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ABSTRACT
According to the world economic forum report, around 70% of generated data are not used. This
limitation of usage is mainly due to the lack of interoperability and linking of data that resides in iso-
lated silos. Indeed, the overwhelming amount of data has worsened heterogeneity problems, as have
the types of sources generating data in heterogeneous formats and different semantics. Those data
related problematics are frequent in the domain of Earth Observation (EO). Earth observed data use
different terminologies, which are difficult to reconcile because they reflect overlapped disciplines.
These issues lead to misunderstandings and inefficient exchange and management of data in terms of
access, pricing, and data rights, which can hamper environmental phenomena understanding. Virtual
Knowledge Graph (VKG), allows semantic integration of existing data sources into a wide Knowl-
edge Graph. In this work we propose a knowledge hypergraph-based approach for data integration and
querying, with an application to Earth Observation data. Our proposal takes place in two phases (1)
a knowledge hypergraph-based virtual data integration and (2) a hypergraph-based query processing.
The first phase allows to generate a virtual knowledge hypergraph consisting of RML mappings be-
tween an ontology and the data. The second phase consists of enhancing the user’s query by extracting
and consolidating a global view of data from different sources based on the generated knowledge hy-
pergraph. The proposed approach is implemented in the Onto-KIT tool (Ontology-based Knowledge
hypergraph data Integration and querying Tool) and evaluated through real use case studies. The ob-
tained results show that our proposal enhances query processing in terms of accuracy, completeness,
and semantic richness of response. .

1. Introduction
In recent years, the number of data sources and the amount

of generated data are increasing continuously. This volumi-
nous data could be significantly exploited in different do-
mains. However, according to a world economic forum re-
port [28], around 70% of generated data are not used. This
limitation of usage is mainly due to the lack of interoperabil-
ity and linking of data that are in isolated silos. Indeed, the
overwhelming amount of data has worsened heterogeneity
problems which can appear at different levels. In fact, data
are generated in different formats (databases, semi-structured
files, images, etc.). Besides, each data source has its own
and different data model or schema. Furthermore, data is
semantically heterogeneous (synonymy, polysemy, abbrevi-
ation, etc.). Each source offers data or semantic models en-
coding domain knowledge that resides in the experts’ minds.
Thus, experts or data analysts need to establish contact with
original data sources and model producers to understand and
use them properly. Undoubtedly, we have not reached a level
where data and models are interoperable and linked so that
the experts can reuse them soundly [4]. We are still far away
from the vision of common information space [16]. Those
data related issues are frequent in the domain of Earth Ob-
servation (EO). EO data includes hundreds of millions of
climate data, ocean data, land data, etc. stored in different
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formats (databases, CSV files, Raster images, etc.) and use
different terminologies, which are difficult to reconcile be-
cause they reflect different disciplines. Our purpose is to
break down with those silos and deal with heterogeneity is-
sues that hamper information exchange and interoperability
among data sources [23] to provide what we call a global
view of information, where different systems and programs
will have unhampered and uniform access to the available
environmental data that will be linked and synthesized into
a single knowledge graph. This global information view al-
lows the data sources to speak the same language and to
share information so that domain experts and software agents
could transform them into actionable knowledge. We re-
fer here to a knowledge graph [14]. To provide a common
and unified representation, data needs to be semantically in-
tegrated [15]. Data integration is the process of combin-
ing data retrieved from multiple and independent sources to
provide an integrated and interoperable structure [22]. Cur-
rently, several works and approaches are aiming to solve the
aforementioned data integration problems, many of which
are based on the Semantic Web (SW) technologies [17] [21]
[27]. Ontologies are a potential solution for data integra-
tionwith SW technologies. They capture implicit knowledge
across heterogeneous data sources and create a semantic link
between them. Semantic data integration approaches can
be divided into two main categories; materialized and vir-
tual approaches. Materialized data integration approaches
are efficient in terms of query processing since data is gath-
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ered into a single source (usually a data warehouse). How-
ever, they are expensive in maintenance and implementation
and there is no guarantee that the data loaded into the data
warehouse is up-to-date. Therefore, virtual approaches have
been proposed to avoid the cost of materialization. These
approaches maintain the data in their original sources and
access them through an intermediate infrastructure. Virtual
Knowledge Graph (VKG), as a multi-relational graph-based
paradigm for data integration, could be a suitable solution [32].
It allows experts to retrieve correlated information, findmean-
ings out of its correlations and perform inference over the
data and knowledge, and thus derive new implicit knowl-
edge from the explicitly asserted one. Derived knowledge
can be used to enrich the answers to queries. However, as
the VKG grows in size, the exploitation of data and the an-
swering of users’ queries become difficult. Several systems
were developed to improve and optimize query processing
in terms of accuracy and runtime. These works focused on
generating methods to enhance the execution of the different
query processing steps: source selection, query planning,
query evaluation, etc. However, devising source selection
approaches has not received much attention, despite the im-
portance of this task in the query processing. Source selec-
tion enables to identify the relevant data sources to an input
user’s query. This latter typically represents an exact expres-
sion of the user’s needs. However, because of the dynamic
nature of the data integration context and the abundance of
data sources, users may not know the data sources they ques-
tioned, nor their content. Due to the non-transparency of
sources’ contents, it can be possible that a relevant source
does not contribute to the result of a query. Accordingly, the
queries reflect no more a need that must be satisfied but an
intention that must be extended according to data sources.
Consequently, a user, with the intention of satisfying an in-
formation need, may have to reformulate the query several
times and sift through many results until a satisfactory one.
For instance, a traditional query processing engine running
a query that asks for atmospheric temperature in a specific
country, represented by its name, will only extract data from
sources representing countries by the name. Data sources
that describe the requested country by its geographic coor-
dinates will not contribute to the result, although they con-
tain relevant data. Clearly, query processing needs to reach
every possible source to obtain all possible answers. Thus,
the need to move beyond the discovery of simple one-to-one
equivalence matches to the identification of more complex
relationships across datasets. Our aim is to create a VKG
that enhances the query processing in terms of completeness
and relationship richness.
This paper describes a knowledge hypergraph-based data in-
tegration and querying approach, with an application to EO
data. The aim is to ensure semantic interoperability, the se-
mantically integrate and link the multi-source data in order
to guarantee a global information view and to ensure an en-
hanced information extraction in terms of accuracy, com-
pleteness, and relationships richness. According to those
challenges, our proposal takes place in two phases (1) the

knowledge hypergraph-based virtual data integration and (2)
the hypergraph-based query processing. The first phase se-
mantically links data so as to build a huge knowledge hy-
pergraph that provides a global information view that taking
full advantage of heterogeneous data. The second phase pro-
poses an enhanced query processing approach that allows
to transparently query distributed data sources and cover a
broadening spectrum of user queries’ answers while taking
into account the results accuracy, completeness, and seman-
tic richness challenges. The proposed approach is imple-
mented through a tool named Onto-KIT (Ontology-based
Knowledge hypergraph data Integration and querying Tool).
Onto-KIT is composed of two software modules: DISERTO
(Data Integration Semantic hypERgraph Tool) that imple-
ments the knowledge hypergraph-based virtual data integra-
tion phase and HyQ (Hypergraph-based data Querying) that
implements the hypergraph-based query processing phase.
The remainder of this paper is organized as follows: In Sec-
tion 2, we discuss relatedwork drawing from prior researches
in the area of semantic data integration, and we synthesize
limitations and drawbacks that we intend to overcome. Sec-
tion 3 presents background information on the mapping lan-
guage RML and hypergraphs. Our approach to propose a
knowledge hypergraph-based virtual data integration and query-
ing is detailed in Section 4. Section 5 presents the Onto-KIT
tool that we evaluate in a real-world use case. Section 6 is
where we report on our evaluations of the implementation.
Finally, in section 7, we conclude and discuss future direc-
tions.

2. Related work on semantic data integration
approaches
In the literature, various data integration approaches have

been proposed.. We situate our research in the area of ontology-
based data integration approaches (OBDI). To compare the
reviewed data integration approaches, and according to the
objectives mentioned above, we define comparison criteria
following the dimensions (or aspects) of the data integration
landscape proposed in [26]. In fact, for surveying data inte-
gration approaches, Mountantonakis and Tzitzikas describe
an integration process through amultidimensional space. This
space is defined by five dimensions: Dataset types, output
types, Integration architecture (ETL, mediator, etc.), Inter-
nal services (such as schema mapping, semantic vocabulary,
query answering), and auxiliary services (e.g. provenance).
Accordingly, we highlight six criteria, as shown in Table 1.

• Data acquisition: We identified three mainstream ap-
proaches for acquiring data from local sources, namely
ETL, OBDA, and mediator.

• Data access: data integration approaches provide two
ways to access data; direct access to the centralized
repository (generally in materialized approaches) and
access to the mediator (or the shared vocabulary in the
virtual approaches).
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• Semantic vocabulary: to identify the ontology or the
semantic model used to integrate data.

• Data types: The primary focus of a data integration
approach is on the data types. Relational databases
and geospatial data are the most common data types,
as shown in Table 1.

• Mapping complexity: reflects the complexity of rela-
tions between data sources and the semantic vocabu-
lary (the ontology). This characteristic is important
due to the differences in data integration approaches
variant capabilities to represent mappings.

• Query processing type: The focus of most data inte-
gration systems is on querying disparate data sources.
This field identifies the type of the query processing
mechanism (centralized / distributed) if the data inte-
gration system includes one.

As illustrated in the table, research works related to the
area of OBDI generally fall into two primary classes, de-
pending on the type of data access, the virtual, and the mate-
rialized integration approaches. The materialized approach
is the static transformation of distributed data into a data
warehouse or a single RDF store. Thewhole process is called
Extract-Transform-Load (ETL) [31]. The main advantage
of this approach is that query processing is centralized and
fast; the integrated data is gathered into a single source; thus,
a rewriting phase of queries is no necessary. Several ap-
proaches have been proposed to integrate heterogeneous data
into an ontology-based graph such as [27] and [1]. How-
ever, these materialized approaches have major disadvan-
tages, including the need of extra storage since data is repli-
cated, this implies an extra cost of storage, as well as the cost
of maintenance. Furthermore, the materialized data may
rapidly be outdated if the data source is frequently updated.
A workaround is to run the data extraction and transforma-
tion processes periodically. But in the context of huge datasets,
a compromisemust be found between the cost (in time, mem-
ory and CPU) of materializing and the freshness of the large
scale of available data. Alternatively, the virtual (media-
tor) data integration approach was proposed to keep data
in their original sources and access them on-the-fly using
a query language. Such approaches solve the problem of
the real-time integration of heterogeneous data. Indeed, the
data remain located in their original sources, and mappings
of the data to a semantic vocabulary (for example, an ontol-
ogy) are generated and results in a virtual RDF graph. Usu-
ally wrappers are the components that perform the mapping
of queries. They allow the virtual data integration system
to access the content of the sources in a uniform language.
Based on the mappings, they decompose or rewrite a request
in a specific query language that may be processed by the
data source. Then, they recompose the partial answers into
one only answer in accordance with the virtual RDF graph
schema. This approach has the advantage of avoiding the
cost of materialization and can profit from more than 30

years’ maturity of relational data systems (efficient query an-
swering, security, robust transaction support, confidentiality,
etc.). Despite the numerous reviewed virtual data integra-
tion works, several limitations can be noted. Actually, many
mentioned approaches lack automation. They require a lot of
human intervention, particularly in data mapping and mod-
eling, and the semantic annotation process is mostly done
manually by human annotators. Moreover, most of the ap-
proaches are dealing with particular data formats (relational
databases for Ontop, for example). Although recently pro-
posed approaches aim to integrate heterogeneous data for-
mats, there is still a lack of schematic and semantic interop-
erability among the different data sources.

