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Abstract. Model selection is a major challenge in non-parametric clus-
tering. There is no universally admitted way to evaluate clustering results
for the obvious reason that no ground truth is available. The difficulty to
find a universal evaluation criterion is a consequence of the ill-defined ob-
jective of clustering. In this perspective, clustering stability has emerged
as a natural and model-agnostic principle: an algorithm should find sta-
ble structures in the data. If data sets are repeatedly sampled from the
same underlying distribution, an algorithm should find similar partitions.
However, stability alone is not well-suited to determine the number of
clusters. For instance, it is unable to detect if the number of clusters is
too small. We propose a new principle: a good clustering should be stable,
and within each cluster, there should exist no stable partition. This prin-
ciple leads to a novel clustering validation criterion based on between-
cluster and within-cluster stability, overcoming limitations of previous
stability-based methods. We empirically demonstrate the effectiveness of
our criterion to select the number of clusters and compare it with existing
methods. Code is available at https://github.com/FlorentF9/skstab.

Keywords: clustering · model selection · stability · internal validation.

1 Introduction

Clustering is an unsupervised learning technique aiming at discovering structure
in unlabeled data. It can be defined as the “partitioning of data into groups
(a.k.a. clusters) so that similar [...] elements share the same cluster and the
members of each cluster are all similar” [6]. These goals are contradictory because
of the non-transitivity of similarity: if A is similar to B, and B is similar to C, A
is not necessarily similar to C. Since clustering is an ill-posed problem, it cannot
be properly solved using this definition, and algorithms often optimize only one
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of its aspects. For instance, K-means only guarantees that dissimilar objects
are separated, and on the other hand, single linkage clustering only guarantees
that similar objects will end up in the same cluster. As a consequence, model
selection is a major challenge in non-parametric clustering.

In the sample-based framework adopted in this work, model selection assesses
whether partitions found by an algorithm correspond to meaningful structures of
the underlying distribution, and not just artifacts of the algorithm or sampling
process [44,43]. Practitioners need to evaluate clustering results in order to select
the best parameters for an algorithm (e.g. the number of clusters K) or choose
between different algorithms. Plenty of evaluation methods exist in literature,
but they usually incorporate strong assumptions on the geometry of clusters or
on the underlying distribution.

There is a need for a general, model-agnostic evaluation method. Clustering
stability has emerged as a principle stating that ”to be meaningful, a clustering
must be both good and the only good clustering of the data, up to small pertur-
bations. Such a clustering is called stable. Data that contains a stable clustering
is said to be clusterable” [35]. Hence, a clustering algorithm should discover
stable structures in the data. In statistical learning terms, if data sets are re-
peatedly sampled from the same underlying distribution, an algorithm should
find similar partitions. As we do not have access to the data-generating distri-
bution, perturbed data sets are obtained either by sampling or injecting noise
into the original data. Stability seems to be an elegant principle, but there are
still severe limitations in practice. For instance, stability does not necessarily
depend on clustering outcomes but can be solely related to properties of the
data such as symmetries [9]. As outlined in [51], there exist various protocols
to estimate stability. Unfortunately, a thorough study that evaluates them in
practice is lacking.

Contributions We propose a method for quantitatively and visually assessing
the presence of structure in clustered data. The main contributions of our work
can be stated as follows:

– To our knowledge, this is the first large-scale empirical study on clustering
stability analysis.

– A novel definition of clustering is proposed, based on between-cluster and
within-cluster stability. Based on this definition, we introduce Stadion, the
stability difference criterion, along with an interpretable visualization tool,
called stability paths.

– We show that additive noise perturbation is reliable, and a methodology to
determine the amount of perturbation is proposed.

– We assess the ability of Stadion to select the number of clusters K on a vast
collection of data sets and compare it with state-of-the-art methods.

2 Related work

Internal clustering indices measure the quality of a clustering when ground-truth
labels are unavailable. Most criteria rely on a combination of between-cluster and
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within-cluster distances. Between-cluster distance measures how distinct clusters
are dissimilar, while within-cluster distance measures how elements belonging to
the same cluster are similar. Unfortunately, this incorporates a prior on the
geometry of clusters [18,14,15,40,39,46,17].

Stability analysis for clustering validation is a long-established technique. It
can be traced back as far as 1973 [45] and from there has drawn increasing
attention [11,32,9,7,8,51]. Some works concluded that stability is not a well-
suited tool for model selection [43]. In the general case, stability can only detect
if the number of clusters is too large for the K-means algorithm (see Figure 1).
A partition with too few clusters is indeed stable, except for perfectly symmetric
distributions. More accurately, these works proved that the asymptotic stability
of risk-minimizing clustering algorithms, as sample size grows to infinity, only
depends on whether the objective function has one or several global minima.

Albeit significant theoretical efforts, few empirical studies have been con-
ducted. Each study focuses on specific practical implementations of stability,
but as mentioned in [51,10], a thorough study comparing all protocols in prac-
tice does not exist and a more objective evaluation of these results is warranted.

3 Clustering stability

A data set X = {x1, . . . ,xN} consists in N independent and identically dis-
tributed (i.i.d.) samples, drawn from a data-generating distribution P on an
underlying space X . Formally, a clustering algorithm A takes as input the data
set X, some parameter K ≥ 1, and outputs a clustering CK = {C1, . . . , CK}
of X into K disjoint sets. Thus, a clustering can be represented by a function
X→ {1, . . . ,K} assigning a label to every point of the input data set. Some al-
gorithms can be extended to construct a partition of the entire underlying space.
This partition is represented by an extension operator function X → {1, . . . ,K}
(e.g. for center-based algorithms, we compute the distance to the nearest center).

(a) K = 2 (stable) (b) K = 3 (stable) (c) K = 4 (unstable)

Fig. 1. Example data set with three clusters. The labels correspond to the K-means
clustering result for K = 2, 3 and 4. K-means is stable even if K is too small.

Let X and X′ be two data sets drawn from the same distribution and note
CK and C′K their respective clusterings. Let s be a similarity measure such that
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s(CK , C′K) measures the agreement between the two clusterings. Then, for a given
sample size N , the stability of a clustering algorithm A is defined as the expected
similarity between CK and C′K on different data sets X and X′, sampled from
the same distribution P,

Stab(A,K) := EX,X′∼PN [s(CK , C′K)] . (1)

This quantity is unavailable in practice, as we have a finite number of samples,
so it needs to be estimated empirically. Various methods have been devised to
estimate stability using perturbed versions of X.

