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Abstract

Determining lymphoma subtypes is a crucial step
for better patient treatment targeting to potentially
increase their survival chances. In this context, the
existing gold standard diagnosis method, which relies
on gene expression technology, is highly expensive and
time-consuming, making it less accessibility. Although
alternative diagnosis methods based on IHC (immuno-
histochemistry) technologies exist (recommended by the
WHO), they still suffer from similar limitations and are
less accurate. Whole Slide Image (WSI) analysis using
deep learning models has shown promising potential
for cancer diagnosis, that could offer cost-effective and
faster alternatives to existing methods. In this work, we
propose a vision transformer-based framework for dis-
tinguishing DLBCL (Diffuse Large B-Cell Lymphoma)
cancer subtypes from high-resolution WSIs. To this
end, we introduce a multi-modal architecture to train a
classifier model from various WSI modalities. We then
leverage this model through a knowledge distillation
process to efficiently guide the learning of a mono-modal
classifier. Our experimental study conducted on a lym-
phoma dataset of 157 patients shows the promising
performance of our mono-modal classification model,
outperforming six recent state-of-the-art methods. In
addition, the power-law curve, estimated on our exper-
imental data, suggests that with more training data

from a reasonable number of additional patients, our
model could achieve competitive diagnosis accuracy
with IHC technologies. Furthermore, the efficiency of
our framework is confirmed through an additional ex-
perimental study on an external breast cancer dataset
(BCI dataset).

1 Introduction

Diffuse Large B-Cell Lymphoma (DLBCL) is a can-
cer of the immune system cells with a significant world-
wide impact. More specifically, in 2020, 544,352 new
cases have been diagnosed and 259,793 deaths have
been recorded [1]. Additionally, projections indicate
a 7% increase in both new cases and deaths in West-
ern Europe from 2020 to 2025 [2]. It has been shown
that distinguishing between DLBCL subtypes, namely
ABC (activated B-cell-like) and GCB (germinal-center
B-cell–like), is crucial for treatment selection and the
vital prognosis of the patient [3]. Indeed, clinical tri-
als using new targeted treatments have shown promis-
ing results in terms of efficiency and survival chance
improvement, notably for the patients with the most
aggressive subtype (ABC) [4, 5].

Currently, the gold standard method for DLBCL sub-
typing is a molecular biology method named RT-MLPA
(reverse transcriptase multiplex ligation-dependent probe
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amplification [3]). Nevertheless, its high cost (600e1)
and longtime response (35 days1) have maintained the
exploitation of other diagnostic methods, notably the
microscopic examination of the patient tissue by a
pathologist.

The tissue examination can be performed on two
types of markers, namely IHC2 (immunohistochemistry)
and HES (hematoxylin-eosin-safran) markers. In the
case of IHC, the expression levels of different proteins
are quantified by the pathologist, which permits the de-
termination of the DLBCL subtype based on the Hans
algorithm [6]. Although the response time of this latter
method is relatively fast (2 to 3 days1) and its cost
(90e1) is reasonable compared to the gold standard, it
has an error rate of 20% (misclassified cases). Addi-
tionally, it requires the involvement of the pathologist
for the tissue examination which represents a fastidious
task, notably in daily routines. In the case of HES
markers, the pathologists analyze the morphology and
structural organization of the tissue cells. However, due
to the high similarity of these features between the two
subtypes and the lack of objective criteria, pathologists
struggle to reach an agreement on their decision. Com-
pared to the IHC, the HES analysis is less expensive
(it does not require protein markers) but suffers from
a higher error rate (30-35%) with respect to the gold
standard.

With the rapid increase of data in medical centers,
there has been a growing interest in applying deep
learning methods to medical image analysis [7, 8, 9].
In the field of histopathology, the slide of a tissue sam-
ple can be digitized into high-resolution images named
Whole Slide Images (WSI). Deep learning methods have
shown unprecedented performance on many automatic
tasks on these images [10]: detection of several can-
cers (e.g., breast, lung, colon, etc. [11, 12, 13]), nuclei
segmentation [14] or case/image similarity [15, 16, 17].
Although several works have addressed lymphoma sub-
typing [18, 19, 20, 21, 22, 23], to the best of our knowl-
edge, there is no prior work on automatic differentiation
of DLBCL molecular subtypes based on WSI analysis.
Among the main reasons that could explain this obser-
vation is the scarcity of publicly available annotated
datasets (data protection and privacy). In addition, the
characterization of the two subtypes of DLBCL from
WSI is a challenging task. Indeed, the diversity of the
cancer location in the patient’s body and the complex
nature of the tissue lead to high intra-class variability
for each subtype. Besides, the extremely high resolution
of WSI (100, 000× 100, 000 pixels on average) prevents

1estimation from the Lille University Hospital
2Alternative diagnosis method recommended by the WHO

when RT-MLPA is not available.

the direct application of existing pretrained CNN archi-
tectures and involves highly demanding computational
requirements.