To overcome the aforementioned limitations of the re-
viewed data integration approaches, we propose a semantic
data integration and querying approach relying on mediator-
wrapper based architecture to accommodate different kinds
of data sources, but rather than implementing wrappers, a
set of generated RDF stores will be queried. Furthermore,
to enhance the query response, the query processing needs
to move beyond the discovery of simple one-to-one equiva-
lence matches to the identification of more complex relation-
ships across datasets and extracting the sources that could
contribute to the response of an input query. For that pur-
pose, data should be organized in a manner so that experts
can easily understand it, extract information from, andmainly
infer implicit knowledge that improves the understanding of
the data. That’s why we need an extra layer to further link
the mappings between the data and the ontology in order to
extract new knowledge without accessing materialized data.
Accordingly, we believe that the adequate mathematical for-
malism that is capable of representing complex relationships
is hypergraphs since they generalize graphs by allowing edges
to connect more than two nodes, which may facilitate a more
precise representation of environmental knowledge.

3. Background
In this section, we introduce some basic concepts that

we will use in our approach. Specifically, we present RML
(RDFmapping language) (Section 2.1) and hypergraphs (Sec-
tion 2.2).
3.1. RML: RDF Mapping Language

Several mapping languages have been proposed to rep-
resent schema mappings such as D2RQ [10], R2RML (RDB
to RDF Mapping Language) [11] and RML (RDF mapping
Language) [12]. In our work, we use RML since it defines
mappings from any data to RDF. In fact, RML extends the
mapping language R2RML that maps data from relational
databases to RDF, by includingmappings of various data for-
mats (XML, JSON, CSV). An RMLmapping defines a map-
ping from any data to RDF. It consists of one or more triples
maps. A triples map (tp) is composed of exactly one log-
ical source (property rml:logical Source), one subject map
(property rr:subjectMap) and any number of predicate ob-
ject maps (property rr:predicateObject Map). The RML log-
ical source extends the R2RML logical table and points to
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Table 1
Comparison of existing semantic data integration approaches

Approach Data
acquisition

Data access Semantic Vo-
cabulary

Data types Mapping complexity Query
processing
type

Ontop-
spatial [5]

OBDA Access virtual
RDF graphs
defined through
R2RML mappings.

OGC
standard
GeoSPARQL

geospatial
databases

Ontop-spatial supports
two mapping languages:
the W3C RDB2RDF
Mapping Language
(R2RML), and the native
Ontop mapping language

Distributed

Geotriples [21]ETL and
OBDA
with the
stSPAR-
QL/
GeoSPARQL
evaluator
compo-
nent.

Access on the gen-
erated RDF data
stores, or querying
over virtual RDF
graphs defined
through R2RML
mappings.

OGC
GeoSPARQL
standard

Geospatial
data
(shape-
files, CSV,
XML, and
spatially-
enabled
RDBMS).

Semi-automatic mappings
generation. To utilize a
different vocabulary, gen-
erated mappings may be
manually revised.

Centralized
and dis-
tributed

Optique [20] OBDA Access virtual
RDF graphs

Siemens on-
tology

Relational
databases,
streaming
and sensor
data

semi-automatically boot-
strap an initial ontology
and mappings.

Distributed

Ontop [9] OBDA Access virtual
RDF graphs
defined through
R2RML mappings.

OGC
standard
GeoSPARQL

Relational
databases.

Supporting two mapping
languages: the W3C
RDB2RDF Mapping Lan-
guage (R2RML), and the
native Ontop mapping
language.

Distributed

[2] ETL Querying the
global ontology

Creating a lo-
cal ontology
for each data
source.

Data
formats
able to
be trans-
formed
into a
NoSQL
database.

Defining rules to generate
the corresponding Mon-
goDB database to a data
source. Defining a lo-
cal ontology for each data
source, then integrating
ontologies in a global one.

Centralized

TripleGeo [27]ETL Access on the cen-
tralized RDF data
repository

OGC
GeoSPARQL
standard

Geospatial
data
(shape-
files and
DBMS)

Manual effort to define
the ETL rules.

Centralized

[1] ELT Direct access to
the (aligned/re-
structured) local
ontologies, and
access to the
shared vocabulary,
where the sys-
tem queries each
local ontology
and merges the
results.

The
CBROnto
ontology

Relational
databases,
RDF,
Spread-
sheets.

Automatic generation of
the mappings between lo-
cal and global ontologies
using semantic relations.

Centralized

Karma [17] ETL Access on the gen-
erated RDF data
store.

An ontology
as input

CSV,
JSON,
XML,
RDF, re-
lational
databases

A lot of human interven-
tion in modeling.

Centralized

M. Masmoudi et al.: Preprint submitted to Elsevier Page 4 of 23



M. Masmoudi et al.

the data source (property rml:source); this may be a file on
the local file system or data returned from a Web service.
Naming the data source within the mapping makes it pos-
sible to map several related data sources simultaneously. A
reference formulation (property rml:reference Formulation)
names the syntax used to reference data elements within the
logical source. As of today, possible values are ql: JSON-
Path, ql: XPath, ql:CSS3, and rr: SQL2008. The subject
map specifies how to define the subject of each tp and its
optional type of URI. A predicate-object map consists of
pairs of predicate maps (property rr:predicateMap) and ob-
jectmaps (property rr:objectMap) that, together with the sub-
jects generated by the subject map, may form one or more
RDF triples for each row/record of the (database/CSV/XM-
L/JSON source respectively). The last aspect of R2RML that
was extended in RML is the Referencing Object Map. A
referencing object map allows using the subjects of another
triples map as the objects generated by a predicate-object
map. It is represented by the property rr:parentTriplesMap.
RML mappings definitions are expressed as RDF graphs.
These RDF graphs can be kept virtual and queried online
or can be materialized by generating RDF triples.
3.2. Hypergraphs

A hypergraph is the generalization of an ordinary graph
by defining edges between multiple vertices instead of only
two vertices. In what follows, we provide a set of definitions
presented by [7].
Definition 1. A hypergraph H is a pair <V, E> where:
(i) V=v1. . . , vn is the set of vertices or nodes,
(ii)E = (ei)i ∈ I , (I is a finite set of indexes) is the set of non-
empty subsets of V, called hyperedges where each ei ∈ E is
a subset of V.

A definition of a sub-hypergraph can be given based on the
hypergraph definition.
Definition 2. A subhypergraph H(V’) of the hypergraph H
is the pair <V’, E’> where :
(i) V ′ ⊂ V ,
(ii) E′ = (ej)j ∈ J such that for all ej ∈ E′ ∶ ej ⊆ V ′ and
J ⊆ I

The notion of hypergraph may be generalized in a way that
the hyperedges can be represented in certain cases as ver-
tices, i.e. a hyperedge e may consist of both vertices and
hyperedges as well. For example:
Definition 3. AGeneralized hypergraphGH=<V, E>where:
(i) Let V = v1; v2; v3
(ii) E = e1 = v1; v2; e2 = v2; v3, e1; e3 = v1; e1; e2.

Definition 4. Directed hyperedge (hyperarc) e⃗i is an ordered
pair e⃗i = (e⃗i

+ = (e+i , i); e⃗i
− = (i, e−i )) ; where :

e+i ⊆ V is the set of vertices of e⃗i
+ and e−i ⊆ V is the set

of vertices of e⃗i
−. The elements of e⃗i

+ (hyperedges and /or
vertices) are called the tail of e⃗i, while elements of e⃗i

−are
called the head of e⃗i.

Hypergraphs have attracted increasing attention of researchers.
They were applied in several domains and applications such
as social network systems, service-oriented applications, and
even data integration and they have proved their efficiency.
From our perspective, we think it might be interesting to take
advantage of hypergraphs’ benefits and use them in the se-
mantic data integration context.

4. Knowledge hypergraph-based data
integration approach

4.1. Motivating example
To extract the important problematics and identify the

objectives of our approach, we define a running example to
which we shall refer all along with this paper. We consider
three different data sets about precipitation from three dif-
ferent data sources; A raster image in ENVI1 format which
is a flat-binary raster file provided by the Observatory of Sa-
hara and Sahel (OSS2) , JSON data extracted through the
AerisWeather API3 and a CSV dataset provided by the Na-
tional Oceanic and Atmospheric Administration (NOAA4).
This multi-source data presents heterogeneous data schema
(metadata), depicted in Figures 1-2. We noted the following

Figure 1: Partial view of the metadata from the raster image
originating from the OSS.

Figure 2: (a) Partial view of data about precipitation from
the AerisWeather API. (b) Partial view of data about Hourly
Precipitation (HPCP) from the NOAA. Data schema in bold.

concerns and issues. First, various terms are used to describe
the same real-world feature that refers to “precipitation” de-
spite they correspond to the same meaning. For instance,

1https://www.harrisgeospatial.com/Software-Technology/ENVI
2http://www.oss-online.org/
3https://www.aerisweather.com/
4https://www.noaa.gov/
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OSS uses the word “rainfall” to refer to “precipitation” in
AerisWeather, whereas NOAA uses the term “HPCP”. The
variety of terms complicates the work of experts and soft-
ware agents who should be familiar with the terms used in
each discipline. Second, the first two datasets list the pre-
cipitation values within a location, described by the geo-
graphic coordinates (latitude and longitude), whereas, the
third dataset lists the precipitation values within a city de-
scribed by the name. Finally, the date of observation is dif-
ferently represented in the three datasets: “yyyymmjj” for-
mat for the first dataset, “yyyy-mm-jjThh:mm:ss” format for
the second dataset and “yyyymmjj hh:mm.” for the third one.
Let us now consider an example of a SPARQL query based
on the MEMOn ontology (Modular Environmental Moni-
toring Ontology) [25], illustrated in Figure 3. The query
asks for precipitation data observed in “Miami” on 16 Oc-
tober 2019 and comprises five triple patterns T1, T2, T3,
T4, and T5. In this example, the AerisWeather API can an-
swer T1, T2, and T4.T3 and T5 can be answered on NOAA
while OSS cannot answer any triple pattern since the OSS
vocabulary is different from the SPARQL quer’s graph pat-
tern. Indeed, the query engine relies on source descriptions
to select relevant sources for a query. Thus, based on the
vocabulary used in each of the three data sources, the re-
sponse to this query will not contain a result for several rea-
sons. First, precipitation values are represented differently

