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Abstract

We propose a joint segmentation algorithm for piecewise constant autoregressive (AR) processes

recorded by several independent sensors. The algorithm is based on a hierarchical Bayesian model.

Appropriate priors allow to introduce correlations between the change locations of the observed signals.

Numerical problems inherent to Bayesian inference are solved by a Gibbs sampling strategy. The proposed

joint segmentation methodology yields improved segmentation results when compared to parallel and

independent individual signal segmentations. The initial algorithm is derived for piecewise constant AR

processes whose orders are fixed on each segment. However, an extension to models with unknown

model orders is also discussed. Theoretical results are illustrated by many simulations conducted with

synthetic signals and real arc-tracking and speech signals.

Index Terms

Segmentation, Gibbs sampling, Markov chain Monte Carlo, reversible jumps, hierarchical Bayesian

analysis.

EDICS Category: SSP-DETC Detection Theory and Applications
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I. I NTRODUCTION

In many practical situations, one tools up some process with a collection of sensors, each of which

delivering a time series. When the aim is process monitoring, an important task is to detect abrupt changes

that occur in the sensor signals, and that may be related to a change in the process itself. Important such

cases are in vibration monitoring of gearboxes, segmentation of multiple-track audio, etc. Using several

sensors makes the detection more accurate, but a practical difficulty is about the fusion of the detections

made on each signal. An alternative solution consists of implementing joint abrupt change detection over

all the sensors.

This paper addresses the problem of segmenting correlated signals recorded from several sensors. Of

course, signal segmentation has already received much attention in the signal processing literature (see for

instance the textbooks [1]–[3] and references therein). Recent advances can be mainly divided into two

categories. The first class of methods consists of penalizing a data based criterion in order to avoid over-

segmentation. Different approaches have been recently proposed to determine the appropriate penalization

for segmentation [4]–[6]. The second class of methods relies on Bayesian inference. The choice of

appropriate priors for the unknown parameters induce penalization on the data-driven criterion built from

the likelihood of the observations. The standard Bayesian estimators including the maximuma Posteriori

(MAP) and the minimum mean square error (MMSE) estimators can then be derived. The computational

complexity inherent to these change-point estimators is usually bypassed by using Markov chain Monte

Carlo (MCMC) methods [7]–[9]. One recurrent problem with this kind of methodology is hyperparameter

estimation. There are mainly two directions which can be followed to estimate these hyperparameters.

The first approach couples MCMCs with an expectation maximization (EM) algorithm or a stochastic

approximation (SAEM) [10], [11]. The second approach defines non-informative prior distributions for

the hyperparameters introducing a second level of hierarchy within the Bayesian paradigm. This results

in a so-called hierarchical Bayesian model. The hyperparameters are then integrated out from the joint

posterior distribution or estimated from the observed data [9].

The main contribution of this paper is to study a joint segmentation procedure which allows one to

handle signals recorded from different sensors. The proposed approach introduces correlations between

the change-points of the observed signals. More precisely, when a change is detected in one or several

signals at a given time location, the proposed algorithm favors the occurrence of a change at this time

location in the other signals. This change-point correlation is built within a Bayesian framework by

defining appropriate change-point priors. The proposed methodology is very similar to the hierarchical
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Bayesian curve fitting technique studied in [9]. However, the segmentation procedure studied in this paper

allows joint segmentation of signals recorded by different sensors, contrary to the algorithm proposed in

[9]. This is to our knowledge the first time a fully Bayesian algorithm is developed for joint segmentation

of piecewise constant autoregressive (AR) processes.

A. Notations and problem formulation

In this paper, we consider thatJ sensors deliverJ signals (also referred to asobservations), whose

sample size isn. Individual signals are denoted in vector form asyj =
[
yj,1, . . . , yj,n

]
for j = 1, . . . , J ,

whereyj,i is the sample of signalj at time i. Each of theJ signals is modeled as a piecewise constant

AR process as follows:

yj,i =
p∑
l=1

aj,k,lyj,i−l + ej,i, (1)

wherek = 1, . . . ,Kj is the segment index which refers to one of theyj portions where the AR process

is stationary. In each of theseKj segments, for signal#j, the set of AR parameters is denoted in

vector form asaj,k =
[
aj,k,1, . . . , aj,k,p

]T
. The poles of the AR processes are supposed to be inside the

unit circle, ensuring stationarity and causality on each segment. The segment#k in the signal#j has

boundaries denoted by[lj,k−1 + 1, lj,k] where lj,k is the time index immediately after which a change

occurs, with the convention thatlj,0 = 0 and lj,Kj
= n. Finally, ej =

[
ej,1, . . . , ej,n

]
is a vector of i.i.d.

zero mean Gaussian noise samples. The noise vectorse1, . . . , eJ are assumed independent.

Modeling the observations as AR processes can be motivated as follows: for any continuous spectral

densityS(f), an AR process can be found with a spectral density arbitrary close toS(f) [12, p. 130].

Many authors have followed this viewpoint in change detection algorithms, including [13], [14]. We

assume in a first step that the orders of the AR models in Eq. (1) are all equal top. This assumption is

actually only aimed at simplifying the presentation. A more general model, where the (unknown) orders

of the AR models on each segments are assumed unrelated from one segment to another, and from one

signal to another, is derived later in this paper. By using the notationxj,i:i′ =
[
xj,i, . . . , xj,i′

]
, the set of

equations (1) can be written in the following matrix form:

yT
j,lj,k−1+1:lj,k

= Yj,kaj,k + eT
j,lj,k−1+1:lj,k

, (2)
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whereYj,k denotes a matrix of size(lj,k − lj,k−1)× p:

Yj,k =


yj,lj,k−1 yj,lj,k−1−1 . . . yj,lj,k−1−p+1

yj,lj,k−1+1 yj,lj,k−1 . . . yj,lj,k−1−p+2

...
...

...
...

yj,lj,k−1 yj,lj,k−2 . . . yj,lj,k−p

 . (3)

This paper proposes a Bayesian framework as well as an efficient algorithm aimed at estimating the

change-point locationslj,k from theJ observed time seriesyj , j = 1, . . . , J .

B. Paper organization

The Bayesian model used for joint change-point detection is presented in Section II. This model

requires to adjust hyperparameters related to the change-point location, AR parameter and noise variance

priors. The proposed methodology assigns vague priors to the unknown hyperparameters. The hyper-

parameters are then integrated out from the joint posterior or estimated from the observed data. This

results in a hierarchical Bayesian model described in Section II. An appropriate Gibbs sampler studied

in Section III allows one to generate samples distributed according to the change-point posterior. The

sampler convergence properties are investigated through simulations presented in Section IV. The initial

algorithm is generalized for AR models whose orders on each signal segment are unknown in Section V.

