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Abstract

In this paper, we propose a class of non-parametric classifiers, that learn arbitrary boundaries
and generalize well.

Our approach is based on a novel way to regularize 1NN classifiers using a greedy approach.
We refer to this class of classifiers as Watershed Classifiers. 1NN classifiers are known to
trivially over-fit but have very large VC dimension, hence do not generalize well. We show
that watershed classifiers can find arbitrary boundaries on any dense enough dataset, and,
at the same time, have very small VC dimension; hence a watershed classifier leads to good
generalization.

Traditional approaches to regularize 1NN classifiers are to consider K nearest neighbours.
Neighbourhood component analysis (NCA) proposes a way to learn representations consis-
tent with (n—1) nearest neighbour classifier, where n denotes the size of the dataset. In this
article, we propose a loss function which can learn representations consistent with watershed
classifiers, and show that it outperforms the NCA baseline.

1 Introduction

Deep learning classifiers have obtained state-of-the-art results on the classification problem, but they pre-
dominantly use a parametric linear classifier as the classification layer. At the opposite end of the spectrum
of classifiers to the linear classifiers lies non-parametric classifiers, such as K-Nearest-Neighbours [Hastie et al.
(2009). To our knowledge, non-parametric classifiers and their counterpart loss functions have not been used
recently for classification.

However, non-parametric class of classifiers form an aspect of ML systems with a lot of flexibility to learn
arbitrary boundaries. It is known that 1NN classifiers trivially overfit the data. Traditionally, one uses K
Nearest Neighbors to regularize this. |Goldberger et al. (2004]) proposes a loss function — Neighbourhood
Component Analysis (NCA), to learn KNN classifiers. Is there a better way to regularize 1NN classifiers?

Contributions: (i) In this article, we propose a novel way to regularize 1NN classifiers using a greedy
approach. This class of classifiers are referred to as Watershed Classifiers. (ii) Interestingly, the only
hyperparameter for this class is N_SEEDS which directly controls the VC dimension (see section. Moreover,
even with a small VC dimension the watershed classifier can learn arbitrarily complex boundaries, assuming
that the data is dense enough. This ensures a very small generalization gap theoretically. (iii) To suitably
learn the embedding, we also propose a novel loss function. Although the loss function is highly non-convex,



SGD approaches worked surprisingly well, as we show in section (iv) As delineated in section |5 the
proposed classifier surpasses NCA in performance. To the best of our knowledge, this represents the first
occurrence in which a non-parametric classifier matches or surpasses the accuracy of a linear classifier.

2 Related Works

NCA and Metric Learning: As stated in [Goldberger et al.| (2004)), NCA learns the representations
consistent with KNN classifiers. However, the approach does not scale well to large datasets. In [Wu et al.
(2018) the authors make suitable modifications to scale this approach to large datasets. Nevertheless, NCA
based approaches usually do not lead to state-of-the-art results when compared to linear classifiers. Hence,
to our knowledge, NCA based approaches have not been widely used in the context of classification in favour
of linear classifiers. However, these have been widely used for metric learning. [Teh et al.| (2020) proposes
ProxyNCA++ which uses proxy points in the embedding space, based on [Movshovitz-Attias et al.| (2017). In
this article, our focus is mainly on the classification aspect and do not consider the metric learning as an
objective.

Relation with Watersheds: Watersheds have been widely used for image classification and related tasks
before the deep learning approaches. To our knowledge, the authors in [Falcao et al.| (1999)); |Cousty et al.
(2010; 2009) are the first to propose watersheds on edge-weighted graphs. The authors in (Challa et al.[(2019)
propose to use watersheds for classification, but do not learn the representations. In |Challa et al.| (2022),
the authors try to learn representations consistent with watershed using Triplet loss as a proxy loss function.
As the authors state, their method depends heavily on the graph. In|Turaga et al.| (2009); |Wolf et al.[ (2017)
the authors propose novel loss functions to learn watershed segmentation for images. In [Sanmartin et al.
(2019; 2021)) the authors propose (directed) probabilistic watersheds which assumes an underlying KNN
graph. All these approaches work for segmenting images, but do not fare well for other tasks. In contrast,
we provide a complexity analysis (section , propose a more consistent loss function (section to learn the
representations for multi-class classification. Our approach implicitly learns the graph, and works for other
tasks than image segmentation.

