6)

ecE
whereP = {P.} .. andS.(R) is the number of times such that[rlﬂ-, e ,rJ,Z-]T = €. For example, in

the case of two observed signats andy- (i.e., J = 2), the prior distribution ofR can be written as:
F(RIP) = PG Piy Poi P, U

whereSgo = S (1—r13)(1-r94), S11 = S0 1y w04, S0 = S0 1y (1-12,) @andSpy = S0 (1-

r14)r2,;. With this prior, a high value oP . indicates a very likely configuratio[rlﬂ-, . ,rJ,i]T = ¢ for all

i1 =1,...,n. For instance, by choosing a high valueRy_ o (resp.P1.1), we will favor a simultaneous
absence (resp. presence) of changes in all observed signals. This choice introduces correlation between
the change-point locations.

2) Variances and AR parametersinverse-Gamma distributions are selected for the noise variances:

2153~ ©

whereZg(a, b) denotes the Inverse-Gamma distribution with parametensdb, v = 2 (as in [9]) andy

is an adjustable hyperparameter. This is a so-caltegugate priorwhich has been used successfully in

[9] for Bayesian curve fitting. We assume here that the hyperparamétethe same for all the observed
signals. Note, however, that a similar analysis could be conducted with a set of non-equal hyperparameters
75,3 =1,...,J. Such analysis is interesting when signal amplitudes differ significantly from one signal

to another, and it is developed in [16].

Conjugate zero-mean Gaussian priors are chosen for the AR parameters:
aj,k“’?‘,ka 53 ~N (Opv ng,kéng) ) (9)

wherel, is thep x p identity matrix, 0, is the vector made op zeros ands? is an adjustable hyper-
parameter. One motivation for selecting conjugate priors is that they allow to integrate out (marginalize)

the noise variances and AR parameters in the posté(i@fY ), making the computations easier.
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C. Hyperparameter priors

The hyperparameter vector associated with the parameter priors defined aldve {®, 2, ). Of
course, the ability of this Bayesian model to detect abrupt changes accuratelyJirsigneals depends on
the values of the hyperparameters. As outlined in Section I, these hyperparameters should be considered
as unknown, and estimated as this makes the overall model more robust, see [9] for example. The resulting
hierarchical model requires to define hyperparameter priors (sometimes referred to as hyper-priors) which
are detailed below.

1) Hyperparameters$? and ~y: The priors for hyperparametedg and~ are selected as a noninfor-
mative Jeffreys’ prior and a vague conjugate Inverse-Gamma distribution (i.e, with large variance) which
reflect the lack of precise knowledge regarding these hyperparameters:

RIS ~TG(E ), fly) = iﬂﬂw (). (10)

wherelg- () is the indicator function defined dR*.

2) HyperparameteP: The prior distribution for the hyperparamet@ris a Dirichlet distribution with
parameter vectorx = [ag..0, . .., a1...1| defined on the simple® = {P such that}" .. Pc=1,Pc >
0} denoted asP ~ Dys(ax). This distribution has been chosen since it allows marginalization of the
posterior distributionf(0|Y) with respect toP. Moreover, by choosing.. = 1,Ve € &, the Dirichlet
distribution reduces to the uniform distribution &h

Assuming that the individual hyperparameters are independent, the full hyperparameter prior distribu-
tion @ can be written (up to a normalizing constant):

[(®lo€,8) <2P3€‘1> ir(g)f{%)m exp< 5@) I (DI (DI(P), (A1)

whereo means “proportional to” andl'(-) is the gamma function.

D. Posterior distribution of9

The posterior distribution of the unknown parameter veéaran be computed from the following

hierarchical structure:

F(81Y) = / £(6. B[Y)d® / F(Y16)1(68)f(2)d, (12)
where
J K;
1(61) = 02 03) f (021502 ) (13)
j:lk:l
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and f(Y1|0) and f(®) are defined in Eq.s (4) and (11). This hierarchical structure allows to integrate
out the nuisance parameter$ = {o?,...,0%}, A = {A4,...,A;} and P from the joint distribution
f(6,®]Y), yielding:

K;(ry) 2 v | 1
2| M |2 T (5 +
X H i ‘ ]7k‘ (21,+13n](7k(rj)) ) (14)
> T3k r;)
j=1 k=1 (ry + T]?k>
with
T2 T . .
j,k - yj,l]‘,kflJrlle,k ijkijlj,kflJ’»l:lj,k’
Qjs =L, = Y MY ), (15)
I 71
My = (YjT,ij,k + 5’5) :
0
and
I'(Se(R) + «
C(R‘Y) _ HeG{O,l}J ( e( ) e) (16)

I (Leeqory (Se(R) +a0))
The posterior distribution in Eq. (14) is too complex to enable the closed-form calculation of Bayesian
estimators (e.g., MMSE or MAP) for the unknown parameters. In this case, it is very usual to apply
MCMC methods to generate samples which are asymptotically distributed according to the posteriors of
interest. The samples can then be used to estimate the unknown parameters by replacing integrals by
empirical averages over the MCMC samples.

