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Abstract This chapter presents theoretical, numerical, and experimental 
frameworks for the use of Ultrasound Computed Tomography (USCT) for 
cortical bone tissue imaging. Most of the research conducted on this topic 
concerns adult bone, although some work presented in this chapter is specific 
to the study of child bone. USCT is recognized as a powerful method for soft 
tissue imaging. In bone imaging, the difficulties arise from the very high 
impedance contrast between tissues which alters the propagation of the 
ultrasonic waves and limits the linear inversion algorithms used. Solutions 
consist in optimally assessing non-linear effects in an iterative approach 
aiming at local linearization. When the problem can be reduced to the study 
of a fluid-like cavity buried in an elastic cylinder surrounded by water, the 
signal processing and/or compound algorithms can be added as an extension 
to the linear algorithms. The main limitation of these methods is the heavy 
experimental costs involved. We have then suggested the introduction of 
purely numerical non-linear full-waveform inversion algorithms. The perfor-
mances and the limitations of these linear and non-linear methods applied to 
cortical bone tissue imaging problems are overviewed and discussed. 

Keywords Ultrasound computed tomography, Adapted inversion scheme, 
Full waveform inversion, Cortical bone shell 
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11.1. Introduction 

B-mode pulse-echo ultrasound is a useful adult examination modality in all 
medical fields, with an exception of bone tissue imaging for which X-ray and 
magnetic resonance imaging (MRI) are preferred. For the diagnosis of diseases 
in children including bone pathologies, B-mode ultrasound is the privileged 
modality. X-ray modalities must be limited in children because of potential 
radiation hazards, and MRI examinations, which require sedation or anesthe-
sia in the case of the youngest children, provide only poor cortical bone infor-
mation. But pediatric ultrasound bone imaging is associated with clinical lim-
itations. For example, current medical practice does not allow imaging under 
the cortical area (sub-periosteal imaging) and no information is available on 
the bone cortical thickness or the marrow (Fig.11.1).  

 
Fig.11.1 B-mode pulse-echo ultrasound image of an osteosarcoma with a periosteal 
reaction (sunburst appearance), [A Demarcation of the bone tumoral extension in the 
soft tissues, B-C Limit of the cortical area with a strong echogenicity of the inter-
face between the periosteum and the cortical bone, D-E Cortical break due to the tu-
moral process without indications on the underlying bone structure, and the subcorti-
cal bone marrow] (courtesy of AP-HM, Marseille, France) 

Recent progress in B-mode (pulse-echo) bone imaging has shown promise. By 
adapting the wave propagation physics to a ray-tracing model, Renaud et al. 
(Renaud et al. 2018) were able to estimate cortical thickness, the ultrasonic 
wave velocities and the anisotropy of the cortical area of a tibia and a radius, 
taking into account the structural heterogeneous layers of these media. The 
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recent advancements in the field of pulse-echo ultrasound imaging of cortical 
bone are covered in detail in chapter 10 of this book. 

Ultrasound Computed Tomography (USCT) appears as a possible alternative 
to the limits of clinical B-mode ultrasound, making it possible to take into 
account some of the physical phenomena involved in the ultrasonic wave prop-
agation between the probe and the inspected zone, and/or to circumvent the 
effects of these physical phenomena through appropriate modeling, and to 
access significant physical parameters of the medium. The geometry of signal 
acquisition is no longer linear as in B-mode ultrasound, but circular in the 
orthogonal plane, with several planar projections at different angles, and based 
on a multi-channel and multi-frequency device (Fig.11.2). USCT provides 
cross-sectional images of the organ, exploiting the information resulting from 
the diffraction of the incident acoustic field. 