Ultrametric Learning: Closely related to learning watersheds is the problem of learning ultrametrics.
Learning ultrametrics is related to unsupervised clustering of data, and there exists a large body of work
Ackerman & Ben-David| (2016)); Dasgupta) (2016)); [ Yarkony & Fowlkes| (2015]) exploring the links. In|Chierchia
& Perret| (2019) the authors assume an underlying weighted graph and propose a cost function to learn the
closest ultrametric. Most of the related approaches assume that the underlying graph is known. In contrast,
the loss function proposed here implicitly learns a graph, specifically a minimum spanning tree, for the
purposes of classification.

3 Watershed Classifier (a.k.a. greedy 1-NN classifier)

Let D = {(x;,y(x;)} denote the dataset where x; € R? and y(z;) denote the corresponding labels. We
assume that D consists of both labelled and unlabelled samples. So, we assume that y(x) € {0,1,--- , K}
(classes) for labelled samples and y(x) = —1 for unlabelled samples. Remark: For developing the theory,
we assume y(x) € {0,1} (binary classification) for simplicity. In practice, we extend this to multi-class using
one-vs-rest approach.

We implicitly assume a complete graph on D — Gp = (V, E, W), where (i) each vertex corresponds to
the data point, V = {x;} (ii) F = V x V and (iii) W : E — R" denotes the edge-weights which are
restricted to be positive and denote the dissimilarity between the points. Unless otherwise specified, we use
W (x;, x;) = ||x; — x;|| as the measure of dissimilarity.

The aim of the classifier is to assign labels to all the unlabelled points — {x | y(x) = —1}. Given any
arbitrary labelling on the entire dataset — g(x) € {0,1,--- K}, define MARGIN as follows:

MARGIN = min =~ W(x;, x; 1
(@) #i(x;) (@i, @) (1)
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Figure 1: Tllustrating the labelling preference using watershed classifier. (a) illustrates an arbitrary set of
data points. dots indicate class 0, dots indicate class 1. The unlabelled points have no colour. Few

selected edges with corresponding edge-weights are included. (b) and (c¢) indicates two different labelling.
Observe that MARGIN of (b) is 0.5, while margin of (¢) is 1. Hence (c¢) is considered a better labelling than
(b) as per the MAXIMUM MARGIN PRINCIPLE.
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Figure 2: Comparison of Watershed Classifier with Linear Classifier and Decision Tree. Considering a simple
toy example, and a fixed VC-dimension of 3, observe that watershed classifier can find the right boundary.

that is, the edge-weight between the “closest” pair of points with different labels.

The MAXIMUM MARGIN PRINCIPLE then states —

The right labelling for the unlabelled points is obtained from the labelling with the largest
MARGIN.

fig. [T illustrates the preference of the labelling with respect to the MAXIMUM MARGIN PRINCIPLE. The above
definitions are straight-forward extensions to general edge-weighted graphs of the margin and maximum
margin principle defined for support vector machines [Scholkopf & Smola| (2002)).

The above classification rule is the same as greedy-1NN-classification: There exists a simple rule
to obtain the maximum margin labelling — From the set of unlabelled points, identify the point which has
the smallest edge-weight to the labelled set and label it accordingly. And repeat this step until all points are
labelled. This is the same as performing greedy-1NN-classification. Remark: Ties are broken arbitrarily.

In the example of fig. [La] — (i) We first label g as blue, (ii) label @1 as red (iii) We first label @15 as blue,
(iv) label @13 as red. This gives the maximum margin labelling.



Table 1: Comparison of Watershed Classifiers with Linear Classifier and Decision Trees

PROPERTY WATERSHED CLASSIFIER LINEAR CLASSIFIER DEcisioN TREES

COMPLEXITY N_SEEDS Number of features Number of Splits

NON-LINEAR BOUNDARIES Yes No Axis-Aligned-Steps

COMPUTATION O(nlog(n)) O(n) O(n)

TRAINING Building a space partition- Fitting the parameters of Identify the best splits

ing data structure. the hyperplane. for each feature.