Section VI studies the performance of the proposed joint procedure for arc-tracking detection and speech

segmentation. Conclusions are reported in Section VII.

II. H IERARCHICAL BAYESIAN MODEL

The joint abrupt change detection problem presented in the previous section is based on the estimation of

the unknown parametersKj (numbers of segments),lj,k (change-point locations),σ2
j,k (noise variances,

with σ2
j =

[
σ2
j,1, . . . , σ

2
j,Kj

]T
) and aj,k (AR parameter vectors which are denoted jointly asAj =

{aj,1, . . . ,aj,Kj
} for signal#j). A standard re-parameterization consists of introducing indicator variables

rj,i (j ∈ {1, . . . , J}, i ∈ {1, . . . , n}) such that: rj,i = 1 if there is a change-point at timei in signal#j,

rj,i = 0 otherwise,

with rj,n = 1 (this condition ensures that the number of change-points equals the number of segments in

signal#j, that isKj =
∑n

i=1 rj,i). Using these indicator variables, the unknown parameter vector isθ =

{θ1, . . . ,θJ}, whereθj =
(
rj ,σ2

j ,Aj

)
andrj =

[
rj,1, . . . , rj,n

]
. It is important to note that the parameter
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vectorθ belongs to a space whose dimension depends onKj , i.e.,θ ∈ Θ = {0, 1}nJ×
∏J
j=1(R+×Rp)Kj .

This paper proposes a Bayesian approach to the estimation of the unknown parameter vectorθ. Bayesian

inference onθ is based on the posterior distributionf(θ|Y), with Y =
[
y1, . . . ,yJ

]T
, which is related

to the observations likelihood and to the parameter priors via Bayes rulef(θ|Y) ∝ f(Y|θ)f(θ). The

likelihood and priors used for the joint abrupt change detection are presented below.

A. Approximate Likelihood

Though the likelihood of a single AR model is easy to write exactly, the likelihood of apiecewise

stationary AR model is much more complicated, as each stationary segment needs to be initialized

using the samples from the previous segment. In many works, the dependence of the exact likelihood

f(yj |θj) on thep first samplesyj,1:p is omitted, (see [15, p. 186] for more details), and we adopt this

approximation. In other words, by using the independence assumption between the noise vectorsej ,

j ∈ {1, . . . , J}, the exact likelihood ofY is approximated as follows:

f(Y|θ) ≈
J∏
j=1

f(yj,p+1:n|yj,1:p,θj)

≈
J∏
j=1

Kj∏
k=1

1

(2πσ2
j,k)

nj,k(rj)/2
exp

(
−
Ej,k(rj)
2σ2

j,k

)
,

(4)

wherenj,k(rj) = lj,k − lj,k−1 is the length of segment#k in signal#j and

Ej,k(rj) ,
∥∥∥yT

j,lj,k−1+1:lj,k
−Yj,kaj,k

∥∥∥2
, (5)

where‖x‖2 = xTx.

B. Parameter Priors

In our approach, the abrupt changes are detected via the indicator variablesrj , j = 1, . . . , J (we recall

that there is one variable for each signalj, and one variable for each time indexi = 1, ..., n). This section

defines the indicator, variance and AR parameter priors.

1) Indicators: Possible correlations between change locations in theJ observed signals are modeled

by an appropriate prior distributionf(R|P), whereR =
[
r1, . . . , rJ

]T
andP is defined below. Before

being more precise, we define aglobal abrupt change configurationas follows: the matrixR is composed

of 0’s and 1’s, and a global configuration is a specific instance of this matrix. In our formulation, this

corresponds to a specific solution to the joint abrupt change detection problem. Alocal abrupt change
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configuration, denotedε (whereε ∈ E = {0, 1}J ), is a specific instance of a column ofR: this corresponds

to a the presence/asbsence of abrupt changes at a given time, across theJ signals.

Denote asPε the probability of having a local abrupt change configurationε at timei, that is, of having[
r1,i, . . . , rJ,i

]T = ε. We first assume thatPε does not depend on the time indexi. As a consequence,

by assuming that
[
r1,i, . . . , rJ,i

]
is independent of

[
r1,i′ , . . . , rJ,i′

]
for any i 6= i′, the indicator prior

distribution is expressed as:

f(R|P) =
∏
ε∈E

PSε(R)
ε , (6)

whereP = {Pε}ε∈E andSε(R) is the number of timesi such that
[
r1,i, . . . , rJ,i

]T = ε. For example, in

the case of two observed signalsy1 andy2 (i.e., J = 2), the prior distribution ofR can be written as:

f(R|P) = PS00
00 PS10

10 PS01
01 PS11

11 , (7)

whereS00 =
∑n−1

i=1 (1−r1,i)(1−r2,i), S11 =
∑n−1

i=1 r1,ir2,i, S10 =
∑n−1

i=1 r1,i(1−r2,i) andS01 =
∑n−1

i=1 (1−

r1,i)r2,i. With this prior, a high value ofPε indicates a very likely configuration
[
r1,i, . . . , rJ,i

]T = ε for all

i = 1, . . . , n. For instance, by choosing a high value ofP0...0 (resp.P1...1), we will favor a simultaneous

absence (resp. presence) of changes in all observed signals. This choice introduces correlation between

the change-point locations.

2) Variances and AR parameters:: Inverse-Gamma distributions are selected for the noise variances:

σ2
j,k |

(ν
2
,
γ

2

)
∼ IG

(ν
2
,
γ

2

)
, (8)

whereIG(a, b) denotes the Inverse-Gamma distribution with parametersa andb, ν = 2 (as in [9]) andγ

is an adjustable hyperparameter. This is a so-calledconjugate priorwhich has been used successfully in

[9] for Bayesian curve fitting. We assume here that the hyperparameterγ is the same for all the observed

signals. Note, however, that a similar analysis could be conducted with a set of non-equal hyperparameters

γj , j = 1, . . . , J . Such analysis is interesting when signal amplitudes differ significantly from one signal

to another, and it is developed in [16].

