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A B S T R A C T

Self-supervised monocular depth prediction is a widely researched field that aims to provide a better scene
understanding. However, most existing methods prioritize prediction accuracy over computation cost, which
can hinder the deployment of these methods in real-world applications. Our objective is to propose a solution
that efficiently compresses the depth map while maintaining a high level of accuracy for navigation purpose.
The proposed method is an expansion of the work presented in N-QGN, which utilizes a quadtree representation
for compression. This approach has already shown promising results, but we aim to improve it further by
making it more accurate, faster, and easier to train. Therefore, we introduce a new method that directly predicts
the quadtree structure, resulting in a more consistent prediction, and we revise the network architecture to
be lighter and produce state-of-the-art accuracy results, depending on the data compression rate. The new
implementation is also faster, making it more suitable for real-time applications. Experiments have been
conducted on various scene configuration highlighting the capability of the method to efficiently predicting a
reliable quadtree depth representation of the scene at low computation cost and high accuracy.
1. Introduction

The acquisition of depth information by autonomous robots is a
crucial aspect of their ability to navigate and understand their environ-
ment. The ability to perceive depth allows robots to avoid obstacles,
locate objects, and plan paths. However, obtaining accurate depth
information is a major challenge in the field of computer vision, as it
requires a combination of hardware and algorithms that can handle the
complexities of real-world scenes. Despite these difficulties, research in
this area continues to advance rapidly, driven by the increasing demand
for autonomous systems in a wide range of applications.

The usage of deep learning networks is currently permitting to di-
rectly infer depth information from a single RGB image. These methods
have been studied for many years and demonstrate accurate results [1–
3]. Therefore, one can expect for such methods to come as a replace-
ment of stereo systems. As yet, they are scarcely used for real-time
navigation [4]. This limitation can be explained by different factors
such as an overly specialized network, a lack of accuracy at long
range or the difficulty to be used on embedded systems. Some methods
addressed these issues by proposing lightweight solutions for real-time
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applications [5,6]. But for the most, they are focused on dense 3D
reconstruction and are essentially working on improving the network
architecture or the training procedure to outperform the current state
of the art [3,7,8].

In our previous work, we introduced N-QGN [9], a quadtree-
based depth prediction network that uses submanifold sparse con-
volutions [10] to generate a quadtree to efficiently compress depth
information and reduce network complexity. The results were promis-
ing, showing that the network is capable of directly generating a
convincing quadtree without the need for full depth information. How-
ever, the quadtree structure was not optimal, as it was inferred from
partial depth information that had already been predicted. This made
it difficult to train correctly, which could lead to some unexpected
predictions.

In this paper, we present a novel approach for generating an optimal
quadtree representation of depth information. The proposed method
includes the following key contributions:
vailable online 5 February 2024
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Fig. 1. Quadtree prediction decomposition. On the left is the input image on top and the recomposed quadtree at the bottom. 𝑄5 to 𝑄0 are the sparse depth output of each
prediction layers. 𝐴5 to 𝐴1 are the subdivision prediction maps, used to define the active sites of the following layers of the decoder.
1. Direct prediction of the quadtree structure by the network, in
conjunction with depth prediction.

2. Use of a dense method to guide the training process, ensuring
convergence to the optimal solution.

3. A redesigned sparse decoder that is more lightweight while
achieving a higher level of accuracy.

The method described in this paper aims to balance the trade-off
between prediction accuracy and computation cost by generating an
optimum quadtree representation of depth information according to a
defined subdivision criterion.

2. Related works

2.1. Monocular depth for navigation

Estimating depth information from a single RGB camera presents
an ill-pose problem that was only made possible with the emergence of
deep learning. It was demonstrated in [11] its capability by following a
training procedure consisting of minimizing the photometric reprojec-
tion error between a pair of stereo calibrated images. The method has
been improved over the years [12] with the addition of the left–right
consistency and the disparity smoothing. Besides, it was demonstrated
that similar results could be obtained without the need of a stereo
training [2,13].