In this work, we propose a deep learning-based frame-
work for distinguishing between the ABC and GCB sub-
types of DLBCL cancer from high-resolution WSI. Our
framework involves the development of a multi-modal
deep architecture, serving as a teacher model for classi-
fying the cancer subtypes using various WSI modalities,
namely IHC-BCL6, IHC-CD10, IHC-MUM1 and HES.
Additionally, we leverage the concept of knowledge dis-
tillation to build a mono-modal classifier, referred to
as the student model, which shows promising perfor-
mance for differentiating between the subtypes using a
single modality, namely HES. It is worth mentioning
that having a subtyping method based only on HES
modality is of high interest for the health care system
(pathologists, patients, laboratories). Indeed, removing
the three IHC modalities will permit to (i) lighten the
data acquisition process in the laboratories, (ii) acceler-
ate patient diagnosis, and (iii) avoid the costs related
to the production of these modalities.

The main contributions of this work are the following:

• We exploit the concept of knowledge distillation
for efficiently driving the learning of a classifier
following a 4-to-1 WSI modality training process.
In this sense, the teacher model is used to sup-
port the student one to extract the most relevant
features for DLBCL subtype characterization. In
addition, we propose a generic design of the frame-
work, enabling its exploitation for any classification
task that requires knowledge transfer from a multi-
modal classifier to a mono-modal one.

• We designed and developed a deep architecture tai-
lored for handling multi-modal inputs (four modal-
ities of WSI) in a one-shot pass. To deal with the
extremely high resolution (100, 000× 100, 000 px)
of these inputs, we incorporated in our architecture
a ViT encoder that permits processing them in the
form of a sequence of patches.

• We designed and developed a module offering a
multi-modal features fusion mechanism to effi-
ciently learn a discriminative representation of the
two cancer subtypes.

• We conducted a comprehensive experimental study
to demonstrate the efficiency of our method and
its superiority compared to state-of-the-art ap-
proaches.
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2 Related works

Recently, Guidolin et al. [24] have proposed an ex-
perimental study on 30 DLBCL patients, comprising
15 ABC and 15 GCB cases. They aimed to quantify
the spatial distribution of cells in WSIs using statistical
measures, using five IHC protein markers for staining.
As raised by the authors, their experimental study has
permitted to highlight that the combination of spatial
statistics-derived parameters can be exploited for distin-
guishing between ABC and GCB. However, the authors
did not propose any automatic subtyping method.

Although the research on automated DLBCL subtyp-
ing is scarce, there is an extensive literature on utilizing
deep neural networks for cancer classification from WSI
[10, 25, 26, 11, 13, 27, 28, 29]. Among these works, sev-
eral ones have addressed the differentiation between DL-
BCL and other lymphoma types [18, 19, 20, 21, 22, 23].
For example, Hashimoto et al. [22] proposed a CNN-
based classification method to distinguish between three
lymphoma cancers, namely DLBCL, AITL and CHL,
from HES WSIs. To deal with the high resolution of
these images, they made the choice to subdivide them
into a set of patches and adopted a Multiple Instance
Learning (MIL) approach to train the final classifier. To
improve the performance of the classifier, they proposed
a methodology that allows for the selection of the most
relevant WSIs from the dataset during the training
stage. More specifically, they defined a typicality crite-
rion that allows for the measurement of the relevance
of each WSI in terms of cancer class representativeness.

In addition to the task of cancer classification from
WSI, other works proposed a higher level of cancer
analysis-related applications, namely patient survival
prediction [30, 28]. In the case of [30], the authors de-
signed a multi-modal graph neural network architecture
to train a model to predict survival chances in cases of
bladder and ovarian cancer from WSI IHC modalities.
As raised by the authors, using a GNN enables the
extraction of cell-centric features and processing of the
WSI in a single forward pass. In the case of Chen et
al.[28], they proposed a backbone composed of a series
of vision transformer units to encode multi-scale region
features. To this end, they choose to feed these units
by exploiting the levels of a pyramidal representation of
the WSI, where each level corresponds to a subdivision
into patches of customized size. To improve the perfor-
mance of their model, they pretrained it by adopting a
self-supervised learning strategy.

Other works have been proposed to address the diag-
nosis of different diseases from WSIs such as colorectal
polyps classification [31], neurodegenerative disease di-
agnosis [32] or virus infected cell identification [33]. For

instance, the method proposed by Dwivedi et al. [34]
performs liver disease severity scoring from two WSIs
modalities, namely Masson’s trichrome and HES. For
each modality, a CNN generates a heatmap of the WSI
which is subsequently transformed into a graph repre-
sentation. Each heatmap is then processed by a graph
neural network (GNN) to produce a vector that cap-
tures the characteristics of the WSI. The disease severity
score is predicted from the concatenation of the two
modality vectors.