Conjugate zero-mean Gaussian priors are chosen for the AR parameters:

aj,k|σ2
j,k, δ

2
0 ∼ N

(
0p, σ2

j,kδ
2
0Ip
)
, (9)

whereIp is the p × p identity matrix,0p is the vector made ofp zeros andδ20 is an adjustable hyper-

parameter. One motivation for selecting conjugate priors is that they allow to integrate out (marginalize)

the noise variances and AR parameters in the posteriorf(θ|Y), making the computations easier.
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C. Hyperparameter priors

The hyperparameter vector associated with the parameter priors defined above isΦ = (P, δ20 , γ). Of

course, the ability of this Bayesian model to detect abrupt changes accurately in theJ signals depends on

the values of the hyperparameters. As outlined in Section I, these hyperparameters should be considered

as unknown, and estimated as this makes the overall model more robust, see [9] for example. The resulting

hierarchical model requires to define hyperparameter priors (sometimes referred to as hyper-priors) which

are detailed below.

1) Hyperparametersδ20 and γ: The priors for hyperparametersδ20 and γ are selected as a noninfor-

mative Jeffreys’ prior and a vague conjugate Inverse-Gamma distribution (i.e, with large variance) which

reflect the lack of precise knowledge regarding these hyperparameters:

δ20 |ξ, β ∼ IG (ξ, β) , f(γ) =
1
γ

IR+(γ), (10)

whereIR+(x) is the indicator function defined onR+.

2) HyperparameterP: The prior distribution for the hyperparameterP is a Dirichlet distribution with

parameter vectorα =
[
α0...0, . . . , α1...1

]
defined on the simplexP = {P such that

∑
ε∈E Pε = 1,Pε >

0} denoted asP ∼ D2J (α). This distribution has been chosen since it allows marginalization of the

posterior distributionf(θ|Y) with respect toP. Moreover, by choosingαε = 1,∀ε ∈ E , the Dirichlet

distribution reduces to the uniform distribution onP.

Assuming that the individual hyperparameters are independent, the full hyperparameter prior distribu-

tion Φ can be written (up to a normalizing constant):

f(Φ|α, ξ, β) ∝

(∏
ε∈E

Pαε−1
ε

)
1
γ

βξ

Γ(ξ)(δ20)ξ+1
exp

(
− β
δ20

)
IR+(γ)IR+(δ20)IP(P), (11)

where∝ means “proportional to” andΓ(·) is the gamma function.

D. Posterior distribution ofθ

The posterior distribution of the unknown parameter vectorθ can be computed from the following

hierarchical structure:

f(θ|Y) =
∫
f(θ,Φ|Y)dΦ ∝

∫
f(Y|θ)f(θ|Φ)f(Φ)dΦ, (12)

where

f(θ|Φ) = f(R|P)
J∏
j=1

Kj∏
k=1

f
(
aj,k|σ2

j,k, δ
2
0

)
f
(
σ2
j,k|

ν

2
,
γ

2

)
, (13)
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and f(Y|θ) and f(Φ) are defined in Eq.’s (4) and (11). This hierarchical structure allows to integrate

out the nuisance parametersσ2 = {σ2
1, . . . ,σ

2
J}, A = {A1, . . . ,AJ} andP from the joint distribution

f(θ,Φ|Y), yielding:

f(R, γ, δ20 |Y) ∝ 1
γ

IR+(γ)
(
δ20
)− p

2

PJ
j=1Kj(rj)

f(δ20 |ξ, β)C(R|Y,α)

×
J∏
j=1

Kj(rj)∏
k=1

γ ν

2

∣∣Mj,k

∣∣ 12 Γ
(
ν
2 + 1

2nj,k(rj)
)(

γ + T 2
j,k

) ν

2
+ 1

2
nj,k(rj)

 , (14)

with 

T 2
j,k = yT

j,lj,k−1+1:lj,k
Qj,kyj,lj,k−1+1:lj,k

,

Qj,k = Ip −Yj,kMj,kYT
j,k,

Mj,k =
(
YT
j,kYj,k +

Ip
δ20

)−1

,

(15)

and

C(R|Y) =

∏
ε∈{0,1}J Γ (Sε(R) + αε)

Γ
(∑

ε∈{0,1}J (Sε(R) + αε)
) . (16)

The posterior distribution in Eq. (14) is too complex to enable the closed-form calculation of Bayesian

estimators (e.g., MMSE or MAP) for the unknown parameters. In this case, it is very usual to apply

MCMC methods to generate samples which are asymptotically distributed according to the posteriors of

interest. The samples can then be used to estimate the unknown parameters by replacing integrals by

empirical averages over the MCMC samples.

Here, we propose a Gibbs sampler strategy that is similar to that in [9], with two noticeable differences,

however: 1) our approach enables to perform joint signal segmentation and 2) the use of indicator variables

sets our model into a fixed dimensional space, which avoids the costly implementation of reversible jumps.

Section III presents the MCMC algorithm designed to perform the joint abrupt change detection in the

case where the orders or the AR models, as wall as the hyperparameterγ, are the same for all the signals.

These assumptions will be removed in Section V.

III. A G IBBS SAMPLER FOR JOINT SIGNAL SEGMENTATION

Gibbs sampling is an iterative sampling strategy which consists of generating random samples (denoted

by ·̃(t) where t is the iteration index) distributed according to the conditional posterior distributions of

each parameter. This paper proposes to sample according to the distributionf(R, γ, δ20 |Y) defined in

June 23, 2006 DRAFT



9

Eq. (14) by the three step procedure outlined below. The main steps of Algorithm 1, as well as the key

equations, are detailed in Subsections III-A to III-C below.

Algorithm 1: Gibbs sampling algorithm for abrupt change detection

• Initialization:

– Sample hyperparameter vector Φ̃
(0)

=
(
δ̃
2(0)
0 , γ̃(0), P̃(0)

)
from the pdf in Eq. (11),

– For i = 1, . . . , n− 1 sample,
[̃
r(0)1,i , . . . , r̃

(0)
J,i

]
from the pdf in Eq. (6),

– For j = 1, . . . , J , k = 1, . . . ,K, sample σ̃2(0)
j,k and ã(0)

j,k from the pdf’s in Eq.’s (8) and (9) ,

– Set t← 1,

• Iterations: for t = 1, 2, 3, . . . , do

– For each time instant i = 1, . . . , n − 1, sample the local abrupt change configuration at time i[̃
r(t)1,i, . . . , r̃

(t)
J,i

]
from its conditional distribution given in Eq. (17),

– For signals j = 1, . . . , J , and segments k = 1, . . . ,K, sample the noise variance σ̃
2(t)
j,k from its

conditional posterior given in Eq. (18),

– Sample the hyperparameter γ̃(t) from its posterior given in Eq. (19),

– For signals j = 1, . . . , J and segments k = 1, . . . ,K, sample the AR coefficients ã(t)
j,k from their

conditional posterior given in Eq. (20),

– Sample the hyperparameter δ̃2(t)0 from its conditional posterior given in Eq. (21),

– Optional step: sample the hyperparameter P̃(t) from the pdf in Eq (22),

– Set t← t+ 1.