Figure 3: Motivating example. (a) SPARQL query over data
sources; (b) heterogeneous data sources.

in the three schemas: by the term "rainfall" in the OSS, the
term "precipitation" in the AerisWeather API and the term
"HPCP" in NOAA. Second, the spatial representation of the
data in OSS and AerisWeather API which is "the geographic
coordinates (Latitude and Longitude)," is different from the
SPARQL query and the NOAA spatial representation; which
is "city." Third, the temporal context of the precipitation ob-
servations is represented differently. Even if the semantic
annotation of the data with a domain ontology can resolve
the semantic disambiguation between "rainfall" and "precip-
itation" or between "HPCP" and "precipitation", it cannot re-
solve the difference between the two spatial representations
(Lat/Long and country) or the difference between the hetero-
geneous formats of the date which lies a big issue. Thus, the
query processing will not guarantee complete results from
the different data sources. In other words, a traditional query
processing cannot ensure finding all results because the data
sources contain different data schema. For those reasons
and to achieve our goals, we proposed a novel knowledge
hypergraph-based data integration and querying approach

that (1) virtually integrates EO data by maintaining it in their
sources in order to have a global knowledge hypergraph and
(2) provides a query processing approach that offers an op-
timal result for SPARQL queries.
4.2. The architecture of the proposed approach

The use of architecture and design patterns have impacts
on the quality attributes of a system. In this work, four qual-
ity attributes are aimed to be fulfilled which are interoper-
ability, completeness, usability and maintainability. Bi et
al, [6] and Harrison et al, [19] analyzed the impact of ar-
chitectural designs on several quality attributes. Based on
their works, we choose the layered architecture that presents
positive impacts on maintainability. Considering these qual-
ity attributes and according to the needs highlighted in the
motivating example, the layered architecture of the proposed
approach is depicted in Figure 4. It is composed of four tiers:
(1) The data layer encompasses different data sources rel-

evant to earth observations and deals with different data
formats (i.e.: CSV, RDB, JSON, etc.).

(2) The semantic layer consists of 3 components, i.e., the
Modular EnvironmentalMonitoringOntology (MEMOn),
the spatial and the temporal RDF stores namedSRDFStore,and TRDFStore, respectively. MEMOn was proposed as
a modular ontology for the environmental monitoring
field, based on the upper-level ontology Basic Formal
Ontology (BFO) [3] and other existing ontologies such
as the Common Core Ontologies (CCO) [30], the Se-
mantic SensorNetwork ontology (SSN) [18] and the EN-
Vironment Ontology (ENVO) [8].
The modules of MEMOn incorporate all the different
kinds of information entities handling all contexts of en-
vironmental phenomena, e.g., flooding, earthquakes, etc.,
spatial and temporal information, and sensing and ob-
servation information that are of importance to the en-
vironmental monitoring domain. And the links between
modules cover the relationships between sensing enti-
ties, observation entities, and environmental events that
they may cause. The two RDF stores (SRDFStore and
TRDFStore) are proposed as a solution to the heterogene-ity problem of the spatial (resp., temporal) context of the
EO data. They aim to ensure the schematic and seman-
tic interoperability between the different spatial (resp.,
temporal) representations extracted from the heteroge-
neous data sources. They are adopted, in our approach,
since they are aligned to MEMOn ontology. This layer
aims to ensure semantic interoperability.

(3) The data integration layer aims to ensure other quality
attributes such as structural, schematic interoperability
and completeness of the query response. It incorporates
two main phases: the hypergraph-based virtual data in-
tegration, and the hypergraph-based query processing.
The first phase is based on a virtual integration approach
of the multi-source and heterogeneous data by building
a knowledge hypergraph to ensure semantic interoper-
ability according to the OBDI paradigm. It comprises
three steps: (a) semantic annotation, (b) RMLmappings
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Figure 4: The architecture of the proposed knowledge hypergraph-based approach for data integration and querying.

generation, and (c) knowledge hypergraph building, as
shown in Figure 4. The second phase consists of ex-
tracting and consolidating the appropriate data from var-
ious sources as a result of a SPARQL query, on the basis
of the knowledge hypergraph built in the first phase. It
comprises three main steps: (a) Hypernodes selection,
(b) subqueries rewriting, and (c) data consolidation and
query execution. In contrast to the first phase, this phase
is classified as an online phase since it is only processed
after a query input. This layer will be discussed in detail
throughout the paper.

(4) The user interface layer is a front-end interface allow-
ing the dialog between users and the proposed system.
EO engineers, software agents, or even ordinary users,
showing adequate knowledge of MEMOn, may have the
possibility to query EO data based on a SPARQLqueries
interface. This layer will help fulfill usability which is
concerned with the ease with which a user can complete
tasks.

4.3. hypergraph-based virtual data integration
In this section, we introduce the hypergraph-based vir-

tual data integration phase based on the paradigm of OBDI.
The process, achieving the vision of OBDI, involves the fol-
lowing three layers:

• The semantic layer, represents the ontology. Its goal
is to provide a formal and high-level representation of
the domain of interest.

• The data layer, represents the available data and its
metadata.

• And the virtual data integration based on hypergraphs
and representing the mappings between the two previ-
ous layers. These mappings are an explicit representa-
tion of the relationships between the data sources and
the ontology. They are used to translate the query on

Figure 5: The whole process of the hypergraph-based virtual
data integration.

the ontology into a query that may be processed by the
data source.

The whole process of this phase is illustrated in Figure 5. For
each dataset, the approach semantically annotates the data
using a domain ontology by generating RDF annotations.
Then, it generates an RML mapping document that contains
mappings between the domain ontology and the metadata,
depending on the format of the input (JSON, for example).
After that, it builds a mapping view hypernode correspond-
ing to the generated document. Finally, it creates the knowl-
edge hypergraph, composed of RML mapping view hyper-
nodes and various hyperedges to semantically describe dif-
ferent views of the environmental observations.
4.3.1. Semantic annotation

The main idea of the semantic annotation of data (also
called semanticmatching) is to associate terms used in source
data with the classes from the ontology, thus linking together
the various resources in a semantically coherent way. In this
work, we referred to the Semantic Enhancement (SE) strat-
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egy, proposed by Salmen et al., which represents a process
for horizontal data integration based on the use of ontolo-
gies to integrate and semantically enhance data models [29].
This kind of semantic annotation may be characterized as an
“arm’s length approach,” as it presumes no change of data
but rather an association of each piece of data with an en-
tire knowledge base. This process is done by annotating the
source metadata to allow semantic interoperability. Based
on the SE strategy, we define an annotation as follows (Def-
inition 5):
Definition 5. An annotation A is a form ofmetadata attached
to a dataset or a specific part of it, like a document or a
database field.
Each annotation A = <O,C,T,S> has the following compo-
nents:

• O = some ontology class,

• T = data term,

• C = some relation between O and T (the relation will
be rdfs: label),

• S = a reference to the source from which the data term
is taken.

Hence, to represent annotations, we choose to use the RDF
Quad statements, also called Named Graphs5. One of the
main benefits of quads is allowing users to specify various
attributes ofmeta-knowledge that further qualify knowledge,
such as the provenance. We update, then, definition 5 so that
annotations with provenance information can be represented
in definition 6:
Definition 6. Given a set of URI references R, a set of blank
nodes B, and a set of literals L, an annotation A is an RDF
quad or a four-tuple
<O,C,T,S> ∈ (R ∪ B) × R × (R ∪ B ∪ L) × (R ∪ B),
Where

(i) O, C and T are the triple components of RDF, respec-
tively subject, predicate, and object,

(ii) S is the provenance information and it defines the source
from which the data term represented by the object C
is taken.

Algorithm 1 presents the steps involved in the semantic an-
notation using a domain ontology. Initially, the system ex-
tracts the entities from the metadata (M) (line8). In the case
of structured and semi-structured data (like RDB, CSV, and
XML), the proposed approach obtains the corresponding struc-
ture information by accessing their schema and extracts the
metadata by exploiting the different wrappers according to
the data structure. For example, the XML wrapper reads the
XSD files that describe the information included in the XML
data source. The CSV wrapper reads the CSV file and ex-
tracts the column names corresponding to the metadata file.

5https://www.w3.org/2009/07/NamedGraph.html#named-graphs

In the case of raster images, the proposed approach identi-
fies the relevant metadata entities using the two phases, in-
cluding the extraction of the raster image metadata using the
GDAL library6 and its filtering that aims to limit the extrac-
tion of other information that may be non-useful to the inte-
gration process. Once themetadata entities are extracted, the
algorithm exploits the domain ontology as a knowledge base
to obtain the semantic entities corresponding to the meta-
data entities. To this end, each entity of the metadata (mi)is mapped to one class from the ontology (c) (line 11). If
no matching is identified between mi and C, the algorithm
exploits the thesaurus, loaded at the beginning of the pro-
cess, to determine the semantically similar attributes. A set
of thesaurus entities that are matched with the metadata en-
tity are extracted and stored in "setT " Then, the algorithm
matches each thesaurus entity with the ontology classes and
extracts the first corresponding class (line 15). After that, the
system generates the annotation A comprising the metadata
entity mi, the class c, and the data source Co (line 19). Thewhole process is executed to all metadata entities of the input
dataset. Accordingly, the result of the first algorithm corre-
sponds to the appropriate set of RDF quads (SetA), that se-mantically annotate the data. The semantic annotation pro-
cess goes beyond the exploitation of the ontology and the
thesaurus, as it allows the exploitation of the generated SetA.The core idea is to exploit the knowledge inferred from the
domain ontology and the thesaurus, represented in the SetAto identify plausible semantic annotations for a new source
metadata.
4.3.2. RML mappings generation

The proposed system can automatically produce an RML
mapping document that can be used later to generate an RDF
graph that corresponds to the input dataset. In this step, the
process takes as input one dataset such as a block of a CSV
file or an ENVI raster image and produces one RML map-
ping document as output, using the ontology and the anno-
tations produced in the previous step. We classify the meta-
data entities into two kinds: simple and complex. Simple
entities are defined when information is presented by only
one item (eg., when temporal information is described by
the term “date”). A complex entity is a set of simple enti-
ties (eg., when temporal information is represented by the
year, the month, and the day separately). To generate RML
mappings, we introduce the following substeps:

1. For each metadata, we create a new triples map.
2. For each triples map, we generate a subject map that

defines the rule that generates unique identifiers for the
resources which are mapped. This subject map will be
used as the subject of all the RDF triples that can be
generated from this triples map. For this purpose, if
the input is a raster image, the system identifies the
subject of the triples map from the band name of the
image. Otherwise, the system generates the subject
from the file name.

