
HAL Id: hal-04456309
https://hal.science/hal-04456309

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distributed approximate nearest neighbors algorithm
for efficient large scale mean shift clustering

Gaël Beck, Tarn Duong, Mustapha Lebbah, Hanane Azzag, Christophe Cérin

To cite this version:
Gaël Beck, Tarn Duong, Mustapha Lebbah, Hanane Azzag, Christophe Cérin. A distributed approx-
imate nearest neighbors algorithm for efficient large scale mean shift clustering. Journal of Parallel
and Distributed Computing, 2019, 134, pp.128-139. �10.1016/j.jpdc.2019.07.015�. �hal-04456309�

https://hal.science/hal-04456309
https://hal.archives-ouvertes.fr

A Distributed and Approximated Nearest

Neighbors Algorithm for an Efficient Large Scale

Mean Shift Clustering

Gaël Beck1, Tarn Duong 1, Mustapha Lebbah 1, Hanane Azzag 1, and
Christophe Cérin1

1Computer Science Laboratory of Paris North (LIPN, CNRS UMR
7030), University of Paris 13, F-93430 Villetaneuse France

Abstract

In this paper we target the class of modal clustering methods where
clusters are defined in terms of the local modes of the probability
density function which generates the data. The most well-known modal
clustering method is the k-means clustering. Mean Shift clustering is
a generalization of the k-means clustering which computes arbitrarily
shaped clusters as defined as the basins of attraction to the local modes
created by the density gradient ascent paths. Despite its potential,
the Mean Shift approach is a computationally expensive method for
unsupervised learning. Thus, we introduce two contributions aiming
to provide clustering algorithms with a linear time complexity, as
opposed to the quadratic time complexity for the exact Mean Shift
clustering. Firstly we propose a scalable procedure to approximate
the density gradient ascent. Second, our proposed scalable cluster
labeling technique is presented. Both propositions are based on Locality
Sensitive Hashing (LSH) to approximate nearest neighbors. These two
techniques may be used for moderate sized datasets. Furthermore, we
show that using our proposed approximations of the density gradient
ascent as a pre-processing step in other clustering methods can also
improve dedicated classification metrics. For the latter, a distributed
implementation, written for the Spark/Scala ecosystem is proposed.
For all these considered clustering methods, we present experimental
results illustrating their labeling accuracy and their potential to solve
concrete problems.

Index terms— Clustering, Gradient Ascent, Nearest neighbors, Spark

1 Introduction

The goal of clustering or unsupervised learning is to assign cluster membership
to unlabeled candidate points where the number and location of these clusters

1

ar
X

iv
:1

90
2.

03
83

3v
1

 [
cs

.L
G

]
 1

1
Fe

b
20

19

are unknown. Current Mean Shift clustering [1, 2, 3] algorithms contains
computational bottlenecks with both kernel and nearest neighbor approaches:
the former is due to the exact evaluation of the kernel function, and the latter
due to the exact nearest neighbor searches. We propose a new algorithm
which resolves the computational inefficiencies of the nearest neighbor Mean
Shift by using Locality Sensitive Hashing (LSH) [4, 5, 6] for approximate
nearest neighbor searches to replace the exact nearest neighbor calculations
in the density gradient ascent and in the cluster labeling stages. Compared
to kernel approaches to Mean Shift clustering, which are O(n2) where n is
the size of the dataset, our nearest neighbors approach enables a scalable
implementation of the gradient ascent and cluster labeling which are both
O(n).

Furthermore, existing programming paradigms for dealing with paral-
lelism, such as MapReduce [7] and Message Passing Interface (MPI) [8],
have been demonstrated the best practical choices for implementing these
clustering algorithms. MapReduce paradigm becomes popular and suited
for data already stored on a distributed file system, which offers data repli-
cation, as well as the ability to execute computations, locally on each data
node. Thus, we implement this approximate nearest neighbour Mean shift
clustering algorithm on a distributed Apache Spark/Scala framework [9],
which allows us to carry out clustering on Big datasets.

The organization of the paper is as follows. We review related works in
Section 2. In Section 3 we briefly introduce the problem prior to elaborating
our algorithmic contributions for the gradient ascent and cluster labeling.
Section 5 is related to the experiments conducted on the Grid’5000 testbed
where we examine the role of the key tuning parameters for both accelerating
the respond time and measuring the quality of the answer Concluding remarks
follow in Section 6.

2 Related works

For comprehensive reviews of clustering, see for example the monographs as
in [10, 11]. For our purposes, we focus on the principal scalable clustering
algorithm, i.e. on the well-known k-means algorithm [12]. This algorithm has
the advantage of having a single parameter k which stands for the number
of desired clusters. The algorithm works by moving k prototypes towards
the centroid formed by their closest data points. This process is repeated
iteratively until the intra-class variance (the sum of squared distances from
each data point within a cluster to its corresponding prototype) is minimized.
DBScan [13] is a well-known density based algorithm. It takes two parameters,
ε which defines the radius of the hypersphere and minPts which is the
minimum number of points above which a corresponding hypersphere is
considered to be sufficiently dense. Each time the density threshold is

2

reached, the data points in the same hypersphere belong to the same cluster,
and the process is extended to include more data points until the data density
falls under the threshold determined by ε and minPts. The remaining data
points are considered to be noise. One notable advantage of this algorithm
is its ability to automatically detect the number of clusters with arbitrary
shape. But it remains difficult to tune it correctly. Like DBScan, Mean Shift
is a density based algorithm and can detect automatically the number of
clusters with arbitrary shape. Most studies on the Mean Shift clustering
have focused on the kernel versions, e.g. [14, 15, 16]. The latter authors
compared Gaussian, Cauchy and generalized Epanechnikov kernels to study
the behaviour of tuning parameters of Mean Shift clustering.

