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Abstract

The analysis of data streams has received considerable attention over
the past few decades due to sensors, social media, etc. It aims to recognize
patterns in an unordered, infinite, and evolving stream of observations. Clus-
tering this type of data requires some restrictions in time and memory. This
paper introduces a new data stream clustering method (IMOC-Stream). This
method, unlike the other clustering algorithms, uses two different objective
functions to capture different aspects of the data. The goal of IMOC-Stream
is to: 1) reduce computation time by using idle times to apply genetic opera-
tions and enhance the solution. 2) reduce memory allocation by introducing
a new tree synopsis. 3) find arbitrarily shaped clusters by using a multi-
objective framework. We conducted an experimental study with high dimen-
sional stream datasets and compared them to well-known stream clustering
techniques. The experiments show the ability of our method to partition
the data stream in arbitrarily shaped, compact, and well-separated clusters
while optimizing the time and memory. Our method also outperformed most
of the stream algorithms in terms of NMI and ARAND measures.
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1. Introduction

Swarm Intelligence or distributed intelligence is the collective behavior
of decentralized and self-organizing natural or artificial systems [27]. It has
attracted lots of interest from researchers in the last two decades due to
their dynamic and flexible ability and that they are highly efficient in solving
nonlinear problems in the real world [28].

AntTree [4] is a hierarchical clustering method that models how ants form
living structures and use this behavior to organize this data into a tree that
is built in a distributed manner. Intuitively, each ant/data is located at the
start of reliable support (tree root). The behavior of the ants then consists
either in moving or in clinging to the structure to extend it and allow other
ants to come and stick in their turn. This behavior is determined in particular
by the similarity between the data and the local structure of the tree. The
result is a tree-like organization of the data whose properties will allow us to
determine a classification automatically and to have a visual overview of the
tree.

The AntTree algorithm was proposed to deal with Data Stream, a kind
of data that evolves and arrives in an unbounded stream. Analyzing data
stream implies time and space constraints. The process of data stream clus-
tering consists of creating compact and well-separated partitions from dy-
namic streaming data in only a single scan, using limited time and memory.

Most of the clustering techniques follow one objective function. How-
ever, every objective function represent a different property of the clusters,
such as the compactness or the separateness of a cluster. When the algo-
rithm assumes a homogeneous similarity measure over the entire data set, it
becomes not robust to variations in cluster shape, size, dimensionality, and
other characteristics [18]. The Multi-Objective clustering methods (MOC)
[23] retrieve clusters by applying two or more objective functions. It uses
a two-step process: 1) Generate multiple clustering solutions and store the
optimal ones. 2) Construct an optimal partition based on the Pareto-set
solutions. The following definitions are useful to understand MOC methods
:

1.1. Definitions:

• Dominated solutions: a solution X is said to dominate a solution Y
if ∀j = 1, 2, ...,m, fj(X) ≤ fj(Y ), and there exists k ∈ 1, 2, ...,m such
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that fk(X) < fk(Y ). Where m is the number of objective functions
and fj is the jth objective function.

• Pareto-optimal solutions: a solution X is called Pareto-optimal if it
is not dominated by any other feasible solutions. The set of non-
dominated solutions is called Pareto-set.

• Idle times: in the case of a slow stream, time delays between data points
can appear e.g., times where no data point is available. Traditional
algorithms will stop and wait for new data points to process them.
Figure 1 illustrates the concept of idle times.

Figure 1: Idle times.

Main Contributions

In our previous work [3] we proposed a multi-objective stream clustering
method. This method uses genetic operators in every iteration to improve
the solutions, costly in time computation. The second inconvenience of our
previous method is calculating distances between all the clusters when trying
to find the neighborhood of a particular cluster. This paper introduces an
improved multi-objective clustering method based on data stream clustering,
and Ant-Tree clustering algorithm [4]. This method optimizes the compu-
tation time by applying the genetic operators only in idle times to improve
the solution instead of using them in every iteration. It optimizes memory
allocation by using the Ant-Tree algorithm to find a cluster’s neighborhood.
It also introduces a new aggregation approach for the Ant-Tree algorithm to
store only a synopsis of the data instead of storing all the data points. The
method presented in this paper has the following merits compared to the
other multi-objective and single-objective data stream clustering methods:

• It uses the Ant-tree algorithm to give the hierarchical aspect to our
method and make it easier to determine the clusters’ neighborhood. It
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also reduces memory allocation by modifying the AntTree algorithm
not to store data points.

• It reduces computation time by using idle times to apply genetic func-
tions and enhance clustering quality.

• It optimizes two objective functions to obtain high-quality solutions
and arbitrarily shaped clusters.

• It does not require the specification of the number of clusters and uses
a Fading function to consider the most recent data as more important
and reflect better the changes in the data distribution.

This paper is organized as follows: in section 2, we present some background
methods. In section 3, we describe our method and its main features. In
section 4, we present the experiments and the results obtained and compare
them to some known clustering methods. Finally, we conclude this paper.

2. Related Works

This section discusses previous works on data stream clustering prob-
lems and highlights the most relevant algorithms proposed in the literature
to deal with these problems. For stream clustering algorithms, only one
Multi-Objective clustering method has been proposed. In [29], authors opti-
mize multiple objectives capturing cluster compactness and feature relevancy.
They consider an evolutionary-based technique and optimize multiple objec-
tive functions simultaneously to determine the optimal subspace clusters.
The generated clusters in the proposed method are allowed to contain over-
lapping of objects.

The closest methods to MOC are Evolutionary algorithms since they
use the same encoding of the solutions and the same process with a single
objective function.

2.1. AntTree Clustering

Ant-Tree algorithm [4] produces a hierarchical structure in an incremental
manner like how the ants join together. In this algorithm, each ant repre-
sents a single data point, and it moves in the structure according to the
similarity Sim(i, j) with the other ants already connected in the tree under
construction. Sim(i, j) is represented by the euclidean distance between two
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ants i and j. One should notice that this tree will not be strictly equivalent
to a dendrogram as used in standard hierarchical clustering techniques: each
node in our tree will correspond to one data while this is not the case in
general for dendrograms, where data only correspond to leaves.