INFERENCE FOR 1 SAMPLE 1-Nearest-Neighbor Classification rule Parsing the decision
tree

INFERENCE FOR n SAMPLES  Minimum Spanning Tree Classification rule Parsing the decision
tree

INFERENCE DEPENDS ON  Yes No No

OTHER SAMPLES

Notation: Observe that the data is assumed to contain both labelled and unlabelled samples. To dif-
ferentiate between these, we refer to the labelled samples as SEEDS. Also, we implicitly assume that there
exists at least one labelled sample per class in the set of SEEDS. Let N_SEEDS denote the number of labelled
samples in each class. Remark: Although it is not necessary that the number of seeds be the same for all
the classes, we assume so for the sake of simplicity.

3.1 Complexity Analysis of Watershed Classifier:

Note that watershed classifier has no trainable parameters and has only one hyperparameter N_SEEDS. In
this section, we analyse the complexity of the watershed classifier.

Recall that VC-Dimension is defined as the size of the largest set of which the algorithm can shatter [Shalev-
Shwartz & Ben-David| (2014)). We then have the following result —

Theorem 1 Let {x;} denotes the set of data points and Gp = (V, E, W) denotes the complete graph. Assume
that W (x;, ;) # W(xk,z;) for alli # k or j # 1. That is, all edge weights are assumed to be distinct.
Let the number of classes be 2 (binary classification). Then, VC-dimension of the watershed classifier with
N_SEEDS is 2 x N_SEEDS.

Proof 1 The proof follows from the fact that — (a) if all edge-weights are distinct, then the 1-Nearest Neigh-
bour is unique for all points and (b) Once the seeds are fized, then the labelling is unique.

Let k denote the number of points such that all possible configurations in {0,1}* can be obtained using the
watershed classifier. Observe that k < 2 x N_SEEDS since, when the 2 X N_SEEDS are fixed, the labels of the
other data points are fized and unique. And it is easy to see that all possible configurations can be obtained
when k = 2 X N_SEEDS. Hence, the VC dimension is 2 X N_SEEDS.

Although the above result is relatively simple, there are a few significant implications - (i) The only hyper-
parameter N_SEEDS directly control the VC dimension, and hence generalization gap. (ii) If the features
are dense enough, then by simply taking N_SEEDS = 1 can give very good generalization bounds. Apart
from this the watershed classifier also exhibits several properties which are different from any of the existing
classifiers.

Comparison with existing classifiers: table [I| shows the summary of the comparison of watershed
classifiers with linear classifiers and decision trees. Several properties of the watershed classifier are inherited
from the nearest-neighbour classifier. Training involves building a space partitioning data structure for
efficient similarity search |Dong et al.| (2011)); |Johnson et al.| (2021)). Inference for a single sample is based on
a simple 1-nearest-neighbor search.



Watershed classifier differs from nearest-neighbours for inference on several samples. Note that Linear
Classifiers, Decision Trees and KNN classifiers do not distinguish between a single sample vs multiple sample
inference. In case of watershed classifier, one should classify the closest points before classifying other points.
This is similar to the active learning framework Xie et al.| (2021) except that 1NN rule provides an efficient
way and removes the high computational training of the models.

Regarding complexity, it is known that nearest neighbour approaches are prone to overfitting, with 1NN
classifier which overfits in a single shot. Traditional approaches use KNN to reduce the complexity. Wa-
tershed classifier, unconventionally, uses a greedy approach to reduce the overfitting. This approach to
reducing complexity is probably the key reason why watershed out-performs linear classifiers when working
with neural networks (See section [5| for details).

Linear classifiers have a complexity which scales as O(d), where d is the number of features. However, the
complexity of Watershed classifier does not depend on the embedding dimension. Decision stumps (Decision
Trees with a single split) only search for axis aligned splits H Interestingly, the VC-dimension of a decision
stump is 2, which is equal to the VC-dimension of the Watershed classifier with N_SEEDS = 1. However,
Watershed classifier is capable of having non-linear boundaries.

Regarding computational requirement, watershed classifier requiresﬂ O(nlog(n)) to classify n points. How-
ever, both linear classifier and Decision Trees have a lower complexity (O(n)) comparatively.