Here, we propose a Gibbs sampler strategy that is similar to that in [9], with two noticeable differences,
however: 1) our approach enables to perform joint signal segmentation and 2) the use of indicator variables
sets our model into a fixed dimensional space, which avoids the costly implementation of reversible jumps.
Section 1l presents the MCMC algorithm designed to perform the joint abrupt change detection in the
case where the orders or the AR models, as wall as the hyperparamaterthe same for all the signals.

These assumptions will be removed in Section V.

I11. A GIBBS SAMPLER FOR JOINT SIGNAL SEGMENTATION

Gibbs sampling is an iterative sampling strategy which consists of generating random samples (denoted
by“-“) wheret is the iteration index) distributed according to the conditional posterior distributions of

each parameter. This paper proposes to sample according to the distrij(on, 62|Y) defined in
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Eq. (14) by the three step procedure outlined below. The main steps of Algorithm 1, as well as the key

equations, are detailed in Subsections IlI-A to IlI-C below.

Algorithm 1: Gibbs sampling algorithm for abrupt change detection

« Initialization:

Sample hyperparameter vector 713(0) = (33(0), 70 P(0 ) from the pdf in Eq. (11),

Fori=1,...,n—1sample, [}{102, . “{0)} from the pdf in Eq. (6),
- Forj=1,....J,k=1,...,K,sample 5, 5 anda N(O from the pdf's in Eq’s (8) and (9),

— Sett « 1,
o lterations: fort =1,2,3,...,do
— For each time instant i = 1,...,n — 1, sample the local abrupt change configuration at time
ﬁtz .. ““)} from its conditional distribution given in Eq. (17),

— Forsignals j = 1,...,J, and segments & = 1,..., K, sample the noise variance 7 (k) from its
conditional posterior given in Eq. (18),

— Sample the hyperparameter () from its posterior given in Eq. (19),

— For signals j = 1,...,J and segments k& = 1,..., K, sample the AR coefficients a (f) from their
conditional posterior given in Eq. (20),

— Sample the hyperparameter 3% from its conditional posterior given in Eq. (21),
— Optional step: sample the hyperparameter P® from the pdf in Eq (22),

- Sett —1t+1.

A. Generation of samples according foR|v,33,Y)

This step is achieved by using the Gibbs Sampler, to generate Monte Carlo samples distributed
according tof (ru, . ,rJ,Z-h,ch,Y). This vector is a random vector of Booleansdn Consequently,
its distribution is fully characterized by the probabilitiés([rlvi, . ,rJ7i]T = €y, 6§,Y) ,e € £. By
using the notatiorR_; to denote the matriR where the column at time is removed, the following

result can be obtained:

P ([rl,ia e 7rJ,i]T = €|R—i7’77 587Y) X f(Ri(€)>’7v 5S|Y)7 (17)

where R;(e€) is the matrix R where the column at time is replaced by the vecto¢. This yields
a closed-form expression of the probabilitiéS( |:I'17Z',...,I'J7i}-r = e]R_i,%ég,Y> after appropriate

normalization.
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10

B. Generation of samples according fd¢y, 53|R,Y)

To obtain samples distributed according 6y, 63|R,Y), it is very convenient to generate vectors
distributed according to the joint distributiofi(y, 63, o, A|R,Y) by using Gibbs moves. By looking
carefully at the joint distribution off (@, ®|Y), this step can be decomposed as follows:

e Generate samples according tof (v, o%|R, 62,Y)

By integrating the joint distributiorf (6, ®|Y) with respect to the AR parameters, the following results

can be obtained:

oIR8, ~ TG (”*”;’“(”), Hﬁ’f) , (19
1 K;(r;)
vR,0% ~ G ZK r],§Z T , (19)
j=1 k=1 .k
wheregG(a, b) is the Gamma distribution with parametérs b).
e Generate samples according tof (62, A|R,0%,Y)
This is achieved as follows:
a;pR, 0% 05, Y ~ N (1,05 M), (20)
; LR | ||
IR, A, 02~ TG | ¢ gz (r)), 5+2 ; Pkl (21)
Jj=1 J

i _ T
Wlth I'L],k - Mj7ij,kijlj,k71+1:l],k'