Starting from the support, materialized by a fictitious node f0, the ants
will progressively fix themselves on this initial point, then successively on
the ants set at this initial point, and so on until all the ants are attached to
the structure. During the construction of the structure, each ant fi is either
moving on the graph or connected to it. In the first case, fi is free to move
to a neighbor of the ant on which it is located (or to the support).

In the second case, fi will no longer be able to be released. Furthermore,
we will consider the fact that each ant has only one outgoing link to other
ants and cannot have more than Lmax links connected to it from other ants
(tree having at most Lmax threads per node). Initially, all ants are placed on
the f0 support. They will each have a similarity threshold and a dissimilarity
threshold, which are set to 1 and 0, respectively.

An ant will connect under an existing node of the tree (ant fpos ) if it is
sufficiently similar to this node but also dissimilar enough to the threads of
the node: fi will thus form a subclass of fpos which will be different from the
other subclasses of fpos (possibly already existing). Otherwise, fi will move
randomly in the tree, looking for another location to fix itself. As the fi ant
fails in its attempts to attach to the structure, it is made more tolerant in
order to increase its chances of connecting to the next iteration concerning
it: its similarity threshold is decreased, and its dissimilarity threshold is in-
creased. The particular case of the f0 support is treated as follows: an ant
connects to the support if it is sufficiently dissimilar to other ants already
connected directly to f0. It means that a new class has just been built at the
highest level of the tree. This class must be as distinct as possible from the
other classes already created.

The algorithm ends when all the ants are connected. The sub-trees ap-
pearing at the first level of the tree, just below the support, will be inter-
preted as different classes. The properties of the tree can be analyzed visually
and interactively (e.g., the classification error decreases as one goes down the
tree). It is also possible to transform this tree into a dendrogram (by scrolling
down the data placed on internal nodes to leaves. The Ant-Tree algorithm
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is presented in Algorithm 1 for a given ant ai.

Algorithm 1: Connection of an ant ai in the Ant-Tree

if No ant or only one ant is connected to the support apos then
- connect ai to apos ;

else if Two ants are connected to the support then
- Disconnect the second ant from apos (and recursively all ants
connected to it); - Place all these ants back onto the support a0; -
Connect ai to apos;

else
- let TDissim(apos) be the lowest dissimilarity value between daughters
of apos (i.e. TDissim(apos) = M in Sim(aj , ak) where aj and ak ∈
ants connected to apos); - If ai is dissimilar enough to a+ (Sim(ai ,
a+) ¡ TDissim(apos)) Then ai connects to apos; - Else ai moves toward
a+;

2.2. Evolutionary Multi-Objective Clustering Methods (MOC)

In the past decade, multi-objective evolutionary algorithms have been
heavily used in clustering because of their effectiveness. However, there has
not been any dedicated effort to review all of these methods. The most
prominent effort in this direction can be found in [26], in which many multi-
objective clustering algorithms and techniques were presented. This section
presents a thorough survey of the state-of-the-art for a wide range of multi-
objective clustering algorithms.

This section discusses previous works on multi-objective clustering prob-
lems and highlights the most relevant algorithms proposed in the literature
to deal with these problems.

MOCK [18] Multi-objective clustering with automatic K-determination,
consists of two main phases: In its initial clustering phase, MOCK uses a
Multi-Objective Evolutionary algorithm (MOEA) to optimize two comple-
mentary clustering objectives. The output of this first phase is a set of a
mutually non-dominated clustering solution. Each corresponds to different
tradeoffs between the two objectives. In the second phase, MOCK analyzes
the shape of the tradeoff curve. It compares it to the tradeoffs obtained for
an appropriate null model (i.e., by clustering random data). Based on this
analysis, the algorithm provides an estimate of the quality of all individual
clustering solutions and determines a set of potentially promising clustering
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solutions. Often, a single solution is preferred, and, in these cases, the num-
ber of clusters inherent to the data set, k, is thus estimated implicitly. Figure
(2) illustrates the pareto set in MOCK algorithm. The improved version of
MOCK, ∆-MOCK has been proposed [15], which can significantly decrease
the computational overhand and reduce the search space.

Figure 2: Clustering solutions plotted according to their objective functions. Each point
represents a clustering solution. The pareto optimal solution is obtained when K=6.

An Ant Colony Optimization-based clustering method ACO-C [20] com-
bines the connectivity, proximity, density, and distance information with the
exploration and exploitation capabilities of ACO in a multi-objective frame-
work. The proposed clustering methodology is capable of handling several
challenging issues of the clustering problem, including solution evaluation,
extraction of local properties, scalability, and the clustering task itself.

Multi-objective evolutionary algorithms with simultaneous clustering and
classification MOASCC [24] uses a clustering process to enhance the perfor-
mance of the classification. To achieve this goal, two objective functions,
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fuzzy clustering connectedness function, and classification error rate, are
adopted. A mutation operator is designed to make use of the feedback from
both clustering and classification.

IMCPSO [16] proposes an improved multi-objective clustering framework
using particle swarm optimization. The authors used the overall deviation
and mean distance between clusters as objective functions. They introduced
a clustering method to improve each particle (clustering solution) by finding
a topological center, which is the point that has the maximum neighbors
belonging to the same cluster Figure (3) illustrates the using of topological
centers to improve the clustering. Finally, the best particle is selected from
the Pareto-set based on the sparsity of the solution.

Figure 3: Using topology centers to improve the clustering solution.

EMO-KC [35] uses the term bi-objective clustering to describe a MOC
method with two objective functions. The method has two main steps (i) con-
structing two conflicting objective functions, and (ii) solving the bi-objective
optimization problem with an effective EMO(Evolutionary Multi-Objective)
algorithm.

Another MOC algorithm, SOMDEA-clust [31], proposes an efficient au-
tomated decomposition-based multi-objective clustering technique, which is
a hybridization of Self-Organizing Maps (SOM) and differential evolution
algorithm. Two internal cluster validity indices, namely, Silhouette index
(SI) and PBM (Pakhira-Bandyopadhyay-Maulik) index, are used as objec-
tive functions. SOM algorithm is used to creates new solutions based on
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the neighborhood of each neuron. AMOGA [10] Automatic clustering by a
multi-objective genetic algorithm is a Multi-objective clustering algorithm
that handles numeric and categorical features. Each clustering solution is
encoded as a gene to apply Genetic operators. The method initializes a
population using K-prototypes algorithm and GA operators crossover and
mutation. AMOGA uses compactness and separateness as objective func-
tions and different validity measures (DB index, Purity...) to select the best
solution from the Pareto-optimal set.