a   

b    c   

Fig.11.2 a Schematic diagram of B-mode ultrasound and USCT-mode acquisitions. 
Circular antenna with 8 equally spaced transducers with a child ankle/foot model 
(SawbonesTM), b 2D-mechanical scanner with a geometrical bone-mimicking phantom 
(SawboneTM), c 3-frequency linear transducer array 
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USCT has been steadily improved since the first applications in the mid-1970s, 
to the development of clinical scanners for breast imaging, providing images 
with high spatial resolution (André et al. 1995; Duric et al. 2007; J. F. Green-
leaf et al. 1975; James F. Greenleaf and Bahn 1981; Hopp et al. 2018; J.-P. 
Lefebvre, Lasaygues, and Mensah 2009; Mensah and Ferriere 2004; J. W. 
Wiskin et al. 2017). Whether in wave reflection, transmission or diffraction 
mode, the mathematical approaches to USCT are adapted when the acoustic 
impedance contrast between tissues is low. However, these approaches are 
considered insufficient in the presence of bone whose acoustic impedance is 
very different from that of the surrounding soft tissues. The solutions for im-
aging bone with surrounding tissue and marrow consist in optimally integrat-
ing the induced non-linear effects, by iterative and adaptive schemes either by 
keeping the projection-like geometry of Radon and forms of variations of the 
higher-order Born approximation, or by extending the problem to the full 
waveform inversion. This chapter presents relevant strategies to adapt USCT 
to bone imaging, and in particular to the special case of small children’s bones. 

11.2. Linear qualitative USCT 

The traditional definition of USCT is based on the Radon transform inversion 
theorem (Devaney 2012; Kak and Slaney 2001). Let us consider a 2D non-
circular isotropic elastic cylindrical cavity with generators parallel to the z-
axis, immersed in a water-like homogeneous surrounding medium, named the 
constant background. The canonical geometry is depicted in Fig.11.3. In 
practice, the projections, i.e., the measurements, are made on a circle (2D) 𝛴 
surrounding an object 𝐷 at equal distance from the center of rotation. There 
is a bijection between the determination of the object in a Euclidean space ℝ! 
and its determination in the associated Radon space 𝑆: ℝ"	x	𝑆!#$ where 𝑛	 ∈
{1, 2, 3} denotes the dimension of the Euclidean space. A function defined on 
the Radon space is called a sinogram (all angular projections). A function 
defined on the Euclidean space is called an image, the elements of the 
discretized space being pixels (2D) and voxels (3D). In this context, image 
reconstruction refers to the operation of synthesizing the projections, i.e., 
transforming the information contained in the sinogram into an image.  
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Fig.11.3 Canonical geometry of acquisition 

Let us assume that the object 𝐷 lies in the 𝐷 space region and is characterized 
by its space-variable compressibility 𝜒(𝒙), and the spatial distribution of mass 
density 𝜌(𝒙), both independent of time 𝑡. Let 𝜒% (respectively 𝜌%)	be the com-
pressibility (respectively the mass density) of the constant background.  

The acoustic pressure 𝑝(𝒙, 𝑡) is driven by the wave equation: 

− $
&!"
	'
"((𝒙,,)
',"

+	𝛻.𝑝(𝒙, 𝑡) = 	 /#
(𝒙)

&!"
	'
"((𝒙,,)
',"

+ 𝛻. 4𝛾0(𝒙)𝛻𝑝(𝒙, 𝑡)6  (11. 1) 

𝑐0 is the wave velocity in the constant background. 𝛻.= 	 -𝜕. 𝜕𝑥0 , 𝜕. 𝜕𝑦0 , 𝜕. 𝜕𝑧0 3  is 
the gradient differential operator.  𝛾1(𝒙) is the relative fluctuation of the com-
pressibility, and 𝛾0(𝒙) is the relative fluctuation of the mass density: 

𝛾1(𝒙) = 	
𝜒(𝒙)−𝜒0

𝜒0
, 𝛾0(𝒙) =

𝜌(𝒙)−𝜌0
𝜌0

   (11. 2) 

𝛾1 = 𝛾0 = 0 outside	𝐷. Let us consider an incident plane wave excitation of 
pulsation 𝜔, amplitude 𝑃2%(𝜔), direction of incidence 𝒏%, and wave number 
𝑘0 = 𝜔

𝑐0
 in the background: 

𝑝%(𝒙, 𝑡) = 	𝑃%&(𝜔)𝑒'((*+',"𝒏𝟎.𝒙) =	𝑃%(𝒙, 𝜔)𝑒'(*+  (11. 3) 
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with 