6http://www.gdal.org/
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Algorithm 1: Semantic annotation
1 Input :

Data
Source : source of the data
C : Set of the ontology’s classes
T : Set of the thesaurus’ terms

2 Output :
SetA : Set of the RDF Quad Annotations

3 Variables :
M = {m1 , m2 ... mn} : Metadata items
c ∈ C: class from the ontology
SetT ∈ T : matched terms from the thesaurus
A : An RDF quad annotation
S : Subject of the RDF quad
P : Predicate of the RDF quad
O: Object of the RDF quad
Co : Context of the RDF quad

4 begin
5 initialization;
6 P ⟵ rdfs:label;
7 Co⟵ source;
8 M ⟵ extractMetadata(data);
9 foreach metadata item mi ∈M do
10 if Match (mi, SetA) then
11 c ⟵ find (mi, SetA) ;
12 end
13 else if Match (mi, C) then
14 c ⟵ find (mi, C) ;
15 else
16 SetT ⟵ find (mi, T);
17 c ⟵ find (SetT , C) ;
18 end
19 S ⟵ c ;
20 O⟵ mi ;
21 A = createQuad (S, P, O, Co);
22 SetA ⟵ SetA + A ;
23 end
24 end

3. For each triplesmap, we generate a number of predicate-
object maps. The objects correspond to the metadata
entities and the predicates represent the relations be-
tween the metadata entities and extracted from the on-
tology. We introduce two other rules to handle the
simple and complex metadata entities:

4. Each simple metadata entity is mapped to a predicate-
object map and an OWL data- or object-property us-
ing an rml:reference.

5. Each complex metadata entity is mapped to another
triplesmap and anOWLobject-property using the predicate-
object-map property
rr:parentTriplesMap. This rule facilitates the genera-
tion of more complete mappings.

Figure 6: (a) An RML mapping graph (RML_G). (b) A se-
mantic mapping view over RML_G

4.3.3. Knowledge hypergraph building
The amount of EO data is not only exceedingly large but

also contains implicit relationships. Hypergraphs, which are
a generalization of graphs, can be used to better represent
earth observations and the relations between its various en-
tities because of their better expressive capabilities. Hyper-
graphs also have the capability of modeling hierarchical and
structural forms of data through labeled hyperedges. RML
mappings are themselves RDF graphs and written down in
Turtle syntax. In other words, RDF is used not just as the
target data model of the mapping, but also as a formalism
for representing the RML mapping itself. An RDF graph
that represents an RML mapping is called an RML map-
ping graph consisting of a set of RML triples map (tp) as
explained in definition 7.
Definition 7. Formally, an RML mapping graph is denoted
as RML_G = <V,E> where:
(i) V is a set of vertices representing the subject map and the
object maps of a triples map and which correspond to all
subjects and objects in RDF data.
(ii)E ⊆ V ×V is a multiset of directed edges that correspond
to all triples in RML mapping (predicate maps).

The knowledge hypergraph building step is composed of
two sub-steps, as shown in figure 5: hypernodes building
and hypergraph building and/or extending7. For each RML
mapping graph (RML_G) and based on the generated RDF
quad annotations, we model a semantic view that represents
a local linked view of the data source schema, including the
classes and relationships derived from the ontology. This
semantic view is modeled as a directed graph where nodes
are ontology classes, and edges are relationships between
these classes. Indeed, to obtain the semantic view over an
RML_G, the ontology classes corresponding to the subject
map and the object maps are represented as nodes, and the
ontology relations corresponding to the predicate maps are

7When a new data source is added.
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modeled as edges. We illustrate in Figure 6(a) an example of
RML_G consisting of two triples maps. The first triples map
defines RDF triples of the form (precipitation, observed_at,
country) and (precipitation, observed_on, yearMonth). The
second triples map defines RDF triples where the subjects
come from the first triples map (yearMonth) and the objects
from the second triples map (year) and (month). Figure 6(b)
shows the semantic view, also called mapping view, defined
over the RML_G. Classes and properties extracted from the
RML_G are marked with an orange color, whereas those
from RDF quad annotations are marked with green color.
Themapping views are created over each RML_G. Tomodel
these views as a constituent of the hypergraph, we used the
concept “hypernodes”. A mapping view is hypernode de-
fined as follows (Definition 8).
Definition 8. (A hypernode) Given a hypergraph <V, E>, a
hypernode8 is mainly defined as a set of nodes U ⊆ V that
act together as a single unit.

(A mapping view hypernode) We defined a mapping view
hypernode as a directed graph, made up of RDF triples, that
we called mapping triples (TM), where nodes represent the
classes that correspond to the subject and object maps of
an RML_G and edges represent the semantic links between
these classes, corresponding to the predicate maps.

Also, there will be complex relations between the various
entities of observations schema, which could be best repre-
sented by edges that can span across several nodes (hyper-
edges).Particularly, we focused on the relationships between
observations in the spatiotemporal context. Thus, we de-
fined three types of hyperedges, named the spatial-oriented
hyperedges, the temporal-oriented hyperedges, and the ob-
servation oriented hyperedges. Based on the definition of a
knowledge graph [14], we define a knowledge hypergraph in
definition 9.
Definition 9. A knowledge hypergraph is a hypergraph-based
knowledge representation that

(i) mainly describes real-world entities and their interre-
lations, organized in a hypergraph,

(ii) defines complex structures including classes and rela-
tions of entities into a hypernode,

(iii) allows for potentially interrelating hypernodes with each
other,

(iv) and describes various views and perspectives, using
hyperedges.

The proposed knowledge hypergraph can be formally de-
fined as in definition 10.
Definition 10. The knowledge Hypergraph is a generalized
hypergraph with directed and undirected hyperedges. It can
be designated as the tuple:

<V, A, E, ED , EM , EO , �label , �v >, where:
8Hypernodes may be referred to as undirected hyperedges, compound

nodes, or metanodes in the literature.

• V = Vs ∪ Vo is the set of vertices; Vs is the set of all
subjects in the mapping views, and Vo the set of all
objects;

• A is the set of arcs, i.e., directed edges, an arc is an
ordered pair <i,j>, where i,j ∈ V.

• E is the set of hyperedges. E = ED ∪ EO

• ED = ES ∪ ET is the set of hyperarcs, i.e., directed
hyperedges. Every hyperarc describes a mathemati-
cal function, and the direction of the hyperarc shows
whether a vertex plays the domain or the range role in
a function. ED is divided into 2 partitions:

– ES is composed of the Spatial-oriented hyper-
edges/hyperarcs. The Spatial-oriented hyperedges
can represent collections of spatial representa-
tions. The vertices of these hyperedges ⊆ Vo and
refer to the objects representing the spatial con-
text of the observation.

– ET is composed of the temporal-oriented hyper-
edges/hyperarcs. The temporal-oriented hyper-
edges can represent collections of temporal rep-
resentations. The vertices of these hyperedges ⊆
Vo and refer to the objects describing the tempo-
ral context of the observation.

• EM consists of the mapping views represented as hy-
pernodes. Each em ∈ EM is a simple hypernode, i.e.,
containing only vertices (V) and directed edges (A).

• EO is composed of the observation-oriented hyperedges.
EO is made up of undirected hyperedges, where each
eo ∈ EO embodies the hypernodes sharing the same
subject.

• �label : E↦ S is a hyperedge-labeling function. Given
a hyperedge e ∈ E, its hyperedge label is deduced ac-
cording to the pattern of the hyperedge. S is the set of
labels.

• �v : V 2 ↦ R is a vertex-transformation-rule function.
Given two vertices (v1, v2), the transformation-rule is
a function that calculates the transformation of an in-
stance of v1 into an instance of v2.

From each data source, or rather, each environmental obser-
vation (environmental property or phenomenon occurrence),
we receive a partial view of information, including a par-
tial view of spatial and temporal representation. To obtain a
complete global view of information for an observation, i.e.,
the entire spatial and temporal representations correspond-
ing to an environmental observation, hypernodes are aggre-
gated. Accordingly, an observation-oriented hyperedge Eo
also represents an observation-oriented sub-hypergraph, de-
scribed by definition 11.
Definition 11. The observation-oriented Sub-hypergraph con-
sists of:
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Figure 7: Observation-oriented Sub-hypergraph describing the
relations among observations.

1. A finite set of vertices U ⊆ V.
2. A finite set of hypernodes, EM = em1

, .. , emn ; where
Vsi ∈ emi refer to the same class of the ontology, i=
1..n.

3. A finite set of temporal-oriented hyperedges FT with
FT ⊆ ET and FT ∩ EM is not empty.

4. A finite set of spatial-oriented hyperedges FS with FS
⊆ ES and FS ∩ EM is not empty.

5. An undirected observation-oriented hyperedge eo ∈
EO

As an illustration of the observation-oriented sub-hypergraph,
an example is illustrated in Figure 7 that makes sense of
the representation for the mapping view hypernodes into the
hypergraph. The essential characteristic is that hypernodes
(for example, e3 in the figure) are themselves vertices in the
hypergraph. There are semantic relations among the ver-
tices of the hypergraph. These relations can be described
by temporal-oriented hyperarcs (e2) or spatial-oriented hy-
perarcs (e1). The direction of the hyperarc shows whether
an object map plays the input or output role in a function �v.An observation-oriented hyperedge (e4) can be defined as a
collection of the mapping view hypernodes whose subjects
share the same ontological class.

To recapitulate, Figure 8 shows an example to explain the
process of the hypergraph-based virtual integration, starting
with the semantic annotation of two different formats of EO
data (a CSV and JSON files) until the knowledge hypergraph
building. For each input data, the system generates the ap-
propriate RDF quad annotations, constructs the correspond-
ing RML_G according to the data schema and the domain
ontology used to annotate the data. Then, mapping view hy-
pernodes are extracted from the RML_Gs and the annota-
tions. These hypernodes reflect the central element of the
knowledge hypergraph. Also, there are different types of re-
lations among the members of mapping view hypernodes,
such as observation, spatial and temporal-oriented relation-
ships.

Figure 8: The process of the virtual integration from data to
knowledge hypergraph building.

4.4. Hypergraph-based query processing
The hypergraph-based query processing phase allows the

extraction and the consolidation of data into RDF format
through answering SPARQL queries. The whole process
takes as input a SPARQL query. Based on the knowledge
hypergraph, resulting from the first phase, it generates RDF
triples as a result of the input query, and store them in an
RDF store. To avoid defining a SPARQL translation method
for each target data source query language and to have a
global view answer over all data sources, we introduce a
four-step approach:
(a) The first step “Query parsing”, consists of parsing the

input SPARQL query and generating its schema graph
pattern (SGP) using a spatial RDF store and a temporal
RDF store.

(b) The second step “Hypernodes selection”, consists of
selecting the corresponding mapping view hypernodes
according to the input SPARQL query, given the knowl-
edge hypergraph. Specifically, the approachmatches the
SGP with the mapping view hypernodes and extracts a
set of relevant mapping view hypernodes and the paths
of the RMLmapping documents (Mdoc paths). This stepcorresponds to the source selection step in the DQP.

(c) Given the extracted set of mapping view hypernodes, the
third step, “Sub-queries rewriting”, consists of trans-
forming the input SPARQLquery into concrete sub-queries
using the spatial and the temporal RDF stores.