3 Mean Shift clustering

The Mean Shift algorithm and its variants consist in two major steps as
described in Algorithm 1. The first important step (the density gradient
ascent) is generally the most computationally intensive. This gradient ascent
can be computed in different ways, such as with kernel functions or as we
propose in this paper, nearest neighbors. The second step is the cluster
labeling phase where we use the result from the first step to assign cluster
labels to the original data points.

Algorithm 1 Mean Shift principle

Input: points {x1, . . . ,xm},
Output: cluster label {c̃(x1), . . . , c̃(xm)}
Step 1: Density gradient ascent;
Step 2: Cluster labeling;

3.1 Density gradient ascent

The Mean Shift method for a d-dimensional point x, generates a sequence
of points {x0,x1, . . . } which follows the gradient density ascent paths using
the recurrence relation

xj+1 =
1

k

∑
Xi∈k-nn(xj)

Xi (1)

where X1, . . . ,Xn is a random sample drawn from a common density f and
the k nearest neighbors of x are k-nn(x) = {Xi : ‖x−Xi‖≤ δ(k)(x)} with
δ(k)(x) is the k-th nearest neighbor distance, and x0 = x. Eq. (1) gives
the Mean Shift method its name since the current iterate xj is shifted to
the sample mean of its k nearest neighbors for the next iterate xj+1. The
gradient ascent paths towards the local modes produced by Eq. (1) form

3

the basis of Algorithm 2, our nearest neighbor Mean Shift gradient ascent
(NNGA).

The inputs to the NNGA are the data sample X1, . . . ,Xn and the
candidate points x1, . . . ,xm, which we want to cluster (these can be the
same as X1, . . . ,Xn, but this is not required); and the tuning parameters:
the number of nearest neighbors k, the tolerance under which subsequent
iterations in the Mean Shift update are considered to be convergent ε1, the
maximum number of iterations jmax.

Algorithm 2 NNGA – Nearest Neighbor Gradient Ascent with exact k-nn

Input: {X1, . . . ,Xn}, {x1, . . . ,xm}, k, ε1, jmax

Output: {x∗1, . . . ,x∗m}
1: Compute similarity matrix and sort each row;
2: for ` := 1 to m do
3: j := 0; x`,0 := x`;

/* Search for k-nn based on similarity matrix */
4: x`,1 := mean of k-nn(x`,0);
5: while ‖x`,j+1,x`,j‖> ε1 or j < jmax do
6: j := j + 1;
7: x`,j+1 := mean of k-nn(x`,j);

8: x∗` := x`,j ;

The classical version of the NNGA introduced in Algorithm 2 requires,
for each candidate point that we compute, the distance to all other data
points, from which the mean of the k nearest neighbors is set to be the
current prototype. The algorithm associates this prototype with the original
candidate points. We repeat this step until the prototype moves less than a
threshold ε1 or whenever the algorithm have reached jmax iterations.

The complexity for the exact nearest neighbors search of a single point
is n log(n). Applied to every data point multiple times, this complexity
increases to n2jmax log(n), preventing its application on Big datasets.

4 Model proposition

4.1 Approximate nearest neighbors search for density gradi-
ent ascent

One promising algorithmic complexity reduction approach relies on comput-
ing approximate nearest neighbors rather than exact neighbors. Among the
techniques that can be used, Locality Sensitive Hashing (LSH), introduced
in [4, 5], is a probabilistic method based on a random scalar projection of
multivariate data point x defined below:

L(x;w) = (ZTx + U)/w

4

where Z ∼ N(0, Id) is a standard d-variate normal random variable and
U ∼ Unif(0, w) is a uniform random variable on [0, w), w > 0. The LSH
is parametrized by the number of buckets M1 in the hash table. In our
context, we propose to set w = 1, and without loss of generality Li ≡
L(Xi; 1). These scalar projections are sorted into their order statistics
L(1) < · · · < L(n), and their range is divided into M1 partition intervals of
width w = (L(n) − L(1))/M1 where Ij = [L(1) + w(j − 1), L(1) + wj], ∀j ∈
{j = 1, . . . ,M1}. The hash value of x is the index of the interval in which
L(x; 1) falls

H(x) = j1{L(x; 1) ∈ Ij},

where 1{·} is the indicator function. To search for approximate nearest
neighbors, the reservoir of potential nearest neighbors is set to the bucket
which contains the hash value. This reservoir is enlarged if necessary by
concatenating the adjacent buckets. The approximate k nearest neighbors of
x are the k nearest neighbors only drawn from the reduced reservoir R(x)
defined as below:

k-ñn(x) = {Xi ∈ R(x) : ‖x−Xi‖ ≤ δ(k)(x)},

where δ(k)(x) is the kth nearest neighbor distance to x. The approximation
error in the nearest neighbors to x induced by searching in R(x) rather than
the full dataset is probabilistically controlled [6]. Our work introduced an
improvement to the classical LSH, based on the following observations, as
follows:

• it takes into account the properties of the local data space more
accurately. Rather than looking exclusively in the bucket where the
prototype lies, we also look in the neighbor buckets on both sides (i.e.
p = 1). The main advantage of this is to take into account the case
where a prototype is at the border of a bucket and so some of its k
nearest neighbors mostly likely fall into the neighbor buckets. This is
especially important for high values of k. It is computationally more
expensive but the cost can be controlled control for a fixed bucket size.
The memory cost is increased by a factor of 2p+ 1 per partition due
to copying the neighboring layers into the active one.

The LSH method partitions the data space into buckets of approxi-
mately k nearest neighbors, which are delimited by parallel hyperplanes.
In practice, the LSH controls the number of neighboring buckets to
two, except for the edge buckets which have only one neighbor bucket.
This is in contrast to cell based buckets, where the number of neighbor
buckets increases exponentially with the number of dimensions. Fig. 1
illustrates the LSH buckets of approximate nearest neighbors on 2D
and 3D data examples: the orientation of hyperplanes depends on the
random projections utilized to construct the buckets.