Multi-objective Gradient Evolution algorithm [22] extends the Gradient
Evolution GE algorithm, so then it can be applied for the multi-objective
problem. This paper applies the Pareto ranking assignment to sort the vec-
tors based on their fitness values. K-means is then used to perform a final
clustering on the Pareto-optimal solutions to obtain the final clustering.

Combinatorial Multi-Objective Pigeon Optimization algorithm (CMO-
PIO) [7] is based on a bio-inspired algorithm called Pigeon Optimization
PIO. In CMOPIO, pigeons only interact with the pigeons in their neighbor-
hood. Meanwhile, the update of the pigeon’s position and velocity relies
on each pigeon’s neighborhood rather than the global best position. These
improvements allow the CMOPIO to identify a variety of Pareto optimal
clustering solutions.
Table (1) Compares the Multi-Objective Clustering Algorithms.
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Table 1: Comparison Between Multi-Objective Clustering Algorithms

Method Encoding scheme Genetic functions Objective functions

MOGE Centroid-based /
SSW(Separeteness)
SSB(Compactness)

CMOPIO Locus-based /
Connectivity
Compactness

MOCK Locus-based / Stability

∆-MOCK Centroid-based
Crossover
Mutation

Connectivity
Class error rate

ACO-C Point-based /
Adjusted Compactness
Relative Separateness

MCPSO Locus-based /
Compactness
Separateness

SOMDEA-Clust Centroid-based
Mutation
Crossover

PBM Index
Silhouette Index

IMCPSO Locus-based /
Overall deviation

Mean distance between clusters

MOEASCC Centroid-based Mutation
JIn (Connectedness)
JAdd (Error rate)

EMO-KC Centroid-based
Crossover
Mutation

SSD
Overlap-Separateness

2.3. Data Stream Clustering Methods

To the best of our knowledge, no Multi-Objective clustering method for
data stream has been proposed. As discussed above, the closest methods
to MOC are Evolutionary algorithms. evoStream [6] (Evolutionary Stream
Clustering) makes use of an evolutionary algorithm to bridge the gap between
the online and offline components. Evolutionary algorithms are inspired by
natural evolution where promising solutions are combined and slightly modi-
fied to create offsprings, which can yield an improved solution. By iteratively
selecting the best solutions, an evolutionary pressure is created, which im-
proves the result over time. evoStream [6] (Evolutionary Stream Clustering)
makes use of an evolutionary algorithm to bridge the gap between the online
and offline components. By iteratively selecting the best solutions, an evolu-
tionary pressure is created, which improves the result over time. evoStream
uses this concept to enhance the macro-clusters through recombinations and
small variations iteratively. Since macro-clusters are created incrementally,
the evolutionary steps can be performed while the online components wait
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for new observations, i.e., when the algorithm would usually idle. As a result,
the computational overhead of the offline part is removed, and clusters are
available at any time. The online component is similar to DBSTREAM [17]
but does not maintain a shared-density since it is not necessary for reclus-
tering.

evoStream is based on DBSTREAM [17] (Density-based Stream Clus-
tering), which uses the shared density between two micro-clusters to decide
whether micro-clusters belong to the same macro-cluster. A new observation
is merged into micro-clusters if it falls within the radius from their center.
Subsequently, the centers of all clusters that absorb the observation are up-
dated by moving the center towards x. If the point is not assigned to a
cluster, it is used to initialize a new micro-cluster. Additionally, the algo-
rithm maintains the shared density between two micro-clusters as the density
of points in the intersection of their radii, relative to the size of the intersec-
tion area. In regular intervals, it removes micro-clusters and shared densities
whose weight decayed below a respective threshold. In the offline component,
micro-clusters with high shared density are merged into the same cluster.

evoStream was used in [33] to detect outliers in a data stream. The goal
of this method is to treat the distinct data object as an outlier detection
problem rather than the categorization problem.

HDCStream [2] (hybrid density-based clustering for data stream) first
combined grid-based algorithms with the concept of distance-based algo-
rithms. In particular, it maintains a grid where dense cells can become
micro-clusters as known from distance-based algorithms (see Section 4). Each
observation in the stream is assigned to its closest microcluster if it lies within
a radius threshold. Otherwise, it is inserted into the grid instead. Once a
grid-cell has accumulated sufficient density, its points are used to initialize
a new micro-cluster. Finally, the cell is no longer maintained, as its infor-
mation has been transferred to the micro-cluster. In regular intervals, all
micro-clusters and cells are evaluated and removed if their density decayed
below a respective threshold. Whenever a clustering request arrives, the
microclusters are considered virtual points to apply DBSCAN [11]. The al-
gorithm consists of three steps: (1) Merging or mapping: the new data point
is added to an existing mini-cluster or mapped to the grid. (2) Pruning
Grids and Mini-clusters: the grids cells, as well as mini-cluster weights, are
periodically checked in pruning time. The periods are defined based on the
minimum time for a mini-cluster to be converted to an outlier. The mini-
clusters with weights less than a threshold are discarded. (3) Forming final
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clusters: final clusters are created based on mini-clusters, which are pruned.
Each mini-cluster is clustered as a virtual point using a modified DBSCAN.

FlockStream is a bio-inspired algorithm for clustering data stream [21]
simulating the behavior of a group of birds in flight. Boid is the abbreviation
of the word bird-oid (which means in the form of a bird). These boids are
interacting and follow certain rules:

• cohesion to form a group, the boids are getting closer to each other

• separation 2 boids can not be in the same place at the same time

• alignment to stay grouped, boids try to follow the same path

FlockStream uses agents to mimic the behavior of boids. Each point
is associated with an agent. An agent can be of three types: basic, p-
representative (potential micro cluster), or co-representative (outlier micro-
cluster, it can become p-representative if adding points, its weight exceeds
a threshold). In the initialization phase, a set of basic agents is deployed in
In space, the agents that have a great similarity approach (cohesion) form
a cluster, while the other agents separate. The Euclidean distance is used
to calculate the dissimilarity between agents. Agents can leave one group
to join another with more similar agents. at the end of this phase, a sum-
mary for each cluster is calculated, and the other two types of agents appear
p-representative and o-representative. In the second step, a mass of data
stream is inserted. In this phase, the agents are updated as follows:

• if an o-representative or p-representative meets another representative,
if their distance is less than a threshold, then they join to form a swarm
(cluster)

• a basic agent A meets a representative R, if their calculated distance
is lower than a threshold, A is absorbed by R

• a basic agent meets another, so if their similarity is less than a thresh-
old, he joins to form an o-representative.