Regularly, new frameworks are emerging, proposing innovative
solutions to outperform the state of the art [3,14,15]. While U-Net
architectures [16] with a ResNet 18 encoder produced for some time
the most accurate results [7], they have recently been outperformed
by the emergence of vision transformers [17]. Yet, the pursuit of high
precision is not the sole objective. Some approaches prioritize resilience
under diverse weather conditions [18] or focus on constructing efficient
architectures for embedded systems [5,6]. Our primary interest lies in
implementing the quadtree-based depth estimation method introduced
in [9], utilizing quadtree generation to decrease computational costs.

2.2. Octree and quadtree data structure

Hierarchical tree data structures have been widely used in computer
vision and navigation to efficiently compress the information. Hornung
et al. proposed in [19] to use octree to store large 3D occupancy maps
for navigation applications. It permitted the development of frame-
works for long-term mapping [20] or real-time 3D mapping [21]. In
the same way, quadtree has been used for 2D information compression
for real-time navigation application as in [22].

Deep learning methods proposing octree based representation [23]
were first introduced and demonstrated the capability of the approach
to reconstruct 3D objects from images. Quadtree based applications
are derived from octrees and the development of sparse convolution
solutions [10]. Chitta et al. proposed QGN in [24] to generate quadtree
for segmentation inference and demonstrated the direct gain in term of
computational cost without any loss in precision. Upon this approach
Braun et al. [9] proposed an adaptation of the precedent framework
for depth map compression. As opposed to the segmentation, the depth
stores continuous values which cannot be compressed without a loss in
the information. The key being to define the most appropriate criterion
to limit this loss.
95
Fig. 2. The network has a U-Net architecture composed of a dense encoder in blue
and a sparse decoder in green. The prediction layers are in orange below the decoder.
Each one of them outputs a sparse depth prediction (𝑄𝑙) and an activation map for
the next sparse convolution block (𝐴𝑙).

3. Method

In this section we present a new framework for jointly optimizing
the depth and quadtree data structure prediction. It begins with the
definition of the quadtree data structure and its implementation into
the network architecture. We then provide details on the training
procedure and the use of guidance by a dense depth stereo network,
which allows us to achieve state-of-the-art results.

3.1. Quadtree data structure

Quadtrees are principally used for compressing two-dimensional
information, like images, because their structure is easily adaptable to
the pixel representation. Indeed, a node represents a square area in
the image whose dimensions and location are directly related to its
depth and position in the tree. Therefore, the quadtree can be defined
by 𝑄 = {𝑙𝑖, 𝑥𝑖, 𝑦𝑖, 𝑑𝑖 | 𝑖 = {1, .., 𝑁}}. It is composed of a set of 𝑁
nodes, of which the 𝑖th is characterized by its depth level 𝑙𝑖, its centroid
coordinates (𝑥𝑖, 𝑦𝑖) and its value 𝑑𝑖, which correspond to the disparity
in our application.

In the rest of the paper, the quadtree will be separated by its
nodes’ depth level and noted 𝑄𝑙 = {𝑄 | 𝑙𝑖 = 𝑙}. Indeed, each depth
level of the quadtree can be seen as a sparse image at the given
resolution. The complete quadtree can be seen as a multi-resolution
sparse representation of the image as illustrated in Fig. 1.

The data compression within a quadtree structure can be quantified
as the ratio between the total pixels present in the initial image and the
count of leaf nodes in the quadtree, providing a metric for the degree
of data reduction achieved. A high compression ratio implies a highly
compressed representation.

3.2. Architecture

3.2.1. Network
The network illustrated in Fig. 2 is based on a U-Net [16] archi-
tecture and is composed of a dense encoder and a sparse decoder.
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Fig. 3. Training diagram of N-QGNv2. The Quadtree network learning is supervised
by stereo network and is also taking advantage of self-supervised monocular training
loss function. For more stability, the quadtree subdivision is guided by the reference
map during training.

