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Abstract

Despite attempts to unify the different theoretical accounts of the mismatch negativity

(MMN), there is still an ongoing debate on the neurophysiological mechanisms underlying

this complex brain response. On one hand, neuronal adaptation to recurrent stimuli is able

to explain many of the observed properties of the MMN, such as its sensitivity to controlled

experimental parameters. On the other hand, several modeling studies reported evidence in

favor of Bayesian learning models for explaining the trial-to-trial dynamics of the human

MMN. However, direct comparisons of these two main hypotheses are scarce, and previous

modeling studies suffered from methodological limitations. Based on reports indicating spa-

tial and temporal dissociation of physiological mechanisms within the timecourse of mis-

match responses in animals, we hypothesized that different computational models would

best fit different temporal phases of the human MMN. Using electroencephalographic data

from two independent studies of a simple auditory oddball task (n = 82), we compared adap-

tation and Bayesian learning models’ ability to explain the sequential dynamics of auditory

deviance detection in a time-resolved fashion. We first ran simulations to evaluate the

capacity of our design to dissociate the tested models and found that they were sufficiently

distinguishable above a certain level of signal-to-noise ratio (SNR). In subjects with a suffi-

cient SNR, our time-resolved approach revealed a temporal dissociation between the two

model families, with high evidence for adaptation during the early MMN window (from 90 to

150-190 ms post-stimulus depending on the dataset) and for Bayesian learning later in time

(170-180 ms or 200-220ms). In addition, Bayesian model averaging of fixed-parameter

models within the adaptation family revealed a gradient of adaptation rates, resembling the

anatomical gradient in the auditory cortical hierarchy reported in animal studies.
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Author summary

The ability to detect and adapt to changes in the environment is an essential feature for

survival of living beings. Two main theories have been proposed to explain how the brain

performs such an automatic task in the auditory domain. The first one, adaptation,

emphasizes the ability of auditory cortical and sub-cortical neurons to attenuate their

response to repeated stimuli, which renders the brain more sensitive to deviations from

expected sensory inputs. The second one, Bayesian learning, further involves higher-level

cortical regions which would update their predictions about incoming stimuli, depending

on their performance at predicting previous ones. These two views may not be mutually

exclusive, but few experimental works compared them directly. We used computational

models inspired from both accounts to assess which view may provide a better fit of two

independent electrophysiological datasets from similar auditory experiments. Evidence

from a large sample of 82 human subjects provided a complex picture, with adaptation

processes seemingly dominating the early phase of auditory brain response, and Bayesian

learning processes appearing later on. Our results converge with other recent works in

animals and points to the necessary reconciliation of those two theories for a better under-

standing of auditory perception and statistical learning.

Introduction

The MMN, a widely used tool in neuroscientific research

The auditory mismatch negativity (MMN) is a well-investigated electrophysiological marker

of automatic neural detection of changes occurring in the auditory environment [1] and is typ-

ically induced using an oddball paradigm where sequences of frequent standard tones are pre-

sented interspersed with rare deviant tones. In humans, it is recorded through

electroencephalography (EEG) or magnetoencephalography (MEG) and is defined as the dif-

ference between the deviant and standard event-related potentials (ERPs) [2]. Multifarious

deviance features have been shown to induce a MMN response, including pitch, duration,

intensity, spatial location, etc. The MMN is even observed in response to violations of abstract

regularities that bear no relationship with the physical features of the stimuli [3].

The MMN is a negative wave generally peaking over fronto-central scalp electrodes

between 100 and 250 milliseconds, with variations depending on the experimental design

including the dimension of the deviant feature [1]. Discovered more than 40 years ago [4], it

was investigated in research fields as broad as neurolinguistics [5], attention [6], altered states

of consciousness [7, 8], aging [9], psychiatry [10, 11], emotions [12], psychedelics [13] or medi-

tation [14]. However, despite its use in clinical research or as an experimental measure for

many cognitive functions [15], its generative mechanisms are still widely debated.

An old debate around the generative mechanisms of the MMN

Recent reviews described in details the different mechanistic hypotheses for the mismatch

response [16, 17]. The MMN was originally viewed as a marker of sensory memory by its dis-

coverers [18], but such memory-based account quickly found its limits in the face of the exis-

tence of MMN responses to abstract deviations [3] and was refined under the model-
adjustment hypothesis [19, 20]. In this view the main mechanism behind the MMN is not only

the detection of changes in some physical features of a stimulus, but more generally the
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detection, representation and updating of regularities in the auditory stream. Being more flexi-

ble, the model adjustment account can explain the MMN to most forms of deviance, from

omission responses to violations of abstract rules.

Another prevailing explanation for the MMN is the adaptation hypothesis, which rests

upon electrophysiological observations of stimulus-specific adaptation (SSA) in auditory brain

regions at the origin of deviance detection [21–23]. Indeed, midbrain [24], thalamic [25] and

cortical [26–29] auditory neurons tuned to frequently repeated tones adapt faster than neurons

tuned to rare deviant tones. This differential adaptation at the neuronal level would explain the

lower amplitude of the scalp ERP-component N1 in response to frequent, compared to deviant

tones, resulting in the observation of the negative MMN deflection. [30–32]. If critics were

raised concerning the explanatory power of the adaptation hypothesis and its relation to the

MMN [33–35], most of them were fairly answered with simulations works [30, 31, 36, 37] and

detailed reviews [22, 38]. As May et al. [22] highlighted, memory-based and adaptation

accounts fall in two different categories: cognitive and physiological, respectively, which are

not mutually exclusive explanations of the MMN but justify further efforts in the development

of a more encompassing theory of deviance detection.

Bayesian inference, and its implementation in the brain as predictive coding, has been used

extensively in the last two decades as a general model of perception [39–43], with particular

emphasis on audition [44–46]. In predictive coding, the MMN is seen as an electrophysiologi-

cal marker of the discrepancy between top-down predictions based on repeated stimuli (i.e.

standards) and bottom-up unexpected sensory inputs (i.e. deviants): a prediction error [40].

Propagated through forward connections, prediction errors would trigger the updating and

optimization of an internal model of sensory causes at higher cortical areas, in agreement with

the model-adjustment hypothesis. Adjusted predictions would then be sent backward to

explain away or suppress prediction errors at lower cortical areas, providing a plausible mecha-

nism for repetition suppression. In this framework, suppression of the MMN when deviant

tones are repeated and thus become standards, as in the roving standards paradigm [47], is

interpreted as a minimization of prediction errors, the internal model having learnt a new sta-

tistical regularity. Additionally, hierarchical minimization of prediction errors would also be

weighted by the relative precision of the predictions and sensory inputs, accounting for effects

of standard variability and deviant probability on MMN amplitude [48]. Physiologically,

changes in local, intrinsic connectivity of prediction error units would mediate this weighting

process in auditory cortices via modifications of synaptic gains, reminiscent of the adaptation

account. Using Dynamic Causal Modelling (DCM) on human EEG data, Garrido and col-

leagues showed that model-adjustment or adaptation hypotheses alone are not sufficient to

explain changes in extrinsic and intrinsic connectivity specific to the MMN in both classical

[49–52] and roving [53] auditory oddball paradigms. Converging with previous attempts [54],

they proposed that both hypotheses are necessary to fully account for N1 and MMN brain

responses, and are reconcilable under predictive coding [55]. Empirical support for this inte-

grated account has come from the previously mentioned DCM studies on EEG [49–53] and

MEG data [56, 57] as well as EEG-MEG fusion [58] and electrocortigraphy (ECoG) recordings

[57]; but also from more classical ERP and sources reconstruction analyses using refined para-

digms with EEG and MEG [59] or ECoG [60], to reveal the hierarchical organization of devi-

ance detection processes in auditory, associative and frontal cortices.

In parallel to the above MMN studies in humans, an extensive field of research has devel-

oped on deviance detection in the animal brain. The possibility to use more invasive methods

on cats and rodents allows to gain additional insights on the neural mechanisms of deviance

processing.
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Insights from animal studies

Animal studies of deviance detection have focused on the neuronal dynamics and location of

such effects. In this context, SSA has been identified as the core neuronal mechanism at the cel-

lular level [26, 27], the MMN being its macroscopic correlate and reflecting the activity of mul-

tiple neuronal populations summed together [21]. However, theoretical and methodological

issues were encountered while trying to integrate SSA and MMN under the same deviance

detection mechanism [21, 61]. More recently, following human research, results in animal

studies have been reinterpreted under the predictive coding framework with convincing

explanatory power [16, 62]. Building on single neuron recordings and new paradigms allowing

to disentangle mere repetition suppression (adaptation mechanism) from prediction error

[16], researchers were able to demonstrate empirically the hypothesized hierarchical organiza-

tion of predictive coding in the auditory system at the neuronal level [63]. If neuronal mis-

match activity was predominantly explained by repetition suppression, a significant part could

also be accounted for by “pure” deviance detection (prediction error). Notably, such prediction

error–like activity was observed at multiple levels of the neural hierarchy, arising gradually

from the inferior colliculus in the midbrain up to thalamic and cortical areas [63]. In addition,

the neurons in the non-lemniscal divisions of the recorded brain areas systematically showed

higher prediction error–like activity than their lemniscal counterparts at each level of the audi-

tory hierarchy. This empirical finding is consistent with the known anatomical and functional

connectivity of the non-lemniscal pathway. Carabajal and Malmierca (2018) have argued that

the fact that broadly tuned non-lemniscal neurons receive the bulk of descending cortical sig-

nals, as well as inputs from the neighbouring, sharply tuned and tonotopically organized lem-

niscal neurons, make them a good candidate for hierarchical predictive coding [16].

Interestingly, in a subsequent study, the same authors tested again this dichotomy at frontal

areas, confirming the existence of pure, unconfounded by repetition suppression, mismatch

responses in the prefrontal cortex (PFC) of anesthetized rats [64]. Those responses differ in

multiple aspects from auditory cortex responses, adding further evidence for the hypothesis of

divergent but complementary roles of frontal and sensory areas in predictive coding. Indeed,

responses at prefrontal areas were mostly explained by a prediction error index and occurred

later than auditory cortex responses dominated by repetition suppression mechanisms.

Insights from computational modeling

Computational modeling has been of great help to try to better understand MMN generation

mechanisms under adaptation and predictive coding accounts. Independent modeling efforts

have designed models of adaptation at the neuronal [30, 65, 66] and cortical level [37, 67],

while a predictive coding model was implemented with a neuronal architecture simulating a

thalamo-cortical network [68]. Additionally, more phenomenological models linked

electrophysiological mismatch responses to hierarchical Bayesian inference in auditory [69,

70]. However, if these independent models successfully accounted for critical SSA or MMN

features, few studies directly compared models derived from divergent MMN theories. A first

attempt found a Bayesian learning model, consistent with predictive coding accounts, to out-

perform classical “stimulus change” (or change detection) models at predicting somatosensory

mismatch EEG responses at the source level [71]. Recent work extended the model to include

different neural surprise signatures and could show interesting spatial and cortical dynamics

of the somatosensory mismatch response. Similar computational models were also applied to

the auditory MMN in fused EEG-MEG [72] and ECoG [73] measurements, and to the visual

MMN in EEG [74], confirming the previous results and designing new Bayesian learning

models of deviance detection. Finally, Grundei et al. very recently showed evidence for
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Bayesian learning against classical change detection to explain cross-modal EEG mismatch

responses (auditory, somatosensory and visual) in humans [75].