5

(a) Aggregation [M1 = 6] (b) GolfBall [M1 = 6]

Figure 1: LSH buckets for the Aggregation and GolfBall datasets. The label [M1]
indicates the LSH with M1 buckets.

• One add the possibility of allowing the prototype to change buckets
during its gradient ascent. In this case, we look for its k2 nearest
neighbors in order to place the prototype within the most representative
bucket using a majority voting process. Thus a prototype can pass
through multiple buckets before converging to its final position, as
illustrated in Fig. 2.

Figure 2: Passage of a prototype through different LSH buckets during the gradient
ascent. n and M1 indicate respectively the number of observation and the number
of buckets

Algorithm 3 describes the NNGA+, an approximate nearest neighbor
search usin LSH with the hash function H. The inputs are the data sample
X1, . . . ,Xn, the candidate points x1, . . . ,xm, and the tuning parameters:
the number of nearest neighbors k1 and the number of buckets in the hash

6

table M1. In line 1, the hash table is created by applying the LSH to the
data values X1, . . . ,Xn. In lines 2–6, for each candidate point x`, the
approximate k1 nearest neighbors k-ñn(x`) are computed from within the
reservoir R(x`).

Algorithm 3 NNGA+ – Approximate Nearest Neighbors Gradient Ascent
with LSH and adjacent buckets

Input: {X1, . . . ,Xn}, {x1, . . . ,xm}, k1,M1

Output: {k-ñn(x1), . . . , k-ñn(xm)}
/* Create hash table with M1 buckets */

1: for i := 1 to n do Hi := H(Xi);
/* Search for approx nn in adjacent buckets */

2: for ` := 1 to m do
3: R(x`) := {Xi : Hi = H(x`), i ∈ {1, . . . , n}}
4: while card(R(x`)) < k1 do
5: R(x`) := R(x`) ∪ neighbor bucket;

6: k-ñn(x`) := k-nn from R(x`) to x`;

Fig.3 illustrates the effect of including neighbor buckets (p = 1) or not
(p = 0) in the NNGA+. Fig. 3a demonstrates the effective of our algorithm
on the Aggregation dataset. In Figure 3b a low value of k1 is used and no
neighbor buckets are allowed where the data shrinks slightly. If we increase
the value of k1 to 20 with no neighbor buckets, in Figure 3c, then we observe
that the data are artificially forced to follow the hyperplanes which delimit
the different buckets. Figure 3d shows our algorithmic improvement with
adding one layer of neighbor buckets where the underlying structure of data
is maintained.

It is important to note that the use of the LSH to reduce the complexity
of kernel Mean Shift clustering was already proposed in [17], but authors did
not quantify the reduction in complexity. The complexity of our NNGA+ is
reduced to O((n

M1
)2 log(n

M1
)) per bucket with M1 buckets, and so the total

complexity is O((n
M1

)2 log(n
M1

)) for all buckets. Because of this segmentation
of the original data space into M1 sub-spaces, the complexity is inversely
proportional to the number of buckets. The trade-off is that the data points
in each bucket have to be sufficiently representative of the local properties
of the original space. Thus the number of buckets M1 is a crucial tuning
parameter. Despite this, there are no optimal methods for selecting the
number of buckets [18]. Consequently, we will examine empirical choices of
the number of buckets to study the performance of our proposed method in
section 5.

7

(a) Aggregation (b) Aggregation [k1 = 5, p = 0]

(c) Aggregation [k1 = 20, p = 0] (d) Aggregation [k1 = 20, p = 1]

Figure 3: Results of NNGA+ for the Aggregation dataset. [k1, p] indicates NNGA+

with k1 nearest neighbors k1 and p neighbor bucket layers.

4.2 Cluster labeling: ε-proximity

NNGA+ carries the gradient ascent on the data points until they have
converged to their prototypes. The question is then how to label the data
point with clusters. A first solution is to assign the same cluster to all points
sharing the same prototype. As observed in Figure 3d, even with an a prior
good choice of k1, there are (possibly) hundreds of generated prototypes,
so assigning a label to each point according to its closest prototype is not
effective because of generating too many clusters. Applying the density
gradient ascent NNGA+ leads to a converged dataset with increased inter-
cluster distances and decreased intra-cluster distances as compared to the
original dataset. In order to further exploit this property, we propose a new
proximity-based approach where points which are under a threshold ε from
each other are considered to belong to the same cluster.

The aim of ε-proximity algorithm is to gather all points which are under
a distance ε from each other. In order to apply this method, we have to

8

build the similarity matrix which has a O(n2) time complexity, preventing
any Big Data application. For a scalable approach, we apply the LSH on
the dataset and generate clusters on these LSH buckets through the local
version of ε-proximity clustering.

Algorithm 4 illustrates the local version of the algorithm. It consists in
exploring the similarity matrix S which is defined as a map whose objects
IDs are the keys and whose pairs (object IDs, distances) are the values. We
initialize the process by taking the first object of S and cluster with it every
point whose distance is less than ε2. We then apply this exploration process
by iteratively adding he ε2 nearest neighbors of these added points until this
process terminates. During the process we remove the explored points from
S to avoid repeated calculations. Once the first cluster is generated, we take
another object from outside this first cluster from the reduced similarity
matrix S and repeat the above cluster formation, until all objects are assigned
into a cluster label.

The distributed version consists to apply this algorithm in each LSH
partitions, we merge with each bucket its right or left neighbor bucket,
maintaining the bucket order. Once this step is completed, we apply a
MapPartitions procedure where and check if two clusters of two different
buckets share k3 pairs of points under ε (we use k3 = 1 throughout this
paper). Thus these two clusters are considered to form a single cluster.
We obtain a dataset which chains common clusters between partitions: all
chained clusters are assigned with the same label by generating an undirected
graph where each connected subgraph represents a cluster. The search for
connected components in a graph is a common problem which can be solved
in O(n)n n being the number of vertices.