A. Generation of samples according tof(R|γ, δ20 ,Y)

This step is achieved by using the Gibbs Sampler, to generate Monte Carlo samples distributed

according tof
(
r1,i, . . . , rJ,i|γ, δ20 ,Y

)
. This vector is a random vector of Booleans inE . Consequently,

its distribution is fully characterized by the probabilitiesP
([

r1,i, . . . , rJ,i
]T = ε|γ, δ20 ,Y

)
, ε ∈ E . By

using the notationR−i to denote the matrixR where the column at timei is removed, the following

result can be obtained:

P
([

r1,i, . . . , rJ,i
]T = ε|R−i, γ, δ

2
0 ,Y

)
∝ f(Ri(ε), γ, δ20 |Y), (17)

where Ri(ε) is the matrixR where the column at timei is replaced by the vectorε. This yields

a closed-form expression of the probabilitiesP
([

r1,i, . . . , rJ,i
]T = ε|R−i, γ, δ

2
0 ,Y

)
after appropriate

normalization.
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B. Generation of samples according tof(γ, δ20 |R,Y)

To obtain samples distributed according tof(γ, δ20 |R,Y), it is very convenient to generate vectors

distributed according to the joint distributionf(γ, δ20 ,σ
2,A|R,Y) by using Gibbs moves. By looking

carefully at the joint distribution off(θ,Φ|Y), this step can be decomposed as follows:

• Generate samples according tof(γ,σ2|R, δ20 ,Y)

By integrating the joint distributionf(θ,Φ|Y) with respect to the AR parameters, the following results

can be obtained:

σ2
j,k|R, γ, δ20 ,Y ∼ IG

(
ν + nj,k(rj)

2
,
γ + T 2

j,k

2

)
, (18)

γ|R,σ2 ∼ G

ν
2

J∑
j=1

Kj(rj),
1
2

J∑
j=1

Kj(rj)∑
k=1

1
σ2
j,k

 , (19)

whereG(a, b) is the Gamma distribution with parameters(a, b).

• Generate samples according tof(δ20 ,A|R,σ2,Y)

This is achieved as follows:

aj,k|R,σ2, δ20 ,Y ∼ N
(
µj,k, σ

2
j,kMj,k

)
, (20)

δ20 |R,A,σ2 ∼ IG

ξ +
p

2

J∑
j=1

Kj(rj), β +
J∑
j=1

Kj(rj)∑
k=1

‖aj,k‖2

2σ2
j,k

 , (21)

with µj,k = Mj,kYT
j,kyj,lj,k−1+1:lj,k

.

C. Posterior distribution ofPε

The hyperparametersPε, ε ∈ E , carry information regarding the correlations between the change

locations in the different time series. As a consequence it is interesting for practical applications to

estimate them from their posterior distribution (which is Dirichlet):

P|R,Y ∼ D2J (Sε(R) + αε). (22)

IV. SEGMENTATION OF SYNTHETIC DATA

The simulation presented in this section have been obtained forJ = 2 with sample sizen = 300. The

change-point locations arel1 = (60, 150) for signal#1 and l2 = (60) for signal#2. The parameters of

the two AR processes are summarized in Table I. The fixed parameters and hyperparameters have been

chosen as follows:ν = 2 (as in [9]), ξ = 1 and β = 100 (vague hyperprior),αε = α = 1,∀ε ∈ E .

The hyperparametersαε are equal to insure the Dirichlet distribution reduces to a uniform distribution.
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Moreover, the common value to the hyperparametersαε has been set toα = 1� n in order to reduce the

influence of this parameter in the posterior (22). In order to speed up the computations, the quantitiesT 2
j,k,

Qj,k andMj,k defined in Eq. (15) have been computed following the implementations described in [17]

and reported in the Appendix. All figures have been obtained after averaging the results of64 Markov

chains. The total number of runs for each Markov chain isNMC = 700, includingNbi = 200 burn-in

iterations. Thus only the last500 Markov chain output samples are used for the estimations (the choice

of parametersNMC andNbi will be discussed later). Note that running100 iterations of the proposed

algorithm for joint segmentation of signals with sample sizen = 300 takes approximately2 minutes and

30 seconds for a MATLAB implementation on a2.8 Ghz Pentium IV. Of course, the computational cost

will increase for longer time series and may become prohibitive.

A. Posterior distributions of the change-point locations

The first simulation shows the interest of joint segmentation compared to signal-by-signal segmentation

for two independent AR processes. Fig. 1 shows the posterior distributions of the change-locations

obtained for the two time-series. As can be seen, the change-point of the second time-series can be detected

when using the joint segmentation technique (right figures) whereas it is not detected when applying two

single signal independent segmentations (left figures). When joint segmentation is performed, the change

point located at timei = 60 in the second signal favors the detection of a change at the same time index

in the other signal. Note that the results presented in Fig. 1 (left figures) are obtained with univariate

segmentations (J = 1) which correspond to the Bayesian curve fitting strategy of Punskayaet al. [9].

B. Posterior distribution of the change-point numbers.

The estimation of the total number of change-points for the two time-series is an important problem. The

proposed algorithm generates samples(R(t), γ(t), δ
2 (t)
0 ) distributed according to the posterior distribution

f
(
R, γ, δ20

∣∣Y), which allows for model selection. Indeed, for each sampleR(t), the number of change-

points areK̂(t)
1 (r(t)

1 ) =
∑N

i=1 r(t)1,i and K̂(t)
2 (r(t)

2 ) =
∑N

i=1 r(t)2,i. Fig. 2 shows the means of̂K1 and K̂2 as

well as means± standard deviations computed from the500 last Markov chain samples with the joint

approach. The histograms have maximum values forK1 = 3 andK2 = 2 which correspond to the actual

numbers of changes.

C. Noise variances and AR parameters

The estimation of the noise variances or AR parameters can be interesting in practical applications.

Figures 3 and 4 show the posterior distributions of parameters{σ2
1,k}k=1,...,3 and{σ2

2,k}k=1,2 associated
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with the two time-seriesy1 andy2. These histograms are in good agreement with the actual values of

the parametersσ2
1,1 = 0.50, σ2

1,2 = 0.52, σ2
1,3 = 3.80 andσ2

21 = 0.81, σ2
22 = 4.63. Similar results could

be obtained for AR parameters. They are omitted here for brevity.