Only one study ([76]) directly compared all major MMN theories: change detection, adap-

tation and Bayesian inference, with the latter nuanced in three distinct models reflecting differ-

ent views on which aspect of statistical learning is reflected by the MMN (prediction error,

Shannon surprise or model adjustment). In their 2013 modelling study of auditory MMN

responses elicited by a roving oddball paradigm [76], Lieder and colleagues found substantially

higher evidence for the set of Bayesian models compared to the set of alternative models (adap-

tation and change detection models). However, this result hinged on the model comparison

being carried out at the level of families aggregating multiple models, and no conclusion could

be drawn at the level of individual models, possibly due to an insufficient sample size (8 partic-

ipants). Critically, the analysis was performed on a time-averaged signal, rendering it blind to

any temporal differences in MMN generation processes.

The current study

Building on the strengths of previous modeling studies and addressing some of their methodo-

logical shortcomings, we used two independent EEG datasets of 28 and 54 subjects (final sam-

ple size after preprocessing) recorded from similar auditory oddball paradigms to compare

five model families, each encoding a prevailing MMN theory (change detection, adaptation,

prediction error, Shannon surprise and model adjustment). We employed a time-resolved

dynamic modeling approach to test a putative temporal dissociation in the computational

mechanisms explaining the MMN. As a first validity check and critical improvement from for-

mer studies, we ran confusion analyses on simulated data with varying signal-to-noise ratio

(SNR). Under our experimental design and models set, model recovery on synthetic data was

highly dependent on SNR and allowed us to estimate the reliability of model comparison

results obtained from empirical data. Bayesian model fitting and comparison revealed a clear

distinction in model families’ dominance between early and late windows of the MMN, that

could not be explained by confusion between the models. In addition, we could identify a tem-

poral gradient in the rate of adaptation models. We discuss these computational results

obtained from human scalp responses in light of recent electrophysiological results in the ani-

mal literature.

Materials and methods

Ethics statement

For the present trial-by-trial modeling study, we used datasets from two published EEG experi-

ments investigating the impact of meditation states and meditation expertise on the amplitude

of the MMN evoked potential [14], [77]. The research protocol for Study 1 was approved by

the UW-Madison Health Sciences Internal Review Board. For Study 2, ethical approval was

obtained from the appropriate regional ethics committee on human research (CPP Sud-Est

IV, 2015-A01472–47). All participants from both studies provided written informed consent

before the beginning of the experiments.

The original experiments have been extensively described in the corresponding articles;

below we report only the materials and methods relevant to the current study. In particular,

only the data from the control conditions (defined below) of the two original experiments

have been used for modeling.

To ensure the quality of the modeled data and thus of the results derived from it, partici-

pants with insufficient data after preprocessing or lacking a detectable MMN based on objec-

tive criteria were rejected.
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The last part of the methods section describes in details our modeling approach. We intro-

duce the specific framework used and detail the computational implementations of the prevail-

ing accounts offered as generative models of the MMN response. The parameters of the model

fitting procedure are provided for replication purposes. The approaches we implemented for

inference based on Bayesian model comparison as well as model recovery analysis are

described with their underlying rationale. A last section concerns the measure used to evaluate

the absolute goodness-of-fit of the selected models.

Study 1

Participants. Data from 31 healthy participants (25 males, mean age of 42.9 ± 10.4 years

old) were collected.

Experimental design. Subjects underwent a passive auditory oddball task [78] consisting

of the variable repetition of a standard tone (1000 Hz; 60 ms duration; 10 ms rise and fall; 80

dB SPL) followed by the presentation of a frequency deviant tone (1200 Hz; 60 ms duration; 10

ms rise and fall; 80 dB SPL). Each block of the task contained 80% standard tones (n = 200)

and 20% deviant tones (n = 50) with a variable inter-stimulus interval (ISI) of 800—1200 ms.

Each subject underwent three blocks of three conditions each: two meditative practices and

one control condition. During the control condition, subjects were instructed to read a news-

paper and ignore the auditory stimulation. We refer the interested reader to the mentioned

article [14] for details about the meditation instructions. The order of conditions within a

block was randomized but all subjects had the same order, with the control condition being

the first condition in the first block and then the third condition in the second and third block.

For the present article we will only look at data from the control condition, consisting in 750

stimuli (150 deviants) per participant before data rejection.

EEG data was collected with a 128-channel Geodesic Sensor Net (Electrical Geodesics,

Eugene, OR), sampled at 500 Hz, and referenced to the vertex (Cz).

EEG data preprocessing. Data were pre-processed using the EEGLAB software [79] on

Matlab (The Mathworks Inc.). Notch filtering was applied at 60 Hz to remove line noise, fol-

lowed by the application of a band-pass filter between 0.5 and 100 Hz. Raw data were manually

cleared of large movement-related artefacts and bad channels were identified and interpolated.

Independent Component Analysis (ICA) was applied to the raw data of each participant (only

on the non-interpolated channels) using runica (Infomax) algorithm [80] to identify and

remove artefacts caused by eye blinks and saccades, as well as cardiac and muscular activity.

After ICA correction, data were re-referenced offline to the average of both mastoids, a non-

causal band-pass 1—60 Hz digital filter was applied, and two-second epochs centred on stimu-

lus onset (-1 to 1 s) were extracted. Epochs were visually inspected and the ones still presenting

muscular or eye movement artefacts were marked for rejection. Finally, the epoched data were

baseline-corrected by subtracting the mean value of the signal during the 100 ms window pre-

ceding stimulus presentation.

We focused the present analysis on the same region of interest (ROI) as Fucci and col-

leagues [14], a frontal area comprising 12 electrodes selected based on the previous literature

(including Fz). This ROI can be visualized in S1 Fig. The data fed to the models was always the

average over these ROI electrodes.

Study 2

Participants. The second dataset used for modeling comes from a subsequent, replication

study by the same authors [77]. 66 participants were included in this study (30 females, mean

age of 52 ± 7.7 years old).
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Experimental design. The experiment consisted in a passive auditory oddball task with

sequences of standard tones of variable length (880Hz; 80ms duration; 10ms rise and fall) fol-

lowed by the presentation of a frequency deviant (988Hz; 20% of all auditory stimuli). The sti-

muli were presented binaurally with a fixed ISI of 500ms. A threat induction procedure [81]

was added to the experiment. Participants were exposed to two experimental conditions while

passively listening to the tones: “threat” periods during which they were informed they could

receive an electrical shock on the wrist (whose amplitude was calibrated beforehand, based on

the participant pain threshold), and “safe” periods where they knew no shocks would be deliv-

ered. Safe and threat periods were alternating randomly every 70 stimuli (35 seconds) and par-

ticipants were cued to the change. This threat induction oddball paradigm was split into three

blocks where subjects were either asked to: watch a silent movie (control condition), practice a

focused attention meditation or practice an open presence meditation. The order of the blocks

were randomized between participants. 224 standards and 56 deviants were presented per

block and per condition (4 safe and 4 threat periods per block). The full paradigm was repeated

in a second session two hours later. For the purpose of the current article we will focus on EEG

data from the control condition (watching a silent movie) and safe periods (no threat of electri-

cal shock) only, leading to 560 stimuli (112 deviants) per participant before data rejection.

EEG data was collected in a shielded Faraday chamber with a 64 electrodes Biosemi ActiveTwo

system at a 512 Hz sampling frequency, offset was maintained within 50mV (± 25) as recom-

mended in the Biosemi guidelines.

EEG data preprocessing. Pre-processing was done using EEGLAB [79] and in-house

Matlab scripts (Matlab version R2017a, The Mathworks Inc). EEG data was downsampled to

250 Hz, re-referenced to the average of the mastoids and visually inspected, noisy channels

(deficient electrodes, long-lasting muscular artefacts, etc) were marked and removed tempo-

rarily. For every subject, and separately for the two sessions, Independent Component Analysis

(ICA, with runica algorithm) was applied on 1–20 Hz filtered data (EEGLAB eegfiltnew func-

tion, Hamming windowed sinc FIR filter of order 826) to improve ICA decomposition. ICA

weights hence obtained were applied to the unfiltered data and ICA components reflecting

blinks and eye movements were manually selected and rejected. Subsequently a 2 Hz high-pass

filter (Hamming windowed sinc FIR filter of order 414) was applied to remove low-frequency

drifts most likely caused by stress-related perspiration induced by the threat of electrical

shocks. Previously marked bad channels were interpolated using EEGLAB spherical splines

interpolation and a line noise removal algorithm (Cleanline, linefreqs = 50, bandwith = 2,

tau = 100, winsize = 4, winstep = 1) was applied.

Cleaned data were epoched between -200ms and 500ms around auditory tones. The base-

line was chosen as the 100 ms period before stimulus onset, as recommended in most of the

MMN literature, and removed for subsequent analyses. Finally epoched data were low-pass fil-

tered at 60 Hz (order 56), a ± 75 mV rejection threshold was applied and epochs marked for

rejection visually inspected. For this article where only data from the control state (watching a

video) were analysed, the recording for one subject was excluded due to an excessive amount

of high-frequency noise and two others because they ended up with less than 35 remaining

good epochs per condition to compute the MMN (deviant and standard before deviant). This

led to 63 participants remaining for Study 2 after EEG preprocessing.

For subsequent analyses we selected the same frontal ROI as [77] (S1 Fig), comprising only

5 electrodes but similarly located as the ones in Study 1 when taking into account the differ-

ence in electrodes layout (EEG system with 64 electrodes for Dataset 2 instead of 128 for Data-

set 1). We always modeled the average over these 5 electrodes ROI.
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Validation of individual MMN

The MMN is a rather robust component observable in virtually all human participants, but in

some occasions it might fail to be detected even in healthy participants with intact sound dis-

crimination [82, 83]. We used a simple automatic procedure to identify those participants that

did not show a detectable MMN. For each participant, a Gaussian function was fitted on the

standards minus deviants ERPs difference, averaged over all selected ROI electrodes, by opti-

mizing two free parameters—the offset level and the standard deviation—as well as two con-

strained parameters: the temporal location of the peak forced between 100 and 200ms and the

amplitude of the peak, restricted to negative values. If the optimizer converged on a zero

amplitude solution, it was interpreted as failing to detect a negative deflection in the signal and

the participant was excluded.

The results of the Gaussian fit on the ERP procedure are represented in S2 and S3 Figs. As a

result of the procedure, 3 participants out of the 31 in study 1 were excluded, as well as 9 out of

63 in study 2.

Signal-to-noise ratio

We define the signal-to-noise ratio (SNR) of EEG as the ratio between signal power and noise

power:

SNR ¼
Psignal

Pnoise
¼

E½S2�

E½N2�
¼

E½S�2 þ Var½S�
E½N�2 þ Var½N�

Assuming that the noise N has a mean of 0 (i.e. E[N] = 0) and that most of the signal vari-

ance can be attributed to noise (Var[N]� Var[S]):

SNR �
m2 þ s2

s2
¼ 1þ

m2

s2
ð1Þ

where μ and σ2 denote the mean and variance of the signal, respectively. Therefore the SNR

can be written as a simple function of the amplitude of the averaged ERP and the intertrial

variance.