It is important to bound the buckets size because the local version of
ε-proximity clustering and the check for cluster fusion between two buckets
have quadratic complexity in this size. Empirically we advise to set the
number of buckets in order to have around 500 to 2000 data points in each
bucket.

A notable problem still remains with the choice of the main tuning
parameter ε. We set it to be the average of distance from each point to their
k nearest neighbors. We compute it as an approximate value in using LSH
procedure in order to maintain the scalability property.

5 Numerical experiments

Our experiments are carried out on the Grid’5000 testbed which is the french
national testbed for computer science research. It allows the deployment of
a user-specified operating system within the Grid’5000 hardware. We use a
dedicated Spark Linux image optimized for Grid’5000 where Apache Spark is
deployed on top of Spark in Standalone mode. Apache Spark is a fast general

9

Algorithm 4 Local ε-proximity labeling

Input: {x1, . . . ,xm},S, ε2
Output: {c̃(x1), . . . , c̃(xm)}

1: needToVisit ← Set(S.head)
2: cID ← 0
3: clusters← Map.empty[Int, Set[Int]]
4: clusters += (cID, needToVisit)
5: while S has elements do

/* pc is the current point of needToVisit */
6: for each pc in needToVisit do

/* Add all points under ε2 to needToVisit */
7: needToVisitUpdated← {p ∈ S, dist(p,pc) ≤ ε2}

/* Remove explored point from the similarity matrix */
8: S -= pc

/* Update points to explore on next iterations */
9: needToVisit← needToVisitUpdated

10: if neetToVisit is empty then
11: cID += 1
12: needToVisit← Set(S.head)

/* Create a new entry in the clusters map */
13: clusters += (cID, needToVisit)
14: else

/* Add new points to cluster cID */
15: clusters(cID) += needToVisit

purpose distributed computing system based on a master-slaves architecture.
Only the deployment of the image is automatized. We manually reserve the
nodes and provide the Spark cluster with our code to execute the different
experiments on a 2× 8 core Intel Xeon E5-2630v3 CPUs and 128 Gb RAM
set up. We repeat each experiment ten times for robustness.

A key concept in Spark is the resilient distributed dataset (RDD) which is
a read-only collection of objects partitioned across a group of machines which
can be rebuilt if necessary from the hierarchy of previous RDD operations.
Most of the Map and Reduce operations will be performed on RDDs even
if other pure Scala Map and Reduce operations are executed inside each
Spark partition. We implement our algorithm in Scala because it is the
Spark’s native language and thus allows for good performance. Most tuning
parameters of our algorithm have an impact on both the execution time and
the cluster labeling quality. We focus our study on the dataset size n, the
maximum number of Gradient Ascent iterations jmax, the number of LSH
buckets M1, the threshold ε1, and the number of nearest neighbors k1.

10

5.1 Datasets and tuning parameters

We use a range from 2 to high dimensional datasets with different sizes,
as summarized in Table 1 [19, 20]. To ensure the comparability of the
results across these different datasets, all algorithms are carried out on the
normalized version of the datasets: xi = (xi − xmin

i)/(xmax
i − xmin

i) where xi
is the ith component of x, and xmin

i , xmax
i are respectively the ith marginal

minimum and maximum values. Table 2 shows the combination of tuning
parameters used in the comparision between the gradient ascent (NNGA+),
k-means [12], DBScan [13] and ε-proximity.

Dataset n d N

R15 600 2 15
Aggregation 788 2 7
Sizes5 1000 2 4
EngyTime 4096 2 2
Banana 4811 2 2
S3 5000 2 15
Disk6000 6000 2 2
DS1 9153 2 14
Hepta 212 3 7
Hyperplane 100000 10 5
CovType10 581012 10 7
image1 154401 5 –
Own image 5000000 5 –
ScalabiltyDS 140000000 10 –

Table 1: Experimental datasets. n is the dataset size, d is the data dimension, N
is the number of clusters.

5.2 Evaluation of clustering quality

5.2.1 Quantitative evaluation

NNGA+ is compared to the following cluster labeling techniques: k-means
[12], DBScan [13], and ε-proximity. To evaluate the quality of the clustering,
we use both the Normalized Mutual Information (NMI) [21] and the RAND
index [22]. The value of each measure lies between 0 and 1. A higher value
indicates better clustering results.

One notable observation of the impact of the NNGA+ pre-processing step
on clustering labeling concerns the datasets with Gaussian (i.e. ellipsoidal)
clusters. As the results for the Hepta, R15, S3, and Sizes5 datasets as
Table 3 and 4 show, applying NNGA+ results in uniformly better clustering
quality than without the NNGA+. NNGA+ pre-processing in DBScan and

11

dataset NNGA+ k-means DBScan ε-proximity

Aggregation without k = 7 ε = 0.05, εknn = 10,
minPts = 8 M1 = 8

with k1 = 40 εknn = 30,
M1 = 8

Banana without k = 2 ε = 0.02, εknn = 0.1,
minPts = 3 M1 = 8

with k1 = 40

Disk6000 without k = 7 ε = 0.02, εknn = 0.021,
minPts = 4 M1 = 8

with k1 = 40

DS1 without k = 14 ε = 0.03, εknn = 30,
minPts = 25 M1 = 8

with k1 = 40

EngyTime without k = 2 ε = 0.1, εknn = 50,
minPts = 100 M1 = 8

with k1 = 40

Hepta without k = 7 ε = 0.1, εknn = 10,
minPts = 10 M1 = 4

with k1 = 40 εknn = 20,
M1 = 4

R15 without k = 15 ε = 0.05, εknn = 5,
minPts = 25 M1 = 8

with k1 = 40

S3 without k = 15 ε = 0.05, εknn = 15,
minPts = 50 M1 = 8

with k1 = 40 εknn = 15,
M1 = 8

Sizes5 without k = 4 ε = 0.08, εknn = 10,
minPts = 8 M1 = 8

with k1 = 40 εknn = 35,
M1 = 8

Unbalanced without k = 8 ε = 0.05, εknn = 50,
minPts = 20 M1 = 8

with k1 = 40 ε = 0.1, εknn = 80,
minPts = 20 M1 = 8

Hyperplane without k = 5 ε = 0.05, εknn = 5,
minPts = 8 M1 = 100

with k1 = 40

CovType10 without k = 5 ε = 0.05, εknn = 20,
minPts = 8 M1 = 500

Table 2: Clustering algorithms parameters. ε = v1 stands for manual setting of ε
and εknn = v2 defines the number of the k nearest neighbor for the ε approximation.
M1 = represents the number of buckets during the LSH phase.