The encoder can be either a ResNet [25], a MobileNetv2 [26] or any
other encoder used to predict dense monocular depth. The decoder
is a sparse adaptation of the dense equivalent proposed in [2]. It
is composed of sparse convolution blocks [10] which allows to only
compute information on active sites. The decoder will predict for each
layer 𝑙 the depth 𝑄𝑙 and the set of active sites 𝐴𝑙 for the next layer.
Therefore, the area to compute in the image will shrink after each layer
as the quadtree is getting constructed. Therefore, a large area of the
image will not have to be computed while reaching the last layer, which
permits to drastically reduce the computation cost.

3.2.2. Quadtree subdivision criterion
The goal of this method is to find the balance between compressing

the depth information and the loss of accuracy that results from it. This
is done by only keeping important details, such as areas where there
is a big difference in values. The method uses the standard deviation
of the pixel disparity values in the area and focuses on areas that are
close by, which are the most important for navigation. It also sets a
limit beyond which depth prediction is not reliable, and so the method
does not include details beyond that distance. The rule for deciding
which areas to keep is defined as follows:

(𝑝) =

{

1, 𝑖𝑓 𝜎(𝑝) > 𝜏 AND max(𝑝) < 𝜆,
0, 𝑒𝑙𝑠𝑒,

(1)

with 𝑝 = {𝑝𝑖 | 𝑖 = {1, .., 𝑁}} a set of 𝑁 pixels from the full resolution
disparity map representing a square area in the image. 𝜏 and 𝜆 are two
threshold values set before training. 𝜏 permits to adjust the accepted
deviation and 𝜆 the maximum depth. They both define the compression
ratio of the predicted quadtree. 𝜎 is the standard deviation defined by:

𝜎(𝑝) =

√

∑𝑁
𝑖=1(𝑝𝑖 − �̄�)2

𝑁
. (2)

This subdivision procedure is applied to a full resolution disparity
ap of reference to construct the optimum quadtree splitting. It results

n a set of multiscale binary maps injected to the sparse decoder during
raining to be used as active sites for layers with the corresponding
esolution. At inference time, the network would have learnt how to
onstruct the quadtree, thus the reference binary maps is no longer
njected in the decoder.

.3. Stereo supervision training

.3.1. Reference stereo network
It is undeniable that inferring disparity from two images produces
96

etter results than from one. As demonstrated in [3], it is possible to p
mprove the performances of monocular prediction if the learning is
one by distilling the information from a stereo depth network. By
ollowing this process, the approach uses as a training reference a
elf-supervised stereo depth network.

Stereo matching networks such as PSMNet [28] provide high quality
epth map prediction, but use very complex architectures requiring sig-
ificant computing resources. We came up with a lightweight solution
ased on monocular depth architecture [2] with a stereo input.

.3.2. Transfert learning
The network is trained in a teacher/student relation as described in

ig. 3. The teacher, or reference, network has been trained upstream
o predict dense disparity information from stereo images as presented
bove. The knowledge of dense depth information allows extracting
he optimum quadtree representation fitting to the criterion defined in
ection 3.2.2. This dual depth and quadtree subdivision masks, noted
espectively 𝑑∗ and ∗

𝑙 , are feeded to the N-QGNv2 network and used
s ground truth during training.

.3.3. Training stability
To stabilize the training, we impose the quadtree partitioning com-

uted by the reference instead of using the one predicted by the
etwork. This prevents the training from diverging or falling into a local
inimum. Indeed, since it is a sparse prediction, part of the information

s de facto unknown and cannot be evaluated. This guidance ensures the
etwork to be evaluated at the desired locations.