D. Hyperparameter estimation

The performance of the hyperparameter estimation procedure needs to be investigated. The estimated

posteriors of hyperparametersP00, P01, P10 andP11 are depicted in Fig. 5. This shows that the proposed

Gibbs sampler actually generates samples distributed according to the true distribution in Eq. (22).

E. Robustness to correlated noise vectors

This section shows that the proposed joint segmentation procedure is robust to correlated noise vectors.

For this, assume that the two noise vectorse1 ande2 are correlated with the following covariance matrices

Σi =



 σ2
1,1 ρ

ρ σ2
2,1

 for i = 1, ..., 60, σ2
2,1 ρ

ρ σ2
2,2

 for i = 61, ..., 150, σ2
3,1 ρ

ρ σ2
2,2

 for i = 151, ..., 300.

Note that forρ = 0, this example reduces to the previous synthetic data. The results of the joint hierarchical

Bayesian segmentation procedure are depicted in Fig. 6 for two different values ofρ, i.e. two different

correlations. Figures 1 and 6 show that similar results are obtained for uncorrelated and correlated noise

vectors. Consequently, the proposed model appears to be robust to noise correlations.

F. Sampler convergence

The Gibbs sampler allows to draw samples
(
R(t), γ(t), δ20

(t)
)

asymptotically distributed according to

f(R, γ, δ20 |,Y). The change-point posterior probabilities can then be estimated by the empirical average

(according to the minimum mean square error (MMSE) principle):

R̂MMSE =
1
Nr

Nr∑
t=1

R(Nbi+t), (23)

whereNbi is the number of burn-in iterations. However, two important questions are: 1) When can we

decide that the samples
{
R(t)

}
are actually distributed according to the target distribution? 2) How many

samples are necessary to obtain an accurate estimate ofR when using Eq. (23)? Running multiple chains
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with different initializations allows to define various convergence measures for MCMC methods [18].

This section proposes to use the popular between-within variance criterion to ensure the convergence

of the algorithm. This method was initially studied by Gelman and Rubin in [19] and has been often

used to monitor convergence (see for example [20], [21] or [18, p. 33]). This criterion requires to run

M parallel chains of lengthNr with different starting values. The between-sequence varianceB and

within-sequence varianceW for theM Markov chains are defined by

B =
Nr

M − 1

M∑
m=1

(κm − κ)2 , (24)

and

W =
1
M

M∑
m=1

1
Nr

Nr∑
t=1

(
κ(t)
m − κm

)2
, (25)

with 
κm = 1

Nr

Nr∑
t=1

κ
(t)
m ,

κ = 1
M

M∑
m=1

κm,

(26)

whereκ is the parameter of interest andκ(t)
m is the tth run of themth chain. The convergence of the

chain is monitored by a so-calledpotential scale reduction factor̂ρ defined as [22, p. 332]:

√
ρ̂ =

√
1
W

(
Nr − 1
Nr

W +
1
Nr

B

)
. (27)

A value of
√
ρ̂ close to1 indicates a good convergence of the sampler.

Different choices for parameterκ could be considered for the proposed joint segmentation procedure.

This paper proposes to monitor the convergence of the Gibbs sampler with the parametersPε, ε ∈ E . As

an example, the outputs ofM = 5 chains for parameterP00 are depicted in Fig. 7. The chains clearly

converge to similar values. The potential scale reduction factors for all parametersPε are given in Table

II. These values of
√
ρ̂ confirm the good convergence of the sampler (a recommendation for convergence

assessment is a value of
√
ρ̂ below 1.2 [22, p. 332]). It is important to make the following comments:

• For segmentation purposes, the important information is contained in the change locations, which has

motivated the choice of the parametersPε for monitoring convergence. However, for applications

requiring signal reconstruction, the AR parametersaj,k,l and noise variancesσ2
j,k are important

parameters. Therefore, the potential scale reduction factors
√
ρ̂ computed for the estimated variances

are also indicated in Table II. The obtained values confirm that a burn-in of200 iterations is sufficient

for this example.
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• Other simulation examples with smaller changes or closer changepoints can yield MCMC conver-

gence problems. In such cases, an alternative based on perfect simulation might be implemented

(see [23] for more details).

In order to determine the number of runs which are required to obtain an accurate estimate ofR

when using Eq. (23), anad hocapproach consists of assessing convergence via appropriate graphical

evaluations [18, p. 28]. Here, a reference estimate denoted asR̃ has been computed for a large number

of iterationsNr = 10000 andNbi = 200 (to ensure convergence of the sampler and good accuracy of the

approximation in Eq. (23)). Figure 8 shows the mean square error (MSE) between this reference estimate

R̃ and the estimate obtained afterNr = p iterations (andNbi = 200):

e2r(p) =

∥∥∥∥∥R̃− 1
p

p∑
t=1

R(Nbi+t)

∥∥∥∥∥
2

.

This figure indicates that a number of iterations equal toNr = 500 is sufficient to ensure an accurate

estimation of the empirical average in Eq. (23) for this example. Of course, for more difficult problems, a

larger number of iterations will be necessary to obtain an accurate estimation of the posterior distribution.

V. UNKNOWN AR MODEL ORDERS

This section generalizes the previous hierarchical Bayesian model to AR processes whose orders are

unknown and differ from one segment to another.

A. Extented Bayesian model

We define appropriate priors for the new parameters to be estimated. A truncated Poisson distribution

is chosen for the model order priors:

f(pj,k|ψ) =
1

Ψpmax(ψ)
ψpj,k

pj,k!
I{0,...,pmax}(pj,k), Ψpmax(ψ) =

pmax∑
p=0

ψp

p!
. (28)

Classically, a vague conjugate Gamma distribution is assigned to the hyperparameterψ with fixed

parametersµ andρ:

ψ|µ, ρ ∼ G (ρ, µ) , (29)

whereG (a, b) denotes the Gamma distribution with parametersa and b. Therefore, by assuming the

independence betweenpj1,k1 andpj2,k2 for all j1 6= j2 andk1 6= k2, and by denotingp = {p1, . . . ,pJ}
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with pj =
[
pj,1, . . . , pj,Kj

]T
, the posterior of interest can be written:

f(R,p, γ, δ2, ψ|Y) ∝ 1
γ

IR+(γ)C(R|Y,α)f(δ20 |ξ, β)Ψpmax(ψ)−
PJ

j=1Kj

×
J∏
j=1

Kj∏
k=1

γ ν

2

∣∣Mj,k

∣∣ 12 Γ
(
ν
2 + 1

2nj,k
)(

γ + T 2
j,k

) ν

2
+ 1

2
nj,k

ψpj,k

pj,k!
(
δ20
)− pj,k

2

 ,

whereC(R|Y) has been defined in Eq. (16). We point out that the dimensions of the matrixMj,k and

therefore the quantityT 2
j,k defined in Eq. (15) depend on the model orderpj,k.