We list the limitations and the merits of each algorithm in the following:
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• evoStream: -Merits: - Use idle times to improve the clustering qual-
ity - Output clusters at any time - Detection of outliers -Limitations:
- Requires the set of the clusters number - Not suitable for high dimen-
sional data.

• DBStream: -Merits: - Use the shared density between clusters to de-
termine if two clusters can be merged - Robust to noise -Limitations:
- Several parameters need to be set - Depends on the insertion order of
the data points.

• HDCStream: -Merits: - Handles outliers - Improves the computa-
tion time and quality -Limitations: - Unable to detect variant levels
of density - Can not handle high dimensional data.

• FlockStream: -Merits: - Detects outliers - lower time complexity
-Limitations: - Unable to handle high dimensional data.

3. Proposed Method

In this section, we introduce IMOC-Stream (Multi-Objective AntTree
Clustering data stream). The algorithm is based on AntTree clustering and
combines stream clustering and multi-objective clustering to create a Multi-
objective stream clustering algorithm that satisfies two objective functions.
It makes use of the hierarchical nature of AntTree to improve the clustering
quality. We describe in the following sections the main properties of IMOC-
Stream.

3.1. Clustering in a Streaming Context

We assume that the data stream consists in a sequence X = {x1,x2, ...,xn}
of n (potentially infinite) elements, arriving at times t1, t2, ..., tn, where xi =
(x1i , x

2
i , ..., x

d
i ). Since the most recent data points are more important and

reflect better the changes in the data distribution, we use temporal windows
to consider only recent data for the clustering. A set of m clustering solutions
S is generated and updated for each window S = C1, C2, ..., Cm where Cj is
the jst clustering solution and is represented by K clusters Cj = c1, c2, .., cK .
Each cluster c is represented by a prototype wc where wc = (w1

c , w
2
c , . . . , w

d
c )

and d is the dimension of the data. Each cluster is associated with a weight
πc that decreases over time based following a fading function.
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When the first batch of data arrives in the first time window, we create
the tree as a clustering solution according to Section 2.1, and this solution is
stored in the Pareto-set. From the same batch of data we initialize several
solutions using K-means [30] with different K, GNG [14], DBScan [11]. The
parameter settings of these algorithms are reported in Table 2. The generated
solutions are combined with the tree solution by the mutation and crossover
operators, and the results are added to the solutions-set. We compute the
objective function values for each solution-set and store the non-dominated
solutions in the Pareto-set.

Algorithm Parameters Source
GNG epochs = 30 Smile Package1

DBSCAN
minPts = 20
radius = 10

Smile Package2

K-means K vary from 2 to 15 Clustering4Ever3

Ant-tree Lmax = 10 Clustering4Ever4

Table 2: Parameter settings for the used algorithm

After the Initialization phase and for each new window of data points,
each point in the current window is assigned to the closest center cij in each
clustering solution Cj in the pareto-set. The distance calculated between
the data points and the centers is the euclidean distance. We note that for
each clustering solution, a point can be assigned to only one cluster. After
all points being assigned, we update the clustering solutions with the new
assigned points. We compute the objective functions values fi and we update
the pareto-set. If the system idles, the method combines the solutions in the
pareto-set using the genetic operators and calculates the objective values of
the new generated solutions. At the end of each iteration, the pareto-set
contains a set of non-dominated solutions. At the end of the process, a set
of non-dominated clustering solutions is stored. These solutions are equally
good mathematically. We used an internal quality measure Davies Bouldin
[8] to select the best solution among the Pareto-set.

3.1.1. AntTree with Tree Aggregation

To deal with the memory constraints encountered when analyzing data
streams, we propose a new representation of the tree to prevent storing all the
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data points and to reduce the memory allocation. The tree is initialized from
the data points in the first window following the AntTree algorithm described
in section 2.1. After placing all the points, we compute the prototypes w of
each cluster as the average of the points assigned to this cluster. All the
points are discarded, and only the tree with the prototypes is stored in the
memory. For the next windows, we assign the new data points to each cluster
and update the prototype wc as follows:

w(t+1)
c =

w
(t)
c n

(t)
c γ + z

(t)
c m

(t)
c

n
(t)
c γ +m

(t)
c

(1)

Where w
(t)
c is the previous prototype, n

(t)
c is the number of points assigned

to the cluster, z
(t)
c is the new prototype computed only from the current win-

dow. m
(t)
c is the number of points assigned to the cluster c in the current

window: n
(t+1)
c = n

(t)
c + m

(t)
c . γ is the decay factor that decreases over time

to give more importance to most recent data 0 < γ < 1. If γ = 1 all data
will be used from the beginning; γ = 0 only the most recent data will be used.

If a point is not assigned to a cluster, it becomes a prototype of a newly
created cluster. Figure 4 illustrates tree representation and aggregation.

Figure 4: Topological and Hierarchical representation and tree aggregation process. The
circles represent the data points, the squares represent the prototypes and the triangles
represent the new data points from the current window.
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3.1.2. Fading Function

Most data stream algorithms consider the most recent data as more im-
portant and reflect better the changes in the data distribution. For that,
we consider a Fading function, in which the weight of each cluster decreases
exponentially with time t by introducing a decay factor parameter 0 < γ < 1.

π(t+1)
c = γπ(

ct), (2)

where nc is the number of points assigned to the cluster c at the current time
t. If the weight of a node is below a threshold value, this cluster is considered
outdated and removed.

3.2. Evolutionary Representation and Functions

Most of the Multi-Objective clustering methods use an evolutionary rep-
resentation for the clustering solutions as their use of population enables the
variation of solutions and makes it easier to keep a population of clustering
solutions and apply genetic operators. However, the use of such representa-
tion requires the following concepts:

• Choosing an evolutionary encoding to represent a clustering solution.