.3.4. Loss function
As illustrated in Fig. 3, the global loss function is composed of

hree terms. Jointly, they permit to learn the subdivision probability
𝑙 and sparse disparity 𝑄𝑙 for each 𝑙 representing the depth level of

he quadtree. Both 𝐴𝑙 and 𝑄𝑙 are sparse maps and are therefore only
valuated on there active sites, i.e. where the information is present.

The disparity prediction is supervised by the reference disparity map
∗ by minimizing the flowing logistic L1 loss function for each 𝑄𝑙:

𝑑 (𝑄𝑙) =
1
𝑁𝑙

𝑁𝑙
∑

𝑖=1
log(|𝑑𝑖 −𝐷∗

𝑖 | + 1). (3)

The quadtree subdivision probability map 𝐴𝑙 aims at minimizing the
binary cross entropy function to fit the reference 𝐴∗

𝑙 :

𝑞(𝐴𝑙) =
−1
𝑁𝑙

𝑁𝑙
∑

𝑖=1
(𝑎∗𝑖 log(𝑎𝑖) + (1 − 𝑎∗𝑖 ) log(1 − 𝑎𝑖)). (4)

The photometric reprojection loss function (noted 𝑟𝑒𝑝) is based on
the one presented in [2]. At each prediction scale, the dense depth
map is reconstructed from the quadtree sparse prediction using bilinear
interpolation.

Ultimately, the global loss function represents the sum of the three
previous terms averaged over the number of depth level of the quadtree
(𝐿 = 6 in our current approach). The three terms can be weighted by
the coefficients 𝛼, 𝛽 and 𝛾 during training. Setting the values to 𝛼 = 0.2,
𝛽 = 0.8 and 𝛾 = 1 have shown to perform particularly well.

𝑔𝑙𝑜𝑏𝑎𝑙 =
1
𝐿

𝐿−1
∑

𝑙=0
(𝛼𝑑 (𝑄𝑙) + 𝛽𝑞(𝐴𝑙) + 𝛾𝑟𝑒𝑝(𝐷𝑙)) (5)

.3.5. Depth pre-training
State of the art monocular methods have demonstrated excellent

ork at inferring dense depth information. Our method aims at pro-
ucting a compressed quadtree representation of the depth and is
herefore sparse. This specificity affects the training procedure, es-
ecially on the last layers of the decoder. Indeed, because of the
uadtree subdivision, only a small part of the image is evaluated at
his resolution, diminishing the efficiency of the optimization process.
o address this problem, the encoder is pretrained by a dense depth

rediction network, which is in this instance EPCDepth [7].
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Table 1
Depth estimation results on Kitti dataset [27] using the Eigen split evaluation [1]. Results per method are sorted by compression ratio and inference time (fps). For accuracy
comparison, dense methods are compressed into quadtree at equivalent compression ratio than quadtree-based N-QGN and N-QGNv2 (ours). Bold values are the best score of the
category and underlined are the second best.

Methods Compression
ratio

Input
resolution

fps↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE
Log↓

a1↑ a2↑ a3↑

MonoViT [17] 1 192 x 640 6.8 0.098 0.676 4.325 0.174 0.903 0.966 0.984
EPCDepth [7] 1 192 x 640 17.6 0.099 0.754 4.490 0.183 0.888 0.963 0.982
Monodepth2 [2] 1 192 x 640 41.4 0.108 0.820 4.693 0.188 0.884 0.961 0.981

N-QGN [9] 10 192 x 640 5.8 0.116 0.881 4.946 0.197 0.867 0.955 0.979
MonoViT [17] 10* 192 x 640 6.8* 0.099 0.659 4.468 0.176 0.896 0.965 0.984
EPCDepth [7] 10* 192 x 640 17.6* 0.116 0.731 4.624 0.189 0.873 0.962 0.983
monodepth2 [2] 10* 192 x 640 41.4* 0.107 0.756 4.729 0.188 0.879 0.960 0.982
Ours 10 192 x 640 41.9 0.110 0.764 4.723 0.188 0.874 0.960 0.982