(d) The fourth step, “Data consolidation and query execu-
tion”, involves two sub-steps: The RML mappings pro-
cessing to generate data in RDF format and store them in
Buffer RDF stores, and the execution of the sub-queries
to obtain the RDF Knowledge graph (RDF KG) as a re-
sult to the input SPARQL query.

The whole process is depicted and detailed in Figure 9.
4.4.1. Query parsing

The idea of this step is to start with a given SPARQL
query (QR). The system extracts the SPARQL graph pat-
tern (GP) corresponding to the input QR. Then, it generates
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Figure 9: The entire hypergraph-based query processing.

the schema graph pattern (SGP) corresponding to the ex-
tracted GP using the domain ontology. In this context, the
SPARQL query and the schema graph pattern are defined in
Definitions 12 and 13.
Definition 12. A SPARQL query is a 4-tuple <GP, DS, SM,
R>, where:
(i) GP is a graph pattern. Several forms of GP exist. The

most used one is the basic graph pattern (BGP), which
combines the triples patterns of a query. The graph
pattern of a query is also called a query pattern.

(ii) DS is an RDF Dataset,
(iii) SM is a set of solution modifiers. A solution sequence

modifier is one of (Order, Projection, Distinct, Offset,
and Limit modifiers)

(iv) R is a result form. SPARQL provides four different
forms of query: SELECT, CONSTRUCT, DESCRIBE,
ASK. Among these forms, SELECT query is the most
frequently used query form [33].

Definition 13. (Schema graph pattern): Given a SPARQL
query (QR) and GP its corresponding graph pattern, a SGP
is the schema graph pattern where SGP shows only the schema
elements corresponding to the keywords in the QR.

If ?x ∈ var(GP) then SchemaElement(?x) ∈ (SGP).

To illustrate the transformation process of an input QR
to SGP, we consider the query in Listing 1. It retrieves the
precipitation data observed in Miami. The query consists of
one GP composed of two triple patterns T1 and T2.
SELECT ?p WHERE {

?p rdf:type memon:precipitation; #T1

?p :observed_at "Miami". #T2 }

Listing 1: A example of SPARQL query.

Figure 10 shows the GP of the query above in green and
the corresponding SGP in yellow.

Figure 10: The corresponding graph pattern and schema pat-
tern to the query in Listing 1.

In order to extract the schema elements corresponding
to the instances of GP, we have created a spatial RDF store
for the spatial context of data called “S_RDFStore” and
a temporal RDF store named “T _RDFStore” for the tem-
poral context of data. Currently, in our approach, we are
interested in these two contexts.

The aims of the S_RDFStore (resp., T _RDFStore)
are to ensure the semantic interoperability between the dif-
ferent spatial (resp., temporal) representations extracted from
the heterogeneous data sources and to enrich the instance
represented in the SPARQLquery, through an automatic pro-
cess, with different related relations on spatial (resp., tempo-
ral) representations related to the same instance. Thus, the
query result can be more enriched.

The S_RDFStore (resp., T _RDFStore) englobes all
the spatial (resp., temporal) representations contained in the
different data sources involved in the data integration ap-
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proach. For example, for the query in Figure 3, the term "Mi-
ami" is automatically identified as an instance of the “city”
ontological class, and ‘2019-10-16’ as an instance of the
class “date.” As a consequence, the process applies the spa-
tial (resp., temporal) context extraction algorithm to extract
other spatial (resp., temporal) representations for the instance
“Miami” (resp., ‘2019-10-16’) from theS_RDFStore (resp.,
T _RDFStore). Thus, the instance “Miami” is enriched by
new relations from the S_RDFStore such as
"Miami" sameAs "Miami_Florida",
"Miami" sameAs "25,7616798◦, -80,1917902◦".
And the instance “2019-10-16” is enriched by new relations
from the T _RDFStore such as:
"2019-10-16" year "2019",
"2019-10-16" sameAs "2019/10/16",
"2019-10-16" sameAs "16 October 2019", etc.
Accordingly, the system translates the initial query to sub-
queries according to the different temporal and spatial rep-
resentations.
4.4.2. Hypernodes selection

After generating the SGP, the system matches it with the
appropriate mapping view hypernodes from the knowledge
hypergraph. Then, it browses in the hypergraph, moving
from an hypernode to another along particular hyperedges
until it assembles all the targeted mapping view hypernodes.
This step is depicted in Definition 14, in which we elaborate
on how to figure out which hypernodes are likely to generate
RDF triples matching the SGP.
Definition 14. Matching of a schema SPARQL graph pat-
tern to mapping view hypernodes.
Let :

• em a mapping view hypernode consisting of a set of
mapping triples (TM),

• SGP a schema SPARQL graph pattern composed of a
set of triple patterns (TQ).

• the knowledge hypergraph<V, A, E, ED, EM , EO, �label,
�v>

We denote by :

• TQ.sub, TQ.pred, and TQ.obj respectively the subject,
the predicate and the object of TQ.

• TM.sub, TM.pred, and TM.obj respectively the sub-
ject, the predicate and the object of TM.

A set of mapping triples TM ∈ em matches SGP if it can
produce RDF triples matching TQ of SGP. We denote by
setTSGP the set of mapping triples under the knowledge hy-
pergraph that matches SGP. The set setTSGP is defined as
follows:

setTSGP = {TM | TM ∈ em ∧ ( ∀ TQ; same(TM.sub,
TQ.sub) ∧ same(TM.pred, TQ.pred) ∧ match(TM.obj,

TQ.obj))},

where same and match are defined as follows:

• same verifies that the term map and the triple pattern
term are the same.

• match (TM.obj, TQ.obj) is valid where TM.obj, TQ.obj
∈ V ∧ TM.obj ∈ e ∧ e ∈ ED ∧ (∃ v ∈ V ∩ e ∩ TM2) ∧
same(TM.sub, TM2.sub)

4.4.3. SPARQL sub-queries rewriting
Once the set of hypernodes (EM ) are extracted, the sys-

tem translates the QR into a union of executable SPARQL
sub-queries according toEM and the logical source descrip-
tion in the RML mapping. Algorithm 2 is a simplified ver-
sion of this process. It iterates over the set of EM and re-
places each TQ.pred and TQ.obj by TM.pred and TM.Obj,
using T _RDFStore and S_RDFStore. The algorithm im-
plicitly considers the functions between the objects of a spe-
cific hyperedge (�v). This step is represented in the algo-
rithm by the method “transformate”.

Each generated SPARQL sub-query is obtained bymatch-
ing the SGP with a TM ∈ setTSGP . The new SPARQL
sub-query structure follows the pattern composed of {From,
Where}, where:

• "From" let us specify the target triples map’s logical
source;

• "Where" is a conjunction of conditions on RML data
element references, entailed by matching the terms of
QR with their corresponding term map in the triples
map.

4.4.4. Data consolidation and query execution
The last step of the hypergraph-based query processing

phase is the consolidation of appropriate data and the exe-
cution of the rewritten sub-queries in order to generate the
final result in forms of RDF triples, stored in a triple store.
The process takes as input the extracted RMLmapping docu-
ments (Mdoc) and the sub-queries and starts with processingthe RML mappings to generate RDF triples. As a mapping
process executor, we opted for RML Mapper9 , which is a
Java implementation of an RML mapping processor. The
RDF Mapper already supports XML, JSON, and CSV data
formats. The process starts by parsing the input mapping and
storing it in memory. For each triples map, it opens the data
source defined in the logical source and poses the defined it-
erator query to the data source, using the appropriate library.
After receiving the result set, the mapping processor iterates
through all features in the results, and for each feature it it-
erates through all predicate-object maps and processes each
one to form the desired RDF triples. For each RMLmapping
document, we obtain a buffered RDF triples store. Then, we
execute the sub-queries generated in step 3 over the differ-
ent RDF stores in order to extract only the RDF triples that
match the SPARQL graph pattern (GP) from the first step.
To describe the complete approach of the query processing,

9https://github.com/RMLio/rmlmapper-java
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Algorithm 2: Translation of Input query to sub-
queries
1 Input :

QR : SPARQL query
SetEM : Set of hypernodes

2 Output :
SetsubQR : Set of SPARQL sub-queries

3 Variables :
ℎ ∈ SetE : A RML mapping hypernode
sv : A new spatial value
st : A new temporal value
subQR ∈ SetsubQR : A SPARQL sub-query

4 begin
5 foreach hypernode ℎ ∈ SetEM do
6 foreach triple pattern tp ∈ ℎ do
7 switch type(tp.predicate) do
8 case spatial do
9 if (tp.Object != QR.Object)

then
10 sv= transformate(tp.Object,

QR.Object);
11 end
12 break;
13 case temporal do
14 if (tp.Object != QR.Object)

then
15 st= transformate(tp.Object,

QR.Object);
16 end
17 break;
18 otherwise do
19 break;
20 end
21 end
22 end
23 subQR = writeQuery(QR, sv, st);
24 end
25 SetsubQR = SetsubQR + subQR;
26 end

Algorithm 3 illustrates how the different steps are orches-
trated, from the extraction of the GP until the generation of
the RDF triples that match it.

5. Onto-KIT Tool: implementation and
evaluation
The proposed approach is implemented through the tool,

named Onto-KIT (Ontology-based Knowledge hypergraph
data Integration and querying Tool) and composed of two
software modules: DISERTO (Data Integration Semantic
hypERgraph Tool) that implements the knowledge hypergraph-
based virtual data integration phase and HyQ (Hypergraph-
based data Querying) that implements the hypergraph-based
query processing phase. Onto-KIT automatically integrates

Algorithm 3: Knowledge hypergraph querying
process
1 Input :

QR : SPARQL query
K −Hyper: The knowledge hypergraph

2 Output :
SetRDFT riples : Set of RDF triples

3 Variables :
Qsp : Schema graph pattern
HQR : Generated query to interrogate K-Hyper
Setspatial: Extracted spatial representations
Settemporal: Extracted temporal representations

4 begin
5 Qsp = extractSchemaGraphPattern (QR);
6 foreach triple pattern tp ∈ Qsp do
7 if (tp.predicate ∈ spatialPredicatesSet )

then
8 Setspatial =ExtractSpatialRepresentations

(Qsp.obj, SRDFStore);
9 end

10 if (tp.predicate ∈ temporalPredicatesSet )
then

11 Settemporal=ExtractTemporalRepresentations
(Qsp.obj, TRDFStore);

12 end
13 end
14 HQR = WriteQuery(Qsp, Setspatial,

Settemporal);
15 Map < SetEM , patℎs > =

QueryK-Hyper(HQR);
16 SetsubQR = RewriteSubQueries(QR , SetEM );
17 foreach path ∈ patℎs do
18 store = RMLMappingProcessing(path);
19 stores = stores + store;
20 end
21 ExecuteSubQueries(stores, SetsubQR);
22 end

various formats of data in order to avoid human intervention
as much as possible, especially in terms of data mapping and
modelling. Specifically, the semantic annotation and map-
ping generation processes are automatically performed. In
addition, our tool performs a novel knowledge hypergraph-
based query processing through an enhanced source selec-
tion technique. Onto-KIT is implemented in Java and inte-
grates several open-source libraries:

• OWL API10 : to manipulate the ontology.
• RDF4J11 : a widely used Java framework for devel-

oping Semantic Web applications, tools, and servers.
10http://owlapi.sourceforge.net/
11https://rdf4j.eclipse.org/
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It was used to generate RDF quads, manipulate RDF
triple stores and execute the SPARQL queries.