C. Posterior distribution ofP,

The hyperparameterB,, e € &, carry information regarding the correlations between the change
locations in the different time series. As a consequence it is interesting for practical applications to

estimate them from their posterior distribution (which is Dirichlet):

P|R,Y ~ Dy (Sc(R) + ae). (22)

IV. SEGMENTATION OF SYNTHETIC DATA

The simulation presented in this section have been obtained foR with sample size: = 300. The
change-point locations aig = (60, 150) for signal#1 andly, = (60) for signal#2. The parameters of
the two AR processes are summarized in Table I. The fixed parameters and hyperparameters have been
chosen as followsy = 2 (as in [9]),¢ = 1 and 5 = 100 (vague hyperprior)p. = a = 1,Ve € €.

The hyperparameters, are equal to insure the Dirichlet distribution reduces to a uniform distribution.
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Moreover, the common value to the hyperparameterisas been set ta = 1 <« n in order to reduce the
influence of this parameter in the posterior (22). In order to speed up the computations, the qaéﬁr,ltities
Q;r andM; ;, defined in Eq. (15) have been computed following the implementations described in [17]
and reported in the Appendix. All figures have been obtained after averaging the reseitdMaikov
chains. The total number of runs for each Markov chaiVigc = 700, including Ny; = 200 burn-in
iterations. Thus only the las00 Markov chain output samples are used for the estimations (the choice
of parametersV,,;c and N; will be discussed later). Note that runnin@o iterations of the proposed
algorithm for joint segmentation of signals with sample size 300 takes approximatelg minutes and

30 seconds for a MATLAB implementation on2a8 Ghz Pentium IV. Of course, the computational cost

will increase for longer time series and may become prohibitive.

A. Posterior distributions of the change-point locations

The first simulation shows the interest of joint segmentation compared to signal-by-signal segmentation
for two independent AR processes. Fig. 1 shows the posterior distributions of the change-locations
obtained for the two time-series. As can be seen, the change-point of the second time-series can be detected
when using the joint segmentation technique (right figures) whereas it is not detected when applying two
single signal independent segmentations (left figures). When joint segmentation is performed, the change
point located at timé = 60 in the second signal favors the detection of a change at the same time index
in the other signal. Note that the results presented in Fig. 1 (left figures) are obtained with univariate

segmentationsJ(= 1) which correspond to the Bayesian curve fitting strategy of Punskagh [9].

B. Posterior distribution of the change-point numbers.

The estimation of the total number of change-points for the two time-series is an important problem. The
proposed algorithm generates samgBS), v, 52 ")) distributed according to the posterior distribution
I (R,’y, 53} Y), which allows for model selection. Indeed, for each sanipi€, the number of change-
points areK " (r{") = SN 1{") and K{" (r}) = SN, 1¥'). Fig. 2 shows the means df; and K> as
well as meanst standard deviations computed from th@) last Markov chain samples with the joint
approach. The histograms have maximum valuegsfoe= 3 and K5 = 2 which correspond to the actual

numbers of changes.

C. Noise variances and AR parameters

The estimation of the noise variances or AR parameters can be interesting in practical applications.

Figures 3 and 4 show the posterior distributions of parame{te%%}k:lwg and {aik}k:u associated
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12

with the two time-series/; andy,. These histograms are in good agreement with the actual values of
the parameters? ; = 0.50, 07, = 0.52, 07 3 = 3.80 and o3, = 0.81, 03, = 4.63. Similar results could

be obtained for AR parameters. They are omitted here for brevity.

D. Hyperparameter estimation

The performance of the hyperparameter estimation procedure needs to be investigated. The estimated
posteriors of hyperparametdrg, Po;, P1p andP;; are depicted in Fig. 5. This shows that the proposed

Gibbs sampler actually generates samples distributed according to the true distribution in Eq. (22).

E. Robustness to correlated noise vectors

This section shows that the proposed joint segmentation procedure is robust to correlated noise vectors.

For this, assume that the two noise vecwrsande, are correlated with the following covariance matrices

2
g
11 fori=1,...,60,
p 031
2
g.
Y = 20 P ) for i —61, ..., 150,
p ‘75,2
2
(2
31 for i = 151, ..., 300.
p 032

)

Note that forp = 0, this example reduces to the previous synthetic data. The results of the joint hierarchical
Bayesian segmentation procedure are depicted in Fig. 6 for two different valygd.ef two different
correlations. Figures 1 and 6 show that similar results are obtained for uncorrelated and correlated noise

vectors. Consequently, the proposed model appears to be robust to noise correlations.