Modeling

Modeling framework. The goal of this study was to compare alternative accounts of

MMN generation, namely adaptation and Bayesian learning. Importantly, those accounts are

based on the temporal dependency to previously heard tones, a feature that is difficult to

explore with traditional average-based ERP analyses. Thus we used dynamic modeling to

explore trial-by-trial fluctuations of deviance detection processes. Static models were also

designed to serve as controls. To model MMN responses in a dynamic way we used variational

Bayes inference as implemented in the VBA toolbox [84]. This framework uses non-linear

state-space models to predict a response y (or measurement, e.g. EEG scalp activity) to experi-

mental inputs u (e.g. auditory tones), given internal (hidden) states x that are not directly

observable. Such models are composed of two functions working together. First an evolution

function f describes how internal hidden states x evolve over time (here represented by trial

index i):

xiþ1 ¼ f ðxi; ui; θÞ ð2Þ

where θ is a vector of evolution parameters and ui codes the identity of trial i (standard tones:

u = 0, deviant tones: u = 1).
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Second we need to define an observation function g that computes the predicted response
generated by hidden states x. The predicted response is connected to neural activity through a

simple linear function:

yi ¼ �0 þ �1gðxi; ui; λÞ þ �i ð3Þ

where ϕ0 and ϕ1 are (fitted) observation parameters and � the Gaussian measurement noise

which is always modeled but will be omitted in later description of the models for the sake of

simplicity. λ = (λ0, λ1) is a model-dependent pair of offset and scale factor that normalize the

observation function to a similar range across models. Unlike ϕ, λ is not fitted but estimated

for each model using synthetic data, as such they are not model parameters per se. These nor-

malization constants allow the parameters ϕ to share the same interpretation across models. In

practice, we set λ so that ϕ0 can be interpreted as the mean response to standard tones (�yu¼0),

and ϕ1 as the mean deviant minus standard difference potential (�yu¼1 � �yu¼0).

Model inversion over all EEG trials was performed independently for every model, subject

and 10ms averaged time window ranging from 45 to 255ms post–stimulus. It issued inversion

diagnostics, model’s posterior parameters estimation and goodness–of–fit measures which will

be described later. We will now present in more detail the generative models used to formalize

the MMN hypotheses at stake.

Generative models of brain responses. We will first describe the two static models used

as controls, namely the null model and the deviant detection. By definition, static models have

no evolution function.

The Null model predicts a constant response to any auditory stimulus.

gðuiÞ ¼ 0 ð4Þ

Deviant detection (DD) model predicts the MMN to be a response to deviant stimuli only:

gðuiÞ ¼ ui ð5Þ

Adaptation models are based on the neuronal adaptation hypothesis [22] which sees the

auditory MMN as resulting from a difference in adaptation of frequency-specific cortical neu-

rons, a process often called stimulus specific adaptation (SSA). Neurons tuned to the frequency

of standard tones adapt quickly with recurrent repetitions thus decreasing their responsive-

ness, while neurons responding preferentially to the frequency of deviant tones presented

rarely will adapt less and therefore produce a stronger response on average than their standard

counterparts. SSA has been observed throughout the entire auditory hierarchy, particularly in

cortical areas [23]. It is commonly and adequately modeled computationally as a process of

exponential decay [73, 85, 86]. For the sake of simplicity we will abbreviate adaptation models

to SSA, from the supposed underlying electrophysiological mechanism, yet one has to keep in

mind that we do not model a biologically plausible implementation of SSA (see [30, 37, 65, 67]

for such works) but only its phenomenological approximation as exponential decay.

In the implementation of adaptation dynamics two hidden states (x0, x1) represent neuronal

responsiveness to standards and deviants, respectively. Adaptation and recovery are each mod-

eled with exponential functions. Neural activity in response to the presented tones is then
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supposed to be proportional to the responsiveness of tone-specific neuronal populations:

f ðxi; uiÞ :

(
if ui ¼ 0 ðstandardÞ

x0;iþ1 ¼ x0;iKa

x1;iþ1 ¼ 1 � ð1 � x1;iÞKr

�

if ui ¼ 1 ðdeviantÞ
x0;iþ1 ¼ 1 � ð1 � x0;iÞKr

x1;iþ1 ¼ x1;iKa

�

with Ka ¼ e� 1=ta and Kr ¼ e� 1=tr

gðxi; ui; λÞ ¼ l0 þ xui ;il1

ð6Þ

Single-cell recordings in the cat auditory cortex (A1) have revealed the existence of multiple

timescales of adaptation ranging from less than a second to several tens of seconds with recov-

ery rates about twice as high [27]. Based on this literature we implemented seven SSA models

with different adaptation parameters τa 2 [3, 10, 20, 30, 50, 100, 200]. The recovery parameter

τr was always set to be twice τa, as informed by electrophysiological data on auditory neurons

of anesthetized cats [27].

Bayesian Learning (BL) models are based on the predictive coding view of the MMN, they

assume the brain learns the probability for a deviant to occur. We were inspired from compu-

tational models initially designed by Ostwald et al. [71], which treat the MMN as a measure of

Bayesian surprise: the difference between prior and posterior distributions of beliefs on states

of the world (here states being the category of tone stimulus: deviant or standard). Such models

also implement an approximate learning of the statistical regularities of the environment by

setting a “forgetting” constant. In their study, they showed that these models predict the

somatosensory mismatch response better than control models that do not learn. This finding

was replicated in the auditory modality combining EEG and MEG measurements [72].

A common evolution function models auditory tones as the outcome of a Bernouilli process
of parameter μ 2 [0, 1], the probability to have a deviant. The belief over μ follows a Beta distri-
bution: μ* Beta(α, β) with parameters α and β, tracking the number of deviants and stan-

dards that have been heard so far, respectively. The particularity of BL models is to compare

prior and posterior beliefs over μ. We thus assigned hidden states to α and β parameters of the

Beta distribution over μ. x1,i and x2,i therefore define the prior belief over deviant’s probability

before having heard the current tone ui, while x1,i+1 and x2,i+1 define the posterior belief. We

can see that the main characteristic of these hidden states is to implement a memory of past

inputs. However, to be biologically plausible and to take into account recent inputs history in a

way that better represents ongoing dynamics, this memory should be finite and weigh recent

events more than older ones. Following previous implementations [71, 72], we weighted the

stimulus counts by a “forgetting” constant depending on a temporal integration parameter τt:
Kt ¼ e� 1=tt , which is hypothesized to account for different temporal integration windows.

Hence with varying forgetting constants, this model can be seen as having more or less “mem-

ory” or, in a predictive coding scheme, as having more precise prior beliefs and associated pre-

dictions to make its perceptual decision. Thus it can “learn” if τt is sufficiently high (Kt! 1,

slow forgetting) or not if it is too low (Kt! 0, fast forgetting). Based on our previous work in

the auditory modality [72] we defined models for τt 2 [5, 10, 20, 30, 50, 100].

f ðxi; uiÞ :

x1;iþ1 ¼ ui þ x1;iKt

x2;iþ1 ¼ ð1 � uiÞ þ x2;iKt

with Kt ¼ e� 1=tt

8
<

:
ð7Þ
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Multiple hypotheses exist in the predictive processing literature about which internal mech-

anism is reflected by the MMN [76]. Accordingly, we derived three BL “outputs” which differ

in their observation function that predicts the mismatch response.

• 1. Novelty detection or Surprise (BLsurp). A first way to describe the MMN response in the

Bayesian leaning framework is as a neuronal process encoding surprise about the category of

the stimulus. It corresponds to the novelty detection model about sensory inputs described

by Lieder et al. [76] and can be formulated as the Shannon surprise on the current input cat-

egory: −ln p(ui|xi), with p(ui|xi) being the probability of observing input u at trial i given

prior belief on stimuli probability xi.

gðxi; ui; λÞ ¼ l0 � ln pðuijxiÞl1

with pðuijxiÞ ¼

x1;i

x1;i þ x2;i
if ui ¼ 1 ðdeviantÞ

x2;i

x1;i þ x2;i
if ui ¼ 0 ðstandardÞ

8
>>><

>>>:

ð8Þ

• 2. Precision-Weigthed Prediction Error (BLpwpe). In this view, the brain would implement

approximated Bayesian inference by doing predictive coding: hierarchical minimization of

precision-weighted prediction errors [42]. In our modelling framework we could simulate

this process by computing the difference between the prediction about incoming sensory

data (i.e. the expected value of the prior Beta distribution) and sensory input ui, weighted by

the precision of the model (i.e. the inverse variance of the prior Beta distribution).

gðxi; ui; λÞ ¼ l0 þ
ui � E½Bðx1;i; x2;iÞ�

var½Bðx1;i; x2;iÞ�
l1 ð9Þ

• 3. Model adjustment (BLmadj). Finally Bayesian learning can be conceptualized as the

amount of belief updating about model parameters. It was described as “Bayesian surprise”

in Ostwald et al. [71] and as “model adjustment” in Lieder et al. [76]. We adopted this last

formulation and quantified updating as the divergence between prior and posterior beliefs

about parameter μ. In practice it can be computed as the Kullback-Leibler divergence DKL

(or relative entropy) between posterior and prior Beta distributions over μ, leading to the fol-

lowing observation function:

gðxi; ui; λÞ ¼ l0 þ DKLðmprior; mposteriorÞl1

with DKL ¼

Z

pðmpriorÞ ln
pðmpriorÞ

pðmposteriorÞ

 !

dm ¼
Z

pðmjx1;i; x2;iÞ � ln
pðmjx1;i; x2;iÞ

pðmjx1;iþ1; x2;iþ1Þ

 !

dm
ð10Þ

For Beta distributions DKL is simplified and can be solved analytically:

DKL ¼ log
Gðx1;i þ x2;iÞ

Gðx1;iþ1 þ x2;iþ1Þ

 !

þ log
Gðx1;iþ1Þ

Gðx1;iÞ

 !

þ log
Gðx2;iþ1Þ

Gðx2;iÞ

 !

þ

ðx1;i � x1;iþ1Þ½cðx1;iÞ � cðx1;i þ x2;iÞ� þ ðx2;i � x2;iþ1Þ½cðx2;iÞ � cðx1;i þ x2;iÞ�

ð11Þ

with Γ and ψ the Gamma Euler and digamma Euler functions.
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Model fitting. We ran VBA model inversion scheme on the 27 models defined before

(null, DD, SSA with seven different τa and three BL outputs with six different τt each), inde-

pendently for each subject and time window of epoched EEG data. We defined 21 non over-

lapping 10ms time windows from 45 to 255 ms around tone onset (45 to 55ms, 55 to 65ms,

etc). We restricted the modeled interval to 50–250ms so as to alleviate the computational bur-

den while covering the time window of statistical significance of the MMN usually found in

the literature (100–200ms). The data supplied to the VBA model inversion function was the

EEG activity averaged temporally over each 10ms window, and spatially over the ROI defined

before, trial by trial.

Priors over models’ parameters and initial hidden states need to be set before model inver-

sion and were identical for both studies. All priors and initial hidden states were defined as

multivariate normal distributions. No evolution parameters θ were used as for the SSA and BL

model families, τa and τt were fixed for each different model and not fitted.