A property which makes watershed classifier unique compared to the rest, is the fact that the labelling
actually depends on density of the samples. In presence of very high noise in the features, Watershed
classifier does not work well. In comparison, both linear models and decision trees are capable of handling
noisy inputs comparatively well. However, this issue is easily rectified when using watershed classifier along
with neural nets (see section .

fig. 2] illustrates the difference between Watershed classifier with Linear and Decision Tree Classifiers. Even
with the small VC-dimension of 3, we have that watershed classifier can identify the non-linear boundary.
(See appendix [B| for more details about the visualization of the boundaries).

4 Learning Neural Networks to get Watershed Representations

Recall that the Watershed Classifier in section [3] does not have any trainable parameters and hence is not
powerful enough to handle highly noisy datasets. To rectify this issue, in this section, we provide a way to
combine the Watershed classifier with neural nets. Formally, we wish to solve

arg max Acc(Watershed Classifier(fp(X)) (4)
o

Here fp denotes the neural network architecture which learns the representations, X = {x;} denotes the
input data-points. In words — we wish to learn the representations of the data such that when watershed is
applied we get as large accuracy as possible.

Watershed Loss Function: We propose a corresponding loss function described in algorithm [1] to train
the network fp. Computing the loss function consists of three stages — (i) Propagating the labels (ii) Selecting
the “closest” correctly labelled sample from each class (iii) Computing the cross-entropy loss with respect to
the closest labels.

(i) Propagating watershed labels: Let X = {x;} denote the input data-points, and fy(X) denote the
representations of the data-points. First select a random subset of points of size N_SEEDS from each class.
Using this subset of points as seeds, propagate the labels using greedy 1-Nearest-Neighbor approach.

While it is possible to search for non-axis aligned splits [Heath et al.| (1993, most of the current state-of-art approaches rely
on axis-aligned splits

2Greedy 1NN search is similar in complexity to constructing a Euclidean minimum spanning tree. [Arya & Mount| (2016
shows that e—approximate EMST for n points can be found in O(nlog(n) 4 (¢~ 2log?(1/€))n time.



Algorithm 1 Computing Watershed Loss

Input: Representations X_REP = {fp(x;)}, Labels {y;}, Hyper parameter N_SEEDS

For each class, select N_SEEDS points randomly from X _REP. We refer to this set as X_ SEEDS.
Propagate the labels from the X_ SEEDS to the rest of data points.

Let X__CORRECT denote the set of points which have the correct labels. (Remark: Note that the
propagated labels may/may-not match with the input labels y;. Clearly, X_SEEDS C X _CORRECT.)

5: Further, let X _CORRECT__L denote the subset of correctly labelled point with label L. Remark: Thus
we have,

X__correcT = | JX__CORRECT L (2)
L

6: Let INN(«;, X_CORRECT_ L) denote the 1 nearest neighbor of the point x; in X_CORRECT L. For
each data point x; compute the probabilities and the corresponding loss as -

@i 1nn,. = INN(fo(x;), X_CORRECT_L \ {fo(x:)})

pi,L < exp (—|[fo(x:) — fo(xi1nn,L)]])

b (3)
Loss(x;) = Zf[yi = K]log(pi,x)

k=1

where I[.] denotes an indicator function.
7: return sum of losses for all data points.
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Figure 3: Illustrating the computation of watershed loss. (a) shows the toy representations obtained from fy
along with the ground-truth labels. (b) shows the seeds selected from each class. We assume N_SEEDS = 1 in
this case. (c) illustrates the propagation of the labels. Note that x4 has a ground-truth label of red, but is
labelled blue with label propagation. All the other labels match the ground-truth. (d) identifies the correctly
labelled samples. (e) identifies closest samples which are correctly labelled. In this case, for x4, the closest
blue sample is 1 and the closest red sample is x3. Note that, one should compute this for all samples. We
only choose z4 here for illustration. Finally, we compute the loss for each sample using eq. @ and eq. .

(ii) Selecting the closest correctly labelled sample from each class: Note that the propagated
labels may or may not match the true labels. Consider only the subset of points which are correctly
labelled — X__CORRECT. Also consider the subset of points which are correctly labelled and has a class L —



X__CORRECT__L. For each data point, we select the closest point as follows:

Ziinn, = INN(fo(xz;),X CORRECT L\ {fp(x;)}) (5)

Here 1NN denote the computation of the 1-nearest-neighbor in the set X_CORRECT__L excluding itself

(fo(w:)).