 𝑃%(𝒙, 𝜔) = 	𝑃%&(𝜔)𝑒(,"𝒏𝟎.𝒙    (11. 4) 

The solution will be in the form 𝑝 = 𝑃 𝑒−𝑗𝜔𝑡. Then 𝑃  is a solution of the 
Lippman-Schwinger integral equation (∀𝒙 ∈ ℝ0): 

𝑃(𝒙,𝜔) = 𝑃%(𝒙, 𝜔) + ∫ 𝐺&(𝒙, 𝒙′, 𝜔)1 B−𝑘&0𝛾𝜒(𝒙2)𝑃(𝒙2, 𝜔) + ∇. F𝛾𝜌(𝒙2)∇𝑃(𝒙2, 𝜔)GH 𝑑0𝒙2 
(11. 5) 

where 𝐺0 is the 2D-free space Green function: 

𝐺&(𝒙, 𝒙′, 𝜔) = 	−
(
3
𝐻&
(4)(𝑘&|𝒙 − 𝒙′|)   (11. 6) 

𝐻%
($) is the first Hankel function. The forward problem consists in modeling 

the total field 𝑃 and diffracted field 𝑃5 (𝑃5 = 𝑃 − 𝑃2) from the incident field 
and the a priori physical parameters of the object:  

L𝛾𝜒,𝛾𝜌M , 𝑃% ⟹𝑃     (11. 7) 

The inverse problem (reconstruction procedure) consists in finding the 
parameter map from the incident field and the diffracted field measured at 
several points on 𝛴: 

𝑃% , 𝑃5 ⟹L𝛾𝜒,𝛾𝜌M     (11. 8) 

These measurements satisfy the observation equation. For an object whose 
acoustic impedance is close to that of the constant background, the diffracted 
field is weaker than the incident field (𝑃5 ≪ 𝑃2), and the first-order Born 
approximation can be used (∀𝒚 ∈ 𝛴): 

𝑃𝑑(𝒚, 𝜔) ≈ ∫ 𝐺0(𝒚, 𝒙′, 𝜔)𝐷 ?−𝑘02𝛾1(𝒙′)𝑃𝑖(𝒙′, 𝜔) + ∇. 4𝛾0(𝒙′)∇𝑃𝑖(𝒙′, 𝜔)6@𝑑2𝒙′ (11. 9) 

These equations lead to a linear relationship between the physical parameters 
(𝛾1, 𝛾0) and the diffracted field 𝑃5. A method to solve the inverse problem 
consists in performing a far-field asymptotic development, i.e., great distance 
with respect to the wavelength and the size of the object (∀𝒙′ ∈ 𝐷): 

𝑘&|𝒚 − 𝒙′| ≫ 1, |𝒚| ≫ |𝒙′|    (11. 10) 
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so that |𝒚 − 𝒙′| ≈ |𝒚| − 𝒏. 𝒙′. 𝒏 =  𝒚

|𝒚|/  defines the direction of observation, 
and 𝒚 is the position of the receiver. The asymptotic diffracted field is written 
as follows: 

𝑃;(𝒚,𝜔) ≈ 	𝑃&%(𝜔)F
(
3S

0
<|𝒚|

𝑒(?,"|𝒚|'
$
%@Gℎ(𝒏&, 𝒏, 𝜔)  (11. 11) 

ℎ(𝒏%, 𝒏, 𝜔) is the transfer function, or the frequency response, of the 
diffracting object for directions of incidence 𝒏% and observation 	𝒏: 

ℎ(𝒏&, 𝒏, 𝜔) = |𝑘&|
𝟑
𝟐C 	B𝛾V𝜒(𝑲) + 𝒏&. 𝒏𝛾V𝜌(𝑲)HX𝑲E,"(𝐧'𝐧")

	 (11. 12) 