12

ε-proximity clustering also leads to better (or at least as good) clustering accu-
racy than without NNGA+ except for Disk6000 which has nested clusters. In
this case, a high k1 value leads to the creation of links between clusters which
are well separated. Finally we observe for the high dimensional datasets, Hy-
perplan and CovType10, ε-proximity with NNGA+ pre-processing performs
as well as the classical k-means, and it out-performs the DBScan which is
unable to effectively cluster such huge datasets.

Data NNGA+ k-means DBScan ε-proximity

Aggregation without 0.83± 0.022 0.98± 0.00 0.89± 0.00
with [k1 = 50] 0.87± 0.06 0.99± 0.00 0.97± 0.02

Banana without 0.31± 0.00 1.00± 0.00 1.00± 0.00
with [k = 40] 0.32± 0.01 1.00± 0.00 1.00± 0.00

Disk6000 without 0.00± 0.00 1.00± 0.00 1.00± 0.00
with [k = 100] 0.02± 0.00 0.25± 0.00 0.32± 0.00

DS1 without 0.75± 0.01 0.94± 0.00 0.97± 0.00
with [k1 = 50] 0.77± 0.03 0.94± 0.00 0.95± 0.00

EngyTime without 0.98± 0.00 0.75± 0.00 0.01± 0.00
with [k1 = 200] 0.97± 0.00 0.97± 0.00 0.85± 0.08

Hepta without 0.98± 0.03 0.83± 0.00 0.99± 0.02
with [k1 = 20] 0.99± 0.02 1.00± 0.00 0.97± 0.04

R15 without 0.96± 0.02 0.99± 0.00 0.93± 0.01
with [k1 = 20] 0.99± 0.00 0.99± 0.00 0.91± 0.02

S3 without 0.78± 0.01 0.42± 0.00 0.09± 0.00
with [k1 = 40] 0.79± 0.00 0.75± 0.00 0.74± 0.00

Sizes5 without 0.81± 0.12 0.80± 0.00 0.60± 0.12
with [k1 = 20] 0.89± 0.08 0.91± 0.00 0.89± 0.01

Unbalanced without 0.94± 0.05 0.99± 0.00 0.97± 0.01
with [k1 = 40] 0.92± 0.05 0.99± 0.00 0.98± 0.01

Hyperplane without 0.01± 0.00 One cluster 0.02± 0.00
with [k1 = 50] 0.00± 0.00 found 0.04± 0.00

CovType10 without 0.07± 0.006 dataset is 0.03± 0.00
with [k1 = 50] 0.07± 0.02 too massive 0.09± 0.01

Table 3: NMI clustering quality indices for the cluster labeling on the experimental
datasets with and without prior application of NNGA+. The bold entries indicate
the optimal dataset, and ± entries are the standard deviations over 10 trials.

As shown in Figure. 4, our version of the nearest neighbors gradient ascent
NNGA+ results in shrinking the data points toward their local modes. The
notation ‘with NNGA+ [k1]’ indicates that we carried out NNGA+ k1 nearest
neighbors in the Mean Shift gradient ascent. DS1 with NNGA+ [k1 = 50]
presents a more compact version than its original version, maintaining the
underlying data structures whilst increasing empty space between clusters.
Likewise for the Hepta dataset. One notable difference arises for the uniform
clusters in Disk6000. In the latter, we observe formation of empty space next
to high density areas, whereas in the former, the data points gather towards
the central modes.

An application of NNGA+ could result in one of two major cases depend-
ing on the nature of clusters. If the points are homogeneously distributed
over a cluster, a higher value of k1 results in more empty space surrounding
the high density regions. On the other hand, if the points are Gaussian
distributed, they will converge efficiently towards the high density region,

13

Data NNGA+ k-means DBScan ε-proximity

Aggregation without 0.91± 0.01 0.99± 0.00 0.93± 0.00
with [k1 = 50] 0.93± 0.04 1.00± 0.00 0.98± 0.02

Banana without 0.70± 0.00 1.00± 0.00 1.00± 0.00
with [k = 40] 0.70± 0.01 1.00± 0.00 1.00± 0.00

Disk6000 without 0.50± 0.00 1.00± 0.00 1.00± 0.00
with [k = 100] 0.50± 0.00 0.33± 0.00 0.34± 0.00

DS1 without 0.86± 0.00 0.98± 0.00 0.98± 0.00
with [k1 = 50] 0.87± 0.01 0.98± 0.00 1.00± 0.00

EngyTime without 1.00± 0.0 0.90± 0.00 0.50± 0.00
with [k1 = 200] 0.99± 0.00 0.99± 0.00 0.93± 0.05

Hepta without 0.99± 0.02 0.94± 0.00 0.99± 0.02
with [k1 = 20] 0.99± 0.02 1.00± 0.00 0.98± 0.04

R15 without 0.99± 0.01 1.00± 0.00 0.99± 0.00
with [k1 = 20] 1.00± 0.00 1.00± 0.00 0.98± 0.00