• The generation of the initial population by an effective initialization
scheme.

• Suitable genetic operators to mix the solutions.

• Choosing two or more objective functions as a fitness function to choose
the non-dominated solutions.

• Developing a technique to obtaining a single clustering solution for the
Pareto-set (leader selection method).

The choice of these components is crucial for the clustering quality and the
algorithm scalability. In the next sections, we describe the components we
chose after extensive experiments to deal with the requirements presented
above.
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3.2.1. Genetic Representation

Many representations were presented in the previous MOC methods [26].
However, these representations are not suitable for data stream clustering
since data points can not be stored and have to be processed in one pass.
Therefore, we chose a new genetic representation that facilitates the cluster-
ing update as the data flows. Each clustering solution is represented by a
chromosome, which is an array of K × d + 2, where d is the dimension of
the data. The first and second components are the objective values for this
solution. The last K components represent the clusters. Each cluster is rep-
resented by a prototype w of d elements. Figure 5 illustrates the clustering
representation and conversion.

Figure 5: Clustering solution representation and conversion.

3.2.2. Population Initialization

In each time window of the data stream, a set of clustering solutions
is created and stored. Our algorithm does not require these solutions to
have the same number of clusters. A first population is created from the
first window using the AntTree algorithm combined with other solutions
generated by several algorithms (K-means [30] with different K, GNG [14],
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DBScan [11]). Those algorithms were chosen after extensive experimentation
due to their ability to do a local search. The solutions given are encoded
following the scheme described in Figure 5. We select the best solutions
from this population to create new clustering solutions following the genetic
operators Crossover and Mutation described in section 3.2.3. After the first
population initialized, we compute objective functions for each clustering
solution and store the Pareto-optimal solutions into the Pareto-set. For each
window of the data stream, the new data points belonging to the current
window are used to update the solutions in the Pareto-set and to create new
solutions. The Pareto-set is then updated with the non-dominated solutions.
We describe the initialization and update scheme in Figure 6.

3.2.3. Genetic Functions

Genetic operators are essential for MOC methods as they enable the
variety and diversity of the clustering solutions. For our method, we use two
genetic operators: Crossover and Mutation, to explore more solutions. The
use of those operators helps find a better solution by combining the optimal
solutions obtained from the other algorithms.

• Crossover : We used the single point crossover [36] in this paper due
to its Independence of the ordering of genes. The goal of the crossover
operator is to create new clustering solutions from the two-parent so-
lutions. First, we randomly select the Pareto-set two solutions that
have respectively K1 and K2 clusters. We choose randomly a crossover
point i, as the number of clusters may vary, i must satisfy 1 < i <
min(K1, K2).

The first resulted clustering solution from the crossover is composed of
cluster centers from 1 to i of the solutions with min(K1, K2) cluster
centers, and i+1 to K of the second clustering solution. The second
resulted clustering solution is composed of the cluster centers i + 1 to
min(K1, K2) from the first solution and of cluster centers 1 to i from
the second solution. Figure 7 explains the process of crossover of two
clustering solutions.

• Mutation: We use the random resetting mutation operator [25] to
change randomly some values of a cluster center of a clustering so-
lution to explore global solutions. We select a clustering solution C
from the Pareto-set, then from each cluster center in C, we randomly
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Figure 6: Initialization and update scheme.

select µ position values. For a value v, a number 0 < % < 1 is generated
and the value v is updated as follows:

v ± % ∗ v,

The ’+’ or ’-’ signs occur with equal probability. Figure 8 illustrates
the process of mutation of a clustering solution.
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Figure 7: Crossover of two clustering solutions. The figure on the left represents the pro-
totypes and the one on the right represents the topological clusters, the squares represent
the prototypes and the circles are the data points. The data points are added to illustrate,
in the clustering process, no data point is kept in the memory.

Figure 8: Mutation of a clustering solution. µ = 50%

Both operators are applied during idle times on the solutions from the Pareto-
set. The solutions are selected based on their fitness score, equal to (−separateness+
compactness). We select σ clustering solutions and apply the genetic oper-
ators.
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3.3. Objective Functions

One of the important aspects of MOC is the choice of suitable objec-
tive functions that are to be optimized simultaneously. For each clustering
solution, several quality measures exist. The the goal is to have distinct clus-
ters (separateness) that are the most dense in terms of the data points they
contain (compactness). To satisfy these requirements, we introduce two ob-
jective functions compactness and separateness. The combination of both
objective functions allows us to have arbitrarily shaped clusters.

• Compactness : the compactness of a clustering solution reflects the over-
all intra-cluster size of the data and has to be minimized. The com-
pactness of a clustering solution in a streaming context is computed as
follows:

Compactnesst+1
C = γCompactnesstC +

∑
xi∈X (t+1)

δ(xi,wφ(xi)) (3)

Where X (t+1) is the current window and φ(xi) is the index of the cluster
where xi belongs. δ(x,wφ(xi)) is the euclidean distance between the
data point x and wφ(xi). γ is the decay factor that decreases over
time to give more importance to most recent data. The points of the
previous windows are not kept, CompactnesstC has been computed in
the previous window with the previous prototype w.

• Separateness : the separateness of a clustering solution is the mean
distance between clusters. It reflects the inter-cluster similarity and
should be maximized. The separateness of a cluster is the shortest
distance between a data point in this cluster and another data point of
his neighborhood belonging to another cluster. In a streaming context,
the separateness is computed as follows:

SeparatenessC =
1

|C|
∑
c∈C

(minxi∈c,xj∈Ki,xj /∈cδ(xi,xj)) (4)

WhereKi is the neighborhood of the data point xi belonging to the clus-
ter c. The neighborhood of a node is determined through the AntTree
method. The neighborhood of a cluster is the directly connected nodes
to this one on the tree.