• GDAL: The OGR Simple Features embedded in this
Geospatial DataAbstraction Library (GDAL)were used
to read multiple raster formats (ENVI, GeoTIFF, etc.).

• RMLMapper: A Java library that executes RML rules
to generate data in forms of RDF triples.

• JavaFX API: An open-source client application built
on Java, used to create the tool interfaces.

Our implementation is freely available on GitHub12. We
tested Onto-KIT tool over real-world datasets to demonstrate
the ability of our approach to guarantee semantic interoper-
ability, integrate observed data from multiple sources, and
enhance the query answering process in terms of complete-
ness. The use case study is based on the example presented
in Section 4.1; dataset about floods in CSV format from EM-
DAT13 and heterogeneous precipitation data from three dif-
ferent sources:

• Data in ENVI format (The ENVI image format is a
flat-binary raster file) from OSS,

• Data in JSON format from AerisWeather API,
• Data in CSV format from NOAA.

5.1. DISERTO Tool
For the virtual data integration phase, DISERTO is im-

plemented to automatically generates the knowledge hyper-
graph [24]. It is based on the RML model14. DISERTO
allows selecting (1) the ontology that will be used as a se-
mantic base for all the steps, (2) the thesaurus if needed,
and (3) the input dataset (s). Currently, the tool supports
the CSV, JSON, and ENVI formats. The entire process of
the hypergraph-based virtual data integration phase is exe-
cuted when we click on the “Generate” button. The outputs
consist of the RDF annotations document, the RML map-
ping documents, and the knowledge hypergraph stored in an
RDF4J triple store. As a first step, we selected MEMOn on-
tology, the UNESCO thesaurus15 , and the datasets, men-
tioned before. The system loads the ontology and executes
the entire process, schematized by the activity diagram, il-
lustrated in Figure 11. For each data format, an appropriate
wrapper is used to read the data and extract the metadata en-
titiesM = mi=1..n (Step1). For instance, in the case of CSVfile presented in the motivating example, the CSV wrapper
extracts the columns’ names, which correspond to the meta-
data entities M = (station, city, date, HPCP).

For eachmi, the system searches the corresponding class
in MEMOn (Step 3). MEMOn is checked class by class to
find the term mi. If mi is found, the corresponding class IRI(ci) is extracted (Step 5). Otherwise, the system refers to the

12https://github.com/marouamasmoudi/Onto-KIT
13https://www.emdat.be/
14https://github.com/RMLio/RML-Model
15http://vocabularies.unesco.org/browser/thesaurus/

thesaurus (Step 4), extracts related terms SetT that it checks
with MEMOn classes. Once one term is found in MEMOn,
the corresponding ci is extracted. For instance, for the inputENVI data, the system searched the corresponding ci to “m1= rainfall”. Nevertheless, this term is not found in the ontol-
ogy. Thus, DISERTO searched it in the UNESCO thesaurus,
and the related terms of “rainfall” are extracted (rain, precip-
itation, etc.). Once, the “precipitation” label (which corre-
sponds to the class memon_00001097) is found in MEMOn,
the RDF quad annotation is generated. While, in JSON data,
“m1 =precipitation” is found in MEMOn as a label to the
class memon_00001097. Listing 2 presents the two annota-
tions generated for these two metadata entities (Step 6).
<http ://www.semanticweb.org/ontologies /2017/10/ memon_00001097 >

<http ://www.w3.org /2000/01/rdf -schema \#label > "rainfall"

<http :// example.org/source/OSS >.

<http ://www.semanticweb.org/ontologies /2017/10/ memon_00001097 >

<http ://www.w3.org /2000/01/rdf -schema \#label > "precipitation"

<http :// example.org/source/Aeris >.

Listing 2: Two examples of RDF quad annotations.
For each dataset, DISERTO creates an RML mapping

document. First, the triples map name is generated from the
m1 value (Step 9). Second, based on the data format and
its localization, the logical source is generated (Step 10).
Third, the system generates a subject map that defines the
rule that generates unique identifiers for the resources which
are mapped (Step 11). Finally, the predicate object maps are
generated (Step 12). The number of predicate-object maps
depends on the number of relations extracted in Step 8. For
the JSON dataset, four predicate-object maps are generated
as follows:

1. DISERTO generates a predicate-object map that will
create a “memon:observed_on” link between the sub-
ject map and the temporal information in the data.

2. Then, it generates a predicate-object map that will cre-
ate a “memon:observed_at” link between the subject
map and the spatial information in the data. The spa-
tial information in the input JSON data is a complex
metadata entity (composed of longitude and latitude
elements). Accordingly, DISERTO creates a new triples
map for the spatial information, named “LatLong.”
The "memon:observed_at" triples will be generated
by extracting the subject from the first triplesmap (<#Pre-
cipitationMapping>), and the objectsfrom the second
triplesmap (<#LatLongMapping>). This can be achieved
by adding the rr:parentTriplesMap to <#Precipitation-
Mapping>.

3. For the LatLong triples map, DISERTO generates a
predicate-object map that will create a "geo: has lati-
tude value" link between the subject map and the lat-
itude information in the data.

4. Also, it generates a predicate-object map that will cre-
ate a "geo:has longitude value" link between the sub-
ject map and the longitude information in the data.

Listing 3 illustrates the resulted RML mapping docu-
ment for the JSON data as automatically generated by DIS-
ERTO.
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Figure 11: Activity diagram of DISERTO.

@prefix rr: <http ://www.w3.org/ns/r2rml#>.

@prefix rml: <http :// semweb.mmlab.be/ns/rml#>.

@prefix xsd: <http ://www.w3.org /2001/ XMLSchema#>.

@prefix memon: <http ://www.semanticweb.org/lenovo/ontologies

/2017/10/ >.

@prefix TO: <http ://www.ontologylibrary.mil/ CommonCore/Mid

TimeOntology#>

<#PrecipitationMapping >

rml:logicalSource [

rml:source "E:\ AerisWeather_data\Precipitation.json";

rml:referenceFormulation ql:JSON ];

rr:subjectMap [rr:template "http :// example.com/precipitation

/{ totalMM }";

rr:class memon:memon_00001097 ];

rr:predicateObjectMap [

rr:predicate memon:observed_at;

rr:objectMap [

rr:parentTriplesMap <LatLongMapping >] ];

rr:predicateObjectMap [

rr:predicate memon:observed_on;

rr:objectMap [ rml:reference "dateTimeISO "] ].

<#LatLongMapping >

rml:logicalSource [

rml:source " E:\ AerisWeather_data\Precipitation.json";

rml:referenceFormulation ql:JSON ];

rr:subjectMap [

rr:template "http :// example.com/latlong /{ Latitude},

{Longitude }"];

rr:predicateObjectMap [

rr:predicate geo:has_longitude_value;

rr:objectMap [ rml:reference "lat" ] ];

rr:predicateObjectMap [

rr:predicate geo:has_latitude_value;

rr:objectMap [ rml:reference "long" ] ].

Listing 3: The resulted RML mapping document for the in-
put Precipitation.json from AerisWeather API.

After generating RML mapping documents, DISERTO
builds the virtual knowledge hypergraph and stores it into an
RDF4J store. To do so, for each RML mapping document,
the system produces a mapping view hypernode (em) (Step14), then makes it belong to one spatial hyperedge (eS ) (Step15), one temporal hyperedge (eT ) (Step 16), and one obser-

vation hyperedge (eO) (Step 17). Figure 12 shows an illus-

Figure 12: The mapping view hypernode "H_001".

tration of the mapping view hypernode corresponding to the
RMLmapping document in Listing 3. The IRI corrsponding
to this hypernode is "http://example/org/hypernode/H_001".
Figure 13 illustrates the relations between the hypernode "H_001"
and its corresponding hyperedges. “b” (resp. “c”) identifies
the IRI of the spatial (resp. temporal) hyperedge to which
"H_001" belongs. "d" represents the observation hyperedge
that includes "a", "b" and "c".
(http ://www.semanticweb.org/lenovo/ontologies /2017/10/

memon_00001097 , http ://www.semanticweb.org/lenovo/ontologies

/2017/10/ observed_at , http ://www.semanticweb.org/lenovo/

ontologies /2017/10/ memon_00001056)

[http :// example.org/hypernode/H_0001]

(http ://www.semanticweb.org/lenovo/ontologies /2017/10/

memon_00001097 , http ://www.semanticweb.org/lenovo/

ontologies /2017/10/ observed_on , http ://www.semanticweb.org/

lenovo/ontologies /2017/10/ memon_00001005)

[http :// example.org/hypernode/H_0001]

M. Masmoudi et al.: Preprint submitted to Elsevier Page 16 of 23



M. Masmoudi et al.

Figure 13: The relations between "H_001" and corresponding
hyperedges.

(http ://www.semanticweb.org/lenovo/ontologies /2017/10/

memon_00001056 , http ://www.semanticweb.org/lenovo/ontologies

/2017/10/ belongsTo , http :// example.org/hypernode/H_0001)

[http:/ example.org/SpatialHyperedge/memon_00001097]

(http ://www.semanticweb.org/lenovo/ontologies /2017/10/

memon_00001005 , http ://www.semanticweb.org/lenovo/ontologies

/2017/10/ belongsTo , http :// example.org/hypernode/H_0001)

[http:/ example.org/TemporalHyperedge/memon_00001097]

(http :// example.org/hypernode/H_0001 , http :// example.org/

path , "D\DISERTO\Resources\RML mappings\H_0001.ttl")

[http :// example.org/ObservationHyperedge/memon_00001097]

Listing 4: Examples of RDF quads representing a partial
view of the knowledge hypergraph.

To represent the hypernodes and hyperedges, we choose
to use RDF quads, where the fourth component of the quad
specifies to which hypernode an RML mapping document
corresponds or to which hyperedge, a hypernode belongs.
Listing 4 represents the generated RDF quads that corre-
spond to Figure 13. Figure 14 modelizes the four gener-
ated RDF quads. The RDF quad "b" identifies the spatial-
oriented hyperedge. Specifically, it includes the spatial rep-
resentation of "H_001" and identifies the IRI of the spatial
hyperedge
"http://example.org/SpatialHyperedge/memon_00001097",
which is automatically generated by the system. Similarly,
the RDF quad "c" includes the temporal representation of
"H_001" and identifies the IRI of the temporal-oriented hy-
peredge which corresponds to
"http://example.org/TemporalHyperedge/memon_00001097".
Finally, the RDF quad "d" indicates the path of the RML
mapping document corresponding to "H_001" and shows
that it belongs to the hyperedge
"http://example.org/ObservationHyperedge/memon_00001097".