𝛾ZG(𝑲) and 𝛾ZH(𝑲) are the 2D-spatial Fourier transforms of the physical 
parameters 𝛾1(𝒙) and 𝛾0(𝒙). The transfer function ℎ(𝒏%, 𝒏, 𝜔) then gives ac-
cess to the object function, or the contrast function, 𝑂(𝒙) = \𝛾G(𝒙) + 𝒏&. 𝒏𝛾H(𝒙)] 
with the spectrum 𝑂̂(𝑲): 

ℎ(𝒏&, 𝒏, 𝜔) =
|𝑲|

𝟑
𝟐(

[0(4'𝒏".𝒏)]
) %(
	𝑂̂(𝑲)_

𝑲E,"(𝐧'𝐧")
  (11. 13) 

11.2.1. Qualitative imaging 

Instead of directly reconstructing the physical parameters 𝛾1(𝒙) and 𝛾0(𝒙), 
the reconstruction will be done on the object function 𝑂(𝒙). Because of the 
derivative, this “object” has a better contrast than the initial physical object. 
This is qualitative imaging.  

With an angular parameterization (𝜙, 𝜃) with respect to the Cartesian 
coordinates (0, 𝒊, 𝒋), where 𝜙 ≡ (0, 𝒊,𝒏0) ∈ [0,2𝜋] is the incidence angle, and 
𝜃 ≡ (𝒏0, 𝒏) ∈ [−𝜋, 𝜋] is the diffraction angle (Fig.11.3), the transfer function 
is written as follows, setting ℎ(𝒏%, 𝒏, 𝜔) ≡  ℎ(𝜙, 𝜃, 𝜔): 

ℎ(𝜙, 𝜃, 𝜔) = 	 b K
0L%MN𝜃

2
O
c
)
*

𝑂d(𝑲)e
𝑲EK𝝃

   (11. 14) 

with 𝐾 = 2𝑘0𝑠𝑖𝑛(
𝜃
2) and 𝝃 is the unit vector such that (0, 𝒊, 𝝃) ≡ 𝛹 =

{𝜙 + 𝜃
2 − 𝜋

2}, and by inversion: 
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𝑂d(𝐾,𝛹) = b K

0L%MN+*O
c
,)*

ℎ h𝛹 − Q
0
+ <

0
, 𝜃, KR"

0L%MN+*O
i   (11. 15) 

 

 
Fig.11.4 Slice-to-slice coverage of the 2D-spatial Fourier domain 

All transmitter-receiver configurations have the same bisecting line (0, 𝒊, 𝝃) 
regardless of the angle 𝜃 between the transmitter and the receiver, and give 
access to a cross-section at the same angle 𝛹 (Fig.11.4). Only the extent of 
the cross-section varies according to the change in variables 𝜔 = [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]: 

𝐾 =	 [𝐾62!, 𝐾678] = 2𝑠𝑖𝑛 49
.
6 [𝑘62!, 𝑘678]  (11. 16) 

11.2.2. Reconstruction from radial cross-sections 

The inversion process consists in inverting the spatial Fourier transform of the 
object function: 

𝑂(𝒙) = 4
(0<)* ∫ 𝑑𝛹0<

& ∫ 𝐾𝑂d(𝐾,𝛹)𝑒%K𝝃.𝒙𝑑𝐾S
&   (11. 17) 
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This formula corresponds to the reconstruction algorithm by summation of 
the filtered backprojections (inverse Radon transform): 

𝑂(𝑥) ≡ 𝑂(𝑥, 𝑦) = 4
0< ∫ 𝑑𝛹0<

& 𝑃TU(𝑥𝑐𝑜𝑠𝛹 + 𝑦𝑠𝑖𝑛𝛹) (11. 18) 

𝑃TU(𝝃) =
4
0< ∫ 𝐹d(𝑲)𝑃dT(𝑲)	𝑒(𝑲.𝝃𝑑𝑲

S
'S    (11. 19) 

- For a given angle 𝛹 , 𝑃Ψ̂(𝐾) = 𝑂̂(𝐾, Ψ) is a radial cross-section of the spatial 
Fourier transform 𝑂̂(𝑲) of the object function 𝑂(𝒙). 