21



3.4. Solution Selection

At the end of the online phase, a set of non-dominated solutions is stored
in the Pareto-set. These non-dominated solutions are equally good mathe-
matically. We used an internal quality measure Davies Bouldin [8] to select
the best solution among the Pareto-set. The choice of an internal index is
because the data might not be labeled. We sort all the solutions by their
fitness (internal measures values), and we choose the best one as an output of
the algorithm. The Davies-Bouldin index helps identify sets of clusters that
are compact and well separated. The Davies-Bouldin index is calculated as:

DBI =
1

K

K∑
i=1

maxi,j=1,..,K;j 6=i
d(xi, Ci) + d(xj, Cj)

d(Ci, Cj)
(5)

d(xi, Ci) is the distance between the data point xi, and its cluster Ci and K
is the number of clusters. DBI varies between 0 (best clustering) and +∞
(worst clustering).

3.5. Improved MOC-Stream Algorithm

IMOC-Stream is an extension of Multi-objective clustering for data stream
to optimize computation time and memory allocation. It starts with creating
a first clustering solution using the AntTree algorithm. In the contrast to the
original algorithm where all the data points are stored, we introduced a new
tree aggregation method to store only a synopsis of the data. The clustering
solution is encoded and combined with different solutions obtained by dif-
ferent algorithms to create a population of solutions. The objective function
values are computed for each solution, and only the non-dominated solutions
are added to the Pareto-set. Then, we apply crossover and mutation on the
best solutions selected from the Pareto-set and add the obtained solutions
to the population. For each time window, the next point from the stream is
mapped into the tree, the prototypes are computed, and only the aggregated
tree is stored. We update the weights of the nodes and remove the outdated
ones. If the stream idles, we apply genetic operators to generate more solu-
tions. At the end of each time window, we compute the objective function
values, select the non-dominated solutions, and update the Pareto-set. In the
offline phase, we compute the Davies Bouldin index values of each potential
solution and select the optimal one as an output for this algorithm. In sum-
mary, the algorithm of IMOC-Stream presented in this paper is described in
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Algorithm 2.

Algorithm 2: Improved MOC-Stream Algorithm

Result: Optimal clustering solution
From the first window: initialize the tree using AntTree algorithm
and perform tree aggregation following Figure 4;

Generate several clustering solutions using K-means with different
K, GNG, and DBScan with different parameters;

Encoding the clustering solutions following scheme in Figure 5;
Apply Crossover and Mutation following Figures 7 and 8
respectively. Add new solutions to the population of chromosomes;

Compute objective functions following equations (3) and (4). Store
non-dominated solutions in the Pareto-set;

while There is data available do
Map each point into the tree and compute prototypes following
Equation(1);

For each clustering solution in the pareto-set, assign each point
to the closest cluster;

Update each cluster in each clustering solution using the new
points assigned as described in Equation (1);

Update weights of nodes following Equation (2) and remove the
outdated nodes;

Compute objective functions of the clustering solutions in the
pareto-set and the new solutions generated. Update the
pareto-set with the new non-dominated solutions ;

while Idle do
Select best clustering solutions from Pareto-set based on their
objective values ;

Apply Crossover and Mutation following Figures 7 and 8
respectively. Add new solutions to the population of
clustering solutions;

end

end
Select best solution among the pareto-set solutions as described in
section 3.4
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4. Experiments and Discussion

4.1. Datasets and Quality Criteria

The IMOC-Stream method described in this article was implemented
in Scala programming language and will be available on Clustering4Ever
GitHub repository5. We evaluated the clustering quality of IMOC-Stream
on several real [12] and synthetic6 datasets. We describe the datasets in Table
3. The mutation rate µ is set to 20% and the number of selected clustering
solutions to the crossover and mutation is set to 10.

Dataset Instances Features Classes |Window|
powersupply 29,928 2 24 100
HyperPlan 100,0000 10 5 1000
Covertype 581,102 10 23 1000

Sensor 2,219,802 4 54 10000
1CDT 16000 2 2 100
1CSurr 55280 2 2 1000

4CR 144000 2 1 1000
GEARS-2C-2D 200000 2 2 10000

Table 3: Description of datasets used in experimentation

For the quality measures, we used the internal measures (NMI) [32] and
the Adjusted Rand index (ARAND) [19], these two measures require the
ground truth of the data to be available. NMI provides a measure that is
independent of the number of clusters as compared to purity. It reaches its
maximum value of 1 only when the two sets of labels have a perfect one-
to-one correspondence. The NMI of a clustering solution C is calculated as
follows :

NMI(Y,C) =
2× I(Y ;C)

H(Y ) +H(C)
(6)

Where Y are true labels and C are labels predicted by the algorithm. I(Y ;C) =
H(Y )−H(Y |C) and H(C) is the entropy of the partition calculated as fol-

5https://github.com/Clustering4Ever/Clustering4Ever
6https://www.sites.google.com/site/nonstationaryarchive/
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lows:
K∑
k=1

nk
N
log(

nk
N

) (7)

Where nk is the number of points assigned to the partition k. ARAND index
is a measure of agreement between two partitions: one given by the cluster-
ing process and the other defined by external criteria. Given the following
contingency matrix, where nks represents the number of points assigned to
both clusters k and l of partitions C and C

′
: The Adjusted RAND index is

Y1 Y2 ... Ys Sums

X1 n11 n12 ... n1s a1
X2 n21 n22 ... n2s a2
... ... ... ... ... ...

Xr nr1 nr2 ... nrs ar
Sums b1 b2 ... bs

Table 4: Contingency matrix between two partitions C and C
′

of r and s clusters respec-
tively.

calculated as follows:

ARAND =

∑
ij

(
nij

2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) (8)

4.2. Experimental Settings
Assuming large high-dimensional data arrives as a continuous stream,

IMOC-Stream divides the streaming data into batches and processes each
batch continuously. The batch size depends on the available memory and
the size of the original dataset the size of the window for each dataset is
shown in Table 3. We set the time interval between two batches to 1 second
and the parameter γ to 0.7.
To show the effectiveness of our method, we compared it to five well known
stream algorithms: StreamKM + + [9], DStream [34], DBStream [17],
DenStream [5] and CluStream [1] from R package streamMOA7. We re-
peated our experiments with different initialization and have chosen those
giving the best results. Table 5 shows the optimal parameter configurations.

7https://github.com/mhahsler/streamMOA
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Algorithms Parameters Initialization

DStream

gridsize
λ

gaptime
Cm

0.9
0.001
1000

3

DBStream

r
λ

gaptime
Cm

1.8
0.001
1000
2.5

DenStream
ε
µ
β

0.4
1.605
0.275

CluStream t 2

Table 5: Optimal parameter configurations for the algorithms used for the experimenta-
tion. For IMOC-Stream, the decay factor is fixed to 0.7.