Consequently, the knowledge hypergraph generated in
the case of our use case study is illustrated in Figure 15. It
contains 2 observation hyperedges (flood and precipitation),
2 spatial hyperedges, 2 temporal hyperedges, and 4 hypern-
odes (one for each input dataset). Figure 15 also shows the
relations among "memon:flood" and "memon:precipitation"
which cover many relationships into the knowledge hyper-
graph, including "realized_in" relation between "flood" and
"flooding" classes, and "caused by" link between "flooding"

Figure 14: A partial view of the precipitation-oriented sub-
hypergraph.

Figure 15: A partial view of the knowledge hypergraph.

and "heavy rainfall" classes. Actually, our approach not only
integrates data semantically but also determines the correla-
tions between them. Thanks to the knowledge hypergraph,
we could transform information into actionable knowledge
as well as extract implicit knowledge such as the type of pre-
cipitation (heavy, low, etc.). This global data view provided
by the generated knowledge hypergraph allows users to re-
trieve correlated information from data and has the benefit of
being exploitable to learn from it and prevent similar events
in the future.
5.2. HyQ Tool

For the hypergraph-based query processing phase, HyQ
is implemented to automatically generate the RDF knowl-
edge graph as a result of an input SPARQL query. This pro-
cess is done based on the knowledge hypergraph generated
by DISERTO. HyQ allows (1) entering a SPARQL query
through a GUI interface, (2), extracting the relevant hyper-
nodes and RML mappings through the knowledge hyper-
graph, (3) rewriting sub-queries, (4) generating RDF triples
and (5) executing sub-queries to get an appropriate and op-
timal result for the input query. The whole process is illus-
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Figure 16: Sequence diagram of the query processing.

Figure 17: (a) Example of SPARQL query. (b) The corre-
sponding schema pattern. (c) The query used to interrogate
SRDFStore

trated through the sequence diagram (cf. Figure 16). Based
on the datasets involved in the use case study, we define the
SPARQL query defined in Figure 17(a). This query asks for
precipitation data observed in "Miami" on “10/2019”.

As a first step, a parsing process is performed. The in-
put query is syntactically analyzed and then translated into
a valid syntax for the query engine. To do so, we used the
QueryparserUtil of RDF4J. After that, the system extracts
the SGP of the input SPARQL query. Figure 17.b. shows
a graphical representation of the SGP, where arrows rep-
resent triples that are oriented from the subject to the ob-
ject. If the object corresponds to a spatial context, as in
this example, the system refers to S_RDFStore to iden-
tify “Miami” as a city. To do so, the system automatically
generates the query illustrated in Figure 17.c and interro-
gates S_RDFStore. The result of this query represents the
class geo:City. Then, the system matches the SGP with the
knowledge hypergraph to extract the relevant hypernodes.
In order to provide an optimal query answering from differ-
ent data sources, the system relies on S_RDFStore (resp.
T _RDFStore) to extract other spatial (resp. temporal) rep-
resentations that correspond to the representations captured

Figure 18: (a) The query used to interrogate the knowledge
hypergraph. (b) Results

in the input query. Accordingly, based on the spatial (resp.
temporal) -oriented hyperedges, the system interrogates the
knowledge hypergraph to identify all relevant hypernodes.
The IRIs of the spatial, temporal and observation-oriented
hyperedges were automatically identified by the system de-
pending on the variable used in the SELECT part of the
SPARQL query pattern (in our case, precipitation). In or-
der to facilitate understanding, Figure 18 (a) illustrates only
the part of the query that concerns the spatial context. Fig-
ure 18 (b) shows the three relevant hypernodes selected by
the system. After that, the system simultaneously generates
the RDF triples by processing the RML mappings for each
RML mapping document and rewrites the subqueries based
on the extracted hypernodes. Each RDF graph is stored in a
buffered triplestore. Given that H_002 exactly matches the
SGP, the system rewrites only two sub-queries for H_001
and H_003. Listing 5 shows the sub-query for both H_001
and H_003.
SELECT ?p ?lat ?long ?date WHERE

{ ?p rdf:type memon:precipitation;

memon:observed_at ?latlong;

memon:observed_on ?date.

?latlong geo:has_latitude_value ?lat;

geo:has_longitude_value ?long.

BIND (year(?date) AS ?year) BIND (month(?date) AS ?month)

FILTER (?year = 2019 && ?month = 10 && ?lat >= "30 ,45"

&& ?lat <= "30 ,45" && ?long <=" -80.192" && ?long >="25.761") }

Listing 5: The generated sub-query.
The last step of the process of HyQ consists of the exe-

cution of the sub-queries on the buffered RDF triple stores,
then the union of the results to produce an output RDF knowl-
edge graph as a result of the input SPARQL query. Listing
6 shows examples of generated RDF triples.
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

PREFIX memon: < http ://www.semanticweb.org/lenovo/ontologies/

2017/10/ >.

PREFIX xsd: <http ://www.w3.org /2001/ XMLSchema#>.

PREFIX to: <http ://www.ontologylibrary.mil/ CommonCore/Mid/

TimeOntology#>

PREFIX dbr: <http :// dbpedia.org/resource/>

<http :// example.com/precipitation /29mm> rdf:type memon:memon_00001097.

<http :// example.com/precipitation /29mm> memon:observed_at dbr:Miami.

<http :// example.com/precipitation /29mm> memon:observed_on

<http :// example.com/yearmonth /2018 ,12 >.

<http :// example.com/yearmonth /2018,12> to:year "2018"^^ xsd:int.

<http :// example.com/yearmonth /2018,12> to:month "12"^^ xsd:int.

Listing 6: Examples of generated RDF triples.
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6. Evaluation and discussion
According to the quality attributes mentioned in Sec-

tion 4 (interoperability, completeness, usability and main-
tainability), the implementation of the two independent soft-
ware modules (DISERTO and HyQ) promotes the maintain-
ability. In addition, the proposed user interface of Onto-
KIT helps fulfill usability. This section focuses on the two
other quality attributes; interoperability and completeness.
Indeed, the objectives of our performance evaluation is three-
fold: first, we aim at evaluating the accuracy of the semantic
annotation step and consequently evaluating the accuracy of
the generated RMLmappings. Second, we aim at evaluating
the efficiency of the query processing when using the knowl-
edge hypergraph. Third, we wish to prove that the query
processing based on the knowledge hypergraph actually en-
hances the query’s results in terms of completeness and re-
lationship richness.
Environment: We run our experiments on a Windows In-
tel(R) Core (TM) i5-6300U CPU@ 2.40GHz 2.50 GHz ma-
chine, 8,00Go of RAM with Java version 1.8.0.
Metrics:
(i) Accuracy of the semantic annotation :
The quality of semantic schema matching between metadata
and ontology classes is commonly measured by precision
and recall. While precision measures the number of cor-
rectly matched pairs out of all pairs that were matched (cf.
equation 1), recall measures how many of the actual pairs
have been matched (cf. equation 2) [13]. However, we can
have excellent precision with terrible recall, or alternately,
terrible precision with excellent recall. Thus, we also con-
sider themetric F1-measurewhich is the average of precision
and recall (cf. equation 3). We calculated the three metrics
using the equations below:

Precision = TP
FP ∪ TP

(1)

Recall = TP
FN ∪ TP

(2)

F1 − measure = 2 × Precision × Recall
P recision + Recall

(3)
With,

• TP: True Positives is the correctly set of the automat-
ically derived correspondences,

• FP: False Positives is the set of correspondences falsely
proposed by the automatic match operation.

• FN: FalseNegatives is the set of correspondences needed
but not automatically identified.

(ii) Execution Time: Elapsed time between the submission
of a query to the system and the delivery of the answers.
(iii) Cardinality: Number of answers returned by the query.
(iv) Completeness: Query result percentage with respect
to the answers produced by a SPARQL query over all the
datasets.

Figure 19: Performance variation in terms of precision, recall
and F1-measure (a) only with domain ontology exploitation.
(b) with ontology, thesaurus and SetA exploitation.

6.1. Experiment 1: DISERTO; Schema
annotation evaluation

Figure 19 shows the performance variation in terms of
precision , recall and F1-measure of DISERTO while in-
creasing the number of integrated data sources. Figure 19(a)
illustrates the experimental mesures of the semantic annota-
tion step only with the exploitation of the domain ontology.
In the second experiment, illustrated in Figure 19(b), the sys-
tem exploits the thesaurus UNESCO and the set of gener-
ated RDF quad annotations SetA in addition to the domain
ontology while performing the semantic annotation process.
The values of precision and recall that we obtain in the two
experiments are greater than 0.5. This is due to the fact
that the ontology used to execute the semantic annotation
contains the key concepts without useless terms (noise) and
that it covers well the modeled domain. It can be seen in
Figure 19(a) that match quality degrades when we integrate
other data sources. This decrease can be explained by the
fact that the data sources used in this experiment, include
more different metadata. In contrast to Figure 19(b), where
match quality increases when we integrate more and more
data sources. This illustrates the impact of the exploitation
of the thesaurus and the SetA in the accuracy of the schema
matching and consequently, in the RML mappings. Here,
the system attempts to exploit the classes from the domain
ontology and the terms from the thesaurus to generate the
SetA that it stores to be exploited directly next time. The
graph in Figure 19(b) shows that after 80% of integrated data
sources, the values of the precision and the recall tend toward
1, which means there is less FN and FP returned. Accord-
ingly, the system achieves the best F1-measure of about 0.9.
It also shows that exploiting the domain ontology, the the-
saurus and the generated set of annotations yields in new
annotations that are significantly more accurate than the an-
notations generated by only using the knowledge from the
domain ontology. In conclusion, thanks to DISERTO, the
system accurately annotates the heterogeneous data sources
to virtually integrate them into the knowledge hypergraph,
which will facilitate the users’ query processing to provide
them with the desired results.
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Figure 20: Performance variation of HyQ in terms of execution
time.