B. Reversible jump MCMC algorithm

The previous distribution requires to develop an efficient strategy to sample according tof(R,p, γ, δ20 , ψ|Y).

In this case, the vectors to be sampled
(
R,p, γ, δ20 , ψ

)
belong to the space{0, 1}nJ×

∏J
j=1{0, . . . , pmax}Kj×

R+×R whose dimension depends onKj . In order to sample directly on this space, we propose an hybrid

Gibbs algorithm referred to as “algorithm2” whose main steps are detailed below:

• a- Generation of samples according tof(R|p, γ, δ20 , ψ,Y):

As in the initial model, this generation is achieved by usingn − 1 Gibbs moves to generate

Monte Carlo samples distributed according tof(r1,i, . . . , rJ,i|p, γ, δ20 , ψ,Y). The 2J probabilities

P
([

r1,i, . . . , rJ,i
]T = ε|R−i,p, γ, δ20 , ψ,Y

)
could be evaluated in an exact way with the two fol-

lowing updating rules forp:

– if two segments with orderspj,k1 and pj,k2 have to be merged, the model orderp∗j,k of the

resulting segment isp∗j,k = pj,k1 + pj,k2 .

– if one segment with orderpj,k has to be split, the model ordersp∗j,k1
and p∗j,k2

of the two

resulting segments are chosen as follows:p∗j,k1
∼ U{0,...,pj,k} andp∗j,k2

= pj,k − p∗j,k1
.

These choices ensure the reversibility of the different moves.

• b- Generation of samples according tof(p|R, γ, δ20 , ψ,Y):

As in [9], the update of the model orders is performed by using a reversible jump MCMC procedure:

– a birth movep∗j,k = pj,k + 1 is proposed with the probabilitybpj,k
,

– a death movep∗j,k = pj,k − 1 is proposed with the probabilitydpj,k
.

The acceptance probability for the new Monte Carlo state is:

λpj,k→p∗j,k
=
λp

∗
j,k

λpj,k

p∗j,k!
pj,k!

(
1
δ20

)± 1
2

∣∣Mj,k(p∗j,k)
∣∣ 12∣∣Mj,k(pj,k)
∣∣ 12
[
T 2
j,k(p

∗
j,k) + γ

] ν

2
+ 1

2
nj,k

[
T 2
j,k(pj,k) + γ

] ν

2
+ 1

2
nj,k

(
dpj,k

bpj,k

)±1

, (30)
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with p∗j,k = pj,k ± 1,

• c- Generation of samples according tof(ψ|R,p, γ, δ20 ,Y):

Looking carefully at its posterior distribution, we can sampleψ by a simple Metropolis-Hastings

step with a Gamma proposal distributionψ∗ ∼ G
(
µ+

∑
j,k pj,k, ρ+

∑
jKj

)
and the following

acceptance probability:

λψ→ψ∗ =
[

Ψpmax(ψ)
Ψpmax(ψ∗)

exp (ψ∗ − ψ)
]PJ

j=1Kj

, (31)

• d- Generation of samples according tof(γ,σ2|R,p, δ20 ,Y):

As in the initial model, after appropriate integration, the following posteriors are obtained:

σ2
j,k|R,p, γ, δ20 ,Y ∼ IG

(
ν + nj,k

2
,
γ + T 2

j,k

2

)
, (32)

γ|R,σ2 ∼ G

ν
2

∑
j

Kj ,
1
2

∑
j,k

1
σ2
j,k

 , (33)

• e- Generation of samples according tof(δ20 ,A|R,p,σ2,Y):

This is achieved as follows:

aj,k|R,p,σ2, δ20 ,Y ∼ N
(
µj,k, σ

2
j,kMj,k

)
, (34)

δ20 |R,p,A,σ2 ∼ IG

ξ +
∑
j,k

pj,k
2
, β +

∑
j,k

‖aj,k‖2

2σ2
j,k

 . (35)

• f- Generation of samples according tof(P|R,Y):

As in the initial model, the following posterior is obtained:

P|R,Y ∼ D2J (Sε(R) + αε). (36)

It is important to note that the proposed scheme requires only one model order selection (i.e. one reversible

jump MCMC procedure) contrary to the approach presented in [9].

Algorithm 2: Hybrid Gibbs algorithm for abrupt change detection with unknown model orders

• Initialization:

– Sample hyperparameter vector Φ̃
(0)

=
(
δ̃
2(0)
0 , γ̃(0), P̃(0)

)
from the pdf in Eq. (11),

– Sample hyperparameter ψ̃(0) from the pdf in Eq. (29),

– For i = 1, . . . , n− 1 sample,
[̃
r(0)1,i , . . . , r̃

(0)
J,i

]
from the pdf in Eq. (6),

– For j = 1, . . . , J , k = 1, . . . ,K, sample σ̃2(0)
j,k , ã(0)

j,k and p̃(0)
j,k from the pdf’s in Eq.’s (8), (9) and (28),

– Set t← 1,
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• Iterations: for t = 1, 2, 3, . . . , do

– For i = 1, . . . , n − 1, sample
[̃
r(t)1,i, . . . , r̃

(t)
J,i

]
according to the 2J probabilities defined in step a-

below,

– For j = 1, . . . , J , k = 1, . . . ,K, update the model order p̃(t)
j,k (see step b-):

∗ if
(
u ∼ U[0,1]

)
≤ b

ep
(t−1)
j,k

, then propose p∗j,k = p̃
(t−1)
j,k + 1,

else if
(
u ∼ U[0,1]

)
≤ b

ep
(t−1)
j,k

+ d
ep
(t−1)
j,k

, then propose p∗j,k = p̃
(t−1)
j,k − 1,

∗ if
(
vp ∼ U[0,1]

)
≤ λpj,k→p∗j,k

(see Eq. (30)), p̃(t)
j,k = p∗j,k,

else p̃(t)
j,k = p̃

(t−1)
j,k ,

– Update ψ̃(t) (see step c-):

∗ Propose ψ∗ according to the Gamma proposal distribution defined in step d-,

∗ if
(
vψ ∼ U[0,1]

)
≤ λψ→ψ∗ (see Eq. (31)), ψ̃(t) = ψ∗,

else ψ̃(t) = ψ̃(t−1),

– For j = 1, . . . , J , k = 1, . . . ,K, sample σ̃2(t)
j,k from the pdf in Eq. (32),

– Sample γ̃(t) from the pdf in Eq. (33),

– For j = 1, . . . , J , k = 1, . . . ,K, sample ã(t)
j,k from the pdf in Eq. (34),

– Sample δ̃2(t)0 from the pdf in Eq. (35),

– Optional step: sample P̃(t) from the pdf in Eq. (36),

– Set t← t+ 1.