While previous studies [35, 36, 37, 38] have applied
knowledge distillation for multi-modal to mono-modal
knowledge transfer in the context of medical image
segmentation, our work stands out as we have developed
a unique approach tailored for tissue classification, a
distinct task from segmentation, which handles high-
resolution images.

3 Methods

WSI HES

WSI HES
Trained model

Mono-modal
student model

WSI IHC

WSI IHC

1st stage – teacher training

2nd  stage – student training

𝛽

𝛾
Student 

loss

Teacher 
loss

Knowledge Distillation

Gold Standard 
diagnosis

Multi-modal
teacher model

Figure 1: Knowledge Distillation for multi-to-mono
modal WSI subtyping model.

As illustrated in Fig. 1, our framework designed for
cancer subtyping from WSIs includes two classification
models that are built by following a two-stage train-
ing process. In the first stage, a multi-modal teacher
classifier is trained on HES and IHC modalities. In
the second stage, the teacher acts through a knowledge
distillation process as a robust supervision source for
training a mono-modal student classifier on the HES
modality.

Our deep learning architecture is summarized in Fig.
2, and we next detail each component.
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Figure 2: Our multi-modal architecture (teacher) takes as input a bag of sequences uniformly sampled from the
same region across all WSI modalities (yellow squares). Its multi-modal features fusion mechanism produces a bag
representation for multi-modal WSIs classification. Our mono-modal architecture is presented within the dotted
bounding-box on the right.

3.1 From multi-slides input to single prediction

In this section, we delve into the specifics of how our
methodology processes WSIs stained with HES as well
as IHC.

To avoid excessively complex computations related
to the size of the regions, we adopted a region-based
sampling approach. It involves extracting matching
regions of interest between all WSI modalities (see Fig.
2). For each region R and each modality m, we extract
from the region, RGB patches x ∈ Rp×p×3, with size
p×p, and we constructed sequences (X) of these patches
as follows:

Let N denote the number of patches extracted from
R, and S represents the number of patches in a sequence
such that X ∈ RS×p×p×3. We systematically extract
sequences by randomly sampling S patches uniformly
distributed in R, without replacement. This process is
repeated until N < S (i.e., there are less than S patches
left in the region). Let Rm be the set of all sequences
extracted from region R of modality m. Let B be a bag
formed by sequences from all modalities, represented

as:
B := {Xm,∀m ∈ M} (1)

where Xm ∈ Rm represents a sequence from modality m,
and M is the set of modalities. Note that the sequences
are sampled without replacement from each modality.
Indeed, when all sequences of one modality have been
used, no more bags can be formed. The bag B serves
as the input to the multi-modal model (i.e., teacher
model).

Given that regions are represented as series of
patches, we utilize the ViT architecture [39] as our
feature extractor. Furthermore, this architecture has
the capacity to learn inter-element relationships via its
self-attention mechanism, which is of high interest in
the case of WSI patches [28, 27]. The ability to under-
stand and leverage these relationships is crucial to learn
global representation of WSIs.

To classify an image, the ViT architecture [39] trans-
forms the image into a sequence of patches. These
patches are subsequently flattened and projected by a
linear layer into vectors known as patch embeddings.
In addition to this sequence, a learnable class token
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is prepended, serving as the image embedding post-
encoder for the purpose of classification. Our approach
adheres to a similar structure: we flatten the patches
of the sequences, project them with a linear layer, and
prepend a class token. However, in our scenario, we
are working with a bag of sequences representing the
same object but manifesting across different modali-
ties (i.e., stains). To account for variations in color
distribution among these modalities, we employ a sepa-
rate projection layer for each one. The learnable class
token embedding, however, is shared across all modal-
ities. The bag sequences are independently encoded
by a shared ViT encoder and subsequently normalized
with a Global Layer Normalization (GLN) [40]. All se-
quences Xm of the bag B are encoded and normalized
simultaneously:

Zm = GLN(Encoder(Xm)) (2)

where Encoder is the ViT encoder (including patch flat-
tening and linear projection) and GLN is the Global
Layer Normalization. We use the class token embed-
dings from every sequence after this GLN as input to
our multi-modal features fusion mechanism, which pro-
duces the bag representation. In our experimental study,
we found that adding a softmax activation after the
encoder’s MLP improves the validation results. In what
follows, we refer to this modified version of the encoder
unless otherwise stated.

3.2 Multi-modal features fusion

𝑤3

HESIHC2IHC1

linear 
layer

𝜆1 − 𝜆

IHC3

𝑤1
𝑤2

Figure 3: Our multi-modal features fusion mechanism.