- 𝑃Ψ(𝒙) is a projection of the object function 𝑂(𝒙) according to the direction 
𝝃 of angle (𝒊, 𝝃) ≡ Ψ (slice-projection theorem (Deans 2007)). 

- 𝑃Ψ
𝐹 (𝝃) is a projection 𝑃Ψ(𝒙), filtered by the filter 𝐹 , with the frequency 

response 𝐹 ̂(𝐾) =  |𝐾|. 

- 𝑃Ψ
𝐹 (𝑥𝑐𝑜𝑠Ψ + ysinΨ) is the backprojection of the filtered projection in the 

direction orthogonal to the 𝜉-direction.  

For N equiangularly distributed projections over [0, 2𝜋], the discrete version 
of the reconstruction algorithm is written as follows:  

𝑂(𝒙) ≡ 𝑂(𝑥, 𝑦) = 	 4
0V
∑ 𝑃MU(𝑥𝑐𝑜𝑠𝛹M + 𝑦𝑠𝑖𝑛𝛹M)V
ME&  (11. 20) 

11.2.3. Elliptical kernel 

The far-field hypothesis (11.10) has limitations in near-field USCT, e.g., probe 
close to the organ. When the incident field is modeled by a spherical wave 
emitted at a source point 𝑒, by composition of Green's functions, the 
projections of the imaged object are ellipses. This is called spherical wave 
analysis of the object, as opposed to the plane wave analysis described above. 
The inversion problem for a set of receivers 𝑟 is identified with the inversion 
of an elliptical spectrum. The inversion algorithm developed in particular by 
Mensah et al. (Mensah and Ferriere 2002; Franceschini et al. 2007) is 
analogous to filtered backpropagation but the backprojections are made on 
ellipses (𝛴𝑡) of focus (𝒙, 𝑟) defined by 𝑐0𝑡 = |𝑟 − 𝒙| + |𝒙 − 𝑒|. This method 
gives qualitative images allowing a significant gain in resolution (P. Lasaygues 
et al. 2002; Rouyer, Lasaygues, and Mensah 2012). 
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11.2.4. Acoustic and elastic object functions 

In the general case the reconstructed object is the object or contrast func-
tion	𝑂(𝒙) which can be evaluated as a function of the diffraction angle 𝜃, and 
of the acoustic or elastic physical parameters. Considering a fluid medium, the 
object function is written as follows: 

𝑂(𝒙) =  [𝛾𝜒 (𝒙) + 𝑐𝑜𝑠𝜃 𝛾𝜌(𝒙)]    (11. 21) 

or 

𝑂(𝒙) =  [(1 − 𝑐𝑜𝑠𝜃) 𝛾𝑍 (𝒙) + (1 + 𝑐𝑜𝑠𝜃) 𝛾𝑐(𝒙)]  (11. 22) 

with 𝛾𝑍 (𝒙) (respectively 𝛾𝑐(𝒙)) the relative fluctuation of the acoustic 
impedance 𝑍(𝒙) = √

𝜌(𝒙)
𝜒(𝒙)

, (respectively the acoustic wave velocities 𝑐(𝒙)): 

𝛾𝑍(𝒙) = 𝑍(𝒙)−𝑍0
𝑍0

 , 𝛾𝑐(𝒙) = 𝑐(𝒙)−𝑐0
𝑐0

  (11. 23) 

In the case of an isotropic solid elastic medium, the function is written as 
follows: 

𝑂(𝒙) =  [𝛾𝜆(𝒙) − 𝑐𝑜𝑠𝜃 𝛾𝜇(𝒙) + 2𝑐𝑜𝑠𝜃 𝛾𝜌(𝒙)]  (11. 24) 

with  

𝛾𝜆(𝒙) = λ(𝒙)
𝜆0+2𝜇0

 , 𝛾𝜇(𝒙) = μ(𝒙)
𝜆0+2𝜇0

    (11. 25) 

and 𝜆, 𝜇, are the space-variable Lamé coefficients.  