(iii) Computing the loss: Finally, the loss is computed akin to the cross entropy loss. We construct the
probabilities from the Euclidean distances as

o exp(=lfo(@i) = fo(iann,n)l]) 6
rut Yoies exp (= [ fo(@i) = fo(@i 1nni)lI) 0

and then construct the cross-entropy loss based on these probabilities:

Loss(x;) Z Ify; = k] log(pik) (7)

where K denotes the number of classes.

A simple illustration of the computation of the loss function is given in fig.

Intuition behind the loss function: Why does the above loss function learn representations consistent
with watershed classifier? — Intuitively, at each stage of optimizing the loss function we — (i) make sure that
the correct propagation is preserved and (ii) wrong propagation of labels is corrected. This ensures that the
labels are correctly propagated. So, the correct propagation from the seeds can be considered an invariant
which only improves with learning. The experiment in appendix [A] verifies this aspect of the loss function.

4.1 Training fy using watershed loss

Watershed loss is Non-Convex: A generic rule of thumb when designing a loss function for neural
networks is — replacing the neural-net with a simple matrix should result in a convex loss function. This
holds true for almost all known widely used loss functions. However, the watershed loss function which is
proposed here does not have this property. Interestingly, we empirically find that stochastic gradient descent
(SGD) performs surprisingly well on this loss function.

Does not distribute over samples: Almost all the loss functions — £(.,.) distribute over the samples,

e., they can be written as — > . ¢(fgp(x;),y;). This does not hold true for watershed loss. Hence, the
batch size B plays a crucial role in training the network fy. In practice — we first draw N random samples
from the dataset, each with size B — {X;, = {=x,; }j LY = {yb, J)}j 1} and train fy using the loss

L(6) = (1/N) Z i, Watershed Loss(fo(Xs,), y»,) where the Watershed Loss is obtained using algorlthml
and fo(Xp,) = {fo(z) |z € X3, }.

Evaluating fy trained using watershed loss To be consistent with the training procedure, we evaluate
the network trained by — (i) First select N random samples of size B each — {Xy, = {@s, ;}7 1, =
{Yn,.5) le} (ii) For each test sample ;" we perform 1NN classifier on each of the sample B and predict the
label of alr;;Ir The final label is taken to be the most frequent label in the predictions for each of the samples.

5 Experiments and Analysis

The watershed classifier is unique in comparison to other classifiers in two major ways — (i) Its representational
capacity is close to INN; i.e., it can learn arbitrarily complex boundaries and (ii) The generalization is however
much better than 1NN, and is in-fact comparable to the linear classifiers. In this section, we perform simple
experiments to verify these properties. Remark: The code to generate these results is provided in the
supplementary material.



Table 2: Watershed Classifier vs NCA vs Linear Classifier on FASHIONMNIST. fy is taken to be the linear
embedding with EMBED_DIM = 4 or 16.

WATERSHED CLASSIFIER NCA LINEAR
CLASSIFIER

N SEEDS 1 5 10 20 40 100

EMBED- BATCH-

DIM SIZE

4 1020 0.7802 0.8211 0.8272 0.8296 0.8320 -
2040 0.7960 0.8265 0.8288 0.8300 0.8294 0.8307 0.4375 0.8120
4090 0.8078 0.8252 0.8256 0.8304 0.8296 0.8305

16 1020 0.8509 0.8716 0.8739 0.8769 0.8792
2040 0.8533 0.8743 0.8768 0.8792 0.8838 0.8809 0.6969 0.8600
4090 0.8474 0.8736 0.8740 0.8807 0.8812 0.8815

Table 3: Watershed Classifier vs NCA vs Linear Classifier on CIFAR10,CTFAR100, FASHIONMNIST. fy is
taken to be three different types of architectures — M3LC, MR18, M3FF. Observe that while on FASHION-
MNIST all approaches give similar results, Watershed classifier outperforms NCA and works comparably
to Linear classifier on CIFAR10/100 datasets.