We design our multi-modal features fusion mecha-
nism (Fig. 3) to fuse information from IHC and HES

embeddings. Because every modality is not equally
important for different samples, we use a learnable at-
tention weights approach to fuse IHC features before
fusing it with HES. For this, we consider HES as a
query that is used to select information from IHC em-
beddings. Whereas the current popular attention mech-
anism is defined as the dot-product attention between
a query and keys [39], in our case, different modalities
are involved, making the dot-product-based attention
unsuitable. When the query and keys come from differ-
ent space regions, it becomes less relevant to use the
dot-product between the representation of the query
and keys as a similarity indicator. In our case, this
is particularly evident as HES images exhibit a signifi-
cantly different color distribution than IHC images (see
inputs in Fig. 2). In this regard, the attention weights
are not calculated as a dot-product between the query
and the keys but are predicted by a linear layer from
the query.

Let z0HES be the HES class token embedding (initial-
ized with the shared learnable class token) following the
GLN. Similarly, let z0IHCi

be the class token embedding
from IHC i. The multi-modal features fusion starts by
predicting IHC attention weights with a linear layer
from the HES class token embedding:

w = Az0HES + b (3)

where A and b are the weights and bias of the linear layer
respectively. This linear layer outputs a k-dimensional
vector, with k the number of IHC stains (k = 3 in our
case). We then perform a weighted sum of the IHC
class token embeddings using these weights and add it
to the HES one:

zB = λz0HES + (1− λ)

k∑
i=1

wiz
0
IHCi

(4)

where λ is a trade-off coefficient between HES and IHC
features (which is manually set in our experiments).
The output of multi-modal features fusion is a vector
representation of the bag B. This vector is then fed to
a classification head for subtype classification.

In the first stage, the multi-modal model is trained to
minimize the cross-entropy loss with the ground-truth
of the WSI from which the bag is sampled.

3.3 Knowledge Distillation from multi to mono
modality WSI classification

We utilize KD to transform the multi-modal model,
initially trained with both IHC and HES data (teacher),
into a mono-modal one that is solely reliant on HES
data (student). During the training of the student,
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we feed the teacher the bag of sequences, while the
student predicts the subtype from the HES sequence
only. Because the student doesn’t make use of IHC
we remove the multi-modal features fusion mechanism;
indeed, the HES class token (z0HES) after the LN is
then directly fed to the classification head. After the
teacher model has finished training, it produces outputs
that are the corresponding probability predictions for
each class. Subsequently, the student model begins
its training stage. The student model’s progress is
supported by leveraging the outputs from the teacher
model in addition to the ground-truth. The objective
during the training phase of the student model is to
minimize the cross-entropy between its own predictions
and those of the teacher model, as well as between its
predictions and the actual target. In this study, we
implement knowledge distillation in the form of hard
distillation, indicating that we treat the teacher model’s
prediction as a hard target for the student model’s
training. If f t and fs denote the teacher and student
models respectively, Xt and Xs their corresponding
inputs and y the ground-truth, the student model loss
function is defined as:

Loss = βL(y, fs(Xs)) + γL(ft(Xt), fs(X
s)) (5)

where L is the cross-entropy loss function, β and γ
are coefficients for the ground-truth and teacher super-
visions respectively. We convert the teacher’s output
to hard labels and apply label smoothing [41] with a
parameter of α = 0.1 to both the teacher’s prediction
and the true label.

4 Experiments

4.1 Data description and processing

We conduct our experiments on a retrospectively col-
lected cohort of WSIs from patients of the Lille Univer-
sity Hospital diagnosed with DLBCL between 2010 and
2020. The collection has been meticulously inspected
by a pair of pathologists, senior and junior. Subtyping
of the patients was conducted in three distinct ways:

• pathologist diagnosis based on visual examination
of the HES WSI

• application of the Hans algorithm [6]

• execution of RT-MLPA [42]

However, given that RT-MLPA is recognized as the gold
standard for DLBCL subtyping, we take its result as
the ground-truth for the subtyping of patients.

Our initial dataset consisted of 204 patients, includ-
ing 94 diagnosed with the ABC subtype, 66 with GCB,
and 44 who did not fall into either category (being
either unclassifiable or primary mediastinal large B-cell
lymphoma). We have excluded these 44 patients from
our dataset. Additionally, 3 patients were removed due
to the absence of discernible cancerous tissue in their
HES WSI, which is crucial for accurate analysis For
the training phase, we selected 93 patients out of the
remaining 157 subjects. For these patients, we were
able to successfully match the HES WSI with their
corresponding IHC WSIs (BCL6, CD10, and MUM1).
During the first stage, the teacher is trained with the
entire bag of sequences containing all modalities, while
in the second stage (KD), the student is trained with
the HES sequences only. For the testing phase, we
include the remaining portion of the dataset, which
consists of 64 patients with a single HES WSI. The
train set patients are randomly separated into training
and validation according to a 80:20 split.