N-QGN [9] 30 192 x 640 6.0 0.120 0.928 5.084 0.202 0.858 0.951 0.978
MonoViT [17] 30* 192 x 640 6.8* 0.101 0.682 4.642 0.180 0.888 0.963 0.984
EPCDepth [7] 30* 192 x 640 17.6* 0.119 0.749 4.784 0.192 0.864 0.960 0.983
monodepth2 [2] 30* 192 x 640 41.4* 0.109 0.763 4.846 0.190 0.873 0.958 0.982
Ours 30 192 x 640 46.0 0.113 0.792 4.783 0.189 0.871 0.960 0.983

Dense methods are geometrically converted into quadtree by applying the same criterion used to train ours. The conversion time has not been taken into account in the indicated
rame per second (fps) results.
ig. 4. Qualitative prediction overview. From left to right (a) the input image, (b) the stereo reference map used for training, (c) the Monodepth2 converted into quadtree, (d)
he N-QGN method and (e) which is ours. Results are displayed with a compression ratio of 10.
Table 2
Data distribution along the quadtree levels from the root nodes in 𝑄5 to the leaf nodes in 𝑄0 at two
compression rate. Bold values correspond to the highest percentage. The last column represents the quadtree
structure likelihood with respect to the stereo reference used for training.

Methods Comp. 𝑄5 𝑄4 𝑄3 𝑄2 𝑄1 𝑄0 L↑

N-QGN 10 7.6% 23.0% 21.6% 31.8% 13.1% 2.9% 0.830
MonoViT 10 15.1% 17.6% 20.2% 33.9% 9.9% 3.3% 0.881
EPCDepth 10 13.2% 23.0% 25.0% 28.5% 7.5% 2.8% 0.844
Monodepth2 10 15.8% 18.7% 19.5% 33.7% 9.6% 2.7% 0.878
Ours 10 12.0% 15.6% 21.6% 36.3% 11.6% 2.9% 0.884

N-QGN 30 18.2% 32.2% 22.0% 24.6% 2.4% 0.6% 0.835
MonoViT 30 29.9% 21.0% 36.4% 9.3% 2.0% 1.4% 0.906
EPCDepth 30 29.2% 29.4% 30.8% 7.6% 2.0% 1.0% 0.882
Monodepth2 30 31.1% 20.5% 36.5% 8.9% 1.8% 1.2% 0.903
Ours 30 25.6% 23.3% 36.9% 11.6% 1.7% 0.9% 0.909
q
a
t
c
m
b

i
c
e
p

4

4

t

. Experiments

This paper evaluates the performance of the new N-QGNv2 frame-
ork using experiments on the Kitti [27] and CityScapes [29] datasets.
he goal is to assess the generated quadtree’s quality based on depth
rediction and tree structure, and compare its inference speed to other
ense methods [2,7] and the previous version of N-QGN [9]. The ex-
eriments consider various factors that may impact prediction quality,
uch as different levels of compression, use of different encoders, and
wo image resolutions.

.1. Depth estimation

The goal of the network is to compress depth information effi-
iently using a quadtree data structure, resulting in a trade-off between
peed and accuracy. As presented in Table 1, the performance was
valuated at two compression rates of 10 and 30 and results were
ompared to state-of-the-art dense methods [2,7,17] and another direct
97

d

uadtree generation method N-QGN [9]. The new framework improved
ccuracy and speed compared to N-QGN and showed similar results
o dense methods despite a slight decrease in accuracy due to the
ompression. The recent method MonoViT [17], a transformer based
onocular depth estimation, is the one achieving the highest accuracy,

ut requires extra time to infer prediction.
Our proposed framework showed to be the fastest in terms of

nference speed. It is important to note that the time required for
onverting depth methods to quadtree representation was not consid-
red, making our framework a favorable choice for applications that
rioritize processing compressed information.