All models had two observation parameters ϕ (except the null model which only had one):

a factor ϕ1 scaling the model response and an offset ϕ0. We set them empirically in the same

manner for all models with prior means defined per subject by:

• ϕ0 = mean(standards): the mean amplitude over all standard tones (in the given time

window)

• ϕ1 = mean(deviants) −mean(standards): averaged deviant minus standard amplitude, hence

a measure of the MMN response (again in the time window of interest)

and a diagonal prior covariance matrix with variance 10.

The prior for the measurement noise precision σ was a Gamma distribution of shape 0.1

and rate 1, consistent with a standard deviation (inverse precision) for amplitude measure-

ment of 10 μV.

Initial hidden states (X0) are necessary to initiate the inversion and depended on the mod-

els. The null model did not have any hidden state. For all other models, a null covariance

matrix was specified, encoding absolute certainty about the initial values of hidden states. The

DD model’s single hidden state was initiated to 0, while SSA models’ initial hidden states were

set to 1, reflecting the likely assumption that both standard and deviant specific neuronal pop-

ulations are not adapted before hearing any tone and their responsiveness is therefore maxi-

mal. BL models’ initial hidden states were also conventionally set to 1, even if no tones were

ever heard, to satisfy computational constraint (the Kullback-Leibler divergence is not defined

for null hidden states).

In study 2, all parameters were reinitialized and fitted independently for the two sessions, as

these were acquired several hours apart. In Study 1, and within each session of Study 2, experi-

mental conditions and blocks were separated only by short transitions of a few seconds (these

were not considered in the modeling scheme). Therefore, the inputs from all conditions and

blocks were used and treated as a continuous and uninterrupted sequence for the evolution

function, but only the EEG data from the control conditions were used to inform model inver-

sion. Similarly trials marked for rejection during pre-processing, as well as outliers defined as

any trial whose EEG amplitude exceeded four times the standard deviation over all trials, were

included in the sequence of inputs to modeled—informing the evolution function dynamics—

but not in the computation of goodness-of-fit measures.

VBA inversion outputs the summary statistics (mean and covariance) of the posterior dis-

tributions of all model variables, as well as goodness-of-fit metrics of which two will be of par-

ticular interest to us:
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• the model’s variational free energy F—an approximation of model log-evidence that favors

accuracy while penalizing model complexity [87]. It was shown to outperform other informa-

tion-theoretic criteria for model comparison [88] and so will be used in this sense (see below).

• the percentage of variance explained by the model R2
obs, which will allow us to derive an abso-

lute goodness-of-fit measure.

Inference. We carried out inference in two hierarchical steps. First we compared models

at the level of families, i.e. sets of models sharing a similar structure or computational feature.

In the present study the families are SSA and the three outputs of BL, and each of them aggre-

gates models that differ only in the value of the temporal parameter τ (τa for SSA and τt for

BL). This first step allowed us to select the most plausible computational mechanism for each

(10ms averaged) post-stimulus time windows of the auditory evoked response. Second, we

estimated the value of τ for the winning family through Bayesian model averaging (BMA). The

two steps are described below in more detail.

Bayesian Model Comparison (BMC). There are two different approaches to BMC,

depending on the assumption made about the structure of the underlying population. In

fixed-effect BMC (ffx–BMC), the population is assumed to be homogeneous in the sense that

all subjects’ data are best described by the same unique model. Alternatively, random-effect

BMC (rfx–BMC) treats the optimal generative model as a random effect that may vary across

subjects, with a fixed but unknown heterogeneous population distribution.

Stephan et al. (2010) recommends to select the population structure (and, therefore, the

BMC procedure) based on characteristics of the effect of interest, with the homogeneous

assumption being “warranted when studying a basic physiological mechanism that is unlikely

to vary across the subjects” [89]. The mechanisms underlying the MMN arguably falls under

this definition, justifying the use of ffx-BMC. Alternatively, the choice between inference pro-

cedures may be data-driven as described in S1 Text.

In fixed-effect BMC group-level inference starts out by calculating the evidence for each

model given the whole sample using the product rule for independent events:

pðyjmÞ ¼ pðyð1Þ; yð2Þ; � � � ; yðNÞjmÞ ¼
YN

s¼1

pðyðsÞjmÞ ð12Þ

where y(s) is the observed data for the participant s and N is the number of participants. Group

model evidence is often calculated in log form:

logðpðyjmÞÞ ¼
XN

s¼1

log pðyðsÞjmÞ ð13Þ

Then, the posterior model probability (PMP) of model mj can be derived from all models

evidence using the Bayes theorem:

pðmjjyÞ ¼
pðyjmjÞpðmjÞX

k
pðyjmkÞpðmkÞ

ð14Þ

In the context of a uniform distribution over model space (i.e. the prior belief that all mod-

els are equally likely), which we will assume in the present study, the previous formula can be
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further simplified to:

pðmjjyÞ ¼
pðyjmjÞX

k
pðyjmkÞ

ð15Þ

The model with the highest posterior model probability may then be selected as the most

plausible at the population level. Alternatively, one may focus on the Bayes Factor for a model

j (compared to all other models) which can be written as the ratio of posterior odds to prior

odds:

BFmj;all
¼

pðmjjyÞ
1 � pðmjjyÞ

=
pðmjÞ

1 � pðmjÞ
¼

pðmjjyÞ
1 � pðmjjyÞ

ðK � 1Þ ð16Þ

with K the number of compared models, all with equal prior probability p(mk) = 1/K.

Bayesian Model Averaging (BMA). Once a model family has been selected, the best value

for the τ parameter can be found by using a BMC procedure again, this time restricted to a sin-

gle family. Alternatively it is possible to take into account the model uncertainty in the estima-

tion of τ. BMA does so by averaging all possible (modeled) values of the parameter, weighted

by the posterior probability of the corresponding model:

t̂ ¼
X

m2M
t2T

t � pðmtjyÞ
jTj ð17Þ

where M designates a family of model, T the set of τ values that were modeled, and |T| the size

of T.

Interpretation of Bayes Factors. We will adopt the conventional heuristics proposed by

Kass and Raftery (1995) [90] whereby a BF higher than 100 is interpreted as decisive evidence,

a BF between 10 and 100 indicates strong evidence and a BF between 3 and 10 suggests sub-

stantial evidence. BF below 3 are deemed inconclusive.

Model recovery. Before taking the results of model comparison at face value, it is essential

to validate that the BMC procedure delivers reliable results using simulations [91]. Model

recovery analysis ascertains whether and under which experimental conditions (design, sam-

ple size, signal-to-noise ratio) we can conclusively arbitrate between different models. The

overall approach involves generating synthetic data from each of the candidate models and fit-

ting all the models to determine whether we can recover the true one. The main purpose of the

model recovery analysis for the present study is to assess the separability of SSA from BL mod-

els, and the possibility to disambiguate BL outputs. Therefore we restricted the simulated

model space to one specific value of τa (for SSA models) and one for τt (for BL models), mak-

ing the analysis more tractable. Based on previous modeling results obtained from an oddball

experiment by some of us [72], we chose τt = 20. The three BL output functions are highly cor-

related at this value of τt (0.93 on average), more so than at most other parameter values,

ensuring that the results of model recovery will be conservative. Following the same logic we

chose the value of τa that maximized the correlation between SSA and BL20 models, that is 10

(average SSA10–BL20 correlation = 0.94).

The details of our model recovery analysis are depicted in Fig 1. For each participant, the

input sequence that was presented to her is fed to a candidate model to generate a series of pre-

dicted responses (Fig 1A), which is then declined in multiple versions varying in amplitude of

the predicted deviant minus standard difference response, as well as in level of Gaussian noise

(Fig 1B). Amplitude and noise levels were manipulated factorially, resulting in 30 pairs chosen

to span the range of SNR values observed in the electrophysiological data during the MMN
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time window. Besides, 5 datasets were generated for each (amplitude, noise) pair—these data-

sets shared the same statistics and differed only in the actual realization of noise. Therefore, a

total of 150 × K × N datasets were generated, where K denotes the number of candidate models

and N the number of participants. The candidate models were then fitted on these synthetic

datasets, yielding free-energy approximations of model evidence that were used to select the

best model as described before, i.e. the model with the highest posterior probability (Fig 1C).

In practice we carried out BMC on 1000 bootstrapped samples. Each of these samples was

composed of N participants’ data simulated at the appropriate levels of amplitude and noise,

each randomly draw from one of the 5 realizations of noise—allowing for 5N possible combi-

nations. The results from the 1000 simulations can be conveniently summarized and displayed

in a confusion matrix A = (aij) where the element aij denotes the frequency with which each

candidate model j has been selected for data simulated under model i (Fig 1D). The confusion

matrix is of size K × K but may be summarized in fewer pieces of information (Fig 1E). Of par-

ticular interest are two performance indices that are defined model-wise: the true positive rate
(TPR) which is the chance we have to select the true model as the best one assuming that it is

included in the model space, and the positive predictive value (PPV) which is the chance that a

model selected as the best is indeed the true model (again, assuming that the latter is in the

model space). TPR and PPV are measures of sensitivity and specificity, respectively, with TPR

amounting to statistical power in a 2-class problem. Ideally if the BMC procedure worked

Fig 1. Model recovery analysis pipeline. (A) The sequences of input presented to participants are fed to the candidate models to generate sequences of

synthetic data which are subsequently (B) scaled and noised in multiple ways to cover a range of signal amplitudes and intertrial variances. The large

number of synthetic datasets thus obtained can be used to constitute unique samples with an arbitrary distribution of amplitude and variance. (C) Each

such sample is subjected to model fitting (free energies) and group-level inference (posterior model probabilities). (D) The results of model selection

from 1000 simulated samples are reflected in a single confusion matrix, which may be (E) summarized in quantities of interest such as the distance from

ideal matrices or indices of sensitivity and specificity.

https://doi.org/10.1371/journal.pcbi.1010557.g001
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perfectly the confusion matrix would be the K × K identity matrix and we would have

TPR = PPV = 1. Thus, another useful summary statistic of a confusion matrix is its distance

from the optimal, identity matrix IK—which we computed using the L1 norm:

jA � IK j1 ¼
XK

i¼1

XK

j¼1

jaij � dijj with dij ¼
1 if i ¼ j

0 otherwise

(

ð18Þ

Conversely, if models were not distinguishable and the model selection produced random

results under the experimental design and other relevant characteristics of the data, the confu-

sion matrix would be a matrix UK with all elements equal to 1/K (hereafter called the normal-
ized unit matrix) and we would have TPR = PPV = 1/K. The randomness of the confusion

matrix may be summarized by its distance from the normalized unit matrix.

Confusion matrices, as well as their distance to identity and normalized unit matrices are

displayed as a function of SNR (magnitude/noise pairs) and interpreted in the “Model recov-

ery” section of the results. In order to get a hint of our ability to decide between different mod-

els in our real data along the timecourse of the MMN response, we selected confusion matrices

matching the level of SNR in EEG data for each participant, at each post-stimulus time window

(50–250ms). Time-resolved TPR and PPV metrics were then computed based on “real SNR”

and compared to conventional thresholds.

Absolute goodness-of-fit. BMC procedures pick a model out of a set of candidates based

only on their relative performance, i.e. their comparative ability to predict the observed data

while being parsimonious. Said otherwise, model comparison can single out a model as being

better at predicting the data than other examined models, but it does not follow that the

selected model is good in an absolute sense. It might actually be missing important features of

the data, suggesting that the true generative model (or a useful approximation of it) was not in

the set of candidate models and remains to be discovered.