The first methods used in literature are based on resampling the original
data set (splitting in half [45], subsampling [11], bootstrapping [19,20], jackknife
[53], etc.). Another method consists in adding random noise either to the data
points [36] or to their pairwise distances [49,3]. For high-dimensional data, al-
ternatives are random projections or randomly adding or deleting variables [45].
Once the perturbed data sets are generated, there are several ways to compare
the resulting clusterings. With noise-based methods, it is possible to compare
the clustering of the original data set (reference clustering) with the clusterings
obtained on perturbed data sets, or to compare only clusterings obtained on the
latter. With sampling-based methods, we can compare overlapping subsamples
on data points where both clusterings are defined [19], or compare clusterings
of disjoint subsamples (using for instance an extension operator or a supervised
classifier to transfer labels from one sample to another [32]). Finally, possible
similarity measures include external indices such as the ARI [19,55].

Before discussing in details the mechanisms of stability, we introduce a trivial
example to illustrate its main issue: it cannot detect in general whenever K is
too small. Consider the example presented in Figure 1 with three clusters. On
any sample from such a distribution, as soon as we have a reasonable amount
of data, K-means with K = 2 always constructs the solution separating the left
cluster from the two right clusters. Consequently, it is stable despite K = 2 being
the wrong number of clusters. This situation was pointed out in [9].

In the case of algorithms that minimize an objective function (e.g. center-
based or spectral), two different sources of instability have been identified [51].
First, jittering is caused by assignment changes at cluster boundaries after per-
turbation. Therefore, strong jitter is produced when a cluster boundary cuts
through high-density regions. Second, jumping refers to the algorithm ending up
in different local minima. The most important cause of jumping is initialization.
Another cause is the presence of several global minima of the objective function.
This happens if there are perfect symmetries in the distribution, which is very
unlikely in real-world data. Examples are provided as supplementary material.

However, practitioners mainly use algorithms with consistent initialization
strategies. For instance with K-means, we keep the best trial over a large num-
ber of runs and use the K-means++ heuristic. This initialization tends to make
K-means deterministic, differently from the random initialization proposed in
[51,13], which allows jumping to occur whenever K > K?, where K? is the
true number of clusters. Throughout this work, we consider a setting with large
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⋆

K ≤ K
⋆
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⋆

Fig. 2. Diagram explaining sources of instability in different settings, based on theoret-
ical results for K-means, with large sample size, assuming K � N and the underlying
distribution has K? well-separated clusters that can be represented by K-means. We
consider no symmetries, effective initialization and noise-based perturbation, thus in-
stability (due to jittering) arises when K is too large, and when K is too small whenever
cluster boundaries are in high-density regions.

enough sample size, without perfect symmetries and with consistent initializa-
tion, that we deem to be realistic. Thus, we do not rely on jumping as the main
source of instability even when K > K?, and rather rely on jittering. As a
consequence, we need a perturbation process that produces jittering. We settle
for noise-based perturbation, because as soon as N is reasonably large, resam-
pling methods become trivially stable whenever there is a single global minimum
[9,51]. We summarize important results in the diagram Figure 2 and provide a
simple example where sampling methods such as [11,32] fail in the supplemen-
tary material. To conclude, in our setting, a noise-based perturbation process
causes jittering, enabling stability to indicate whenever K is too large. On the
other hand, stability cannot in general detect when K is too small. In order to
overcome this limitation, we introduce the concept of within-cluster stability.

4 Between-cluster and within-cluster stability

A clustering algorithm applied with the same parameters to perturbed versions of
a data set should find the same structure and obtain similar results. The stability
principle described by (1) relies on between-cluster boundaries and we thus call
it between-cluster stability. Therefore, it cannot detect structure within clusters.
In Figure 1, K = 2 is stable, whereas one cluster contains two sub-clusters. This
sub-structure cannot be detected by between-cluster stability alone. Obviously,
this implies that stability is unable to decide whether a data set is clusterable
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or not (i.e. when K? = 1), which is a severe limitation. For this very reason,
we introduce a second principle of within-cluster stability : clusters should not be
composed of several sub-clusters. This implies the absence of stable structures
inside any cluster. In other words, any partition of a cluster should be unstable.
The combination of these two principles leads to a new definition of a clustering:

Definition 1. A clustering is a partitioning of data into groups so that the
partition is stable, and within each cluster, there exists no stable partition.

A clustering should have a high between-cluster stability and a low within-cluster
stability. Despite its apparent simplicity, implementing this principle is a difficult
task. As seen in the last section, between-cluster stability can be estimated in
many ways. On the other hand, within-cluster stability is a challenging quantity
to define and estimate. We propose a method to estimate both quantities, and
then we detail and discuss our choices.

4.1 Stadion: a novel stability-based validity index

Let {X1, . . . ,XD} be D perturbed versions of the data set obtained by adding
random noise to the original data set X. Between-cluster stability of algorithm
A with parameter K estimates the expectation (1) by the empirical mean of the
similarities s between the reference clustering CK = A(X,K) and the clusterings
of the perturbed data sets,

StabB(A,X,K) :=
1

D

D∑
d=1

s (A(X,K),A(Xd,K)) . (2)

Since s is a similarity measure, this quantity needs to be maximized. In order to
define within-cluster stability, we need to assess the presence of stable structures
inside each cluster. To this aim, we propose to cluster again the data within
each cluster of CK . Formally, let Ω ⊂ N∗ be a set of numbers of clusters. The
k-th cluster in the reference clustering is noted Ck, its number of elements Nk.
Within-cluster stability of algorithm A is defined as

StabW(A,X,K,Ω) :=

K∑
k=1

(
1

|Ω|
∑

K′∈Ω

StabB(A, Ck,K
′)

)
× Nk

N
. (3)

As a good clustering is unstable within each cluster, this quantity needs to be
minimized. Hence, we propose to build a new validity index combining between-
cluster and within-cluster stability. A natural choice is to maximize the difference
between both quantities. We call this index Stadion, standing for stability dif-
ference criterion:

Stadion(A,X,K,Ω) := StabB(A,X,K)− StabW(A,X,K,Ω). (4)

The same partition CK = A(X,K) is used in both terms of (4). Thus, Stadion
evaluates the stability of an algorithm w.r.t. a reference partition.
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How to perturb data? We consider the setting in Figure 2 that is deemed to
be realistic. Neither jumping nor jittering will occur if data are perturbed by
sampling processes, as soon as there is enough data. Therefore, only noise-based
perturbation is considered here. Among them, we adopt the ε-Additive Pertur-
bation (ε-AP) with Gaussian or uniform noise, assuming variables are scaled
to zero mean and unit variance. The number of perturbations D can be kept
very low and still gives reliable estimates (an analysis on the influence of D is
conducted in the supplementary material.