C. Simulations

In order to assess the accuracy of the proposed method, we considerJ = 2 synthetic signals ofn = 300

samples. The change-point locations arel1 = (60, 150) for signal#1 and l2 = (60) for signal#2. The

parameters of the two AR processes (which have been extracted from [9]) are summarized in Table III.

The fixed parameters and hyperparameters have been chosen as follows:ν = 2, ξ = 1, µ = 1, β = 102,

ρ = 10−2 (vague hyperpriors) andαε = 1,∀ε ∈ E so as to obtain a uniform prior distribution forP.

The estimated values for AR model orders associated to the two signals are depicted on Fig.’s 9 and 10.

The corresponding change-point posterior distributions are shown on Fig. 11. The proposed algorithm

achieves accurate estimation of changes in the two sequences. The orders of the AR processes in each

segment are also estimated with good accuracy.
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VI. A PPLICATIONS

A. “Arc-tracking” detection

We illustrate the performance of the proposed segmentation procedure by processing real aeronautical

data, where the issue is to prevent the phenomenon referred to as “arc-tracking”. This phenomenon is

responsible of many fatal aircraft crashes in the last years. The few hundreds of kilometers of wires

embedded on military and commercial aircrafts are subject to various constraints (chemical, mechanical,

thermic...) resulting in insulation damages. These breakdowns expose the cable to intermittent fault-arc

currents that could ignite the neighboring wires [24]. Several methods for detection of wiring failures have

been studied in the literature: they are mainly based on dielectric properties [25] or, more recently, on

electromagnetic properties [26]. We propose here an “arc-tracking” detection procedure that searches for

transients in the predamaged wires, which is a early phenomenon announcing “arc-tracking” problems.

The analyzed data have been recorded from a common3-phase (A, B andC) supply voltage whose

electric network frequency isf0. The phenomenon we are looking for affects the signals at frequencies

higher thanfc1. Therefore, theJ = 3 sequences whose sample size isn = 551 are filtered by an

highpass filter in order to highlight the transients which are much less energetic. The filtered voltages

can be accurately modeled as AR processes. The presence of transients in the observed time series results

in changes in the AR parameters.

We propose to detect the transients that appear on phasesA, B and C betweent1 = 0.04s and

t2 = 0.17s. The observed data corresponding to the three phases have been processed by the proposed

joint segmentation algorithm. The estimated number of change-points and their positions are obtained

afterNMC = 450 iterations including a burn-in period ofNbi = 100 iterations. The parametersNbi and

NMC have been chosen to provide appropriate potential reduction factors
√
ρ̂ for the hyperparameters

Pε. Note that running30 iterations of the proposed algorithm withNbi = 100 andNMC = 450 takes

approximately4 minutes for a MATLAB implementation on a2.8 Ghz Pentium IV.

In the first step of the analysis, we estimate the number of change-points for the observed sequences.

The posteriors of the number of changes in each signal are not depicted here for brevity. The corresponding

MAP estimators arêK1 = 4, K̂2 = 8 and K̂3 = 8. The estimated posterior distribution ofR depicted

in Fig. 12 can then be used to estimate the beginning and the end of transients in each phase. Indeed,

by keeping theK̂j largest peaks of the posterior distributionf(R|Y), the segments corresponding to the

different transients (outlined by vertical lines in Fig. 12) can be reconstructed.

1For confidentiality reasons, the actual values off0 andfc corresponding to these real aeronautical data cannot be provided.
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B. Speech segmentation

This section illustrates the performance of the proposed algorithm by processing a real speech signal

which has received much attention in the literature (see [1], [3], [9], [14] and more recently [23]). As

explained in [1, p. 401], this signal belongs to a database designed by the French National Agency for

Telecommunications. It consists of a noisy speech recorded in a car with the sampling frequency8kHz

and quantized with16bits. It is prefiltered by a highpass filter with cutt-off frequency equal to150Hz. The

raw 1D datay =
[
y1, . . . , yn

]
have been processed by the proposed algorithm withJ = 1. The estimated

number of change-points and their positions are obtained afterNMC = 600 iterations including a burn-in

period ofNbi = 200 iterations (NMC andNbi have been chosen in order to obtain appropriate potential

reduction factors
√
ρ̂ for the hyperparametersPε). The estimated changes are depicted in Fig. 13 (top

figure). Table IV compares the estimates with those obtained with several other methods previously studied

in the literature. It clearly appears that the proposed method gives similar segmentation models. However,

it has the advantage to be able to handle signals coming from different sensors. To illustrate this point,

the data have been converted into stereo measurementsY =
[
y1,y2

]T
with y1 = [y1,1, . . . , y1,n] and

y2 = [y2,1, . . . , y2,n] by using a standard mono-stereo converter. The change-point posterior distributions

for the two signalsy1 andy2 have been computed with the proposed algorithm withJ = 2. The segments

for the two time-series can be obtained by keeping the largest values of the change-point posteriors

(corresponding to the estimated change-point numbersK̂j , j = 1, 2). The results are presented in Table

IV and in Fig. 13 (middle and bottom plots). They are in good agreement with the1D segmentation.

Note however that the segmentation of stereo signals does not estimate the first changel1,1 = l2,1 = 448

since it is not significant in both sequences. Finally, it is interesting to point out that running1 iteration

of the joint segmentation algorithm withNbi = 100 andNMC = 450 takes approximately30 seconds

for a MATLAB implementation on a2.8Ghz Pentium IV.

VII. C ONCLUSIONS

This paper studied a joint Bayesian segmentation procedure allowing to segment signals recorded from

different sensors. The proposed approach assumed that the signals can be modeled by piecewise constant

AR processes. A hierarchical Bayesian model was defined allowing to estimate jointly the change-point

locations, the AR parameters and the noise variances for the multiple observed signals. To circumvent

the complexity of the unknown parameters distributions, an appropriate Gibbs sampler was proposed to

simulate samples distributed according to the posteriors of interest. The proposed algorithm was initially

developed for AR signals with known orders. However, an extension to models with unknown orders
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was also presented. Two applications were finally investigated: arc-tracking detection and stereo speech

signal segmentation. The results obtained in these applications are very encouraging.