A simple and straightforward measure of absolute fit is the coefficient of determination R2,

which in the context of linear regression, can be interpreted as the proportion of variance in the

data accounted for by the fitted model. However, there is no universal threshold for R2 that

qualifies a model as “sufficiently good”. In the context of the phenomenon of interest here, the

variance in EEG-recorded neural activity can be divided in two sources: variance due to his-

tory-dependent processing of the controlled auditory stimuli, and variance due to uncontrolled

factors (background neural and physiological activity and measurement noise). Only the former

is the target of the modelling efforts and can theoretically be accounted for at 100% by a perfect

model—but its relative importance with respect to the total variance remains unknown.

In order to estimate the proportion of total variance in the EEG signal that could be attrib-

uted to stimulus and regularity processing, we used the models to generate pure synthetic data-

sets whose variance, by construction, can be entirely attributed to stimulus processing. This

variance could then be compared to the total variance observed in the data at a given latency t,
yielding an ideal coefficient of determination R2

max, i.e. the maximum proportion of variance

that can be expected to be accounted for by a model m, assuming that this model has generated

the data. R2
max can be expressed as a ratio of sum-of-squares:

R2
maxðm; tÞ ¼

SSmodel

SStotal
¼

P
iðgm;i � �gmÞ

2

P
iðyt;i � �ytÞ

2
ð19Þ

where gm is the observation function of model m (see Eq 3), yt the EEG data at latency t, i
indexes the trials and the overline designates the mean across all trials. The actual observed
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coefficient of determination R2
obsðm; tÞ can then be compared to this ideal index:

R2
obsðm; tÞ ¼ 1 �

SSres
SStotal

¼ 1 �

P
i�

2
m;i

P
iðyt;i � �ytÞ

2
ð20Þ

with �m,i the Gaussian measurement noise for model m at trial i (see Eq 3).

Note that R2
obs may be greater than R2

max by chance alone, e.g. if the actual realization of noise

positively correlates with the predictions of the generative model. Therefore, a conclusion may

be reached only by examining the distribution of R2
obs=R

2
max at the group level.

Results

In order to test whether different mechanisms underlie the MMN at various latencies of the

difference potential, we fitted candidate computational models on EEG data collected during

passive oddball experiments. Each of these models was designed to implement a prevailing

account of the MMN and generates predictions of the trial-to-trial dynamics of the auditory

ERP. Models were fitted independently on 10ms–wide averaged post-stimulus time windows

ranging from 45 to 255ms using a Bayesian modeling framework. Thereafter we will refer

indistinctly to these temporally averaged windows as “(post-stimulus) time windows” or

“latencies”. The free energy approximation to model evidence and the coefficient of determi-

nation R2 were used as measures of relative and absolute goodness-of-fit, respectively.

In the first section we validated the relevance of the tested models by comparing them to a

null model devoid of any dynamics. We then analyzed the relationship between model evi-

dence and SNR to explore the relationship between data quality and inferential value.

In the second section, and before moving on to the actual comparison of models, we per-

formed a simulation analysis to assess the identifiability of models under the two studies

designs and the effect of SNR on the performance of model recovery.

In the third section we compared the candidate models between them in two steps, starting

with fixed-effect BMC at the level of families, with each family corresponding to a theoretical

account of the MMN. Models within each family share the same computational rules and are

differentiated only by a parameter τ governing the temporal scale of the dynamics, which was

estimated in a second step through Bayesian model averaging.

Finally, we used an absolute measure of goodness-of-fit to evaluate how accurately the pre-

viously selected models can generate the EEG data.

Model evidence

As a first step we validated the ability of implemented models to capture the general features of

trial-to-trial variations in the EEG signal better than simple control models. We used group

Bayes Factors (BF) between the models of interest on one hand, and the null model on the

other hand, as a measure of model relevance. In both studies and for almost all models, BF val-

ues exceeded levels corresponding to decisive evidence against the null in time windows show-

ing a significant MMN, and dropped down rapidly outside that range (Fig 2).

The influence of the temporal parameter τ varied across model families. For the SSA and

BLmadj families, the BF of models with fast dynamics (low τ) tended to rise, peak or decrease

later than models with higher τ. As far as the maximum BF is concerned, intermediate values

of τt (20–30) obtained slightly higher model evidence than others within the BLmadj family, but

no consistent pattern could be found across the SSA family for τa. Finally, the value of τt
appears to have little to no influence on model evidence for BLpwpe and BLsurp models.
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Sensitivity to signal-to-noise ratio. Fig 2 represents the Bayes Factor of models at the

level of the whole sample, which is obtained by aggregating Bayes Factors of individual partici-

pants. However, the examination of individual model log-evidence reveals a widespread,

strongly skewed distribution with many participants’ values clustering around 0 or even nega-

tive (i.e. in favor of the null) and only a minority of the participants displaying substantial evi-

dence against the null (e.g. about a third of the sample for SSA models; Fig 3 upper plots).

While this pattern could result from inter-individual variability in MMN mechanisms, e.g. in

prevailing time constants, such high individual selectivity is rather unlikely. We explored the

alternative and more parsimonious hypothesis that the quality of the recorded data—indexed

by the signal-to-noise ratio (SNR)—could partly condition the evidence against the null at the

individual level.

The lower plots of Fig 3 represent a linear model of the relationship between log(BF) and

SNR for a couple of selected models. There appears to be a strong association between the two

Fig 2. Group-level Bayes Factors of models of interest against the null model. Positive and negative values indicate evidence against and in favor of

the null model, respectively. Horizontal lines represent Jeffreys’ conventional thresholds for decisive evidence (BF = 100). For each study, the time range

for which the deviant − standard difference potential, i.e. the MMN, is statistically significant is highlighted. Based on the definition of the model

evidence, the group Bayes Factor (BF) is the product of individual BF, therefore the group log(BF) is the sum of individual log(BF). DD: deviant

detection, SSA: stimulus-specific adaptation, BL: Bayesian learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error, madj: model

adjustment.

https://doi.org/10.1371/journal.pcbi.1010557.g002
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variables, with a simple linear function of SNR predicting a large portion of log(BF) variance,

as indicated by the high R2 values. The value of SNR above which log(BF) is predicted to be

positive is around 0.02–0.03.

Model recovery

Sensitivity to signal-to-noise ratio. Before performing model comparison and selection

we assessed the ability of such procedure to disambiguate the candidate models given our

experimental designs and levels of signal (MMN amplitude) and noise (spontaneous trial-to-

trial variability). We simulated data based on stimuli sequences provided to the actual

Fig 3. Bayes Factors distributions and sensitivity to signal-to-noise ratio. For each study, the upper plots depict the distribution of participants’

model evidence for each value of τ within each family of models at the MMN peak latency. Vertical lines indicate thresholds for substantial and strong

evidence, respectively. The lower plots represent the relationship between log(BF) and SNR for a couple of representative models. The values of R2 refer

to the fraction of variance modeled by a linear function. DD: deviant detection, SSA: stimulus-specific adaptation, BL: Bayesian learning, surp:

Shannon’s surprise, pwpe: precision-weighted prediction error, madj: model adjustment.

https://doi.org/10.1371/journal.pcbi.1010557.g003
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participants and for a wide range of signal statistics values, and performed BMC on the syn-

thetic data to evaluate model recovery and confusion. The results are displayed in Fig 4. Mod-

els can be perfectly recovered at the highest levels of SNR (Fig 4A), despite models being

strongly correlated (see S4 Fig). However, identification gets poorer when noise increases or

signal power decreases. The first models to be affected by degraded signal quality are BLsurp

and BLpwpe which get mixed up, consistent with them being the most correlated models

(r>.99). With even poorer SNR, model selection becomes biased rather than random, as indi-

cated by the fact that the confusion matrix gets farther away from the optimal, identity matrix

while remaining quite distinct from the random-selection, uniform matrix (Fig 4B and 4C). At

the lowest SNR, BLsurp tends to come out as the winning model independently of the true gen-

erative mechanism, especially in Study 2 (in Study 1, dominance is shared between BLsurp and

BLmadj).

Sensitivity to sample size. The results above were obtained with the same number of par-

ticipants than found in the collected datasets. Fig 5A illustrates what happens when the sample

size decreases for one representative combination of MMN amplitude and noise level. Unlike

with SNR (Fig 5B), decreasing sample size blurs the confusion matrix, rendering model selec-

tion more and more random.

Sample-based model recovery. Fig 6 summarizes the results of the model recovery analy-

sis based on latency-dependent levels of noise and MMN amplitude that were observed in our

samples. As expected the confusion matrices (top row) are the closest to the optimal, identity

matrix at latencies matching the peak of the MMN, typically around 150ms. Consistently, the

sensitivity (TPR) and specificity (PPV) indices peak at the same time for most models. At ear-

lier and later latencies confusion matrices stray away from the optimal structure with notice-

able differences between the two studies: in Study 1 the confusion matrix becomes blurrier

with the consequence that all models lose both sensitivity and specificity, whereas in Study 2

the confusion matrix remains sharper but exhibits a strong bias in favor of BLsurp and at the

expense of SSA and BLpwpe. This bias is present to some extent throughout the entire time

range and leads to poor positive predictive value of the BLsurp model in Study 2.

Group-level inference

Model comparisons at the family level. In the first section we established that all candi-

date generative models of the MMN are plausible under the collected EEG data. The question

that then arises is whether some models are superior to others in their ability to explain the

observed data. There are two approaches to Bayesian group inference depending on whether

the targeted population is homogeneous—i.e. one may assume that all participants’ data have

been generated by the same model—or heterogeneous [89]. For such fundamental and auto-

matic cognitive processes as low–level perceptual learning, it is reasonable to assume that their

fundamental architecture and biological mechanisms have been primarily shaped by evolu-

tion, and as such are hard-coded rather than experience-dependent. Following this logic, one

may presume that all participants in an oddball experiment share the same generative mecha-

nism(s) for the MMN, justifying a fixed-effect approach to group-level in Bayesian modeling.

Alternatively, one may sidestep such speculations and rather choose to approach the issue of

population structure as an empirical question that may itself be addressed using the Bayesian

inference framework. We implemented this data-driven approach and obtained results aligned

with the theoretical assumption of homogeneity (see S1 Text and S5 Fig).

We first compared the four families of interest—SSA, BLsurp BLpwpe and BLmadj—along with

a control family that included null and DD models (Fig 7). We found that SSA models domi-

nated the first part of the MMN time-window, from the moment it could be disambiguated
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Fig 4. Model recovery analysis in the noise-amplitude grid space. The noise-amplitude grid was defined so as to

cover the range of observed noise levels and signal amplitude, which was slightly different between the two studies. (A)

The confusion matrix is perfect at the highest SNR levels (high amplitude and low noise, bottom left) but gets

increasingly degraded at lower SNR (low amplitude or high noise, upper right corner of the grid) towards biased

model selection. (C) The effect of poor SNR can be quantified using the matrix distance between the confusion matrix

and the optimal, identity matrix (left) or the uniform matrix (right). Matrices that are far from the identity matrix are

those with low diagonal elements, corresponding to poor recovery of the true model in favor of confounding

competitors, but not necessarily random ones. Matrices that are far from the uniform matrix correspond to

deterministic identification, i.e. the same model tends to win systematically under a given generative model, but not

necessarily the correct one. Light lines indicate isocontours of SNR values. (C) Matrix distances as a function of SNR.