S3 without 0.96± 0.00 0.52± 0.00 0.12± 0.00
with [k1 = 40] 0.96± 0.00 0.95± 0.00 0.96± 0.00

Sizes5 without 0.88± 0.13 0.97± 0.00 0.83± 0.07
with [k1 = 20] 0.95± 0.09 0.98± 0.00 0.97± 0.00

Unbalanced without 0.97± 0.03 1.00± 0.00 1.00± 0.00
with [k1 = 40] 0.96± 0.03 1.00± 0.00 1.00± 0.00

Hyperplane without 0.62± 0.00 One cluster 0.30± 1.00
with [k1 = 50] 0.62± 0.00 found 0.31± 0.00

CovType10 without 0.59± 0.00 dataset is 0.38± 0.00
with [k1 = 50] 0.58± 0.01 too massive 0.56± 0.04

Table 4: RAND clustering quality indices for the cluster labeling on the experi-
mental datasets with and without prior application of NNGA+. The bold entries
indicate the optimal dataset, and ± entries indicate the standard deviations over 10
trials.

reducing the noise whilst increasing the inter-cluster distances.
Figure 5 presents some results obtained by applying k-means on the

original data points and converged data points obtained after applying the
NNGA+ algorithm. Figure 5a shows an application of k-means on Sizes5
dataset with k = 4 clusters without NNGA+. Even if the number of clusters
in the k-means is the correct number, these four clusters do not match so
closely the original clusters (NMI=0.81, RAND=0.88). Figure 5b shows the
k-means cluster labeling results applied on NNGA+ output with k1 = 20. We
observe visually that these clusters are more similar to the original clusters
(NMI=0.89, RAND=0.95).

DBScan cluster labeling collates points more efficiently after NNGA+ is
applied than without NNGA+, as shown in Figure 6. NNGA+ is an efficient
way to attach noisy points to their closest cluster. Furthermore, NNGA+

facilitates more robust choices for the DBScan parameters, since it increases
the local density which improves the detection of smaller clusters.

The results for ε-proximity labeling are presented in Figure 7. For the
Aggregation dataset, the NNGA+ improves the clustering by being able
to distinguish between clusters which are joined a filamentary structure.
Without NNGA+ these filamentary structures cause problems. An analogous
improvement in clustering quality is also observed for the R15 dataset. The
cluster labelling is similar for the Unbalance dataset with or without NNGA+.

14

(a) DS1 (b) NNGA+ [k1 = 50]

(c) Hepta (d) NNGA+ [k1 = 20]

(e) Disk6000 (f) NNGA+ [k1 = 100]

Figure 4: Gradient ascent NNGA+ on the DS1, Hepta and Disk6000 datasets. The
label ‘NNGA+ [k1]’ indicates the application of NNGA+ with k1 nearest neighbors.

On the other hand, for the DS1 dataset, the prior application of NNGA+

leads to a decrease in the cluster labeling accuracy.

5.2.2 Visual evaluation with image segmentation

A resurgence in interest in the variant of the mean shift algorithm is due to its
application to image segmentation [23] where an image is transformed into a
color space in which clusters correspond to segmented regions in the original

15

(a) k-means [k = 4] (b) NNGA++k-means [k1 =
20, k = 4]

Figure 5: k-means cluster labeling on Sizes5 datasets with and without prior
application of NNGA+. The label ‘k-means [k]’ indicates k-means cluster labeling
with k clusters without NNGA+, and ‘NNGA++k-means [k1, k]’ indicates NNGA+

with k1 nearest neighbors followed by k-means cluster labeling with k clusters.

image. The 3-dimensional L∗u∗v∗ color space [24, Eqs. 3.5-8a–f] is a common
choice. Since an image is a 2-dimensional array of pixels, let (x, y) be the
row and column index of a pixel. The spatial and color (range) information
of a pixel can be concatenated into a 5-dimensional vector (x, y, L∗, u∗, v∗)
in the joint spatial-range domain. An image segmentation algorithm based
on the kernel mean shift was introduced in [25] which we adapt for use with
NNGA+.

Our test image is image #36 from the colour training set from the Berkeley
Segmentation Dataset and Benchmark2. Figure 8 shows the original RGB
481×321 pixels JPEG image. The tuning parameters for the NNGA+ are
k1 = 60, jmax = 15, We compute the NNGA+-M1 with M1 = 200, 400, 1000
buckets.

For the NNGA+-200 and NNGA+-400 in Figures 9b and 9d where we
approximate nearest neighbours with respectively M1 = 200 and M1 = 400
buckets, some finer details are visible, such as the podia. For NNGA-200
and NNGA-400 in Figures 9a and 9c, the green background color bleeds into
the starfish arms. For NNGA-1000 in Figure 9e, the starfish is not visible
anymore. However, by taking more neighbor layers (NNGA+-1000 p = 2) in
Figure 9f the starfish shape being delimited from the background.

The Berkeley Segmentation Dataset and Benchmark provides human
expert segmentations of their images for comparisons. Figure 10a,b depict
two edge detections made by Users #1109 and #1119. User #1109 focuses on
segmenting the shape of the starfish, whilst ignoring the detail of the podia,
whereas User #1119 concentrates on segmenting the individual podia in the
foreground. We focus on the NNGA+-200 (Figure 9b), which segmentation

2http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds

16

(a) DBScan on EngyTime (b) NNGA++DBScan [k1 =
200]

(c) DBScan on Disk6000 (d) NNGA++DBScan [k1 =
100]

Figure 6: DBScan labeling on the EngyTime and Disk6000 datasets with and
without prior application of NNGA+. The label ‘DBScan’ indicates DBScan cluster
labeling without NNGA+, and ‘NNGA++DBScan [k1]’ indicates NNGA+ with k1
nearest neighbors followed by DBScan cluster labeling.