All slides were scanned with a Ventana iScan HT
at ×40 magnification (0.25µm per pixel). For data
pre-processing, the tissue was separated from the back-
ground through gaussian blurring and Otsu thresholding
segmentation. For each bag and each modality, we con-
sider sequences of patches with S = 256 and p = 32
extracted at ×20 magnification. Our dataset covers
38 different tissue types such as: lymph node (42%),
brain (13%), mediastinum (5%), soft tissue (5%), bone
(4%), etc. This large diversity of tissue location re-
sults in very heterogeneous image characteristics among
DLBCL images.

Table 1 provides a summary of the distribution of
sequences by modality and the distribution of patients
in the training and testing splits.

Table 1: Data summary: number of patients for each
set. Training patients were split into 80:20 for train and
validation.

train test total
ABC GCB ABC GCB

sequences
BCL6 83K 33K 116K
CD10 82K 33K 115K
MUM1 80K 35K 115K
HES 78K 35K 34K 32K 179K
patients 59 34 33 31 157
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4.2 Experimental settings

For both teacher and student models we use a ViT
encoder (d=128, n=3, h=2). The classification head is
a trainable linear layer with two output neurons (one for
each subtype), and a softmax activation to transform its
output to a probability distribution over the subtypes.
Both the teacher and student models are trained from
scratch. To determine a patient subtype, we apply
major voting on all the sequences prediction coming
from this patient. More specifically, we exploit our
sequence-based classification model to predict a class for
each sequence of the WSI (each sequence having a length
of 256 patches), and then the subtype corresponds to
the most dominant class over all the predictions. The
teacher is trained with a batch of 32, where each sample
of the batch is a bag of sequences (B). We use an
initial learning rate of 8.10−5 with a learning rate decay
of 0.5 every 5 epochs. The student is trained with a
batch of 64 and a constant learning rate of 10−5. The
loss coefficients of the student were set according to
best validation accuracy, with β = 0.5 and γ = 0.5.
Similarly, the trade-off coefficient of the multi-modal
features fusion of the teacher λ was set to 0.5. For both
models, we adopt the Adam optimizer with clipping
gradient (max norm of 3 for teacher and 5 for students),
and apply label smoothing (α = 0.1) to the ground-
truth. The models are trained for 100 epochs, and
the weights with the lowest validation loss are saved.
We apply class balancing by trimming the dominant
class, it has shown to improve the validation results.
All models are trained and tested with PyTorch 1.8
on 4 NVIDIA Tesla V100 GPUs, and the metrics are
calculated with the scikit-learn (v. 1.1.2) package. For
100 epochs, the teacher and student training takes 17
and 16 hours respectively.

To analyze and compare the performance of our
method we use the precision (PRE), recall (REC) and
total accuracy (ACC) which corresponds to the patients
correctly classified.

4.3 Comparison with state-of-the-art methods
and models

We conduct a comparative analysis with state-of-
the-art methods in WSI classification. For this, we
have selected several notable works for this purpose
including:

• HIPT [28] is composed of hierarchical ViTs with
self-supervised pretraining on 10,678 WSI from the
TCGA open dataset.

• RSP-CR [43] pretrained a ResNet-18 with self-
supervision on 69 WSIs. The fine-tuning phase

involves consistency regularization.

• CTransPath [45] uses a hybrid CNN-Transformer
architecture with self-supervised pretraining on
32,220 WSIs from the TCGA and PAIP datasets.
The technique employs semantically relevant con-
trastive learning for unsupervised pretraining.

• MS-DA-MIL [44] introduces a multi-scale domain
adversarial training approach for WSI classification
using a CNN with MIL.

• DTFD-MIL [13] extends the MIL approach for
WSI classification by introducing pseudo-bags with
attention-based MIL.

• KimiaNet [17] fine-tuned an ImageNet pretrained
DenseNet-121 on 7,126 WSIs from the TCGA
dataset with 32 cancer classes.

For training, we use the pretrained weights provided
by the authors for HIPT, RSP-CR and CTransPath, as
well as the fine-tuned weights for KimiaNet. For the
later, we reproduce the same downstream approach in
[17] (i.e. we fit a cubic SVM on top of its features).
We apply the specific hyperparameters of all methods
from their respective paper. We have evaluated the six
methods on our dataset, ensuring the same data split
rules as our method. Results are presented in Table 2.