4.3. Clustering Evaluation

The results of IMOC-Stream on the datasets described above compared
to the different algorithms are reported in Tables 6 and 7. The value of
NMI and ARAND is the average value of ten runs. It is noticeable that
IMOC-Stream gives better results than all the other methods. These results
are due to the fact that our method optimizes two objective functions to
maximize intra-cluster similarity and minimize inter-cluster similarity at the
same time, which gives us a compact and well-separated clusters. The use of
different algorithms to create a population of solutions allow IMOC-Stream
to explore better solutions and escape the local minima. Another critical
point is the use of the genetic parameters to combine the best solutions and
explore the potential local solutions. The other algorithms are sensitive to
the initialization of the settings, which justify why our algorithm yields bet-
ter results since it has no input parameters. Finally, we noticed that the
DStream algorithm gives better results compared to the other algorithms
used in this experimentation since it is adapted to large datasets.

For synthetic datasets, IMOC-Stream also gave better results than the
different stream algorithms except for StreamKM++ on the 1CSurr dataset.
These results are due to the optimal choice of the K for StreamKM++, which
makes it find the exact number of clusters with synthetic datasets and gives
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better results. The number of clusters is not predefined in IMOC-Stream,
but it still manages to find approximately the right amount of clusters.

Dataset Metrics IMOC-Stream StreamKM++ DStream DBStream DenStream CluStream

powersupply
NMI

ARAND
0.466 ± 0.03
0.144 ± 0.03

0,232 ± 0,05
0,034 ± 0,01

0,403 ± 0,06
0,049 ± 0,01

0,056 ± 0,01
0.001 ± 0.00

0.055 ± 0.01
0.002 ± 0.00

0.196 ± 0.05
0.032 ± 0.01

Sensor
NMI

ARAND
0.723 ± 0.00
0.192 ± 0.00

0.151 ± 0.03
0.074 ± 0.02

0.274 ± 0.07
0.034 ± 0.01

0.060 ± 0.01
0.006 ± 0.00

0.032 ± 0.00
0.032 ± 0.00

0.024 ± 0.00
0.006 ± 0.00

Covertype
NMI

ARAND
0.509 ± 0.03
0.433 ± 0.10

0.113 ± 0.03
0.165 ± 0.02

0.310 ± 0.06
0.254 ± 0.08

0.048 ± 0.001
0.002 ± 0.003

0.482 ± 0.12
0.198 ± 0.06

0.295 ± 0.07
0.339 ± 0.11

HyperPlan
NMI

ARAND
0.168 ± 0.01
0.041 ± 0.00

0.026 ± 0.00
0.035 ± 0.00

0.140 ± 0.03
0.093 ± 0.02

0.002 ± 0.00
0.001 ± 0.00

0.026 ± 0.00
0.027 ± 0.00

0.014 ± 0.01
0.019 ± 0.00

Table 6: Comparing IMOC-Stream with different algorithms on real datasets. The first
value is the average of 10 repetitions and the value after ± is the standard deviation.

Dataset Metrics IMOC-Stream StreamKM++ DStream DBStream DenStream CluStream

1CDT
NMI

ARAND
0.990 ± 0.07
0.970 ± 0.09

0.759 ± 0.03
0.679 ± 0.02

0.691 ± 0.10
0.667 ± 0.14

0.631 ± 0.28
0.610 ± 0.30

0.208 ± 0.05
0.086 ± 0.05

0.621±0.06
0.583±0.09

1CSURR
NMI

ARAND
0.481 ± 0.00
0.248 ± 0.01

0.534 ± 0.12
0.529 ± 0.17

0.136±0.17
0.041±0.19

0.031±0.02
0.02±0.07

0.150±0.05
0.017±0.07

0.409±0.1
0.384±0.11

4CR
NMI

ARAND
0.957 ± 0.00
0.954 ±0.00

0.705±0.01
0.497 ± 0.02

0.804 ± 0.02
0.793 ± 0.03

0.868 ± 0.03
0.881 ± 0.02

0.183 ± 0.03
0.006 ± 0.00

0.502 ± 0.03
0.408 ± 0.02

GEARS 2C 2D
NMI

ARAND
0.654 ± 0.02
0.643 ± 0.01

0.543±0.03
0.449±0.03

0.160±0.12
0.154±0.17

0.001±0.00
0.0001±0.00

0.021±0.02
0.010±0.01

0.301±0.02
0.219±0.02

Table 7: Comparing IMOC-Stream with different algorithms on synthetic datasets. The
first value is the average of 10 repetitions and the value after ± is the standard deviation.

4.4. Clustering High Dimensional Data

The curse of dimensionality refers to various phenomena that arise when
clustering data in high-dimensional spaces. Most of the clustering algorithms
suffer from the curse of dimensionality. This is due to many factors like
the high number of parameters to set or the algorithm’s high complexity.
To prove our method’s effectiveness on clustering high dimensional datasets
(HDD), we tested it on 6 HDD’s from [13]. The dimensions (number of fea-
tures) of these datasets vary from 32 to 1024 while the number of instances
is 1024 and the number of classes equal to 16. We compared our results
with different stream algorithms based on NMI and ARAND measures. The
results are reported in Table 8. The results show that our method outper-
forms all the other methods in terms of NMI and ARAND. These results are
because our algorithm does not require parameter settings and uses linear
genetic functions to enhance the quality, unlike the other algorithms. The
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pre-defined parameter and the use of costly processes and algorithms (like
DBSCAN for DBStream and DenStream) make the algorithms slower and
not robust when dealing with HDD. The genetic operators and the update of
the solutions in our method are performed linearly, making these functions
not costly in the computation time.