Note that the assumptions regarding the observed signals are sufficiently mild to handle a large class

of other real signals such as seismic [1] or biomedical [13] signals. Extending this work to more general

models appropriate for signals with heterogeneous dynamics [16], long range dependent data [4] or

generalized autoregressive conditional heteroskedastic (GARCH) signals [27] would also be an interesting

issue.
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APPENDIX

FAST COMPUTATIONS

It is interesting to notice that the matricesQj,k and Mj,k, and the variableT 2
j,k defined in Eq. (15)

could be computed following the implementations described in [17]. We noteyj,[k] = yT
j,lj,k−1+1:lj,k

.

Algorithm 3: Fast computations of T 2
j,k

• Compute M−1
j,k = YT

j,kYj,k + Ip

δ20
,

• Compute Cholesky’s factors Cj,k such as Cj,kCT
j,k = Mj,k,

• Compute uj,k = YT
j,kyj,[k],

• Solve the system Cj,kvj,k = uj,k for vj,k,

• Compute T 2
j,k = yT

j,[k]yj,[k] − vT
j,kvj,k.

Such implementations allow us to develop a strategy to sampleaj,k|δ20 , σ2
j,k,R,Y according toN (µj,k, σ2

j,kMj,k)

in the effective following scheme.

Algorithm 4: Fast multivariate Gaussian sampling of aj,k

• Sample a i.i.d. vector wj,k according to N (0, σ2
j,kIp)

• Solve the system Cj,kµ̃j,k = wj,k for µ̃j,k,

• Solve the system CT
j,kµj,k = µ′

j,k for µj,k,

• Compute aj,k = µ̃j,k + µj,k.

Another advantage of this scheme is that it is not necessary to compute directly the determinant of

the matricesMj,k that appear in Eq. (14). Indeed,
∣∣Mj,k

∣∣ =
∣∣Cj,k

∣∣−2
whereCj,k are upper triangular

matrices whose determinants can be computed very easily.
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FIGURES 23

Fig. 1. Posterior distributions of the change-point locations for1D (left) and joint segmentations (right) obtained afterNbi = 200
burn-in iterations andNr = 500 iterations of interest.

Fig. 2. Posterior distributions of the change-point numbers computed fromNr = 500 iterations of interest (mean in gray,
mean± standard deviations in white and black).

Fig. 3. Posterior distributions of the noise variancesσ2
1i (for i = 1, . . . , 3) conditioned toK1 = 3 computed fromNr = 500

iterations of interest (solid lines). Averaged posterior distributions from64 Markov chains (dotted lines).

Fig. 4. Posterior distributions of the noise variancesσ2
2i (for i = 1, 2) conditioned toK2 = 2 computed fromNr = 500

iterations of interest (solid lines). Averaged posterior distributions from64 Markov chains (dotted lines),
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FIGURES 24

Fig. 5. Posterior distributions of the hyperparametersPε (computed fromNr = 500 iterations of interests of64 Markov
chains).

Fig. 6. Posterior distributions of the change-point locations for correlated noise vectors withρ = 0.1 (left) andρ = 0.5 (right)
(Nbi = 200 andNr = 500).

Fig. 7. Convergence assessment: the outputs ofM = 5 chains for the parameterP00 converge to the same value.

Fig. 8. MSE between the reference and estimateda posteriorichange-point probabilities versusp (solid line). Averaged MSE
computed from64 chains (dotted line) (Nbi = 200).

Fig. 9. Posterior distributions of the model ordersp1i (for i = 1, . . . , 3) conditioned toK1 = 3.

Fig. 10. Posterior distributions of the model ordersp2i (for i = 1, 2) conditioned toK2 = 2.

Fig. 11. Posterior distribution of the change-point locations estimated by the reversible jump algorithm.

Fig. 12. Posterior distribution of the change-point locations and segmentation of3D aeronautical data (Nbi = 100 and
NMC = 450).

Fig. 13. Segmentations of1D (top) and2D (middle and bottom) real speech data (Nbi = 200 andNMC = 600).
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TABLE I

PARAMETERS OF THEAR MODEL AND NOISE VARIANCES FOR EACH SEGMENT OF EACH SEQUENCE.

Sequence Segment σ2
j,k aj,k,l

j = 1

k = 1 0.50 0.0746 0.1664 −0.0693 −0.1571 −0.3543 −0.4277

k = 2 0.52 0.0135 0.1525 0.8170 2.3037 3.5316 2.8567

k = 3 3.80 0.0189 −0.0571 0.1502 −0.3173 0.4824 0.1607

j = 2
k = 1 0.81 0.0011 −0.0104 0.0538 −0.0646 0.3713 −0.0717

k = 2 4.63 0.0074 0.0138 0.1244 0.2660 0.7677 0.8705

TABLE II

POTENTIAL SCALE REDUCTION FACTORS OFPε (COMPUTED FROMM = 64 MARKOV CHAINS).

Pε σ2
1,k σ2

2,k

P00 P01 P10 P11 σ2
1,1 σ2

1,2 σ2
1,3 σ2

2,1 σ2
2,2√

ρ̂ 1.0005 1.0002 1.0006 0.9997 1.0005 1.0002 1.0006 1.0005 1.0002

TABLE III

PARAMETERS OF THEAR MODEL AND NOISE VARIANCES FOR EACH SEGMENT OF EACH SEQUENCE.

Sequence Segment σ2
j,k pj,k aj,k,l

j = 1

k = 1 1.7 2 −0.8000 0.5200 − −
k = 2 1.6 4 2.3000 2.6675 1.8437 0.5936

k = 3 1.8 3 0.5000 −0.6100 −0.5850 −

j = 2
k = 1 0.5 3 −2.0000 1.6350 −0.5075 −
k = 2 0.6 2 1.7000 0.7450 − −

TABLE IV

CHANGE-POINT POSITIONS ESTIMATED BY DIFFERENT METHODS.

Method AR order Estimated change-points

Divergence [28] 16 445 − 645 1550 1800 2151 2797 − 3626 −
GLR [29] 16 445 − 645 1550 1800 2151 2797 − 3626 −
GLR [29] 2 445 − 645 1550 1750 2151 2797 3400 3626 −

Approx. ML [3] 16 445 − 626 1609 − 2151 2797 − 3627 −
1D MCMC [9] estimated 448 − 624 1377 − 2075 2807 − 3626 −

Conditional MAP [23] estimated 449 585 620 1365 1795 2144 2811 − 3624 3657
Proposed1D approach estimated 448 − 624 1377 − 2075 2807 − 3626 −

Proposed2D approach↗↘
Ch. 1 estimated − − 624 1377 − 2075 2809 − 3626 −
Ch. 2 estimated − − 624 1377 − 2075 2809 − 3626 −
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