How to choose ε? A central trade-off has to be taken into account when per-
turbing the data set. If the noise level ε is too strong, we might alter the very
structure of the data. We propose to circumvent this issue by not choosing a
single value for ε, but a grid of values. By gradually increasing ε from 0 to a
value εmax, we obtain what we call a stability path, i.e. the evolution of stability
as a function of ε. This method has one crucial advantage: it allows to compare
partitions for different values of ε without the necessity of choosing one. How-
ever, it comes with two drawbacks: setting both the fineness and the maximum
value of the grid. In our experiments, the fineness does not play a major role
in the results. A straightforward method to fix a maximum value εmax beyond
which comparisons are not meaningful anymore is as follows. The perturbation
corresponding to εmax is meant to destroy the cluster structure of the original
data. This corresponds to the value where the data are no longer clusterable,
i.e. K = 1 becomes the solution with the best Stadion value. A first guess at
εmax =

√
p (where p is the data dimension) works well in practice. We found

that visualizing the stability paths (see Figure 3) greatly helps interpreting the
structures found by an algorithm, hence improving the usefulness of results.

How to compare partitions? The similarity measure s chosen to compare two
partitions is the ARI. Note that it is used to compare cluster assignments and
not the ground-truth labels. Its value is in [0, 1], thus Stadion has a value in
[−1, 1], with 1 corresponding to the best clustering and −1 to the worst. A total
of 16 different similarity measures (such as the NMI) were compared (results of
this study are in supplementary material).

How to aggregate the Stadion path? To compute a scalar validity index for model
selection, the Stadion path must be aggregated on the noise strength ε from 0
to εmax. Two aggregation strategies, the maximum (Stadion-max) and the mean
(Stadion-mean), are evaluated in our experiments.

The within-cluster stability is governed by the parameter Ω, which detects
stable structures inside clusters of CK . As these are unknown, averaging several
different values in Ω gives a better estimate. In absence of sub-clusters, all par-
titions will be unstable because cluster boundaries will be placed in high-density
regions. For the opposite reason, in presence of sub-clusters, at least some par-
titions will result in higher stability, thus increasing the within-cluster stability.
The analysis of influence conducted in supplementary material shows that Ω has
low impact on Stadion results and can be set easily.
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An important assumption behind our implementation of within-cluster stabil-
ity is that for non-clusterable structures (e.g. uniform noise), the algorithm will
place cluster boundaries in high-density regions to produce instability through
jittering. This encompasses a wide range of algorithms such as center-based,
spectral or Ward linkage clustering which, for the sake of saving cost, would cut
through dense clouds of points. If this requirement is not fulfilled, further studies
are needed to determine whether this method will work.

5 Experiments

5.1 A simple example with stability paths

We begin by illustrating our method with K-means and uniform ε-AP on the
example discussed previously (see Figure 1). Figure 3 displays between-cluster
stability, within-cluster stability and Stadion as a function of the noise strength
ε. For reasonable amounts of noise, the solutions K = 1, K = 2 and K = 3 are
all perfectly stable, showing the insufficiency of between-cluster stability alone
to indicate whenever K is too small. The solutions for K ≥ 4 cut through the
clusters and are thus unstable due to jittering. However, the solutions for K = 1
and K = 2 both have high within-cluster stability, caused by the presence of sub-
clusters, which is not the case for K ≥ 3. By computing a difference, our criterion
Stadion combines this information and is able to indicate the correct number of
clusters (K = 3) by selecting the Stadion path with the highest maximum or
mean value. Through its formulation, Stadion is acting as a stability trade-off.
The stability paths also give additional insights about the data structure. For
example, we can read from the between-cluster stability path how the clusters
successively merge together as ε increases. Finally, the last graph (called stability
trade-off plot) represents Stadion-mean for different values of K.

5.2 Benchmark of clustering validation methods

Methodology. Importantly, we aim at evaluating clustering validation methods
and not the clustering algorithms themselves. Thus, we evaluate methods on a
large collection of 73 artificial benchmark data sets, most of them extensively
used in literature, with a guaranteed known ground-truth cluster structure. Most
data sets are available in [5,22] and all data will be shared after publication. It
was ensured that the evaluated algorithms are able to obtain good solutions (i.e.,
reasonably close to the ground-truth clustering), for some optimal parameter K.
The data sets also provide various difficulty levels by varying the numbers, sizes,
variances, shapes of clusters and noisy, close-by or overlapping clusters.

To compare the different validation methods, we first report the number of
data sets where each method found K?, which we refer to as the number of
wins. However, only checking whether K? is selected is not always related to
the goodness of the partition w.r.t. ground-truth, as the algorithm does not
necessarily succeed in finding a good partition into K? clusters.
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Fig. 3. Between-cluster stability paths (top left), within-cluster stability paths (top
right), Stadion paths (bottom left) and stability trade-off curve (bottom right) for K-
means on the data set shown in Figure 1, for K ∈ {1 . . . 6}. ε is the amplitude of the
uniform noise perturbation. The best solution K = 3 is selected either by taking the
maximum or by averaging Stadion over ε until εmax. The trade-off plot represents the
averaged Stadion, between- and within-cluster stability as a function of K.

Thus, we also compute the ARI between the selected partition and the
ground-truth. Let us note YK? = {Y1, . . . , YK?} the ground-truth partition. The
performance of each method is assessed by computing ARI(YK? , CK̂), where K̂
is the estimated number of clusters. In order to compare methods over multiple
data sets, we compute the average ranks, denoted RARI. Since data sets have
different difficulties, their results are not comparable and simply reporting an
average would be meaningless [16]. Thus, comparing their ranks is a more sound
and fair solution.