According to the metrics we have evaluated, our ap-
proach demonstrates superior or comparable results
in most cases, when measured against the state-of-
the-art methodologies. While CTransPath displays a
marginally better ability to correctly identify GCB pa-
tients, with a 3% higher recall rate, our model con-
sistently delivers a more balanced performance. Our
F-score, a measure that includes both precision (how
many selected items are relevant) and recall (how many
relevant items are selected), is higher by 2%. This
implies that our method is better at both correctly
identifying positive cases and minimizing the number
of false positives, providing a more reliable and ac-
curate overall performance. Despite their pretraining
on large datasets, models like CTransPath, HIPT, or
KimiaNet are still outperformed by our method in ef-
fectively distinguishing between the two subtypes, with
respective accuracy gaps of +5%, +23%,and +14%.
DTFD-MIL, which shows the best results among all
comparison methods, is outperformed by our method
by +3%. Furthermore, it requires on average 25× more
floating operations and contain 10× more parameters
than our student model. We observe that most methods
tend to misclassify GCB samples. Indeed, among the six
compared methods, four ones (namely HIPT, RSP-CR,
MS-DA-MIL and KimiaNet) gave for the GCB class a
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Table 2: Comparison of the Student model with state-of-the-art methods for WSI classification on test set (64
patients). We estimated the number of floating operations (number of op.) for a WSI diagnosis based on 5 runs.

ABC GCB

PRE REC PREC REC ACC ↑ number of op. (×1012) params.
HIPT* [28] 0.52 1.00 0.00 0.00 0.52 – 25M
RSP+CR* [43] 0.54 0.94 0.71 0.16 0.56 30.8 11.8M
MS-DA-MI [44] 0.58 0.76 0.62 0.42 0.59 39 67M
KimiaNet* [17] 0.58 0.85 0.69 0.35 0.61 11.5 7M
CTransPath* [45] 0.71 0.73 0.70 0.68 0.70 25 28M
DTFD-MIL [13] 0.68 0.85 0.78 0.58 0.72 18.6 9M
ours (student) 0.72 0.85 0.80 0.65 0.75 0.5 0.89M
* indicates pretrained models
the abbreviations are: precision (PRE), recall (REC) and accuracy
(ACC)

recall value lower than 0.5. KimiaNet and DTFD-MIL
display a comparable ABC recall than our method (0.85
each), but have inferior GCB recall (0.35, 0.58 and 0.65
respectively). Additionally, we observe that our model
is very light compared to other methods, with less than
one million parameters, whereas other models contain
between 7 and 67 million parameters.

These models face challenges in accurately distin-
guishing between DLBCL subtypes due to the specific
nature of this task. Indeed, because the task is highly
complex due to the presence of visually similar features
among the subtypes, these methods also do not es-
cape this complexity and struggle to effectively capture
or adapt to it during their training process. On the
other hand, by leveraging different data modalities, our
teacher model is able to learn a richer set of features
better suited to the task at hand. The teacher model
then provides a crucial supervision to guide the student
model to discover the most relevant features for the
given task.

Furthermore, we generate ROC curves, for each class
separately, for our student model and the two methods
in Table 2 with an accuracy higher than 70%. The
curves for the ABC class are shown in Figure 4a. We
observe that DFTD-MIL shows relatively higher true
positive rates (TPR) for low false positive rates (FPR);
see FPR in the range [0, 0.3] in the Figure 4a. However,
our method shows the best TPR when the FPR exceeds
0.3. To more explicitly illustrates the sensitivity of the
methods with respect to the classification threshold, we
have calculated the accuracy of the classifiers for this
class, across several thresholds (in the range [0.5, 1]),
displayed in Figure 4b. We observe that at a threshold
of 0.5, our method shows the best accuracy (0.75), how-
ever, contrary to DTFD-MIL, its accuracy decreases
with higher thresholds. Overall, our method still ex-

hibits for this class the best F1-score (0.78) compared
to DTFD-MIL (0.76) and CTransPath (0.72). Similarly,
the ROC curves for the GCB class are shown in Fig-
ure 4c. We observe that the three methods are quite
competitive. Nevertheless, as shown in Figure 4d, our
method displays a better sensitivity in term of classifi-
cation threshold, since its accuracy outperforms those
of the other methods whatever the threshold considered.
Moreover, similarly to the ABC class, the F1-score of
our method (0.71) is greater than DTFD-MIL (0.67)
and CTransPath (0.69) for the GCB class.

4.4 Comparison with medical diagnosis tech-
niques

In Table 3, we present a comparative analysis with
diagnosis techniques. Here, the student model, trained
with our method, is compared with the visual analyses
of two pathologists and the Hans algorithm (presented
in section 1). On HES images, our model outperforms
the two pathologists in distinguishing between the two
subtypes, achieving an accuracy that is higher by a
margin of at least 9%. The relatively low diagnosis ac-
curacy reached by the pathologists is explained by the
fact that they performed their analysis on a single im-
age modality namely HES without any prior knowledge
on the IHC modalities. In this sense, we observe that
when the pathologists exploit the three IHC modalities,
via the Hans algorithm, they reach a better diagnosis
accuracy of 83%. Nevertheless, as presented in Table
4, our model demonstrates a lower misclassification
rate for ABC patients compared to all other diagnostic
techniques." This means that a patient with ABC sub-
type (subtype with the lowest survival chances) is less
likely to be misclassified by our model than the Hans
algorithm.
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(a) ROC curves of the ABC class.
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(b) Accuracy with respect to classifier threshold of the
ABC class.
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(c) ROC curves of the GCB class.
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(d) Accuracy with respect to classifier threshold of the
GCB class.