At low SNR, the high distance from both the identity and the uniform matrix indicate that confusion matrices become

biased rather than random.

https://doi.org/10.1371/journal.pcbi.1010557.g004
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Fig 5. Influence of sample size on model recovery. (A) Decreasing sample size has the effect of degrading the confusion matrix towards more

“blurred” (i.e. uniform) matrices. (B) Representing confusion matrices by their distance from the identity and the uniform matrices (I and U,

respectively), emphasizes the specific influences of sample size and SNR on model discrimination. While low SNR leads to highly precise—i.e.

deterministic—but biased confusion matrices (marked as B on the graph), low sample size results in random model selection.

https://doi.org/10.1371/journal.pcbi.1010557.g005

Fig 6. Time-resolved model recovery analysis. (Top) Confusion matrices were constructed for each latency using simulations matching the noise level

and signal amplitude of each participant. The true positive rate (TPR, middle) and the positive predictive value (PPV, bottom) were then extracted for

each model. Dashed red lines indicate conventional thresholds: 0.8 for TPR (corresponding to 80% statistical power) and 0.95 for PPV (analogous to a

type I error rate of 5%).

https://doi.org/10.1371/journal.pcbi.1010557.g006
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from pure noise around 80–90ms until 150–160ms. SSA models then overlapped with BLmadj

for 20ms, before finally making way for BLsurp and BLpwpe models, especially in Study 1.

Importantly, the general temporal organisation of models was largely similar across the two

independent studies, suggesting that this pattern of results is replicable and reliable. Discrep-

ancies between the studies appeared only at the latest latencies and will be discussed in the

next paragraph.

Simulation-based assessment of reliability. The results from the simulation-based,

model recovery analysis are of great value to understand and assess the reliability of the pat-

terns observed in the real data depicted in Fig 7. The first remarkable result is the domination

of SSA models from the onset of the MMN until about 150ms. From the model recovery analy-

sis SSA appears to have very high positive predictive value (>.95) on the entire MMN time

window in Study 2, and acceptable PPV (>.80) between 140 and 180ms in Study 1 (Fig 6), sug-

gesting that the dominance of SSA is most likely a true finding rather than a confusion from

BL models. A similar reasoning may be applied to the moment when BLmadj starts competing

with SSA: at these latencies BLmadj has a high PPV (>.90) according to the simulations, and

the probability that it confounds SSA is low in both studies (Study 1: p(BLmadj|SSA)<.10 at

t = 160–170ms; Study 2: p(BLmadj|SSA)<.14 at t = 170–180ms). Importantly, the reciprocal

was true at these latencies: SSA had a low chance to be selected as the winning model under

BLmadj in the simulations (p<.09 in Study 1; p< .02 in Study 2). All in all the simulation analy-

sis suggests that the very close posterior probabilities of model families SSA and BLmadj around

170ms are unlikely to be driven by a lack of separability, but may rather reflect a temporal

overlap of the two modeled mechanisms. Lastly, the two studies diverge with respect to the

dominant family at the latest latencies with Study 1 favoring BLsurp and Study 2 showing

Fig 7. Family-wise fixed-effect BMC. (Top) Posterior model probabilities (PMP) at the family level for each study and each post-stimulus latency.

Latency-specific sample sizes are indicated above PMP plots along with dark bars representing the fraction of the study sample retained. Shaded PMP

bars correspond to latencies for which no model family dominate substantially (BF<3). (Bottom) Relative evidence of each model family against all

other families. Only families with a substantial level of evidence (BF> 3) are displayed. In practice, most of the time there was one and only one family

with substantial evidence at each latency, except at t = 180ms and t = 190ms in Study 2. ctrl: control models (null and deviant detection), SSA: stimulus-

specific adaptation, BL: Bayesian learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error, madj: model adjustment.

https://doi.org/10.1371/journal.pcbi.1010557.g007
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evidence for BLpwpe. Unfortunately these two BL outputs are the most correlated (r>.99) and

are not easily disambiguated, even under good SNR conditions.

Model comparisons in high quality samples. Our exploration of the effect of SNR on

model identifiability (Fig 4) suggested that the presence of low SNR participants is far from

innocuous: not only does it impact negatively statistical power—as one would expect from any

source of noise that does not contribute useful information but is permitted to weigh on the

inferential process—but it also biases the model selection procedure. An optimistic way of

looking at it is that the sensitivity and reliability of the inference should improve when it is

focused on those participants that exhibit the highest SNR, so long as the sample size remains

sufficient. We explored this possibility by restricting the family-wise BMC analysis to latency-

specific subsets of participants exceeding certain SNR thresholds. The results are depicted in

Fig 8 and indicate that subsetting to high SNR participants has largely common but also some

diverging effects across the two studies. In both studies adaptation (SSA) dynamics are

detected earlier and BL dynamics up to 230ms post-stimulus. This improvement in time range

shows even after a slight thresholding (SNR>0.001) in Study 1 but is more gradual in Study 2.

The general temporal organization of models does not change significantly in either studies

compared to the full sample, but while it is markedly reinforced in Study 2 with a clearer and

extended dominance of BLmadj followed by BLsurp in the most restricted samples (SNR>0.008

and>0.024), it is partially attenuated in Study 1 with the elimination of BLmadj at SNR>0.024.

Here the discrepancies between the two studies might be due to differences in sample size,

with the smaller number of participants in Study 1, especially after stringent selection, nega-

tively impacting model identifiability to the point of canceling the gain offered by the increased

sample SNR.

Parameter estimation. In the present study we have adopted a fixed parameter approach

whereby the value of the τ parameter was fixed in submodels of the SSA and BL families rather

than fitted. We used Bayesian model averaging (BMA) to estimate the value of the parameter

by integrating over the family model space taking into account the uncertainty of the submo-

dels as indexed by posterior model probability. The results for the adaptation parameter of

SSA models and the integration constant of BL models are quite distinct (Fig 9). For the for-

mer, we found a consistent decrease of τa through time in both datasets—although less marked

for Study 2 at higher SNR. This suggests an increasing gradient of adaptation (see relationship

between τa and responsiveness in Eq 6) along the MMN timecourse which echoes electrophys-

iological results in rats and will be discussed later. On the other hand the time constant for BL

models in the later stage of the MMN was rather constant through time.

Absolute goodness-of-fit

The average proportion of total single-trial EEG variance accounted for by the best model

across all subjects was similar across studies but depended on the MMN latency, ranging from

0.5 to 1.5% in Study 1, and from 0.6 to 1.8% in Study 2 (Fig 10, upper plots). While these fig-

ures may seem low at first glance they are consistent with previous results (1% of LFP data var-

iance explained in [92]) and with the fact that, in EEG recordings background stimulus-

unrelated activity and other sources of noise drown the event-related potentials by an order of

magnitude or higher, requiring numerous presentations of the same stimulus and averaging of

the resulting data to obtain an informative signal.

To gain an accurate sense of how adequate is the observed proportion of variance

accounted for by a given model (denoted R2
obs), we compared it to the expected value (denoted

R2
max) calculated from simulations that assumed the said model truly generated the data. R2

max is

subject–, model– and latency– dependent. By definition R2
obs is expected to be lower to R2

max on
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average. A low R2
obs/R

2
max ratio indicates that the model is suboptimal and is, at best, only an

approximation of the generative process. Conversely, a ratio close to 1 suggests that the model

can account for all the variance produced by the generative process and is indistinguishable

from it under the circumstances of the study. This is indeed the case for the set of latency-

dependent models that have been selected by the fixed-effect BMC procedure, as we found

Fig 8. Family-wise fixed-effect BMC in high quality samples. Posterior model probabilities of model families (PMP) and relative evidence against all

other families (BF) in subsets of samples defined by SNR exceeding 0.001 (top), 0.008 (middle) and 0.024 (bottom). Latency-specific sample sizes are

indicated above PMP plots along with dark bars representing the fraction of the study sample retained. Shaded PMP bars correspond to latencies for

which no model family dominate substantially (BF<3). ctrl: control models (null and deviant detection), SSA: stimulus-specific adaptation, BL:

Bayesian learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error, madj: model adjustment.

https://doi.org/10.1371/journal.pcbi.1010557.g008
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that R2
obs/R

2
max was not significantly different from 1 in either studies (Study 1, between 90 and

220ms: estimate = 1.03, 95% CI [0.95, 1.12], t(103) = 0.81, p = .42; Study 2, between 90 and

180ms: estimate = 1.03, 95% CI [0.93, 1.14], t(136) = 0.51, p = .61).

As a sanity check and validation of the R2
obs/R

2
max ratio, we calculated it for some models at

latencies for which they were not the best. In Study 1, models that dominated the earliest and

latest latencies (SSA50 and BLsurp
5 , respectively) had a significant low ratio at other latencies

(SSA50, between 130 and 220ms: estimate = 0.66, 95% CI [0.57, 0.77], t(79) = -5.46, p<.001;

BLsurp
5 , between 90 and 190ms: estimate = 0.92, 95% CI [0.88, 0.97], t(86) = -3.46, p<.001). The

same pattern was found in Study 2 for models that dominated the early and late MMN laten-

cies (SSA50, between 100 and 190ms: estimate = 0.78, 95% CI [0.70, 0.88], t(131) = -4.36,

p<.001; BLmadj
30 , between 90 and 160ms: estimate = 0.84, 95% CI [0.76, 0.92], t(119) = -3.88,

p<.001).

Fig 9. Within-family Bayesian model averaging of the temporal parameter τ. (Bar plots) Posterior model probabilities (PMP) at the model level

within the best family for each study and each post-stimulus latency without SNR filtering (top panel, dev-std<0, see Fig 7) and with only SNR>0.008

samples (bottom panel, see Fig 8). Colored bars are stacked from bottom to top in decreasing order of PMP. Values of τ are in stimulus units. (Line
graphs) Estimated values for the time constant τ obtained by model averaging, i.e. averaged over all models of a family weighted by their respective

PMP. Values are in seconds. ctrl: control models (null and deviant detection), SSA: stimulus-specific adaptation, BL: Bayesian learning, surp: Shannon’s

surprise, pwpe: precision-weighted prediction error, madj: model adjustment.

https://doi.org/10.1371/journal.pcbi.1010557.g009
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Discussion

In this paper we have revisited the trial-by-trial computational modeling of EEG-recorded

scalp potentials in response to sounds embedded in oddball sequences. The study design

focused on four aspects that have emerged in recent years as important for drawing reliable

conclusions from computational studies. First, we specified the model space so as to represent

all mechanisms that have been proposed for the generation of the MMN. Thus, models that

were tested implemented both physiologically–inspired, adaptation–like dynamics and

computational, mechanistic models of Bayesian statistical learning. For the latter family of

models, different quantities were tested and compared following previous modeling work [76]:

precision-weighted prediction error, Shannon’s surprise, and model adjustment. Second, we

used simulations to assess models discrimination and guide the interpretation of the findings

obtained from the electrophysiological data. Third, we modeled the neural responses in a

time-resolved fashion that allowed for latency-specific inferences as the latest research in ani-

mals suggests that MMN-like components might result from different mechanisms emerging

along the time course of the evoked response and across the auditory hierarchy. Fourth, we

provided our own replication by analyzing two independent datasets concurrently, which

allowed us to focus on the findings common across the two datasets as the most likely to

replicate.