In this benchmark, three algorithms are considered: K-means, Gaussian Mix-
ture Models (GMM) and Ward hierarchical clustering. For K-means, two ver-
sions of Stadion are evaluated: the first one using the stability computation de-
scribed in Section 4.1 (referred to as the standard version), and the second one
with an approximation using the extension operator (referred to as the extended
version). As seen in Section 3, an extension operator extends a clustering to new
data points. K-means extends naturally by computing the Euclidean distance
to centers. Hence, instead of re-running K-means for each perturbation, we di-
rectly predict the cluster assignments of perturbed data points. GMM allows a
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Table 1. Benchmark results on 73 data sets for K-means, Ward and GMM. Average
rank of the ARI between the selected clustering and ground-truth clustering (RARI)
and number of times the ground-truth K? was selected (wins).

K-means Ward GMM

Method RARI wins RARI wins RARI wins

K? (Oracle) 8.11 73 4.77 73 5.05 73

Stadion-max 7.46 50 5.25 54 - -
Stadion-mean 7.70 51 5.80 49 - -
Stadion-max (extended) 7.58 56 - - 5.59 56
Stadion-mean (extended) 8.09 48 - - 6.79 43
BIC - - - - 6.45 48
Wemmert-Gancarski [17] 8.33 53 5.40 54 5.77 52
Silhouette [40] 9.55 46 6.47 45 7.01 45
Lange [32] 10.18 45 6.53 51 6.99 48
Davies-Bouldin [15] 10.21 40 6.45 41 7.29 34
Ray-Turi [39] 10.28 37 6.97 40 7.68 33
Hennig [26] 10.72 37 - - - -
Calinski-Harabasz [14] 11.44 41 7.14 39 7.43 37
Gap statistic (B) [46] 11.49 29 - - - -
X-means [38] 11.56 28 - - - -
Dunn [18] 13.09 26 7.77 33 7.92 34
Hofmeyr [28] 13.20 30 - - - -
Xie-Beni 13.30 22 7.61 34 8.19 28
Gap statistic (A) [46] 13.57 26 - - - -
G-means [23] 13.74 24 - - - -
Ben-Hur [11] 14.34 20 7.86 31 8.85 28
SpecialK [27] 17.07 19 - - - -

similar extension, by assigning points to the cluster with the highest posterior
probability. It is the only version considered due to GMM’s computational cost.

Table 1 summarizes results for each algorithm and validation method. We
evaluated K ∈ {1, . . . , 60}. For Stadion, we used uniform noise, D = 10, Ω =
{2, . . . , 10} and s = ARI. We also evaluate the partitions obtained with the
ground-truth K? and a selection of widely used clustering validation indices
(when applicable) [17], the Gap statistic [46] (with alternative versions A and B
implemented in [34]), BIC, X-means [38], G-means [23], the Hennig procedure
[26], stability methods [11,32], and the recent SpecialK [27]. For SpecialK, we
used the default parameters indicated by the authors, but the assumptions made
by the method failed on 11 data sets, explaining the poor results. Unfortunately,
other methods like dip-means or skinny-dip did not have easy-to-use available
implementations and were not included in this study.

Stadion-max achieves the best results overall. On K-means, it is even ranked
higher than the Oracle in terms of ARI. The second-best performing index is
Wemmert-Gancarski (WG). It was shown in [3] that agglomerative clustering is
not robust to noise, which explains inferior Stadion results with Ward. Moreover,
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results are slightly biased in favor of the indices that are only valid for K ≥ 2,
unlike Stadion that will select K = 1 on non-clusterable distributions.

6 Conclusion

In this paper, we tackled some of limitations of cluster stability for model selec-
tion. Our contribution is twofold. First, stability can be well estimated through
additive noise perturbation, solving the limitations of sampling-based stabil-
ity methods. Second, we introduce the Stadion (stability difference criterion),
a novel criterion acting as a trade-off between traditional stability and within-
cluster stability. Furthermore, our method to control the amount of perturbation
provides an interpretable visualization called stability paths.

We evaluated Stadion and methods of the literature on 73 clustering bench-
mark data sets. Performance is superior or on par with internal clustering in-
dices that were designed with specific cluster geometries in mind, while relying
on more general assumptions. This comes at a computational cost, requiring to
run the algorithm many times. Nevertheless, studies have shown that it can be
drastically reduced by down-sizing the hyperparameters with negligible impact
on performance. Moreover, most theoretical results used here were derived for
K-means, and more work is needed to extend these concepts to other algorithms.

Altogether, model selection remains a challenge and there is yet no theory
nor a methodology that can fulfill this task perfectly. We proposed an empirical
method showing interesting results along with hints to a theoretical background
that could be established in future work. We hope that it will spark much-needed
interest in the research community to further advance this field.
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Selecting the Number of Clusters K with a
Stability Trade-off: an Internal Validation

Criterion – Supplementary Material

1 Additional experiments and examples

1.1 Finding K = 1: the case of non-clusterable data

Is a data set clusterable? Between-cluster stability is unable to answer this ques-
tion, as the solution with a single cluster is trivially stable. Some stability meth-
ods are not even defined for K = 1 because of normalization [32]. Moreover,
many internal indices use between-cluster distances and are not defined for a
single cluster neither. We verified empirically that our criterion consistently out-
puts K = 1 in the case when the algorithm does not find any cluster structure.
Table 1 contains results for non-clusterable distributions. Stadion outputs K = 1
in all cases. An example of Stadion path and trade-off curve for the golfball data
set is provided in Figure 1 (results are similar for other data sets).

Table 1. Number of clusters found by Stadion on non-clusterable distributions.

Dataset N dimension K selected by Stadion

Uniform cube (2d) 1000 2 1
Uniform cube (10d) 1000 10 1

Gaussian (2d) 1000 2 1
Gaussian (10d) 1000 10 1
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Fig. 1. Stadion path (left) and stability trade-off plot (right) on the golfball data
set with K-means. K = 1 is clearly selected by Stadion-max/mean (uniform noise,
Ω = {2, . . . , 10}).