DATASET MODEL WiIpTH WATERSHED CLASSIFIER NCA LINEAR CLASSIFIER
FasuioNMINIST M3LC 256 0.9229 0.9164 0.9218
M3LC 64 0.9120 0.9030 0.9089
M3FF 256 0.8918 0.8725 0.8799
M3FF 64 0.8801 0.8737 0.8760
MR18 0.9356 0.9217 0.9246
CIFARI10 M3LC 256 0.8616 0.8040 0.824
M3LC 64 0.8287 0.7359 0.789
M3FF 256 0.6268 0.5585 0.6128
M3FF 64 0.5491 0.5012 0.5439
MR18 0.9191 0.8512 0.870
CIFAR100 M3LC 256 0.5788 0.3199 0.5478
M3LC 64 0.4899 0.2602 0.4702
M3FF 256 0.3208 0.1841 0.3290
M3FF 64 0.2516 0.1603 0.2517
MR18 0.6989 0.3494 0.6066

5.1 \Verifying Representational Capacity of Watershed Classifier

Experiment Design: Consider the popular SPIRAL DATASET where we have a parameter N_REV which
dictates how many times the spiral revolves around the origin. Hence, larger the N_REV, larger the complexity
of the boundary. Assume that the embedding network fy is a matrix of size 2 x EMBED_DIM. We then
investigate — What is the minimum width EMBED_DIM required to get 100% training accuracy? We expect
that if the classifier has large representational capacity, then EMBED_DIM would be small. Otherwise, it would
be large. As baselines, we consider the NCA loss |Goldberger et al.|(2004]) and the standard linear classifier
with the same fj.

We measure the best loss one can achieve with different values of EMBED_DIM. The loss for watershed is the
one computed in algorithm |1} loss for NCA is computed using the loss proposed in |Goldberger et al.| (2004),
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Figure 4: Representation Capacity of Watershed Classifier.

and the loss for linear classifiers is computed using the binary cross-entropy loss. We consider two values of
N_REV — 4 and 10.

Observations: The results are plotted in fig. [l Illustrations can be found in appendix [C} Firstly, as it
is intuitive, with large enough EMBED_DIM, one can get the loss to arbitrary small. However, for N_REV = 4
NCA and Linear classifiers require a high width. But watershed classifier can obtain negligible training loss
even with EMBED_DIM = 2. For N_REV = 10, we could not reach 0 loss, even with EMBED_DIM = 5000 for both
NCA and Linear classifiers. But, watershed is able to fit the data with EMBED_DIM = 2.

This shows that there is a very high representational capacity for watershed classifier. Indeed, it is known
that INN classifiers can trivially overfit the dataset, and watershed classifier inherits this property from 1NN
classifier. However, the only caveat is that — We assume that the density of the points is high, as is the case
with the SPIRAL DATASET considered here.

5.2 Generalization for Linear Embedding

Experiment Design: To investigate the generalization performance of the watershed classifier, we consider
the case where fy is a linear embedding, and use FASHIONMNIST dataset. We consider two values of
EMBED_DIM — 4 and 16. As baselines, we compare the performance with NCA and linear classifiers. table
shows the results obtained.

Observation 1 — Dependence on N_SEEDS: Recall that N_SEEDS controls the complexity of the watershed
classifier. Hence, for very small EMBED_DIM, having a high complex classifier is expected to increase the
accuracy. This is observed in table [2| — where, with EMBED_DIM = 4, we obtain a score of ~ 0.79 with
N_SEEDS = 1, and increases to ~ 0.83 with N_SEEDS = 100. For comparison, the linear classifier obtains a
score of 0.81 with the same EMBED_DIM.



Observation 2 — Dependence on BATCH_SIZE: Watershed classifier expects that the representations are
dense to work effectively. When training large values of BATCH_SIZE, this can be achieved efficiently, and
hence we see a slight increase in the score when considering EMBED_DIM = 4 and increasing the BATCH_SIZE
from 1020 to 4090. However, for a higher EMBED_DIM = 16, there is not much effect, since dense manifolds
can be learned much more effectively with larger EMBED_DIM.