6.2. Experiment 2: HyQ evaluation
In the second experiment, we study the efficiency of query

processing when using the knowledge hypergraph. For that,
we compute the execution time while scaling up the num-
ber of hypernodes. We partition the query answering pro-
cess into two sub-processes: (1) the steps beginning from
the query submission until the hypernodes selection and (2)
the steps that include data accessing, RDF triples genera-
tion, and query execution. We measured the execution time
for each subprocess, then for the entire process. To do so,
we run the query three times and retain the fastest execution
time. In this experiment, we use the SPARQL query from
the motivating example (cf. Figure 3). According to Defini-
tion 13, "var" refers to the variable "precipitation" in our in-
put SPARQL query. Figure 20 reports on the execution time
and the percentage of the presence of var (in the example,
precipitation) in the knowledge hypergraph, in other words,
the presence of hypernodes related to var. The observed re-
sults show that the execution time (ET) of sub-process 1 is
almost constant despite the increase in the var presence per-
centage in the hypergraph. However, the ET of sub-process
2 rises with the rise of the number of hypernodes related to
the SPARQL query’s var in the knowledge hypergraph. We
can deduce that the variation (increase/decrease) of the ET of
the entire query processing depends only on the sub-process
2 and particularly on the RDF triple generation step. This
means that the time spent in the hypergraph querying and
the hypernodes selection does not affect the entire process’s
ET.
6.3. Experiment 3: Comparison with Karma

approach
In this section, we evaluate the efficiency of the proposed

data integration and querying approach in terms of perfor-
mance and results’ completeness. Specifically, we define
SPARQL queries, execute them, and calculate the cardinal-
ity of query responses and the execution time of the query
processing. Then, we compare the evaluation results to those
of the data integration approach KARMA [17]. Karma pro-
vides a graphical user interface through which we import
data. The output from the interaction with the Karma Web
system is a materialized RDF data store used for the query-

ing. We executed four types of SPARQL queries for both
systems:
Type 1: Queries that extract variables directly linked to a
property without the need for any processing.
Many individual-level factors such as the locations of flood
disasters can be extracted with a simple SPARQL query. For
example, in MEMOn, the object property "bfo:occurs_at"
was used to link a "envo:flood" to its "bfo:site". Based on this
relation, we can use the SPARQL query Q1, as shown below,
to retrieve all floods’ locations information, where "?flood"
represents the floods and "?site" represents the floods’ spa-
tial information.
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX memon:<http ://www.semanticweb.org/lenovo/ontologies/

2017/10/ >

PREFIX bfo: <http :// purl.obolibrary.org/obo/>

SELECT ?flood ?site WHERE

{ ?flood rdf:type memon:flood;

bfo:occurs_at ?site }

Type 2: Queries that need to process the raw data to produce
the desired results.
In EO data sources, different formats are used to describe
the temporal information. For example, OSS only considers
the month and the year of an event, whereas the raw data in
NOAA were recorded as the date of the observation of an
event in "yyyymmdd" format. In our approach, we used the
T _RDFStore to link the different formats of date values of
an individual of "bfo:date". The SPARQL query used in this
context is presented below. Q2:
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX memon:<http ://www.semanticweb.org/lenovo/ontologies /2017/10/ >

PREFIX bfo: <http :// purl.obolibrary.org/obo/>

SELECT ?p ?site WHERE

{ ?p rdf:type memon:precipitation;

memon:observed_on ?date .

FILTER (?date >= "20191001"^^ xsd:date

&& ?date <= "20191031"^^ xsd:date}

Type 3: Queries that are used to link a property to spatial
context
In the proposed S_RDFStore, spatial representations are
mapped to each other. We used a SPARQL query Q3 that
retrieves precipitation data in a specific city.
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX memon:<http ://www.semanticweb.org/lenovo/ontologies/

2017/10/ >

PREFIX bfo: <http :// purl.obolibrary.org/obo/>

SELECT ?p WHERE

{ ?p rdf:type memon:precipitation;

memon:observed_at "Niamey" }

Type 4: Queries that generate results based on the knowl-
edge encoded in the ontology
After integrating the precipitation data from the different
sources, a SPARQL query, as shown below, can be used to
retrieve all precipitation data where the precipitation can be
described as "very heavy precipitation". To this end, the
reasoner can automatically apply SWRL rules existing in
the ontology MEMOn to the generated buffered RDF stores
and deduce the type of precipitation data to ensure that the
retrieved precipitation values meet the following condition:
precipitation value >16 mm and <50 mm.
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PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX memon:<http ://www.semanticweb.org/lenovo/ontologies/

2017/10/ >

PREFIX bfo: <http :// purl.obolibrary.org/obo/>

SELECT ?p ?city WHERE

{ ?p rdf:type memon: very_heavy_preciptation;

memon:observed_at ?city }

Figure 21: Performance variation in terms of completeness and
cardinality of returned results.

Figure 22: Performance variation in terms of execution time
and cardinality of returned results.

Figure 21 reports on completeness and cardinality of re-
turned results for the four queries for both Karma and our
approach, whereas Figure 22 reports on the execution time.
In this experiment, we notice that Karma returns responses
to queries faster but at the expense of completeness, as can
be seen in the chart bar blocks of Q2 and Q3. However,
karma fails to answer Q4 which is completely answered by
HyQ. HyQ returns complete results for Q1 and Q4 and par-
tially complete results for Q2 and Q3 but slower execution
times (> 0.8 s). In comparison to Karma, HyQ achieves
in general higher completeness of results, but at the cost of
query execution time (ET). The query processing ET is bet-
ter at Karma, since data integration is not performed at query
time, but at ETL time. However, it’s clearly shown that our
proposed approach has much better performance in terms
of completeness and relationship richness since Karma ap-
proach has not been designed to enhance query response.
Contrarily to Karma, HyQ can transform information into
actionable knowledge as well as extract implicit knowledge,
as illustrated by the case of query Q4.

6.4. Discussion
Onto-KIT aims at effectively addressing semantic data

integration and query processing, based on a knowledge hy-
pergraph, while taking into account the results accuracy, com-
pleteness and semantic richness. Specifically, the system
employs a domain ontology and a chosen thesaurus in a se-
mantic annotation process to find the corresponding classes
that match the terms in metadata and then generates a set of
annotations presented as RDF quads. These latter are used
along with the domain ontology to create RML mappings.
Then, the system builds a knowledge hypergraph (VKHG)
that describes data sources in terms of hypernodes with in-
terlinking to other data sources using hyperedges. The gen-
erated knowledge hypergraph represents a common informa-
tion view of distributed data sources and will be used as a
data catalog in the query processing. In fact, to produce a
complete and rich answer for an input user query, Onto-KIT
performs a hypergraph-based query processing through an
enhanced source selection step. The source selection mech-
anism identifies the relevant sources for a specific SPARQL
query by referring to the knowledge hypergraph where meta-
data are semantically defined and linked in a high expressive
way. This innovative mechanism aims to cover a broadening
spectrum of query response while taking into account results
accuracy, completeness, and semantic richness.
Accordingly, the accuracy and completeness metrics play a
significant role in measuring the performance of the pro-
posed tool. Thus, we started by measuring the effective-
ness of the semantic annotation step, which means measur-
ing whether the tool can fulfill its expectations for schema
matching. Next, we evaluated the completeness of the query’s
answer, including the execution time of the query processing
as one of the main criteria of a data integration approach.
According to the experimental results, we can deduce that
the proposed tool is presenting accurate mappings and sig-
nificantly enhancing the query answer in terms of complete-
ness by using the hypergraphs as a mathematical structure
in the VKHG. Using a hypergraph-based representation to
model data schema has an important benefit for expressing
relationships. Indeed, results to the query cannot be found
when they are part of sources that are unknown and can-
not be discovered during query processing. This is the case
when the source descriptions do not match the query and
no link exists between two sources that may contribute to
the final result. As opposed to existing query processing, it
might be possible to obtain complete knowledge about dif-
ferent distributed sources. In particular, processing queries
against the knowledge hypergraph where sources are linked
might yield to more complete results. Although the existing
VoID (Vocabulary of Interlinked Datasets) technique pro-
vides description about data sources and links between them,
its linkset is limited. Almost predicates such as rdfs:label
and owl:sameAs are used. Therefore, VoID lacks details
necessary for discovering semantic linking between multi-
source data other than equivalence relationships (not limited
to label and sameAs). These linking may be expressed in
terms of spatial–temporal characteristics, observation char-
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acteristics and can be evenmade richer by incorporating other
relations such as the causality knowledge between observa-
tions and environmental processes, for example.
However, the proposed data integration and querying ap-
proach presents some limitations. Indeed, the schema an-
notation process exploits a thesaurus chosen by the user to
extract relevant classes that do not exist in the domain ontol-
ogy. One limitation of this contribution is that the approach
does not consider the case where neither the ontology nor
the thesaurus contains a relevant concept that matches the
metadata term. It is believed that the most general case in
which the data schema is not entirely covered by the map-
ping entails new mapping tasks. For example, when data
schema contains abbreviations such as HPD (for Hourly Pre-
cipitation Data), human intervention is required to map the
term with the right semantic class from the ontology. Fur-
thermore, the queries processed so far by Onto-KIT tool are
still simple; SPARQLfilters, as well as join constraints, were
not tackled in the translation of an input SPARQL query into
sub-queries
Regardless of the outpointed limitations, experimental re-
sults suggest that the knowledge hypergraph empower the
query processing, and allow for the selection of relevant data
sources that increase answer completeness. Onto-KIT is avail-
able on-line and can be applied to other domains with some
adaptations by choosing the appropriate ontology and the-
saurus.

7. Conclusions and future works
We presented a knowledge hypergraph-based approach

which is able to virtually integrate heterogeneous data gen-
erated from multiple sources and enhance the query answer-
ing process in terms of completeness and relationship. The
approachwas implemented throughOnto-KIT tool that com-
prises DISERTO and HyQ software modules and works in
two phases. In the offline phase, DISERTO automatically
generates the RML mappings that can be used to transform
the input data into RDF and generates the virtual knowledge
hypergraph. In the online phase, HyQ executes an enhanced
query processing by improving the source selection task to
identify relevant sources that possibly contribute to the fi-
nal result. Specifically, HyQ executes a SPARQL query and
generates an RDF knowledge graph on the basis of the vir-
tual knowledge hypergraph.
This approach is significantly improving the query answer in
terms of completeness by using the hypergraphs as a math-
ematical structure in the virtual KG. Using a hypergraph-
based representation to model data has an important bene-
fit of expressing relationships. The main benefit of the pro-
posed tool lies in its ability to be applied to any domain by
choosing the appropriate ontology and thesaurus. Unlike
Onto-KIT, existing tools (such as GeoTriples and TripleGeo)
are specific domain-oriented. They work with Geo ontolo-
gies like GeoSPARQL and Linkedeodata ontologies. Other
approaches, such as KARMA are more generic. However,
they need a lot of human intervention in data modeling while
choosing classes and relations from ontologies. We believe

that Onto-KIT constitutes a basis to ensure semantic inter-
operability through virtual data integration and data linking.
It provides an ontology-based knowledge hypergraph which
specifies the semantics of the data and links multi-source
data. Nevertheless, there are still some aspects to be con-
sidered. Currently, our approach supports JSON, CSV, and
ENVI formats in a logical source of the RMLmapping. This
choice is due to the fact that EO data is generally represented
in these formats. Thus, as future work, we will integrate ad-
ditional data formats such as XML and Shape files. In ad-
dition, we believe that the representation of hyperedges can
be made richer than it is now by incorporating other rela-
tions such as the causality knowledge between observations
and environmental processes for example. By doing so, we
believe that, using the hypergraph-based learning methods
and algorithms, discovering interactions between observa-
tions and generating alerts will be easier in the near future.
Furthermore, in this work, we focused on the improvement
of the query processing in terms of query result complete-
ness. In future works, we intend to use known SPARQL
query federations systems and rely on other approaches and
methods that could improve the runtime of the query pro-
cessing in order to ensure the balancing between query an-
swer completeness and query execution time. Then, we will
concentrate on making our tool scale to even bigger datasets
by utilizing big data technologies andmore experiments with
a larger size of datasets. Our tool is an open system and sev-
eral improvements can be made to increase its efficiency.
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