1.2 Examples of jumping between local minima

As explained in Section 3, two sources of instability are jumping and jittering. We
have already stated that our method leverages jittering of cluster boundaries in
high-density regions due to perturbation. Jumping, on the other hand, happens
when the algorithm finds very different solutions on different samples; in case of
objective-minimizing algorithms, it ends up in different local minima. Two main
effects lead to jumping: initialization, and symmetries in the data distribution.
Finally, subtle geometrical properties of the distribution might also cause jump-
ing [51]. An example of jumping of K-means due to symmetries is shown on

Fig. 2. Example of K-means jumping between three global minima for K = 2 on
a symmetric distribution with three Gaussians, despite consistent initialization (K-
means++ and best of 10 runs). Under slight perturbation (here uniform ε-AP, but
resampling gives identical results), the algorithm jumps between grouping two random
clusters together.

Figure 2: clearly, there are several global minima, and even if the algorithm is
deterministic, slight perturbations of the distribution (noise or sampling) make
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the algorithm jump between solutions. The second cause of jumping is due to
initialization. As illustrated by Figure 3 for K-means, if a single random ini-
tialization is used, depending on the initial position of centers, four different
configurations occur randomly, even without any perturbation of the data. We

(a) (b) (c)

Fig. 3. Example of K-means jumping between three local minima for K = 4, when a
single random initialization is used. Depending on the initial centers configuration, the
algorithm jumps between splitting a random cluster in two (a, b, c).

place ourselves in a realistic setting without perfect symmetries and an effec-
tive algorithm initialization strategy, thus jumping is not the main source of
instability.

1.3 Failure of sampling-based stability methods

In this section, we will see on a trivial example why stability methods based on
re-sampling are not reliable to detect the presence of structure in the data. Four
methods are compared:

1. Stadion based on ε-Additive Perturbation
2. Stadion based on bootstrapping perturbation
3. The model explorer algorithm [11] based on subsampling
4. The model order selection method [32] based on splitting data in two halves

and transferring labels from one half onto the other using a supervised
nearest-neighbor classifier.

We demonstrate that only the first method is successful on a simple example
consisting in a mixture of two correlated Gaussians, represented on Figure 4.
Data are scaled to zero mean and unit variance as for every other data set.
K-means is used to cluster the data. As illustrated on the plot, K-means with
K = 2 separates almost perfectly the two Gaussians. All other solutions split the
two Gaussians into several sub-clusters of equal sizes, with cluster boundaries
lying in the regions of highest density, as can be seen from the example for K = 4
(where the boundaries are in the middle of the Gaussians). Thus, in addition to
being the best solution, K = 2 is the only acceptable one. However, sampling-
based methods fail in assessing its stability, since they estimate K = 4 as the
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most stable solution. This result can be explained because the data set is not
symmetric and for each K there is one global minimum so no jumping occurs,
even with a random initialization scheme. Thus the only possible source of in-
stability stems from jittering. As expected in theory, our experiments show that
the different sampling processes did not succeed in creating jittering. Conversely,
ε-AP has indeed produced jittering. In details, the model order selection method

(a) (b) K = 2 (c) K = 4

Fig. 4. Example data set of two correlated Gaussians, scaled to zero mean and unit
variance. With the K-means algorithm, all sampling-based methods select K = 4 or
K = 6, whereas with ε-Additive Perturbation, K = 2 is the only stable solution.

[32] selects K = 4, followed by K = 6. The model explorer [11] finds K = 6 as
the best solution, followed by K = 4. These results are consistent across ini-
tialization schemes (random, K-means++, best of several runs). Hence, random
initialization will not help creating instability by jumping. Stadion with additive
noise was able to find K = 2 among the set of tested values {1, . . . , 6} (see Fig-
ure 5). This is not only due to adding the within-cluster stability. As evidence,
we replaced ε-AP by a bootstrap perturbation: Stadion with bootstrapping also
fails, selecting K = 1 as the best solution followed by K = 4, and this for all
initialization schemes.
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Fig. 5. Between-cluster stability, within-cluster stability and Stadion paths (uniform
noise, Ω = {2, . . . , 6}) on the example of two correlated Gaussians where all sampling-
based methods fail. Stadion clearly finds K = 2 by taking the max or mean of the path
curve.
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1.4 Example of Stadion behavior with K-means

This example illustrates the behavior of our stability criterion Stadion and how
to interpret the stability paths, using the data set 2d-4c shown in Figure 6.
It consists in four clusters with different variance and size, where two clusters
are closer to each other while the other clusters are at a greater distance. At
first glance, this example looks trivial, but the majority of internal indices fail.
For instance, the Dunn and Silhouette indices both select K = 3. The stability
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Fig. 6. Between-cluster stability, within-cluster stability and Stadion paths (uniform
noise, Ω = {2, . . . , 6}) on the 2d-4c data set. Stadion selects K = 4, followed by K = 3.

paths in Figure 6 show that Stadion is able to detect the structure of the data
and selects K = 4. The only difference between the solutions with K = 4 and
K = 5 is that the largest cluster (in green) is split, thus leading to a much
lower between-cluster stability but the same within-cluster stability. Solutions
K = 2 and K = 3 group clusters together without any splitting. Therefore, those
solutions have a high between-cluster stability and also a high within-cluster
stability. Altogether, on the Stadion path (Figure ??), the path corresponding
to K = 4 is similar to K = 5 whereas K = 2 and K = 3 have an equivalent
behavior. This is due to the structure of the data, and especially because the
two rightmost clusters are close to each other. The moment when the path of
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solution K = 3 becomes the best solution is the moment when these two clusters
merge because of a high ε-AP, and this is also the moment where K = 1 prevails.

Finally, Stadion paths (with stability and instability paths) give useful ad-
ditional information on a clustering and on the structure of the data. When
K > K?, the paths are similar to the path of K? but with a smaller scale, as
they have the same within-cluster stability but lower between-cluster stability.
On the other hand, when K < K?, the paths are shifted towards the right, and
may become superior for larger ε values.

1.5 Whenever K? is not the best partition

Sometimes, the best solution is not the one obtained with the true parameter K?,
because the algorithm itself is unable to recover the ground-truth partition. This
is the case for the 4clusters corner data set, depicted on Figure 7. While the most
natural solution is to separate the four clusters, it is not achievable by K-means:
with K? = 4, it will cut through the large cluster instead of separating the two
small green clusters, for the sake of saving the cost induced by the variance and
the size of this cluster. Among the proposed solutions, the highest ARI (w.r.t.
the ground-truth) is obtained with K = 3 (ARI = 0.92), followed by K = 2
(0.74), K = 5 (0.65) and lastly K? = 4 (0.58). Almost all internal indices select

(a) K = 2 (b) K = 3 (c) K? = 4 (d) K = 5

Fig. 7. Solutions of K-means on the 4clusters corner data set for K ∈ {2, . . . , 5}.