Observation 3 — Comparison with NCA: Both NCA and Watershed classifier learns representations
consistent with KNN classifiers. However, the strategy for regularization is different — NCA considers K
nearest neighbours while Watershed considers a greedy approach. table [2 shows that greedy regularization
is clearly superior to the alternate of considering K nearest neighbours.

Tuning N_SEEDS, we achieve the best score of 0.83 with EMBED_DIM = 4, and 0.883 with EMBED_DIM = 16. In
comparison, NCA achieves 0.44 and 0.69, respectively. This illustrates two facts about watershed classifier —
(i) Since the VC dimension is low, the generalization is much better and (ii) While both NCA and Watershed
Classifier requires the representations to be dense, Watershed classifier can also work effectively with lesser
dense representations. To see this, consider the difference between the scores — we get a difference of 0.4 for
EMBED_DIM = 4 and 0.18 for EMBED_DIM = 16.

Observation 4 — Comparison with Linear Classifiers: Linear Classifiers and Nearest Neighbour
classifiers can be considered as two opposing strategies for classification |Hastie et al.| (2009). Since Watershed
classifier is inherited from Nearest Neighbour classifier, these classes share a lot of properties. On the other
hand, while Linear classifiers try to separate the classes with linear boundaries, Watershed classifiers try to
obtain dense representations so that the margin between the classes is maximized. Interestingly, although
Watershed classifier outperforms the Linear classifier by a few points, we observe that both Linear classifiers
and Watershed classifier perform similarly well.

5.3 Performance with large embedding networks fy

Finally, we validate the watershed classifier with a large embedding networks fy in this section. More details
about the experiments in this section can be found in appendix

Experiment Design: To maintain diversity we consider three different architectures — (i) M3LC — A 3
layer convolution network, (ii) M3LFF — A 3 layer fully connected feed-forward network, (iii) M3LR18 —
Resnetl8 architecture modified for CIFAR datasets. Further, we also use widths 64 and 256 for M3LC
and M3LFF networks. We use 3 datasets — FASHIONMNIST, CIFAR10 and CIFAR100 for comparison.
Results can be found in table [3l

Observations: Most of the observations are consistent with the linear embedding networks — Watershed
works on par with the linear classifiers, but out-performs NCA by a large extent. Thus, providing further
evidence that greedy regularization of 1NN is more effective than KNN approaches.

Conjecture on complexity of Linear Classifier: It is surprising that linear classifiers work on par
with greedy regularization of 1NN classifiers, although coming from two opposite ends of the spectrum
Hastie et al.| (2009). While the linear classifier has VC dimension which scales with the EMBED_DIM, the
watershed classifier has a VC dimension of N_SEEDS. Specifically, we observe that considering N_SEEDS to
be between 1 and 5 watersheds perform similarly well to linear classifiers. Thus, we conjecture that — The
complezity of Linear classifiers actually scale with the number of classes and not with EMBED_DIM. The reason
we expect is that — When learning a linear classifier, we are actually searching for a subspace with dimension —
N_CLASSES. However, the VC dimension does not consider the optimization aspect and hence over-estimates
the complexity of the classifier.
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6 Conclusion and Future work

Parametric linear classifiers have largely been used with deep networks to obtain state-of-the art results. In
comparison, to our knowledge, Non-parametric methods such as KNN do not obtain results comparable to
linear classifiers. Neighbourhood Component Analysis (NCA) aims to learn the embedding consistent with
KNN classifier. However, as we argue in this article — It is better to regularize 1NN classifier using greedy
approach rather than K-Nearest Neighbour approach.

Using the greedy regularization, we propose Watershed Classifiers. Watershed classifiers have a single hyper-
parameter — N_SEEDS, which control the VC dimension. We illustrate that, even with small VC-dimension,
we can fit arbitrarily complex boundaries, assuming the high enough density. We propose a loss function in
algorithm [I] to train the embedding. Interestingly, we observe that SGD approaches work very well, even
if the loss function itself is highly non-convex. In section section [5] we show that watershed classifiers out-
perform the NCA for classification, and either outperform or match the performance of linear classifiers. To
our knowledge, this is the first time a non-parametric classifier could match or outperform the parametric
linear classifier.