.2. Quadtree subdivision

.2.1. Data distribution
The quadtree compression implies distributing the depth informa-

ion across different levels of the hierarchical tree. Table 2 compares
ata distribution of the approach with N-QGN [9] and the three dense
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methods EPCDepth [7], monodepth2 [2] and MonoViT [17] for a given
compression ratio. The distributions are relatively similar, except for N-
QGN, due to its different subdivision criterion. However, all methods
have the last level 𝑄0 representing a small portion of the image, mostly
orresponding to edges.

The data distribution provides insights about the scene geometry.
he subdivision criterion, which is based on disparity value deviation
nd applies a threshold to the maximum depth, separates the informa-
ion in the quadtree. The first levels 𝑄5 to 𝑄3 mainly represent flat
reas with small local deviations, while the last levels 𝑄2 to 𝑄0 mainly

represent edges in the image, which are areas with high uncertainty. At
high compression rates, these last layers are mostly ignored and only
represent a small percentage of the depth map information.

4.2.2. Subdivision prediction
In this approach, the network predicts both the subdivision and the

depth. The precision has been evaluated and is oscillating between 85
and 90% of likelihood to the reference quadtree, as presented in the last
column of Table 2. It is computed based on the following equation:

𝐿 = 1
5

5
∑

𝑖=1

(

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1

(

1 − |�̄�𝑖𝑗 − 𝑎∗𝑖𝑗 |
)

)

(6)

with �̄�𝑖𝑗 and 𝑎∗𝑖𝑗 the 𝑗th element of the binary activation maps of
espectively the prediction 𝐴𝑖 and the reference 𝐴∗

𝑖 , which defines
he quadtree structure. The equation balances the influence of each
rediction by considering each 𝐴𝑖 equally. A randomly constructed

quadtree would score a 50% correspondence with this metric.
These results show the network’s ability to predict a coherent

quadtree partitioning. Predicting the structure, instead of deducing it
as in previous work, improves the results. The method with the highest
compression rate slightly improves the likelihood, due to its compressed
information resulting in mostly zero values in the last layer predictions,
which corresponds to the area of highest uncertainty.

4.3. Qualitative results

The results of the new framework are compared to the reference
map, monodepth2, and N-QGN in Fig. 4. The EPCDepth method is not
included due to the higher quadtree structure likelihood achieved by
monodepth2, as shown in Table 2. The black lines in the figure repre-
sent the borders of each node to enhance readability of the quadtree
structure.

Three images are presented to visualize the performances of the
method under different scenarios. Some parts of the scene, such as the
road, cannot be highly compressed due to the geometry and presence
of a vanishing point. On the other hand, other parts such as obstacles
or fronto-parallel surfaces can be highly compressed as they have low
deviations in values.

The predicted quadtree structure by our approach offers a visually
coherent representation with respect to the reference map. Some incon-
sistencies can still be noted on bushes in the second image, as it seems
to be the case for most methods. Compared to N-QGN, our prediction
is smoother and less prone to over-subdivising nodes. Ultimately, it is
challenging to determine whether the result was directly generated by
a Quadtree Generating Network or constructed from dense information.

4.4. Runtime

The runtime experiments have been conducted on a computer
equipped with a GPU Nvidia Quadro P620 and a process Intel Core
i7-9850H CPU at 2.60 GHz × 12. Although this setup may not reflect
the conditions of embedded systems, it provides a basis for comparison
between dense and quadtree-based methods. Part of the results were
presented in Table 1 along side the corresponding accuracy metrics.
98

The study has been extended to more scenarios to examine the runtime v
Fig. 5. Runtime with respect to the encoder, compression ratio and input image
resolution. The label values on the point represent the compression ratio.

Table 3
Results on the CityScapes dataset [29].

Methods Comp. Abs Rel↓ Sq Rel↓ RMSE
Log↓

a1↑ a2↑ a3↑

MonoViT 1 0.207 2.297 0.297 0.622 0.878 0.954
EPCDepth 1 0.322 4.393 0.451 0.447 0.739 0.873
Monodepth2 1 0.212 2.749 0.323 0.628 0.849 0.935
Ours 17 0.250 3.041 0.359 0.529 0.824 0.924

based on the choice of encoder and input image size, as depicted in
Fig. 5.