K = 2. Stability methods based on sampling [11,32] selected the ground-truth
K? = 4, earning them a ”win”, although it is the worst partition among the four.
We explain it by the fact that these methods are not leveraging jittering inside
the large cluster. Finally, Stadion always selects the solution K = 3 having the
highest ARI. Moreover, the criterion outputs solutions in the same order than
ARI. This examples clearly exhibits the stability trade-off occurring in Stadion:
it tries to preserve a high between-cluster stability while keeping within-cluster
stability as low as possible (see Table 2). Stadion paths on Figure 8 also show
how the three smaller clusters merge as the noise level increases.
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Table 2. Stability trade-off leveraged by Stadion on the 4clusters corner data set.

K ARI StabB StabW Stadion

1 0.00 ++ - - 0 %

2 0.74 ++ - + %

3 0.92 ++ + +++ !

4 0.58 - - + - %

5 0.65 - - ++ 0 %
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Fig. 8. Stadion paths on the 4clusters corner data. K = 3 is selected although K? = 4.

1.6 Example of K approaching N

This paragraph introduces the behavior of Stadion when the number of clusters
K evaluated becomes as large as the number of samples N . Even if this is
beyond the common setting in clustering, the criterion is still consistent. Figure 9
displays the stability trade-off for K-means on an example with three Gaussians,
using ARI as the similarity metric fot stability estimation. As K approaches N ,

1. Between-cluster stability decreases towards 0, except for K = N where it
jumps back to 1, because all partitions with one sample per cluster are
perfectly similar to ARI.

2. Within-cluster stability increases towards 1, as clusters with few samples
become trivially stable.

3. Stadion still indicates the correct solution K = 3, while decreasing towards
−1, only jumping back to 0 when K = N .

Note that the borderline case K = N depends on the similarity measure s used.
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Fig. 9. Stability trade-off plot for K-means on three Gaussians with N = 50 for K ∈
{1, . . . , 50} (uniform noise, Ω = {2, . . . , 10}). Stadion is still valid when the tested K
becomes large.

2 Hyperparameter study

The stability difference criterion (Stadion) introduced in this work is governed
by several hyperparameters:

– D: the number of perturbed samples used in the stability computation.
– noise: the type of noise for ε-Additive Perturbation. We experimented with

uniform and Gaussian noise.
– Ω: the set of algorithm parameters K ′ used in within-cluster stability.

The goal of this section is to study their importance and impact on the perfor-
mance of Stadion for clustering model selection, using the three studied algo-
rithms (K-means, Ward linkage and GMM). Only the extended versions of Sta-
dion for K-means and GMM are included to speed up the analysis. Performance
is evaluated using the ARI between the selected solution and the ground-truth
clustering.

2.1 Importance study with fANOVA

Ideally, practitioners would like to know how hyperparameters affect perfor-
mance, not just in the context of a single fixed instantiation of the remaining
hyperparameters, but across all their instantiations. The fANOVA (functional
ANalysis Of VAriance) framework for assessing hyperparameter importance in-
troduced in [30] is based on efficient marginalization over dimensions using re-
gression trees. The importance of each hyperparameter is obtained by training a
Random Forest model of 100 regression trees to predict the performance of Sta-
dion given the set of hyperparameters. Then, the variance of the performance due
to a given hyperparameter is decomposed by marginalizing out the effects of all
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other parameters. It also allows to assess interaction effects. Hence, the fANOVA
framework provides insights on the overall importance of hyperparameters and
their interactions.

The maximum amount of noise εmax and the fineness of the grid are not
included in the study, because it is data-dependent and one can easily check if
values are appropriate by looking at the paths. We study the following discrete
hyperparameter space:

– D ∈ {1, . . . , 10}
– noise is uniform or Gaussian

– Ω ∈ {2, 3, 5, 10, {2, . . . , 5}, {2, . . . , 10}, {10, . . . , 20},
{2, . . . 20}}
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Fig. 10. Box plots of the fANOVA importance of parameters and their interactions
for Stadion-max (left) and mean (right) across 73 benchmark data sets, for three algo-
rithms.

Figure 10 shows the contributions of hyperparameters and their interactions
to the variance of ARI performance, across 73 benchmark data sets. Ω is by far
the most important parameter, and this for two reasons.

First, the size of the data N needed to obtain good estimations is relative to
the number of clusters K. More precisely, in our theoretical setting we consider
K << N . Whenever K ′ is large relative to Nk, which can happen in within-
cluster stability for small clusters, jumping can occur. This implies that even in
presence of sub-clusters, high values of K ′ in Ω will create instability and thus
lead to low within-cluster stability. More precisely, if K ≥ K?, then in general
Ω will not affect within-cluster stability because it is already low. But whenever
K ≤ K?, within-cluster stability is more impacted by large values of K ′ in Ω,
negatively affecting Stadion. However, impact on performance is very limited as
shown in the following paragraph.

The second most important parameter is the interaction (D, Ω), for the same
reason: large numbers of clusters make estimating the within-cluster stability
more difficult, and thus a higher number of perturbations D is needed to obtain
a good approximation.
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2.2 Influence of D

The D hyperparameter defines the number of perturbed samples used in the
stability computation. In our benchmark, we used D = 10. Surprisingly, a num-
ber of perturbed samples as low as D = 1 already gives a good estimate of the
expectation and the performance only slightly increases with larger values of D.
We perform an experiment by making D vary from 1 to 10, keeping other hy-
perparameters fixed (uniform noise, Ω = {2, . . . , 10}), for the three algorithms
and both Stadion path aggregation strategies (max and mean), and measure
performance in terms of ARI over 73 benchmark data sets. Results on Figure 11
show that low D values have a higher variance and slightly lower performance.
To quantify further the influence of this parameter, we followed the recommen-
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Fig. 11. Box-plot of the ARI of partitions selected by Stadion-max (left) and mean
(right) across 73 data sets, for three algorithms and different values of D, the number
of samples in the stability computation.