Figure 4: Performance comparisons of state-of-the-art methods obtained on the test set.

We extended our analysis further by visualizing the
attention scores of the ViT encoder in the last layer
(just before the classification head). Fig. 5 shows results
of these scores obtained on two WSI patients. One can
observe that areas rich in tumoral cells are receiving
high attention.

4.5 Power-law scaling

Scaling law in deep learning refers to the model gen-
eralization capability when its computational power
and/or training data is scaled [46]. It indicates that
increasing resources such as the computing power or
volume of training data, can considerably improve the
model’s generalization. Studies on ViT [47] have shown
that when we increase both the model size and the
amount of training data, the generalization error de-
creases inevitably. In our study, we are interested in
observing the student generalization performance when
training data is scaled up. In order to achieve this, we
trained both teacher and student models on incremental
portions of the original dataset, varying from 10% to
100%, measured by number of patients. These subsets

are cumulative, meaning each new subset contains all
patients from the previous one, with an added 5% pa-
tients of the original training set. Thus, with every step,
the subset grows by retaining the existing patients and
incorporating new ones. Across all subsets, we train
the models with the same initial parameters as well as
the same hyperparameters, ensuring equal conditions
for every trained models. Observing Fig. 6, the model
accuracy exhibits a general increase with the enlarge-
ment of the training data. However, distinct declines in
accuracy are observed at 90% and 95%, which could be
attributed to the incorporation of patient with images
markedly different from the existing dataset. Despite
this, the introduction of more patients afterwards leads
to a rebound in accuracy, highlighting the positive im-
pact on the model’s performance. For instance, the
power-law curve shows that the student model could
outperform the Hans algorithm and reach an accuracy
of 90% with a training set of 327 patients.
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Table 3: Comparison of the Student model with clinical diagnosis techniques for DLBCL subtyping on test set (64
patients).

ABC GCB

PRE REC F1 PREC REC F1 ACC
pathologist A 0.69 0.67 0.68 0.65 0.65 0.65 0.66
pathologist B 0.57 0.64 0.60 0.54 0.45 0.49 0.55
ours (student) 0.72 0.85 0.78 0.80 0.65 0.71 0.75
IHC (Hans et al. [6]) 0.92 0.73 0.81 0.76 0.94 0.84 0.83

Low High
Head Self-Attention Weight

input layer 2 - Head 0 layer 2 - Head 1

Figure 5: Attention maps generated by our student
model on partially tumoral regions.

4.6 Ablation study

This section outlines a series of experiments con-
ducted to evaluate the significance of various features of
our architectural design, with results detailed in Table
5. Our exploration initiated with a thorough analysis
of KD, a critical component for its role in guiding the
student model using insights from the teacher model.
We set up an experiment to train the student model
exclusively with the true target, without teacher guid-
ance, to evaluate the impact of such self-reliant learning
on generalization performance. To assess the effects
of independent learning on the student model general-

Table 4: False negative rates.

ABC GCB
pathologist A 0.33 0.35
pathologist B 0.36 0.55
ours (student) 0.15 0.35
IHC (Hans et al. [6]) 0.27 0.06

ization abilities, we removed the teacher supervision,
therefore solely relying the true target one. Our investi-
gation uncovered interesting findings: without teacher
guidance the overall accuracy decreased by 5%. This
underscores the crucial influence of KD in enhancing
the student model’s performance, highlighting the im-
portance of the teacher-student dynamic in the learning
process. These insights motivate further research into
optimizing KD within our architecture to potentially
improve the student model’s performance further.

To minimize the impact of initial parameters choices
on the results, we maintained consistent initial model
parameters throughout the following experiments. By
using the same initial parameters, we could fairly assess
the effects of the specific features investigated.

In another experimental setup (without learnable
att.), substituting learnable attention with dot-product
attention led to a notable 17% decrease in accuracy.
This resulted in an overall accuracy score even lower
than that achieved without any KD at all (58% vs. 70%,
respectively). This discrepancy is likely to be attributed
to the variations in color distribution between IHC and
HES images. These variations may impede the dot-
product similarity from effectively capturing relevant
information. Therefore, our findings emphasize the
crucial role of learnable attention in our methodology.
It allows the model to learn to focus on the most relevant
IHC information, which is essential for improving the
performance of the model.

Next, we removed the softmax activation of the en-
coder MLP to evaluate its effect on the model’s gen-
eralization accuracy (without softmax ). The modified
model demonstrated a substantial decrease in accuracy
by 17%, underscoring the essential role of the softmax
activation in improving classification performance.

We also investigated how class balancing affects
model accuracy (without class balance). We trained
both the teacher and student models without class
balancing. The student model’s accuracy showed a
significant decrease of 13%. This suggests that class
balancing plays a vital role in the model learning pro-
cess by ensuring that all classes are equally represented
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patients.

during training.