F. Sampler convergence

The Gibbs sampler allows to draw samp(eR(t),W), 53(”) asymptotically distributed according to
f(R,~,683|,Y). The change-point posterior probabilities can then be estimated by the empirical average

(according to the minimum mean square error (MMSE) principle):

N,

. 1 & ‘

Ruvse = A E RNt (23)
T t=1

where Ny, is the number of burn-in iterations. However, two important questions are: 1) When can we
decide that the sample{sR(t)} are actually distributed according to the target distribution? 2) How many

samples are necessary to obtain an accurate estim&endfen using Eq. (23)? Running multiple chains
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with different initializations allows to define various convergence measures for MCMC methods [18].
This section proposes to use the popular between-within variance criterion to ensure the convergence
of the algorithm. This method was initially studied by Gelman and Rubin in [19] and has been often
used to monitor convergence (see for example [20], [21] or [18, p. 33]). This criterion requires to run
M parallel chains of lengthV, with different starting values. The between-sequence varidh@nd

within-sequence varianc@” for the M Markov chains are defined by

M
N, - 9
B—M_lm:1(nm—n) , (24)
and u N
1 1 - 2
_ - ® _ & )
w 2 N (Km Fm | (25)
m=1 t=1
with
Km = NLT ) K/ﬂtl))
X Mtzl (26)
K= 21 Rm,

where k is the parameter of interest am&) is the t run of them!* chain. The convergence of the

chain is monitored by a so-callgmbtential scale reduction factgd defined as [22, p. 332]:

\/5:\/;/ (NTN:1W+Z\17TB>. (27)

A value of \/p close tol indicates a good convergence of the sampler.

Different choices for parametet could be considered for the proposed joint segmentation procedure.
This paper proposes to monitor the convergence of the Gibbs sampler with the pardragteesE. As

an example, the outputs dff = 5 chains for parametelP, are depicted in Fig. 7. The chains clearly
converge to similar values. The potential scale reduction factors for all parankPetare given in Table

Il. These values of/p confirm the good convergence of the sampler (a recommendation for convergence

assessment is a value ofp below 1.2 [22, p. 332]). It is important to make the following comments:

« For segmentation purposes, the important information is contained in the change locations, which has
motivated the choice of the parametéts for monitoring convergence. However, for applications
requiring signal reconstruction, the AR parameters; and noise variancesi,€ are important
parameters. Therefore, the potential scale reduction fag¢tprsomputed for the estimated variances
are also indicated in Table Il. The obtained values confirm that a burna@Oaterations is sufficient

for this example.
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« Other simulation examples with smaller changes or closer changepoints can yield MCMC conver-
gence problems. In such cases, an alternative based on perfect simulation might be implemented
(see [23] for more details).

In order to determine the number of runs which are required to obtain an accurate estinkate of
when using Eq. (23), aad hocapproach consists of assessing convergence via appropriate graphical
evaluations [18, p. 28]. Here, a reference estimate denot® lass been computed for a large number
of iterations/V,, = 10000 and IV; = 200 (to ensure convergence of the sampler and good accuracy of the
approximation in Eq. (23)). Figure 8 shows the mean square error (MSE) between this reference estimate

R and the estimate obtained aftd. = p iterations (andV,; = 200):
2

p
f{ _ 1 Z R(Nbi“'t)

e2(p) = ,
t=1

This figure indicates that a number of iterations equalMo= 500 is sufficient to ensure an accurate
estimation of the empirical average in Eq. (23) for this example. Of course, for more difficult problems, a

larger number of iterations will be necessary to obtain an accurate estimation of the posterior distribution.

V. UNKNOWN AR MODEL ORDERS

This section generalizes the previous hierarchical Bayesian model to AR processes whose orders are

unknown and differ from one segment to another.

A. Extented Bayesian model

We define appropriate priors for the new parameters to be estimated. A truncated Poisson distribution

is chosen for the model order priors:

1 ij’k Pmax

p
| H{Ov"'vpmaX} (pjvk)’ \ijmax(qv/}) = Z 1]/;' (28)
p=0 *

f(jklY) =

\Ilpmax(flp) p],k
Classically, a vague conjugate Gamma distribution is assigned to the hyperparameién fixed

parameterg: and p:
Ui, p~Gp, ), (29)

where g (a,b) denotes the Gamma distribution with parameterand b. Therefore, by assuming the

independence between, ., andp,, », for all j; # jo andk; # ko, and by denoting = {p1,...,ps}
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with p; = [pj1,... ,pj,Kj]T, the posterior of interest can be written:

f(R> P, 62, QMY) X iHR*' (7)0(R|Y’ a)f(58 ‘ga ﬁ)\llpmax(¢)_ Ej:l K

K; v 1 . P
y 11[ e [Mk|* T (5 * 2Mik) PP 62 |,
j=1k=1 o \2Temr o P!
-\ (+7h)

whereC(R|Y) has been defined in Eq. (16). We point out that the dimensions of the nMtyjxand
therefore the quantitgfﬁk defined in Eq. (15) depend on the model orgdgy.