As a discussion we will first synthesize the modeling results and speculate on the parallels

that may be drawn from the findings in human and animal studies. Then, the significance and

impact of methodological choices inherent to computational modeling will be discussed,

highlighting the improvements we brought forth in the present study. We will conclude by

Fig 10. Variance accounted for by best models. (Top) Group distribution of the proportion of variance accounted for (denoted R2
obs) by the best model

family selected at each MMN latency by the Bayesian model comparison (see Fig 8) and for the parameter τ closest to the value estimated by Bayesian

model averaging (see Fig 9). (Bottom) Comparison between the actual values of R2
obs and theoretical maximum proportions of variance that can be

accounted for by the models (R2
max), given the variance observed in the data. The ratios being positively skewed, they were log-transformed for normality

(the optimal ratio value of 1 is thus transformed to 0).

https://doi.org/10.1371/journal.pcbi.1010557.g010
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highlighting the potential limitations hindering our results and suggest improvements for

future studies.

Multiple mechanisms may underlie the MMN response at different

latencies

Our results confirm a well-established fact in the MMN literature, namely that neural

responses to individual stimuli embedded in a sequence reflect ongoing statistical learning

rather than mere processing of physical properties and frequency of occurrence [93–96]. Here

this is evidenced by the fact that the deviance detection model—a model capable of producing

an MMN–like response but without any dependence on stimulus history—turned out to fit

the data less well than all other history–sensitive models.

Compared to previous computational modeling studies on time-averaged data [76] or with

restricted model space [71, 72, 75, 97], our approach allowed us to identify interesting tempo-

ral dynamics in generative models of the MMN. Family-wise model comparison at the group

level identified a predominance of adaptation models (SSA) in both EEG datasets during the

early MMN window from 80–90 to 150–170ms (Fig 7, BF>100 at most latencies). Importantly

this finding was confirmed when gradually filtering out low SNR datasets (Fig 8), and could

not be attributed to confusion of BL models with SSA as the latter model family showed good

specificity throughout these early latencies, at least for Study 2 (Fig 6 lower panel, Study 2:

PPVSSA> 0.95). The model adjustment version of Bayesian learning—BLmadj which indexed

the MMN as the amount of updating between prior and posterior belief on the probability to

get a deviant—then competed with SSA for about 20ms with slightly different latencies

depending on the datasets (160–170ms for Study 1 and 170–180 for Study 2, Fig 7). Surpris-

ingly, in high SNR samples the evidence for BLmadj decreased in Study 1 but was reinforced in

Study 2 (Fig 8). This discrepancy could potentially be explained by the lower specificity of SSA

models in Study 1 compared to Study 2 within these time windows (Fig 6). Finally the Bayesian

learning implementation of Shannon’s surprise (BLsurp) showed the highest—but relatively

moderate (BF>3)—evidence against competitors in the last part of the MMN response up to

230ms, a result made clearer and coherent across studies within the highest SNR samples (Fig

8, middle and lower panels). Yet BLsurp and BLpwpe are not easily disambiguated under our

experimental design as their predicted responses are highly correlated (r>0.99) and they con-

sistently showed low specificity (PPV<0.95) or sensitivity (TPR <0.80) in time-resolved

model recovery (Fig 6). Therefore, strict conclusions concerning the domination of BLsurp in

the late MMN response would be premature, our data being compatible with both surprisal

and precision-weighted prediction errors signals.

To our knowledge this is the first modeling study of the MMN providing comparable

results across two independent EEG datasets and on a substantial total sample of 82 partici-

pants. Dynamic Causal Modeling (DCM) studies on EEG data prompted early on towards a

multiplicity of mechanisms supporting deviance detection along the cortical hierarchy [52].

Following this intuition Lieder et al. (2013)—in a pioneering computational modeling work—

compared most of the potential mechanisms supporting the MMN on trial-wise scalp averaged

EEG data [76]. However they could only draw strong conclusions at the level of superfamilies

of models, pitting all BL models against phenomenological models (a grouping of adaptation

and change detection models). In more fine-grained comparisons the model adjustment

Bayesian learning model had the highest posterior probability but the evidence was not com-

pelling. We can only speculate as to why no clear winner stood out in this initial study, but the

low sample size (8 participants) and the temporal averaging of the signal seem to be plausible

contributing factors in light of our own results. However these factors can hardly explain the
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very low evidence for adaptation models in their study, which constitutes a major discrepancy

with our results. Differences in designs and models implementations may have a significant

impact, an issue that we will further discuss below. Differently, a recent computational model-

ing study of the somatosensory mismatch revealed partial evidence for a model adjustment BL

process (there called “Bayesian surprise”) from 150 to 200 ms both at scalp and source levels

[97], reminiscent of our own results, although they did not test any adaptation–like models.

Instead, at earlier latencies their data were better explained by a “confidence corrected sur-

prise” BL model that we did not include in our analysis. We leave it for future studies to disam-

biguate between adaptation and BL “confidence corrected surprise” during the early window

of the MMN. It is worthwhile to note that the same authors further showed the involvement of

Bayesian learning mechanisms in the generation of the MMN for three different sensory

modalities (auditory, somatosensory and visual), as well as a signature of cross-modal process-

ing in a later mismatch component (P3a, 300–350 ms) [75].

To summarize, our results suggest the existence of distinct and potentially overlapping gen-

erative mechanisms of the scalp MMN following a temporal pattern. Adaptation–like response

seems to dominate most of the MMN window from 80–90 to 150–170 ms, while BL–like pro-

cesses appear during the late MMN with varying temporality depending on the paradigm

(Study 1 or 2) (Fig 7). This temporal pattern may be explained in two distinct interpretation

frameworks. One simple and tempting approach is to map ERP latencies on the cortical hierar-

chy, with early and late post-stimulus activations reflecting low- and high-level processing,

respectively. In the present context that would lead us to attribute adaptation–like processes to

sources of the MMN located in the temporal cortex and later BL–like responses to frontal

areas. But the mixed results from MMN source localization studies does not quite support

such a pattern. Frontal sources of the MMN were initially found to be be activated slightly later

(8ms) than temporal ones in EEG [98], and correlation analyses of ERP amplitude with fMRI

activations associate early MMN response (90–120ms) to signal change in right temporal cor-

tex and late MMN response (140–170ms) with change in right frontal cortex [99]. However

more recent studies provided evidence for the involvement of temporal and frontal sources at

similar times. For example Philips et al. (2015) did not observe significant differences in the

MMN peak latency between primary auditory cortex (A1), superior temporal gyrus (STG) and

inferior frontal gyrus (IFG) for multiple deviance types (duration, frequency, gap, intensity

and location) in MEG [56]. Another study found activations for frequency and intensity devi-

ances in both supratemporal (Heschl’s gyrus or planum polare depending on deviance type)

and infrafrontal cortices (IFG) at the peak of the MMN (150–250ms), but also during early

deviance (15–75ms) and the “rising edge” of the MMN (110–150ms, called elsewhere early

MMN) on fused EEG-MEG data [58]. Finally generators for a frequency MMN were found in

both A1 and IFG in EEG [100].

Rather than treating the time course of the ERP as reflecting a unidirectional stream of bot-

tom-up cortical activation, an alternative approach consists in interpreting the modulations of

the EEG signal as markers of dynamic changes in forward and backward transmission of infor-

mation within the hierarchical temporo-frontal network generating the MMN. Inferring such

temporal causal links require both source-level signals and computational models, such as in

Dynamic Causal Modeling (DCM). To our knowledge, only one DCM study has looked into

the temporal dynamics of such changes in causal connections. In one of their first DCM study,

Garrido et al. evaluated the importance of backward connections for eliciting the ERP to devi-

ants in an oddball task [50]. Their results clearly showed that if forward connections are neces-

sary to explain the evoked response throughout the whole duration of the ERP, backward

connections (between A1, STG and left IFG) have a particular influence later in time, starting

around 200ms. Thus, the appearance of Bayesian learning–like mechanisms at late latencies in
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our results could reflect the increased involvement of such backward connections, for example

by casting newly updated predictions downward in the cortical hierarchy. Yet such interpreta-

tion is highly speculative and would need further fine–grained time–resolved DCM analyses to

be verified in the future.

Relationship to results from animal studies

Recent reviews—combined with novel empirical work—confirmed a high degree of homology

between human MMN and rodent mismatch responses [101–103], justifying the use of trans-

lational research to better characterize the neurocognitive mechanisms of auditory perception.

The gradient of generative mechanisms revealed by the present computational study is

strongly reminiscent of electrophysiological results obtained in rats. Using control stimulus

sequences and single-unit recordings in the rat auditory areas, Parras et al. [63] were able to

decompose neuronal mismatch responses to oddball sequences into repetition suppression

(RS) and prediction error (PE) signals. They showed that mismatch responses in the auditory

cortex (AC) and in subcortical auditory areas reflected mainly repetition suppression, espe-

cially at latencies below 50ms—with PE signals emerging only later, around 75ms post-stimu-

lus. Applying a similar methodology to the rat medial prefrontal cortex (mPFC), the same

team later demonstrated that, in contrast to what has been reported in AC, mPFC mismatch

responses are largely driven by PE signals [64]. However, because these frontal responses did

not start until 200ms and lasted several hundred milliseconds, they may be analogues of

human P3–like rather than MMN responses. More generally, the parallels between previously

cited animal findings and ours should be treated with caution as the experimental paradigms

differ sensibly in design and measures. Nevertheless, the temporal dynamics of physiological

processes described in Parras et al. (2017) appear consistent with the timing of the gradient of

computational models we report here, providing one takes into consideration that the latencies

of sensory ERP components in rats are roughly twice as short than their human counterparts

in comparable settings [104, 105]).

Our study identified a second type of gradient, this one pertaining to adaptation time con-

stants of SSA models (Fig 9). Models with higher τa, indicative of slow–adaptation (see Eq 6),

dominated the onset of the MMN response and were progressively replaced by fast-adaptation

models (lower τa). Said differently, our modeling results suggest that the rate of adaptation to

repeated auditory stimuli is not fixed throughout the entire duration of the neural response,

but instead increases gradually. Although this gradient was present to some degree in both

datasets, it was more pronounced in Study 1, especially due to very slow adaptation at the

onset latency of the N1. One explanation for this discrepancy could be the variable ISI in Study

1, as previous studies suggest that temporal predictibility enhances repetition suppression

[106, 107].

Once again such results obtained at the computational level with human scalp EEG data are

consistent with previous work at the electrophysiological level on auditory neurons of anesthe-

tized rats [29]. Nieto-Diego and Malmierca (2016) first showed that in lemniscal auditory cor-

tices (primary auditory cortex A1, anterior auditory field AAF and ventral auditory field

VAF), SSA was significantly stronger during the late window of the rat MMN-like response

(figure 5 from [29]). In contrast, SSA in non-lemniscal regions (posterior auditory field PAF

and suprarhinal auditory field SRAF) did not change through time after sound onset but was

stronger than in lemniscal regions until about 100 ms when adaptation in all auditory areas

reached similar high levels (figure 5 from [29]). Additionally, they could estimate the rate of

adaptation of individual neurons to standard tones and found adaptation to be faster for non-

lemniscal regions (figure 7 from [29]). Finally, the negative component of the difference wave
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of local-field potentials (LFP)—supposedly more representative of neuronal population pro-

cesses recorded through non-invasive methods—peaks later in non-primary than primary cor-

tical fields (figure 8 from [29]). To summarize their results, multiple lines of evidence seem to

converge towards an increase of SSA in auditory cortex within the time-span of MMN-like

neuronal responses. Yet the fact that adaptation rates are extremely fast in rats (in the order of

one second) and estimated from neuronal firing rates makes it unclear whether similar physio-

logical mechanisms underlie the gradient of adaptation that emerged from our modeling

study.