7 Broader impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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A Verifying the Watershed Loss Function

Epoch: 10 No. Cross Edges : 9 Epoch: 100 No. Cross Edges : 7 Epoch: 1000 No. Cross Edges : 2
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Figure 5: Illustrating that the loss function in section |4| indeed is consistent with greedy 1NN propagation.
The purple dots indicate class 1 and the yellow dots indicate class 0. Observe that as training progresses we
have that number of cross-edges in the minimum spanning tree reduces. Note that greedy 1NN propagation
is similar to the Prim’s algorithm for constructing a minimum spanning tree. And hence the number of
cross-edges provide a good measure on the efficacy of propagation.

Here, we empirically verify that the loss function in section [f] improves the correct label propagation.

Experimental Setup: Consider 20 arbitrary points on a 2d plane consisting of both class 0 and class 1.
To experimentally verify the loss function, we directly optimize the co-ordinates of the points. We consider
the simple SGD optimizer with learning rate 0.1 and no momentum.

Measuring the efficacy of propagation: To measure if the propagation is happening correctly, we look
at number of cross edges — edges for which the end-points do not have the same labels, on the minimum
spanning tree. Note that Greedy-1NN propagation is similar to the Prim’s algorithm for constructing the
minimum spanning tree. And hence, the number of cross-edges capture the efficacy of propagation quite
well.

fig. [o| shows the result of optimizing the loss function. Observe that at epoch 10 we have 9 cross edges, at
epoch 100 we have 7 and at epoch 1000 we only have 2 cross edges. This verifies that the loss function indeed
learns the representations which are consistent with greedy 1NN propagation.

B Remark on fig. 2]

We consider the two moons dataseﬂ from scikit-learn with 1000 samples, noise = 0.1 and random_state = 0.
Both the linear classifier and the decision tree classifier are also implemented using scikit-learn package.

Recall that inference for multiple samples differs in case of watershed classifiers and other classifiers. For
visualization of the boundary, one should estimate the class for each point in the entire 2d grid. It is imper-
ative that all the grid points are not considered together in the case of watershed classifier. This is because
— A random sample technically should be from the same distribution as the training data. Considering all
the grid-points would violate this assumption.

C Spiral Dataset lllustrations

figs. [6H] to [6€] shows the boundary for different widths of the hidden layer. Note that one needs at least 100
hidden nodes to learn the function. When considering N_REV = 5, even a width of 5000 did not suffice (as
illustrated in fig. . However, even width 2 suffices for the watershed classifier, irrespective of the N_REV.
This is illustrated in figs. [6f and [6gl

Shttps://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
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D Experimental Details for section 5.3

Network Architectures

1. MR18: This is the RESNET18 architecture. The implementation is taken from https://github.
com/kuangliu/pytorch-cifar/blob/master/models/resnet.py.

2. M3LC: We consider 3 convolution layers with width 256 and 64, with kernel size 5 and alternating
maxpool layers with kernel size 2 and stride 2. The linear classifier has an additional classification
layer on top of this.

3. M3LFF: We consider 3 fully connected feed-forward networks with width 256 and 64. The linear
classifier has an additional classification layer on top of this.

Training Details: All experiments are run using A6000 Nvidia GPU with 16 GB memory. We use ADAM
optimizer with the learning rate 3e — 4. Experiments with learning rate schedules and other optimizers gave
similar results. For watershed results, we run the experiment with N_SEEDS = 1,5,10,20,40,100 and
report the best performance. We use N = 256 and B = 2040 for all the experiments. We use early_stopping
with patience = 20 epochs on the validation data. We use 80 : 20 train/valid split.

Timing Details: Using the batch size B = 2040 with NV = 256 takes around 14 seconds on the system
above with M3LC and M3LFF networks, and takes around 70seconds on MR 18 backbone.
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Figure 6: Watershed vs. Linear Classifier as last layer on spiral dataset, illustrated in (a). For a simple spiral
dataset, standard linear classifiers need a large number of hidden neurons to estimate the boundary. This is
shown in (b)-(e). However, the with watershed classifier, even width 2 suffices as shown in (f). When the
number of revolutions are increased, even 5000 hidden neurons did not suffice for linear classifier as shown
in (h). On the other hand, width 2 suffices for watershed classifier, illustrated in (g).
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