B. Reversible jump MCMC algorithm

The previous distribution requires to develop an efficient strategy to sample accordi®,tp, v, 62, ¥|Y).

In this case, the vectors to be samp(®l p, v, 43, ¢) belong to the spacf, 1}”J><H3.’:1{0, o Pmax) 9 X

R* xR whose dimension depends &f}. In order to sample directly on this space, we propose an hybrid

Gibbs algorithm referred to as “algorithei whose main steps are detailed below:
. a- Generation of samples according tof (R|p, v, 63, %, Y):
As in the initial model, this generation is achieved by usimg- 1 Gibbs moves to generate
Monte Carlo samples distributed according @1, .. .,1.4|p, 7, 62,%, Y). The 27 probabilities
P ([ru, . ,rJ,,-]T = e\R_i,p,»y,ag,w,Y) could be evaluated in an exact way with the two fol-
lowing updating rules fop:
— if two segments with orderp;, andp; ., have to be merged, the model ordefr, of the
resulting segment ip;k =Djk +Djks-
— if one segment with ordep;, has to be split, the model ordegg, andp;, of the two
resulting segments are chosen as folloya;% ~Uso,...p, 1} andp;k2 =Djk — Pj,-
These choices ensure the reversibility of the different moves.

« b- Generation of samples according tof (p|R,~, 3,4, Y):

As in [9], the update of the model orders is performed by using a reversible jump MCMC procedure:

— a birth movep} , = p;; + 1 is proposed with the probabilith;,, , ,
— a death movey;, = p;, — 1 is proposed with the probability,, , .

The acceptance probability for the new Monte Carlo state is:

1 K""lnj,k'
kDt 5 « |z |T2, (p* >0
A _ APt (1 >i2 | ML (25 )| [ka(pﬂvk) J”} (dpj,k)il (30)
Pis=Pik — Apik p. )\ §2 Yo ’
Pk M 1 (pji) [@%k(pj,k) " 7}

bpj,k

N =

3
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with p;k =pr 1,

« c- Generation of samples according tof (v'|R, p,v, 93, Y):
Looking carefully at its posterior distribution, we can sampldy a simple Metropolis-Hastings
step with a Gamma proposal distributigit ~ G <u+ Zij,k,er Zj Kj) and the following

acceptance probability:

A _ |: \ijmax<w)
e \I/pmax(w*)

« d- Generation of samples according tof (v, o?|R, p, 3, Y):

exp (Y* — )

Z_;'Izl K;
] , (31)

As in the initial model, after appropriate integration, the following posteriors are obtained:

. + T2
gik‘R,p7ry7537YNIg (7/ —&—271]’]9’7 > ],k:) 7 (32)
7’Ra 02 Ng ZKjv Z ) (33)
] k‘ ]»k
« e- Generation of samples according tq”(dQ,A]R,p, o2 Y):
This is achieved as follows:
aj,k’Ra b, 0-27 6(2)7 Y ~ N (l’l'j,kn U?7ij,k) ) (34)
7.k
« f- Generation of samples according tof(P|R,Y):
As in the initial model, the following posterior is obtained:
P|R7 Y ~ Dy (Se (R) + ae)' (36)

It is important to note that the proposed scheme requires only one model order selection (i.e. one reversible

jump MCMC procedure) contrary to the approach presented in [9].