Conclusions from modeling studies critically depend on modeling choices

and methodology

The value of the discussion so far rests upon the reliability of the results, i.e. on the ability of

the computational modeling and inferential procedure (model selection) to capture some

aspects of the generative mechanisms of the MMN. For the present study we have been careful

to follow the most recent guidelines for computational modeling of neurophysiological data

[91], notably by carrying out model recovery analyses which have largely been missing in pre-

vious computational studies of the MMN (at the exception of two recent examples [72, 97]).

Our simulations showed that discriminating between models standing for candidate theories

of the MMN was not straightforward—at least using classical oddball paradigms. Statistically

powerful and reliable model inference required optimal conditions, including good signal

quality (SNR; Fig 4) and sufficient sample size (Fig 5). The effects of sub-optimal conditions

were complex and not entirely intuitive for whom is accustomed to more conventional analy-

ses of EEG signal. In the classical frequentist analysis of ERP, low SNR is a well recognized

issue that threatens statistical power—a serious brake to scientific discovery but one that can

be mechanically compensated by increasing the sample size [108, 109]. Contrasting with this

view, we have found that the candidate models got increasingly confounded when SNR

decreased in a strongly biased way that favored some models in all circumstances, including

when a competitor was the true generative model, thereby distorting the results rather than

simply lowering the chance of positive findings (Fig 4). Unfortunately, the same simulations

showed that the distortions introduced by poor signal quality could hardly be offset by the use

of larger datasets, as increasing the sample size had primarily the effect of sharpening the con-

fusion matrix but not so much of eliminating bias (said otherwise, large samples resulted in

the posterior mass distribution being concentrated on a single model but not necessarily the

true one, see Fig 5). This suggests that selecting participants with high quality data, even

though it reduces the sample size, might be a worthy strategy to improve the reliability of

model selection (Fig 8). However it should be noted that, even under the best conditions

afforded by electrophysiological recordings, some models could no be disambiguated, the best

example being the Shannon surprise and precision-weighted prediction error outputs of the

Bayesian learning process. Altogether our simulations highlight the utmost importance of con-

ducting model recovery analyses prior or jointly with Bayesian model inference, and to use the

results of the simulations to inform the interpretation of model selection outcomes.

Besides data properties, analytical choices can also influence scientific conclusions, and it is

worth reviewing some of the specific ways in which the dependence of results on methods

manifests in computational modeling studies—especially regarding model comparison and

selection.

The first consideration is the model space. By nature, BMC may pick a model out based on

its performance in predicting data, but only relatively to other models. The evidence provided

by BMC in favor of a model is only as good as the choice of the unfortunate competitors, and
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the contribution of a modeling study to theoretical debates depends critically on how ade-

quately candidate theories were translated in computational models. Recent unifying efforts

have attempted to subsume adaptation dynamics under the predictive coding framework by

reframing adaptation processes as a natural component of the predictive processing machin-

ery, namely the attenuation of responsiveness of sensory cortices under the influence of top-

down predictions [16, 110, 111]. The models implemented in the present study have very dis-

tinct origins: SSA as exponential decay and recovery is essentially a phenomenological func-

tion empirically derived from physiological observations, while Bayesian models are

mathematical implementations of computational learning principles. This does not mean that

they can not or need not be compared. On the contrary, the combined use of oddball and con-

trol stimuli sequences in animal studies allowed for the complete separation of repetition sup-

pression and prediction error signals in single-cell recordings, suggesting distinctive

mechanisms at the physical level [16, 63, 64, 112]. In addition, while predictive theories of the

MMN interpret the electrophysiological component as an index of Bayesian inference on sen-

sory input, they remain largely uncertain about which aspect of the Bayesian process is most

reflected in the scalp field potential (prediction error, surprise, model updating, etc.). We have

accommodated this uncertainty by declining the BL models in multiple versions each imple-

menting a measure or output of the Bayesian learning process.

A second important consideration arises at the stage of group-level inference. There are

two procedures available for Bayesian model comparison, each suited to distinct scenarios:

fixed-effect analysis (ffx–BMC)—perfectly adapted to a situation where the same mechanism

is to be found across all participants—and a random effect approach more appropriate to het-

erogeneous populations (rfx–BMC; [89, 113]). The latter is mathematically more sophisticated

and as such have benefited from more methodological attention. It may even have been cred-

ited with more validity in the domain of brain data modeling, yet the authors of the rfx–BMC

themselves present the two approaches as diverging primarily on the specific and distinct

assumptions they make on the population structure. For the computational modeling of the

MMN we have opted for a fixed-effect approach and this decision is more than a mere meth-

odological concern. The selection of the most plausible population structure is a statement of

theoretical interest in itself. While the homogeneous assumption suggests invariance, pointing

towards a hard-coded, defining feature of the organism, heterogeneity implies inherent diver-

sity and possibly plasticity. Therefore, as far as elucidating the mechanisms of a cognitive or

neural process is concerned, the implications of deciding between either population structures

are far-reaching. One epistemological implication is the reasonable expectation one may have

about the contribution of modeling studies to debates around competing mechanistic hypoth-

eses. Such contention can, at least in theory, be settled under the homogeneity assumption and

optimal experimental conditions But this is not necessarily the case when ties in the competi-

tion are tolerated, as with a random-effect approach.

The possibility of multiple coexisting models is also conditioned by the way the temporal

dimension of the targeted neural response is handled. There is a long history of debate around

the number of cortical generators underlying the MMN [98, 114, 115] but most computational

modeling studies of the MMN have treated it as a uniform component by averaging the signal

of a large time-window in the spirit of classical ERP analysis. Yet, following the perspective

offered by DCM studies [52, 57, 58], the MMN appears as a neural marker of a distributed,

hierarchical, prediction (error)–based processing of internal and external information. In this

view the electrophysiological signal is a mixture of multiple responses from the various units

composing the predictive coding architecture, each with its own distinct dynamics, and we

may anticipate that temporal averaging will blur the distinctions between them. In this per-

spective, time-resolved approaches as has been implemented here and in previous works [72,
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73, 75, 97], appear absolutely essential for computational modeling studies to help elucidate

the MMN mechanisms.

Perspectives

The present paper has deployed and improved upon a computational approach to the dynamic

modeling of brain responses to sequences of sounds, in the context of existing data collected

from a classical oddball paradigm. Our results, suggesting separable underlying contributions

to the MMN at differing temporal intervals, may have important implications for studies

examining individual differences in MMN, for example in a clinical context, and may provide

a mechanistic understanding of the nature of such differences. It is noteworthy that robust

inference about the mechanisms of the auditory MMN could be drawn from such a simple

paradigm, and future research should question whether the findings would replicate in more

sophisticated designs including e.g. roving deviants [71, 76], predictable sequences [72], local-

global violation rules or omission effects [68]. Another important question is what are the algo-

rithmic underpinnings of the MMN at various latencies in cases where the adaptation mecha-

nism is unlikely to play a significant role, e.g. for deviance features such as delay, duration or

intensity or in the context of abstract rules. We would also like to acknowledge some limita-

tions of the current study. First, the EEG datasets we used from previous publications were

submitted to rather aggressive high–pass filtering settings. As explained in the Methods sec-

tion, the use of a 2-Hz high-pass filter in the second study was necessary to remove low fre-

quency artifacts caused by threat-induction. For both studies however, in the context of trial-

wise modeling, strong high-pass filtering also permitted to remove signal drifts in the spectral

range of interstimulus interval and below (0.5–1 Hz). Besides, our oddball paradigm being pas-

sive, no P3 component was elicited, which considerably reduces the risk of distortions of ear-

lier components by zero-phase (non-causal) filters as previously shown with high-pass at

1.5-Hz and above [116]. Nevertheless, we would advise future replications to use lower high-

pass filtering thresholds, when possible, as recommended by recent guidelines on the topic

[116, 117]. Additionally, we could not implement cortically resolved modeling in this study

given the EEG datasets we used were not optimized for source reconstruction analysis. As a

final note, we encourage future work to refine the mechanistic accounts of the MMN by fitting

time-resolved models on data with high spatial resolution such as MEG- or fused EEG/MEG-

derived cortical sources [72], as well as by testing models that are more biophysically plausible

[37, 65–68].

Supporting information

S1 Fig. Frontal ROIs selected for EEG data for both studies. A: Study 1 EGI GSN200 system

128 electrodes layout, plotted on a head template. The frontal ROI is highlighted, comprising

twelve frontal electrodes, including Fz. B: Study 2 Biosemi Active Two system 64 electrodes lay-

out. For this study the selected ROI comprised only five frontal electrodes, also including Fz.

(TIF)

S2 Fig. Automatic detection of MMN peak for Study 1. A Gaussian function has been fitted

on each participant’s average ERP at the selected ROIs. Participants for whom the gaussian fit has

failed to result in a negative peak (due to an absence of detectable MMN, or presence of a positive

deflection instead of the expected negativity) have been excluded from subsequent analyses.

(TIF)

S3 Fig. Automatic detection of MMN peak for Study 2. Same method as for Study 1.

(TIF)
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S4 Fig. Correlations between models used for the recovery analysis. SSA: stimulus-specific

adaptation, BL: Bayesian learning, surp: Shannon’s surprise, pwpe: precision-weighted predic-

tion error, madj: model adjustment.

(TIF)

S5 Fig. Comparing assumptions about the distribution of models frequencies in the popu-

lation. Model evidence for the two population structures underlying the ffx-BMC (homoge-

neous population, MFFX) and the rfx-BMC (heterogeneous population, MRFX) have been

calculated and contrasted latency-wise at the level of model families. Only participants who

displayed a negative MMN at the target latency were included. The homogeneous population

distribution (MFFX) dominated over the entire MMN time-window in Study 2, and at most

latencies in Study 1—except between 130 and 140ms. A closer inspection of models’ estimated

frequencies at t = 130ms and 140ms in Study 1 indicated that the slight evidence in favor of

population heterogeneity at these latencies is driven by BLmadj models competing with SSA

models. Given that BLmadj models become dominant in the whole sample at 160ms, the appar-

ent heterogeneity 20ms earlier might be attributed to inter-individual variation in the time at

which the dominant generative mechanism of the MMN switches between adaptation and

Bayesian-like processes.

(TIF)

S1 Text. Bayesian modeling of the population structure.

(PDF)
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Temporal Cortices to Auditory Change Detection: fMRI and ERP Results. NeuroImage. 2002; 15

(1):167–174. https://doi.org/10.1006/nimg.2001.0970 PMID: 11771985

100. Hofmann-Shen C, Vogel BO, Kaffes M, Rudolph A, Brown EC, Tas C, et al. Mapping Adaptation, Devi-

ance Detection, and Prediction Error in Auditory Processing. NeuroImage. 2020; 207:116432. https://

doi.org/10.1016/j.neuroimage.2019.116432 PMID: 31809886
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