(a) ε-proximity (b) NNGA++ε-proximity
[k1 = 50]

Figure 7: ε-proximity cluster labeling on the Aggregation. The left image indicates
ε-cluster labeling without NNGA+. the right image ‘NNGA++ε-proximity [k1]’
indicates NNGA+ with k1 nearest neighbors followed by ε-proximity labeling.

17

Figure 8: Original picture #36.

(a) NNGA-200 (b) NNGA+-200 (p=1)

(c) NNGA-400 (d) NNGA+-400(p=1)

(e) NNGA-1000 (f) NNGA+-1000(p=2)

Figure 9: Colour image segmentation using in the left NNGA and in the right
NNGA+ with M1 = 200, 400 and 1000 buckets.

18

is closer to User #1119. Whilst this automatic edge detection (Figure 10d)
in its current state remains too fragmented to be useful for a visual analysis,
we anticipate that further application of statistical and image analyses will
be able to improve it.

(a) User #1109 (b) User #1119

(c) NNGA+-200 (d) NNGA+-200 automatic detection

Figure 10: Edge detection of segmented images. (a,b) Two human experts: users
#1109 and #1119. (c) NNGA+-200. (d) NNGA+-200 with automatic detection.

We observe from Figures 9 that M1 = 200 buckets is a suitable empirical
choice and so we apply it to further images from the Berkeley image database
as in Figure 11. We apply also the NNGA+ on a picture of 5 millions pixels
(taken by ourselves) compared to 150 thousand pixels of Berkeley’s pictures.
We increase the number of buckets accordingly with the size of the picture to
reach approximately 1000 data points per bucket. The image shows a good
segmentation between the leafs and the rest of the picture. We distinguish
the trunk from the background foliage too without difficulty showing the
effectiveness of the algorithm even with big image.

5.3 Evaluation of scalability

Density gradient ascent As the data are distributed over all buckets or
Spark partitions, this allows for efficient computations in the local environ-
ment of a data point. Figure 12a shows that the execution time gradually
decreases as the number of slaves increases for a datasets of a fixed size. In
Figure 12b, for a fixed number of nodes, if we maintain the constant number

19

(a) Picture #91 (b) NNGA+-200 (p=1)

(c) Picture #49 (d) NNGA+-200 (p=1)

(e) Picture #81 (f) NNGA+-200 (p=1)

(g) Our picture (5M pixels) (h) NNGA+-5000 (p=1)

Figure 11: Further examples of segmented images with NNGA+-200.

20

of elements per bucket, the execution time grows linearly with the size of
the dataset. This indicates that the number of nearest neighbor k1 needs to
be constrained.

Since we have an O((n
M1

)2 log(n
M1

)) complexity per bucket for NNGA+,
a suitable value for the number of buckets M1 is to keep the n

M1
ratio

approximately equal to a constant C. Then the time complexity of NNGA+

reduces to O(nC log(C)). The scalability is demonstrated by the decrease in
execution time with the number of slaves and a linear increase of execution
time with the dataset size, reaching 140 million data points which is infeasible
for the original quadratic algorithm.

(a) (b)

Figure 12: (a) Execution times for NNGA+ with respect to the number of slaves.
(b) Execution times for NNGA+ with respect to the dataset size n for fixed size
buckets.

LSH buckets and neighbor layers For a fixed number of neighbor layers,
we observe in Figure 13a that the execution time rapidly decreases and then
slows down to reach a plateau, as the number of buckets increases. The
observed plateau is due to the quadratic complexity of the NNGA+: more
buckets leads to fewer data points within each bucket and so the execution
times can quickly reach the minimal plateau after a sufficiently large number
of buckets. We also studied the influence of the number of neighbors layers
p on the execution time. Whilst NNGA+ has quadratic time complexity
in each bucket, if we select an appropriate number of nearest neighbors k1,
then we are able to control the execution time of NNGA+ to be linear with
respect to the number of neighbors layers p, as illustrated in Figure 13b.

ε-proximity cluster labeling Concerning ε-proximity cluster labeling,
similar remarks as for the gradient ascent apply here. As Fig.14 follows same
decrease in the execution time as for the gradient ascent as a function of the

21

(a) (b)

Figure 13: (a) Execution times for NNGA+ with respect to the number of buckets
(M1). (b) Execution times for NNGA+ with respect to the number of neighbor
layers (p).

number of slaves and data points we can be confident in the scalability of
our approach.

(a) (b)

Figure 14: (a) Execution times for ε-proximity with respect to the number of
slaves. (b) Execution times for cluster labeling with respect to the dataset size n.

6 Conclusion

In this paper, we have introduced multiple improvements to the standard
nearest neighbors gradient ascent used in Mean Shift algorithm. The first
series of improvements are based on new usages of Locality Sensitivity
Hashing for approximate nearest neighbors during the nearest neighbors
gradient ascent (NNGA+), and also during cluster labeling (ε-proximity).

22

The second one is an efficient and scalable implementation of our ideas on
a distributed computing ecosystem based on Spark/Scala. We show that
using our NNGA+ algorithm, as a pre-processing step in other clustering
methods, can improve quality metric evaluations. We demonstrated that
these improvements greatly decrease the execution time whilst maintaining
a suitable quality of clustering. These improvements open the opportunity
to apply our Mean Shift model for Big Data clustering.

Future work is required to demonstrate the usefullness of NNGA+ for
clustering algorithms with very high dimensional datasets. Further study on
the impact of the chosen dissimilarity measure on the ε-proximity clustering
are also required and will be tackled in the future. Optimal choices of the
most important tuning parameters for our proposed methods for distributed
clustering, namely the number of nearest neighbors for the density gradient
ascent, the number of buckets for the LSH, and the threshold for ε-proximity
cluster labeling will be a subject of further investigations. Furthermore,
we also desire to experiments others hashing techniques [26, 27] from the
litterature in a generic way in order to handle various use case.