Algorithm 2: Hybrid Gibbs algorithm for abrupt change detection with unknown model orders
« Initialization:

— Sample hyperparameter vector 713(0) = (3‘3@, 50 pO ) from the pdf in Eq. (11),

Sample hyperparameter (*) from the pdf in Eq. (29),

Fori=1,...,n—1sample, {ﬁoi), e “{0)} from the pdf in Eq. (6),
Forj=1,....,J,k=1,..., K, sample 02(0) (0) and “{.?,2 from the pdf’s in Eq.'s (8), (9) and (28),
Sett «+ 1,
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o lterations: fort =1,2,3,...,do

— Fori =1,...,n— 1, sample {“rﬁ, . 7}4;2} according to the 27 probabilities defined in step a-
below,
— Forj=1,...,J,k=1,..., K, update the model order “@ (see step b-):

~(t

* if (u ~ U, 1]) < b~<, 1, then propose ik = Dy 1,

else if (u ~ Uy, 1]) < b~<t by + d~<t 1, then propose P = 15§tk by,
w 0f (up ~ Uoa)) < A, iy, (S€E Eq. (30), B =Pl
else ;3?,1 = i)fk 1),
— Update 4(® (see step c-):
x Propose ¢* according to the Gamma proposal distribution defined in step d-,
w0 (vy ~ U 1)) < Mgy~ (S€€ EQ. (31)), 91 = %,
else ¢t = (=1,
- Forj=1,...,J,k=1,... K, sample o (t from the pdf in Eq. (32),
— Sample 7 from the pdf in Eq. (33),
- Forj=1,...,J,k=1,..., K, sample 5;2 from the pdf in Eq. (34),
— sample 52 from the pdf in Eq. (35),
— Optional step: sample P*) from the pdf in Eq. (36),
— Sett—t+1.

C. Simulations

In order to assess the accuracy of the proposed method, we cosisid@rsynthetic signals of = 300
samples. The change-point locations &re= (60, 150) for signal#1 andl, = (60) for signal#2. The
parameters of the two AR processes (which have been extracted from [9]) are summarized in Table III.
The fixed parameters and hyperparameters have been chosen as follevs:é = 1, u = 1, 8 = 107,
p = 1072 (vague hyperpriors) and. = 1,Ve € £ so as to obtain a uniform prior distribution f@.
The estimated values for AR model orders associated to the two signals are depicted on Fig.'s 9 and 10.
The corresponding change-point posterior distributions are shown on Fig. 11. The proposed algorithm
achieves accurate estimation of changes in the two sequences. The orders of the AR processes in each

segment are also estimated with good accuracy.
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VI. APPLICATIONS
A. “Arc-tracking” detection

We illustrate the performance of the proposed segmentation procedure by processing real aeronautical
data, where the issue is to prevent the phenomenon referred to as “arc-tracking”. This phenomenon is
responsible of many fatal aircraft crashes in the last years. The few hundreds of kilometers of wires
embedded on military and commercial aircrafts are subject to various constraints (chemical, mechanical,
thermic...) resulting in insulation damages. These breakdowns expose the cable to intermittent fault-arc
currents that could ignite the neighboring wires [24]. Several methods for detection of wiring failures have
been studied in the literature: they are mainly based on dielectric properties [25] or, more recently, on
electromagnetic properties [26]. We propose here an “arc-tracking” detection procedure that searches for
transients in the predamaged wires, which is a early phenomenon announcing “arc-tracking” problems.

The analyzed data have been recorded from a comdromase @, B and C) supply voltage whose
electric network frequency igy. The phenomenon we are looking for affects the signals at frequencies
higher thanf.l. Therefore, the/ = 3 sequences whose sample sizenis= 551 are filtered by an
highpass filter in order to highlight the transients which are much less energetic. The filtered voltages
can be accurately modeled as AR processes. The presence of transients in the observed time series results
in changes in the AR parameters.

We propose to detect the transients that appear on phésds and C' betweent; = 0.04s and
ts = 0.17s. The observed data corresponding to the three phases have been processed by the proposed
joint segmentation algorithm. The estimated number of change-points and their positions are obtained
after Ny;c = 450 iterations including a burn-in period d¥,; = 100 iterations. The parameters,; and
Nuc have been chosen to provide appropriate potential reduction fagferor the hyperparameters
P.. Note that running0 iterations of the proposed algorithm with,; = 100 and N, = 450 takes
approximately4 minutes for a MATLAB implementation on 28 Ghz Pentium IV.

In the first step of the analysis, we estimate the number of change-points for the observed sequences.
The posteriors of the number of changes in each signal are not depicted here for brevity. The corresponding
MAP estimators arék; = 4, K> = 8 and K3 = 8. The estimated posterior distribution B depicted
in Fig. 12 can then be used to estimate the beginning and the end of transients in each phase. Indeed,
by keeping thef(j largest peaks of the posterior distributitR|Y ), the segments corresponding to the

different transients (outlined by vertical lines in Fig. 12) can be reconstructed.