Comparison with N-QGN [9] is not included in the Fig. 5, as it was
demonstrated in Table 1 the new framework is faster. This is due to
the improvements made to both the architecture and implementation.
The new framework predicts the subdivision of nodes in the quadtree,
which is faster than the previous solution that calculated it geometri-
cally from partial data. Besides, the framework has been implemented
with the SpConv library [30], which provides a highly optimized sparse
onvolution solution and is faster than the previously used SparseC-
nvNet [10]. The dense-to-sparse operation was also optimized, as it
reviously ran slow due to the re-indexing procedure.

Fig. 5 highlights the trade-off associated with quadtree solutions,
hich offer faster inference at the cost of lower accuracy. The speed
ains from solutions with a ResNet18 encoder are minimal at low
esolution. With a QGN architecture, the speed gain is solely attributed
o the sparse decoder, as the encoder remains unchanged compared to
ense methods. Therefore, to evaluate the impact of the encoder on
nference runtime, the lighter Mobilenetv2 [26] was used. As expected,
he inference was faster, reaching 50 fps with our framework at low
esolution, but at the cost of a drop in accuracy.

.5. CityScapes dataset evaluation

It is proposed to extend the study to the CityScapes dataset [29],
hich contains high-resolution images of urban street scenes cap-

ured in various cities across Germany. To assess the robustness of
he approach, it will not be fine-tuned on the CityScapes data but
ather be directly evaluated using the pre-trained weights from the
itti dataset [27]. The results presented in Table 3 demonstrate the
apability of the method to achieve results comparable to CNN dense
pproaches. In this case, the compression ratio has little impact on
he depth prediction accuracy, with our compressed method yielding
etter results than the dense EPCDepth [7] on this particular dataset.
onoViT [17] stands out for delivering superior results, leveraging a
ision transformer architecture, a recognized outperformer compared
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to CNN-based models. This outcome sparks discussions regarding the
potential development of a quadtree generating network tailored for
transformers.

It can be noted, the compression rate did not remain consistent from
one dataset to another, with the new results being twice as compressed
as those obtained on the Kitti dataset. This can be explained to changes
in scene geometry, as the compression rate is closely linked to it.
Similarly, a change in camera orientation, or focal length, may also
impact the compression rate by allowing for better compression of
particular areas such as the ground.

5. Conclusions

In this paper, we presented a method to efficiently infer a direct
quadtree representation of the scene. It allows focusing the interest
on the most significant parts of the images to reduce the computing
cost, with a minimal loss of accuracy. Compared to the previous similar
method N-QGN, the new framework is able to infer a faster and more
accurate quadtree. It was made possible by predicting the proper way
to construct the quadtree, instead of computing it based on partial
depth data. The new implementation has also drastically reduced the
inference time. The method is also proposing an interesting trade-off
between speed and accuracy, especially for systems interested to work
with depth represented as quadtree. The method is easily adaptable to
any other architecture and consists of replacing the dense decoder with
a sparse alternative.

The conducted experiments reinforced the potential of quadtree
generating networks and the benefits of using sparse convolutions to
reduce computation cost without significant loss of accuracy. Even
if the gain is slight at low resolution, it becomes genuinely interest-
ing with bigger input images. The network’s capability to efficiently
predict quadtree node subdivisions opens up possibilities for more
advanced subdivision criteria, such as taking into account the semantic
information of the scene to determine depth resolution based on class.

Comparative analysis with transformer networks showcased our
method’s strength in faster inference. However, the distinct accuracy
gap prompts contemplation about its compatibility with this novel
architectural setting. While this transition is not straightforward, we
hold strong confidence in the feasibility of such transformation.
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