These equalities show that the diffracted field by each type of inhomogeneity 
has a specific directivity pattern that can be separated according to the type 
of spatial scan performed: transmission (𝜃 = 0°), reflection (𝜃 = 180°), or 
diffraction (∀𝜃) (Fig.11.5).  

In the pure reflection-mode USCT (similar to a circular B-mode ultrasound 
imaging) (θ = 180°), the transfer function becomes:  

ℎ(𝜔) =  − 𝑘0
2𝛾𝑍̂(𝑲) with 𝑲 = −2𝑘𝒏0   (11. 26) 

with 𝛾V: the 2D-spatial Fourier transform of 𝛾:. In the pure transmission-mode 
USCT (θ = 0°), the transfer function becomes:  

ℎ(𝜔) =  − 𝑘0
2𝛾𝑐̂(𝑲)    (11. 27) 
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with 𝛾V& the 2D-spatial Fourier transform of 𝛾𝑐. These formulas show that the 
relative fluctuation of the acoustic impedance (respectively of the acoustic 
wave velocities) can be expected from reflection measurements (respectively 
from transmission measurements) (J.-P. Lefebvre, Lasaygues, and Mensah 
2009). 

 
Fig.11.5 Reflection-mode USCT (left), transmission-mode USCT (center) and dif-
fraction-mode USCT (right)  

11.2.5. Hard biological tissue imaging 

Difficulties arise in the presence of bone because of the large differences in 
acoustic impedance between soft tissues, including marrow, represented by the 
constant water-like background, and bone. Propagation disturbances affect 
the signals and bias the imaging process, decreasing the contrast-to-noise ratio 
(CNR). The weak scattering hypothesis (11.9) is not realistic. Physical 
phenomena can be divided into 2 classes. In the first class, the phenomena are 
related to the reflection and transmission of waves at the boundaries of the 
bone. These phenomena include the attenuation of waves. The second-class 
phenomena are related to the spatial dependence of the velocity of the 
transmitted waves since they will be accelerated into the bone, and it is 
necessary to take into account a temporal correction factor. It thus becomes 
necessary to change the methods used for the acquisition and the processing 
of the ultrasonic signals, and finally to adapt the inversion schemes to non-
linear formalisms. 

Nevertheless, if the imaging objective involves morphometrical parameters 
such as the bone thickness, the problem can be viewed as how to identify a 
water-like cavity (the object) located in an elastic cylinder immersed in a 
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water-like fluid. Numerical modeling shows that the Born approximation 
would still be satisfied if the phase shift introduced by the heterogeneity is 
less than 𝜋 (Delamare, Lefebvre, and Lasaygues 1997; Kak and Slaney 2001; 
J. P. Lefebvre et al. 2002). The validity of the hypothesis depends on the size 
(versus wavelength) of the inhomogeneity and the impedance contrast (Kak 
and Slaney 2001). Thus, one solution consists in using the low-frequency (£ 3 
MHz) ultrasonic wave propagation scheme. In this case, the background can 
be defined in terms of the solid part without any hole and surrounded by 
water, and the perturbation, i.e., the object to be reconstructed, would be the 
cavity. Image reconstruction can then be performed by the previous 
backprojection algorithm implemented with standard graphics algorithms (P. 
Lasaygues, Lefebvre, and Mensah 1997; Philippe Lasaygues 2006). The earliest 
work on this approach dates back to the 1980s (Carson 1977; André et al. 
1980; Sehgal et al. 1988). In the 1990s, other teams proposed solutions to take 
into account some of the refraction effects, or by combining several B-mode 
ultrasound angular scans. (Migeon et al. 1998; Detti, Kourtiche, and Nadi 
2002). To illustrate the interest of the linear morphometrical USCT, we tested 
the algorithm on a geometrical bone-mimicking phantom (tibia-fibula, without 
soft tissues) (Sawbones™), and one ex vivo chicken drumstick. The details of 
the protocols and algorithms used can be found in (Philippe Lasaygues 2006; 
Philippe Lasaygues et al. 2017). The cavity diameter of the tibia phantom was 
of 12.5 mm, and the overall length of 42 cm, and the solid fibula had no inner 
cavity. The distance between bones was measured at ~8 mm using a caliper. 
USCT images of objects were compared with X-ray scan (µ-CT scanners, 
nanoScan® Mediso™, Hungary, for the SawbonesTM sample, and EasyTom XL 
150® RX SolutionsTM, France, for the chicken drumstick). The slice thickness 
of the X-ray cross-section was 50 µm and the number of projections was 360. 
Cross-sections were chosen in the cortical areas of the bones; 100 mm from 
the proximal epiphysis for the bone phantom; and 25 mm for the chicken 
drumstick. Fig.11.6 shows the image of the SawbonesTM phantom obtained 
by diffraction-mode tomography with 8 dual-frequency transducers, 1 MHz 
and 2.25 MHz, respectively (32 equally spaced rotations, 256 x 256 signals) 
(Philippe Lasaygues et al. 2018). Fig.11.7 shows the image of the ex vivo 
chicken drumstick obtained at the three frequencies (500 kHz, 1 MHz & 2.25 
MHz) in reflection mode (720 backprojections, 511 x 511 pixels). 
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Fig.11.6 Geometrical bone-mimicking phantom (SawboneTM), X-ray tomography 
(478 x 478 pixels) (courtesy of CERIMED, France) (left), Dual-frequency (1 MHz & 
2.25 MHz) diffraction-mode USCT (256 x 256 signals, 255 x 255 pixels) (right) 
(Philippe Lasaygues et al. 2018)  