For confidentiality reasons, the actual valuesfefand f. corresponding to these real aeronautical data cannot be provided.
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B. Speech segmentation

This section illustrates the performance of the proposed algorithm by processing a real speech signal
which has received much attention in the literature (see [1], [3], [9], [14] and more recently [23]). As
explained in [1, p. 401], this signal belongs to a database designed by the French National Agency for
Telecommunications. It consists of a noisy speech recorded in a car with the sampling fregkidacy
and quantized with 6bits. It is prefiltered by a highpass filter with cutt-off frequency equdlieHz. The
raw 1D datay = [yl, ce yn] have been processed by the proposed algorithm Jvith1. The estimated
number of change-points and their positions are obtained Afigr = 600 iterations including a burn-in
period of Ny; = 200 iterations (V¢ and Np; have been chosen in order to obtain appropriate potential
reduction factors,/p for the hyperparameterB,). The estimated changes are depicted in Fig. 13 (top
figure). Table IV compares the estimates with those obtained with several other methods previously studied
in the literature. It clearly appears that the proposed method gives similar segmentation models. However,
it has the advantage to be able to handle signals coming from different sensors. To illustrate this point,
the data have been converted into stereo measurer?!éﬁts[yl,yg]T with y1 = [y1,1,...,%1,») and
y2 = [y2,1,--.,Y2,n] Dy using a standard mono-stereo converter. The change-point posterior distributions
for the two signalg/; andys, have been computed with the proposed algorithm with 2. The segments
for the two time-series can be obtained by keeping the largest values of the change-point posteriors
(corresponding to the estimated change-point numﬁ’gr,sj = 1,2). The results are presented in Table
IV and in Fig. 13 (middle and bottom plots). They are in good agreement with Eheegmentation.

Note however that the segmentation of stereo signals does not estimate the firstighande = 448
since it is not significant in both sequences. Finally, it is interesting to point out that ruhniagation
of the joint segmentation algorithm with,; = 100 and Ny, = 450 takes approximatelg0 seconds

for a MATLAB implementation on &.8Ghz Pentium IV.

VIlI. CONCLUSIONS

This paper studied a joint Bayesian segmentation procedure allowing to segment signals recorded from
different sensors. The proposed approach assumed that the signals can be modeled by piecewise constant
AR processes. A hierarchical Bayesian model was defined allowing to estimate jointly the change-point
locations, the AR parameters and the noise variances for the multiple observed signals. To circumvent
the complexity of the unknown parameters distributions, an appropriate Gibbs sampler was proposed to
simulate samples distributed according to the posteriors of interest. The proposed algorithm was initially

developed for AR signals with known orders. However, an extension to models with unknown orders
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was also presented. Two applications were finally investigated: arc-tracking detection and stereo speech
signal segmentation. The results obtained in these applications are very encouraging.

Note that the assumptions regarding the observed signals are sufficiently mild to handle a large class
of other real signals such as seismic [1] or biomedical [13] signals. Extending this work to more general
models appropriate for signals with heterogeneous dynamics [16], long range dependent data [4] or
generalized autoregressive conditional heteroskedastic (GARCH) signals [27] would also be an interesting

issue.
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APPENDIX

FAST COMPUTATIONS

It is interesting to notice that the matric€}; , and M., and the variable?, defined in Eq. (15)

could be computed following the implementations described in [17]. We npote = ij,zj oL

Algorithm 3: Fast computations of 77,

« Compute M} = YT, Y, + (Is—g

« Compute Cholesky’s factors C; ;, such as Cj,kC]Tk = M, 1,
« Compute u; ;. =Y,y

« Solve the system C; v, = u; ;, for v, z,

« Compute Tﬁk = yl[k]yj,[k] - V;!—,kvjvk'

Such implementations allow us to develop a strategy to samplég, o ., R, Y according toV (s 4, 07 . M 1.)

in the effective following scheme.

Algorithm 4: Fast multivariate Gaussian sampling of a; ;,

« Sample ai.i.d. vector w; ;, according to N(0, aik,IP)
« Solve the system C; xp; , = w; i for p; ¢,
« Solve the system CJ, p; , = ), for p; .,

« Compute a; = 1, 5, + ;-

Another advantage of this scheme is that it is not necessary to compute directly the determinant of
the matricesML;;, that appear in Eq. (14). IndeefM; ;| = \Cj7k|_2 where C, ;, are upper triangular

matrices whose determinants can be computed very easily.
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FIGURES 23

Fig. 1. Posterior distributions of the change-point locationd fo(left) and joint segmentations (right) obtained aftdéy; = 200
burn-in iterations andV,. = 500 iterations of interest.

Fig. 2. Posterior distributions of the change-point numbers computed f¥pm= 500 iterations of interest (mean in gray,
mean+ standard deviations in white and black).