Dataset Metrics IMOC-Stream StreamKM++ DStream DBStream DenStream CluStream

dim032
NMI

ARAND
0.600 ± 0.01
0.227 ± 0.01

0.500 ± 0.04
0.199 ± 0.04

0.051 ± 0.03
0.021 ± 0.01

0.421 ± 0.06
0.139 ± 0.02

0.062 ± 0.02
0.003 ± 0.00

0.211 ± 0.02
0.0215 ± 0.01

dim064
NMI

ARAND
0.675 ± 0.01
0.380 ± 0.00

0.546 ± 0.00
0.252 ± 0.01

0.037 ± 0.01
0.005 ± 0.04

0.522 ± 0.02
0.339 ± 0.01

0.104 ± 0.04
0.017 ± 0.01

0.184 ± 0.02
0.012 ± 0.01

dim128
NMI

ARAND
0.691 ± 0.01
0.418 ± 0.02

0.571 ± 0.04
0.386 ± 0.12

0.136 ± 0.01
0.056 ± 0.02

0.531 ± 0.02
0.321 ± 0.01

0.147 ± 0.05
0.090 ± 0.03

0.191 ± 0.01
0.003 ± 0.01

dim256
NMI

ARAND
0.777 ± 0.01
0.487 ± 0.00

0.575 ± 0.07
0.377 ± 0.16

0.078 ± 0.01
0.055 ± 0.03

0.391 ± 0.02
0.265 ± 0.01

0.147 ± 0.03
0.045 ± 0.01

0.171 ± 0.00
0.004 ± 0.02

dim512
NMI

ARAND
0.788 ± 0.01
0.540 ± 0.00

0.606 ± 0.04
0.538 ± 0.03

0.115 ± 0.01
0.073 ± 0.02

0.329 ± 0.10
0.478 ± 0.12

0.112 ± 0.12
0.045 ± 0.09

0.145 ± 0.01
0.002 ± 0.02

dim1024
NMI

ARAND
0.855 ± 0.00
0.717 ± 0.01

0.774 ± 0.02
0.634 ± 0.02

0.112 ± 0.03
0.020 ± 0.03

0.305 ± 0.09
0.414 ± 0.08

0.110 ± 0.05
0.041 ± 0.07

0.150 ± 0.00
0.005 ± 0.01

Table 8: Comparing IMOC-Stream with different algorithms on HDD datasets. The first
value is the average of 10 repetitions and the value after ± is the standard deviation.

4.5. Clustering Evolution

Figure 9 shows an example of the evolution of IMOC-Stream clustering on
1CDT, 4CE-V1, 1CH and 2CDT datasets. Each line represents an evolution
of clustering for a particular dataset. These figures are generated during the
clustering process. We picked three partitionings at random iterations for
each dataset. For each time window, the distribution of the incoming data
points changes. With its Multi-Objective capability and the fading function’s
use, IMOC-Stream manages to recognize the structures of the data stream
and can separate these structures with the best visualization. It can also
detect arbitrarily shaped, compact, and well-separated clusters. We note
that the number of clusters does not necessarily stay the same, but the best
K is automatically chosen.

4.6. Arbitrary Shaped Clusters

Figure ?? represents the cluster detection for the t4.9k, Compound, and
Path-based datasets8. We can see from this figure that our method manages
to find clusters of arbitrary shapes and provide a good separation of the

8http://cs.joensuu.fi/sipu/datasets/
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Figure 9: Clustering evolution of 1CDT, 4CE-V1, 1CH, 2CDT datasets. Each color
represents a cluster. Each line represents the evolution of a clustering with one dataset.

clusters. The other streaming clustering methods are unable to find clusters
of arbitrary shapes (only spherical clusters can be found). The IMOC-Stream
method is also able to find noise points due to the use of a density clustering
method (DBSCAN).
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Figure 10: Examples of detection of arbitrary shaped clusters by IMOC algorithm.

4.7. Time and Memory Complexity

In this section, we analyzed our method to prove its improvement over
Ant-Tree in terms of memory allocation, and stream algorithms in terms of
execution time. Figure 11 shows the execution times of IMOC-Stream and
the other stream clustering algorithms. It can be noticed that the DBStream
algorithm has the shortest execution time, but our method is faster than
all the different stream clustering algorithms despite its evolutionary nature.
In the meantime, IMOC-Stream outperforms all the other algorithms based
on the results shown above. These results indicate that IMOC-Stream is
non-dominated across all datasets since no different algorithm yields faster
computation times. In other words, no other algorithm can produce better
results within equal or less time. These results are because our method uses
idle times to improve the clustering solutions and use genetic functions with
linear complexity instead of using costly functions like the other algorithms.
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Figure 11: Execution time in milliseconds of each algorithm for every dataset.

Figure 12 compares the memory allocation of our method and the Ant-
tree algorithm. We observe that IMOC-Stream requires less memory allo-
cation than Ant-tree, on all the datasets. We note that these results are
because Ant-tree stores all the data points, making the complexity approxi-
mately n× d. While IMOC-Stream stores only the synopsis that is equal to
K × d, and when we add the other algorithms’ solutions, the memory com-
plexity becomes

∑m
j=1Kj×d, where m is the number of clustering solutions.
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Figure 12: Memory allocation in Kilobyte of IMOC-Stream and Ant-tree for every dataset.

5. Conclusion and Future Work

This paper presents a new method for clustering data stream based on a
multi-objective algorithm called IMOC-Stream. Unlike those single-objective
clustering techniques that have employed only one objective function, IMOC-
Stream employs two objective functions to find clusters of arbitrary shaped
clusters and enhance the clustering quality. IMOC-Stream uses a two-phase
process: 1) online phase: creating several clustering solutions based on dif-
ferent algorithms and genetic operators 2) offline phase: construction of an
optimal partition from the discovered clusters. We applied our method on
large stream datasets and compared it to a different stream clustering algo-
rithm. The experiments show the effectiveness of IMOC-Stream for detecting
arbitrary shaped, compact, and well-separated clusters with better execution
time. Part of our future work should be the proposition of a parallel solution
to minimize the execution time. Further research needs to be conducted on
incorporating the Ant Colony algorithm since it is suited for parallel algo-
rithms due to its independent agents. More experimentation needs to be
conducted using Spark Streaming to test our method on a real stream. We
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plan to conduct more studies and experiments using different standard opti-
mization algorithms to improve the convergence rate.

Reproductibility

To facilitate further experiments and reproducible research, we provide
our contributions through an open-source API that contains several cluster-
ing algorithms, including: S2G-Stream (local and global version), the 2S-
SOM implemented in Spark/Scala and the API documentation at Cluster-
ing4Ever9.
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