7 Code

In order to facilitate further experiments and reproducible research, we will
provide our contributions through an open source API which will contain
NNGA+, ε-proximity algorithms and traditional Mean-shift, k-means with
Spark/Scala on the following link https://github.com/Clustering4Ever/

Clustering4Ever.

Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr).

References

[1] K. Fukunaga, L. Hostetler, Optimization of k-nearest-neighbor density
estimates, IEEE Trans. Inform. Theory 19 (1973) 320–326.

[2] K. Fukunaga, L. Hostetler, The estimation of the gradient of a density
function, with applications in pattern recognition, IEEE T. Inform.
Theory 21 (1975) 32–40.

[3] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Trans. Pattern
Anal. Mach. Intell. 17 (1995) 790–799.

23

https://github.com/Clustering4Ever/Clustering4Ever
https://github.com/Clustering4Ever/Clustering4Ever

[4] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality., in: Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, 1998, pp. 604–613.

[5] P. I. M. Datar, N. Immorlica, V. S. Mirrokni, Locality-sensitive hashing
scheme based on p-stable distributions, in: Proceedings of the 20th
Annual Symposium on Computational Geometry, 2004, pp. 253–262.

[6] M. Slaney, M. Casey, Locality-sensitive hashing for finding nearest
neighbors, in: IEEE Signal Proc. Mag., 2008, pp. 128–131.

[7] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107–113. doi:10.1145/1327452.
1327492.
URL http://doi.acm.org/10.1145/1327452.1327492

[8] M. P. Forum, Mpi: A message-passing interface standard, Tech. rep.,
Knoxville, TN, USA (1994).

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing, in: Proceedings
of the 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012,
2012, pp. 15–28.

[10] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-
Verlag, New York, 2006.

[11] C. C. Aggarwal, C. K. Reddy, Data Clustering: Algorithms and Appli-
cations, 1st Edition, Chapman & Hall/CRC, 2013.

[12] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, Scalable
K-means++, Proc. VLDB Endow. 5 (2012) 622–633.

[13] Y. He, H. Tan, W. Luo, S. Feng, J. Fan, MR-DBSCAN: a scalable
MapReduce-based DBSCAN algorithm for heavily skewed data, Front.
Comp. Sc. 8 (2014) 83–99.

[14] A. Vedaldi, S. Soatto, Quick shift and kernel methods for mode seeking,
in: D. Forsyth, P. Torr, A. Zisserman (Eds.), Proceedings Part IV of the
10th European Conference on Computer Vision 2008, Marseille, France,
2008, pp. 705–718.

[15] K.-L. Wu, M.-S. Yang, Mean shift-based clustering, Pattern Recogn. 40
(2007) 3035–3052.

24

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

[16] D. Schugk, A. Kummert, C. Nunn, Adaptation of the mean shift tracking
algorithm to monochrome vision systems for pedestrian tracking based
on HoG-features, Tech. rep. (2014).
URL https://doi.org/10.4271/2014-01-0170

[17] G. Z. Y. Cui, K. Cao, F. Zhang, An adaptive mean shift algorithm
based on LSH, Procedia Engineering (2011) 265–269.

[18] P. I. S. Har-Peled, R. Motwani, Approximate nearest neighbor: Towards
removing the curse of dimensionality, Theory Comput. (2012) 321–350.

[19] A. Ultsch, Clustering with SOM: U*C, in: Proceedings of the Workshop
on Self-Organizing Maps, 2005, pp. 75–82.

[20] P. Fränti, Clustering basic benchmark, http://cs.uef.fi/sipu/datasets
(2015).

[21] L. Danon, A. Dı́az-Guilera, J. Duch, A. Arenas, Comparing community
structure identification, J. Stat. Mech.: Theory E. 2005 (09) (2005)
P09008.
URL http://stacks.iop.org/1742-5468/2005/i=09/a=P09008

[22] J. M. Santos, M. J. Embrechts, On the use of the adjusted rand index
as a metric for evaluating supervised classification, in: C. Alippi, M. M.
Polycarpou, C. G. Panayiotou, G. Ellinas (Eds.), ICANN (2), Springer,
2009, pp. 175–184.

[23] D. Comaniciu, An algorithm for data-driven bandwidth selection, IEEE
T. Pattern Anal. 25 (2003) 281–288.

[24] W. K. Pratt, Digital Image Processing: PIKS Inside, 3rd Edition, John
Wiley and Sons, New York, 2001.

[25] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature
space analysis, IEEE T. Pattern Anal. 24 (2002) 603–619.

[26] J. Wang, H. T. Shen, J. Song, J. Ji, Hashing for similarity search: A
survey, CoRR abs/1408.2927. arXiv:1408.2927.
URL http://arxiv.org/abs/1408.2927

[27] A. Morvan, A. Souloumiac, K. Choromanski, C. Gouy-Pailler, J. Atif,
On the needs for rotations in hypercubic quantization hashing (2018).
arXiv:1802.03936.

25

https://doi.org/10.4271/2014-01-0170
https://doi.org/10.4271/2014-01-0170
https://doi.org/10.4271/2014-01-0170
https://doi.org/10.4271/2014-01-0170
http://stacks.iop.org/1742-5468/2005/i=09/a=P09008
http://stacks.iop.org/1742-5468/2005/i=09/a=P09008
http://stacks.iop.org/1742-5468/2005/i=09/a=P09008
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1802.03936

	1 Introduction
	2 Related works
	3 Mean Shift clustering
	3.1 Density gradient ascent

	4 Model proposition
	4.1 Approximate nearest neighbors search for density gradient ascent
	4.2 Cluster labeling: -proximity

	5 Numerical experiments
	5.1 Datasets and tuning parameters
	5.2 Evaluation of clustering quality
	5.2.1 Quantitative evaluation
	5.2.2 Visual evaluation with image segmentation

	5.3 Evaluation of scalability

	6 Conclusion
	7 Code