 
Fig.11.7 Ex vivo chicken drumstick, 3-frequency reflection-mode USCT (500 kHz, 1 
MHz & 2.25 MHz, 720 backprojections, 511 x 511 pixels) [A Tibia, B Fibula, with 
marrow, C-D Muscle fixed on the kneecap with linear long fibers, E Dense fat accu-
mulation, F Fibrous muscle and fat tissue] (left), X-ray tomography (600 x 600 pix-
els, resolution 50 µm) (courtesy of the Fédération de Recherche Fabri de Peiresc, 
Marseille, France) (right) 
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11.2.6. Adapted signal processing 

The use of low frequencies thus provides an effective possible solution. 
However, if the depth of the field increases, the resolution of the signals, and 
hence that of the reconstructed images, is bound to decrease. Even with low 
frequencies, the wave propagation process generates extremely complex 
acoustic signals consisting of several packets with different signatures, which 
is often difficult to analyze in terms of the wave paths, volume, guided or 
surface waves, and attenuation, and to interpret. It is therefore interesting to 
focus on signal processing. Our group has developed a procedure of multi-scale 
decomposition of the signals, adapted to the USCT process (Zheng and 
Lasaygues 2013) and making it possible to process all the wave packets 
available in terms of frequency and time (Loosvelt and Lasaygues 2011). This 
method, called the “Wavelet-based Coded-Excitation” (WCE) method, can 
be used to determine, independently, the velocity of the ultrasonic wave and 
the wave path across the thickness of the cortical bone area geometrically 
assimilated to a succession of contiguous parallelepiped plates (Fig.11.8). The 
method can also be adapted to the apparent bone mass density measurement 
(Metwally et al. 2015). When it was adapted to the diffraction-mode USCT 
(Philippe Lasaygues et al. 2017), the method improved the CNR by at least 
11% (Fig.11.6). 

 
Fig.11.8 a Measurement of the thickness of a cortical bovine bone section using the 
WCE method in transmission mode, b The transmission-echo mode USCT of a fresh 
child fibula (Zheng and Lasaygues 2013) [The cortical bone boundaries are plotted 
using an automatic "Snake" algorithm (clear dotted outer boundary), and using an al-
gorithm based on the adapted WCE-method (two inner limits in gray lines)] 
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11.2.7. Adapted image processing 