dation in [16] and used the Friedman test [21] for comparisons on multiple data
sets, in order to test against the null hypothesis H0 stating that all parame-
ters have equivalent performance. After rejecting H0, we performed the pairwise
post-hoc analysis recommended by [12] where the average rank comparison (e.g.
Nemenyi test) is replaced by a Wilcoxon signed-rank test [52] at α = 5% with
a Holm-Bonferroni correction procedure to control the family-wise error rate
(FWER) [29,?]. To visualize post-hoc test results, we use the critical difference
(CD) diagram [16], where a thick horizontal line shows groups (cliques) of clas-
sifiers that are not significantly different in terms of performance. In all but one
case, the Friedman test could not reject the null hypothesis. Only for the GMM
algorithm and max aggregation, the null hypothesis was rejected, leading to the
critical difference diagrams on Figure 12. The number of samples D has a negli-
gible impact on the performance of our method. We assume it is due to the fact
that in our setting, instability is caused by jittering at cluster boundaries, which
does not vary much from one perturbation to another with reasonable amounts
of data. On the contrary, sampling-based stability methods that rely on jump-
ing require a much higher number of samples (for instance, [11] use 100 samples
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Fig. 12. Critical difference diagrams after Wilcoxon-Holms test (α = 5%) on GMM
performance, for Stadion-max with uniform (left) and Gaussian (right) noise, for dif-
ferent values of D, the number of perturbations in the stability computation.

and [32] use 20 samples). As a conclusion, we recommend using D ≥ 5, but if
computation time is costly, D = 1 can be used safely to cut down complexity.

2.3 Influence of noise type

We experiment with two types of ε-additive noise perturbation: uniform noise
and Gaussian noise. As previously, we report the distributions of performance
in terms of ARI across 73 data sets for both noise types on Figure 13 (with
D = 10 and Ω = {2, . . . , 10}). To assess the difference between both noise
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Fig. 13. Box plots of the ARI of partitions selected by Stadion-max (left) and mean
(right) across 73 data sets, for three algorithms, using uniform or Gaussian noise per-
turbation.

types, we perform the Wilcoxon signed-rank test on the performance results (at
confidence level α = 5%). For every algorithm and Stadion path aggregation, the
test did not reject the null hypothesis. Thus, either uniform or Gaussian noise
can be used.

2.4 Influence of Ω

The Ω hyperparameter is a set defining the numbers of clusters used to cluster
again each cluster of the original partition. We perform an experiment by vary-
ing Ω, keeping other hyperparameters fixed (uniform noise, D = 10), for both
Stadion path aggregation strategies (max and mean), and measure performance
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Fig. 14. Box plots of ARI of partitions selected by Stadion-max (left) and mean (right)
across 73 data sets, for three algorithms and different sets Ω (numbers of clusters used
in within-cluster stability).

in terms of ARI over 73 benchmark data sets. Results in Figure 14 demon-
strate that Ω does not have, in most cases, a big impact on the performance
of Stadion. This does not contradict the results of the fANOVA. Indeed, Ω has
the largest variance contribution to the performance, but this variance remains
small, and overall Stadion is robust for reasonable choices of the parameter, such
as {2, . . . , 5} or {2, . . . , 10}. Ward linkage is the most influenced by the choice
of Ω. We guess the main reason is that agglomerative clustering algorithms are
not robust to noise [3]. Critical difference diagrams after Wilcoxon-Holms test
on performance are given in Figures (15, 16, 17). None of them showed signifi-
cant differences, indicating that there is not enough data to conclude. However,
small values in Ω seem to perform better, which confirms the previous claim
that large values of K ′ in Ω negatively impact performance. In particular, the
range {2, . . . , 10} used in our benchmark performs well across all algorithms.
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Fig. 15. Critical difference diagrams after Wilcoxon-Holms test on K-means perfor-
mance, for different values of Ω.
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Fig. 16. Critical difference diagrams after Wilcoxon-Holms test on Ward performance,
for different values of Ω.
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Fig. 17. Critical difference diagrams after Wilcoxon-Holms test on GMM performance,
for different values of Ω. With Stadion-mean, the Friedman test could not reject H0.

3 Complexity analysis

This section provides a time complexity analysis of the Stadion computation.
Let A(K,N) be the time complexity of the algorithm with parameter K and
data of size N , assuming the data dimension is fixed. In addition, let S(K,N)
be the complexity of the similarity measure s, D the number of perturbations
and M the number of noise levels.

Between-cluster stability The complexity is O ((A(K,N) + S(K,N))DM).

Within-cluster stability For a given parameter K and a set of parameters Ω =

{2, . . . ,K ′}, the amount of operations is
∑K

k=1

∑K′

k′=2(A(k′, Nk)+S(k′, Nk))DM ,
which can be bounded by O (KK ′(A(K ′, N) + S(K ′, N))DM).

In the case of K-means, we have A(K,N) = O(KNTI), where T is the
number of iterations until convergence, and I the number of initialization runs.
Then, ARI is linear: S(K,N) = O(N). Overall, we obtain a complexity for
Stadion with K-means and ARI equal to O(KK ′2NTIDM).

The influence studies showed that Ω can be set to a small range, e.g. {2, . . . , 5}
or {2, . . . , 10}, and that D can be kept very low. In addition, the number of noise
levels M is fixed. Thus, complexity in K ′, D and M is manageabl, and complex-
ity of Stadion is mainly driven by the complexity of the algorithm itself.
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In regard, internal indices relying on between-cluster and within-cluster dis-
tances have a complexity of O(N2) with pairwise distance or O(KN) with cen-
troid distance. Thus, the cost of having to run the algorithm several times may
be smaller than a quadratic index if the algorithm is linear in N .

4 Experimental setting

In this section, we provide additional information on our experimental setting.

4.1 Algorithm initialization

– K-means: initialization is achieved using K-means++ [2] and keeping the
best of 35 runs (w.r.t. the cost function).

– Ward linkage: agglomerative clustering is deterministic, no initialization strat-
egy is needed.

– Gaussian Mixture Model: Two initialization schemes were considered. The
first one uses K-means to initialize the EM algorithm. The second one uses
the approach discussed in [42] based on a scaled SVD and agglomerative
hierarchical clustering at the initialization step. However, there was no no-
ticeable difference between the two initializations.

4.2 Preprocessing

Every data set was scaled to zero mean and unit variance on each dimension.