Table 5: Ablation results on test set (64 patients). We
show the F1-score of each class and the total accuracy.

F1 ACC

ABC GCB
Original (student) model 0.78 0.71 0.75
without softmax 0.54 0.61 0.58
without class balance 0.62 0.57 0.59
without learnable att. 0.61 0.64 0.63
without KD 0.73 0.67 0.70

4.7 Results on external data

To show the generalization capability of our method,
we conduct an experimental study on an external
dataset. The dataset is named BCI 3 (Breast Can-
cer Immunohistochemical) [48] and is composed of two
modalities (HES and IHC) with 4,873 images each. It
is dedicated to the the evaluation of human epidermal
growth factor receptor 2 (HER2) expression, an essen-
tial factor to formulate a precise treatment for breast
cancer [48]. The dataset offers the ground-truth about
the expression level of the HER2 factor for each pair
of images. In this frame, two recent methods [49, 50]
of the state-of-the-art have been proposed to address
the classification task of the HES images among four
different levels of expression. The dataset meets our

3available at https://bupt-ai-cz.github.io/BCI/

needs in term of multiple modalities, which can be ex-
ploited by our approach to transfer the knowledge from
a HES+IHC classifier to a HES one. However, the
images provided in the dataset are not high-resolution
WSI as in our case, but rather images of 1024x1024
pixels representing a tiny region of the patient tissue.
Therefore, the Vision Transformer-based backbone of
our architecture, is not suited for analyzing such form
of data, in the sense that the backbone requires in input
a sequence of patches uniformly sampled from a large
region of tissue of the WSI. Hence, to adapt our archi-
tecture to the BCI dataset, we have set up a variant in
which we replaced the Transformer-based backbone by
a CNN-based one while preserving the core components
of our approach, which are the Knowledge Distillation
and the multi-modal features fusion mechanisms.

For the choice of the CNN backbone, we exploited the
two most competitive methods on our original dataset,
namely DTFD-MIL and CTransPath (see Table 2),
which permitted to produce three models. To analyze
the performance of these models, we also considered in
our experimental study the remaining methods of the
Table 2; except HIPT and MS-DA-MI, for which their
input requirements are not compliant with the BCI
dataset. All the methods have been trained accordingly
to the settings reported in their original papers. In ad-
dition, to highlight the competitiveness of our approach,
we also included the results of the state-of-the-art meth-
ods (HAHNet [50] and HE-HER2Net [49]) that have
been specifically developed for the BCI dataset.

Table 6 summarizes the results obtained on the same
test set. The table shows that our three variants im-
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prove the accuracy of the original methods with a mar-
gin ranging from 3% to 8%. Moreover, we can observe
that our variant (based on CTransPath) and the HAH-
Net model from the state-of-the-art obtained the best
accuracy (0.93).

Table 6: Comparison of original state-of-the-art meth-
ods and our variant on the BCI [48] test set.

Accuracy
DTFD-MIL (VGG-19) [13] original 0.71

our variant 0.74
DTFD-MIL (ResNet-50) [13] original 0.83

our variant 0.86
CTransPath [45] original 0.85

our variant 0.93
RSP+CR [43] – 0.79
KimiaNet [17] – 0.82
HE-HER2Net [49] – 0.87
HAHNet [50] – 0.93

5 Conclusion

We proposed a new methodology based on knowledge
distillation to distill a multi-modal vision transformer-
based classifier into a mono-modal one for DLBCL
molecular subtyping on WSI. We demonstrated the
effectiveness of our methodology through an experi-
mental study on 157 patients. Our mono-modal model
outperformed state-of-the-art methods, demonstrating
the benefit of leveraging multi-modal model knowledge
during training. Furthermore, this benefit has been
confirmed through an additional experimental study on
a external breast cancer dataset (BCI dataset [48]). In-
spired by power-law scaling in Vision Transformers, we
also explored how our mono-modal model’s diagnostic
accuracy scales within larger training data scenarios.
Our findings indicate that, with a reasonable number
of additional patients, our model can compete with
standard clinical methods like IHC [6]. Because of the
difficulty of DLBCL subtyping on HES slides, for the
same patient, pathologists often rely on several slides
to make a diagnosis. Thus, our methodology could be
extended to incorporate these HES slides in the student
model training to increase the training data. Finally,
active learning-driven data selection has been shown
to enhance the generalization of deep learning models
while minimizing the volume of data required. It could
be leveraged to acquire more data efficiently with the
objective of reaching competitive performance with the
Hans algorithm.

Data Protection

The material for conducting the experiments of this
work was declared to the Data Protection Officer (DPO)
of CHU de Lille and the National Commission on Infor-
matics and Liberty (CNIL) (declaration number 1129).
Furthermore, all the patients were anonimized.
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