Fig. 3. Posterior distributions of the noise varianegs (for : = 1, ..., 3) conditioned toX; = 3 computed fromN,. = 500
iterations of interest (solid lines). Averaged posterior distributions féanMarkov chains (dotted lines).

Fig. 4. Posterior distributions of the noise varianegs (for i = 1,2) conditioned toK,; = 2 computed fromN, = 500
iterations of interest (solid lines). Averaged posterior distributions féanMarkov chains (dotted lines),
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FIGURES 24

Fig. 5. Posterior distributions of the hyperparamet@s(computed fromN,. = 500 iterations of interests 064 Markov
chains).

Fig. 6. Posterior distributions of the change-point locations for correlated noise vectors withl (left) andp = 0.5 (right)
(Np; = 200 and N, = 500).

Fig. 7. Convergence assessment: the outputd/of 5 chains for the parametédty, converge to the same value.

Fig. 8. MSE between the reference and estimaqubsteriorichange-point probabilities versws(solid line). Averaged MSE
computed from64 chains (dotted line){; = 200).

Fig. 9. Posterior distributions of the model ordexs (for i = 1,...,3) conditioned toK; = 3.

Fig. 10. Posterior distributions of the model ordegss (for : = 1, 2) conditioned toK> = 2.

Fig. 11. Posterior distribution of the change-point locations estimated by the reversible jump algorithm.

Fig. 12. Posterior distribution of the change-point locations and segmentati@® @aferonautical data/Ny; = 100 and
Nue = 450).

Fig. 13. Segmentations dD (top) and2D (middle and bottom) real speech dafsi,{ = 200 and Ny, = 600).
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TABLE |
PARAMETERS OF THEAR MODEL AND NOISE VARIANCES FOR EACH SEGMENT OF EACH SEQUENCE

Sequence Segment\ ok \ aj k.
k=1 0.50 | 0.0746 0.1664 —0.0693 | —0.1571 | —0.3543 | —0.4277
j=1 k=2 0.52 | 0.0135 0.1525 0.8170 2.3037 3.5316 2.8567
k=3 3.80 | 0.0189 | —0.0571 0.1502 —0.3173 0.4824 0.1607
. k=1 0.81 | 0.0011 | —0.0104 0.0538 —0.0646 0.3713 —0.0717
j=2 k=2 4.63 | 0.0074 0.0138 0.1244 0.2660 0.7677 0.8705
TABLE 1l

POTENTIAL SCALE REDUCTION FACTORS OFP, (COMPUTED FROMM = 64 MARKOV CHAINS).

P 01k 02,k
Poo Po1 P1o Py oiq ot o 031 03
’ \/ﬁ 1.0005 | 1.0002 | 1.0006 | 0.9997 | 1.0005 | 1.0002 | 1.0006 | 1.0005 | 1.0002
TABLE llI

PARAMETERS OF THEAR MODEL AND NOISE VARIANCES FOR EACH SEGMENT OF EACH SEQUENCE

Sequence] Segment\ o7k \ Dk \ aj gl
k=1 1.7 2 —0.8000 0.5200 — —
7=1 k=2 1.6 4 2.3000 2.6675 1.8437 0.5936
k=3 1.8 3 0.5000 —0.6100 | —0.5850 —
. k=1 0.5 3 —2.0000 1.6350 —0.5075 —
]=2 k=2 0.6 2 1.7000 0.7450 — —
TABLE IV

CHANGE-POINT POSITIONS ESTIMATED BY DIFFERENT METHODS

25

Method | AR order | Estimated change-points
Divergence [28] 16 445 — 645 | 1550 | 1800 | 2151 | 2797 — 3626 —
GLR [29] 16 445 - 645 | 1550 | 1800 | 2151 | 2797 - 3626 -
GLR [29] 2 445 . 645 | 1550 | 1750 | 2151 | 2797 | 3400 | 3626 —
Approx. ML [3] 16 445 | — | 626 | 1609 | — | 2151 | 2797 | — | 3627 | -
1D MCMC [9] estimated| 448 - 624 | 1377 - 2075 | 2807 — 3626 -
Conditional MAP [23] estimated| 449 | 585 | 620 | 1365 | 1795 | 2144 | 2811 — 3624 | 3657
ProposediD approach estimated| 448 | — | 624 | 1377 — 2075 | 2807 — 3626 —
ProposedD approach< Ch.1 est?mated — — 624 | 1377 — 2075 | 2809 — 3626 —
Ch.2 | estimated| — - 624 | 1377 - 2075 | 2809 - 3626 -
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