4.3 Choice of the external performance metric

Note that performance is evaluated using the external index ARI w.r.t. the
ground-truth cluster assignments, while Stadion also uses s = ARI as its simi-
larity measure to estimate stability. It would be reasonable to expect this situa-
tion to introduce some kind of bias. However, we also measured the performance
using many other external metrics (such as NMI), and almost no change in the
final ranking was observed. Thus, results are not biased in favor of Stadion, and
we kept ARI as a standard, adjusted, performance metric [50].

4.4 List of data sets

A complete list of the 73 data sets used in the benchmark is provided below, indi-
cating the number of samples (N), dimension (p), ground-truth number of clus-
ters (K?) and reference. The data sets are easily downloaded from the archives
[5] and [22]. The data sets without references are original and have been created
for this work, in order to provide challenging model selection tasks. They will
be available in the companion repository of this paper.
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16. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal

of machine learning research (2006)
17. Desgraupes, B.: ClusterCrit: Clustering Indices. CRAN Package (2013)
18. Dunn, J.C.: Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of

Cybernetics (1974)
19. Falasconi, M., Gutierrez, A., Pardo, M., Sberveglieri, G., Marco, S.: A stability

based validity method for fuzzy clustering. Pattern Recognition (2010)
20. Fang, Y., Wang, J.: Selection of the number of clusters via the bootstrap method.

Computational Statistics and Data Analysis 56(3), 468–477 (2012)
21. Friedman, M.: A comparison of alternative tests of significance for the problem of

m rankings. The Annals of Mathematical Statistics (1940)
22. Gagolewski M., Bartoszuk M., C.A.G.: A new, fast, and outlier-resistant hierar-

chical clustering algorithm (2016)
23. Hamerly, G., Elkan, C.: Learning the K in K-means. NIPS (2004)
24. Handl, J.: Cluster generators. https://personalpages.manchester.ac.uk/staff/Julia.

Handl/generators.html (2004)
25. Handl, J., Knowles, J.: Multiobjective clustering with automatic determination of

the number of clusters (2004)

http://vincentarelbundock.github.io/Rdatasets/datasets.html
http://vincentarelbundock.github.io/Rdatasets/datasets.html
https://github.com/deric/clustering-benchmark
https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html
https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html


Supplementary Material 29

26. Hennig, C.: Cluster-wise assessment of cluster stability. Computational Statistics
& Data Analysis 52(1), 258–271 (2007)

27. Hess, S., Duivesteijn, W.: K Is the Magic Number - Inferring the Number of Clus-
ters Through Nonparametric Concentration Inequalities. In: EMCL-PKDD (2019)

28. Hofmeyr, D.P.: Degrees of freedom and model selection for k-means clustering.
arXiv preprint arXiv:1806.02034 (2018)

29. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics (1979)

30. Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter
importance. In: International Conference on Machine Learning (2014)

31. Katti Faceli, Tiemi C. Sakata, M.C.P.d.S., de Carvalho, A.C.P.L.F.: Partitions
selection strategy for set of clustering solutions. Neurocomputing (2010)

32. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of
clustering solutions. Neural Computation (2004)

33. M. C. Su, C.H.C., Hsieh, C.C.: Fuzzy C-Means Algorithm with a Point Symmetry
Distance. International Journal of Fuzzy Systems (2005)

34. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., et al.: Package ‘cluster’ (2013)
35. Meila, M.: How to tell when a clustering is (approximately) correct using convex

relaxations. In: Advances in Neural Information Processing Systems (2018)
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Table 3. List of the benchmark data sets.

Dataset N p K? reference

2d-10c 2990 2 9 [24]
2d-3c-no123 715 2 3 [24]
2d-4c 1261 2 4 [24]
2d-4c-no4 863 2 4 [24]
2d-4c-no9 876 2 4 [24]

3clusters elephant 700 2 3
4clusters corner 1575 2 4
4clusters twins 612 2 4
5clusters stars 1050 2 5
A1 3000 2 20 [37]

A2 5250 2 35 [37]
curves1 1000 2 2 [5]
D31 3100 2 31 [48]
diamond9 3000 2 9 [41]
dim032 1024 32 16 [37]

dim064 1024 64 16 [37]
dim1024 1024 1024 16 [37]
dim128 1024 128 16 [37]
dim256 1024 256 16 [37]
dim512 1024 512 16 [37]

DS-577 577 2 3 [33]
DS-850 850 2 5 [33]
ds4c2sc8 485 2 8 [31]
elliptical 10 2 500 2 10 [4]
elly-2d10c13s 2796 2 10 [24]

engytime 4096 2 2 FCPS [47]
exemples1 3g 525 2 3
exemples10 WellS 3g 975 2 3
exemples2 5g 1375 2 5
exemples3 Uvar 4g 1000 2 4

exemples4 overlap 3g 1050 2 3
exemples5 overlap2 3g 1550 2 3
exemples6 quicunx 4g 2250 2 4
exemples7 elbow 3g 788 2 3
exemples8 Overlap Uvar 5g 2208 2 6

exemples9 YoD 6g 2208 2 6
fourty 1000 2 40 [5]
g2-16 2048 16 2 [37]
g2-2 2048 2 2 [37]
g2-64 2048 64 2 [37]

hepta 212 3 7 FCPS [47]
long1 1000 2 2 [25]
long2 1000 2 2 [25]
long3 1000 2 2 [25]
longsquare 900 2 6 [25]

R15 600 2 15 [48]
s-set1 5000 2 15 [37]
s-set2 5000 2 15 [37]
s-set3 5000 2 15 [37]
s-set4 5000 2 15 [37]

sizes1 1000 2 4 [25]
sizes2 1000 2 4 [25]
sizes3 1000 2 4 [25]
sizes4 1000 2 4 [25]
sizes5 1000 2 4 [25]

spherical 4 3 400 3 4 [4]
spherical 5 2 250 2 5 [4]
spherical 6 2 300 2 6 [4]
square1 1000 2 4 [25]
square2 1000 2 4 [25]

square3 1000 2 4 [25]
square4 1000 2 4 [25]
square5 1000 2 4 [25]
st900 900 2 9 [4]
tetra 400 3 4 FCPS [47]

triangle1 1000 2 4 [25]
triangle2 1000 2 4 [25]
twenty 1000 2 20 [5]
twodiamonds 800 2 2 FCPS [47]
wingnut 1016 2 2 FCPS [47]

xclara 3000 2 3 [1]
zelnik2 303 2 3 [54]
zelnik4 622 2 5 [54]
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