Although pre-processing can be an interesting solution, it is also relevant to 
study the post-processing of the images to try to further improve the CNR, 
and to develop tools for morphometric measurements. The automatic 
segmentation of images is a widespread problem, especially in the field of 
medical imaging, when, because of the inhomogeneity and complexity of the 
anatomical topology, there is a tendency towards image degradation (Dera, 
Bouaynaya, and Fathallah-Shaykh 2016). In the last two decades, a flurry of 
research has involved the use of a deep learning process for image processing, 
such as the use of the 2D wavelet-based algorithms for image denoising 
because of the energy compaction and multiresolution properties of wavelet 
decomposition (Hongqiao and Shengqian 2009; Mayer et al. 2012). Our group 
has first proposed simple methods such as the “Snake” algorithm (Fig.11.8) 
(Philippe Lasaygues 2006), or statistical methods (Malagon Torres et al. 
2019), then more powerful and automatic methods based on wavelet 
decomposition such as the Haar wavelet 2D-decomposition (Mallat and Hwang 
1992). As shown in Fig.11.9, this method allows the denoising of the USCT 
image and a segmentation of the contours of the object (Fradi et al. 2018). 
Deep learning methods are increasingly used in medical ultrasonic imaging. In 
the case of bone tissue, we have proposed an automatic structure identification 
procedure using combining k-means (Jose, Ravi, and Sambath 2014) and Ostu 
algorithms (Liu 2011). Fig.11.10 shows an example of binarization of a USCT 
image, and the detection of three artificial defects of increasing size (Fradi, 
Lasaygues, and Machhout 2019). 

 
Fig.11.9 Haar wavelet-based processing algorithm to automatically detect the exter-
nal and internal boundaries (dotted circles) of a circular cylindrical Perspex tube, a 
Initial diffraction-mode USCT, b Image after denoising with automatically detected 
contours [radius measurements after processing vs. with a calipers, Rext = 7.75 mm 
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vs. 8 mm, Rint = 4 mm vs. 4.3 mm] (Marwa et al. 2019), Copyright (2021) with per-
mission from SPIE Publishing 

 
Fig.11.10 Diffraction-mode USCT binarization and cortical human femur defect 
identification for 3 different heights (H1, H2 and H3), using deep learning processing 
based on the k-means and Ostu algorithms (Marwa et al. 2019), Copyright (2021) 
with permission from SPIE Publishing 

11.2.8. Precision analysis for 2D inverse scattering 

One of the main key points in 2D inverse scattering is the quantitative 
prediction of the expected precision of the reconstructions. In other words, the 
challenge for imaging systems is to determine the configuration of 
measurements necessary to achieve satisfactory performance and resolution. 
Naturally, one always searches for the best precision, while keeping the 
instrument as simple as possible. It is thus of interest to be able to predict 
beforehand the precision of a given apparatus before effectively constructing 
it. But how to define the criterion of satisfaction? One way to answer this 
problem is to quantify the amount of information available in the 
measurement data in view of the physical parameters to be reconstructed. In 
the framework of the estimation theory, the system performance can be 
analyzed based on the measurement model and the available a priori 
knowledge. The reconstruction error can be directly used as a decreasing 
function of the amount of information available. This error depends not only 
on the inversion algorithm used but also on the object to be reconstructed. 
Taking into account the randomness of the measurements implies the use of 
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numerical simulation methods such as Monte-Carlo methods to calculate the 
error (Diong et al. 2015). In diffraction-mode USCT, this approach is quite 
costly in terms of computation time. A second solution consists in using 
estimation performance bounds, and statistical processing of the information. 
The performance bounds make it possible to analyze the optimal precision of 
the estimates for the different physical models considered, without being 
influenced by the choice of the estimation method. They thus constitute an 
interesting alternative to the optimization of an imaging system according to 
the class of objects considered. Our group has analyzed the precision of the 
impedance contrast estimators with the Cramer-Rao Bound (CRB) assuming 
an additive complex circular Gaussian noise at the receivers (Diong et al. 
2016). An adapted framework was derived to handle acoustic imaging 
configuration. Firstly, we took advantage of the CRB to derive some design 
guidelines when selecting the parameters of the “optimal” experimental 
configuration. Secondly, we tried to appraise the effect of the error model 
when a classical linear approximation, such as the Born approximation, is 
selected and when it is not (Fig.11.11). 

 
Fig.11.11 Impact of the measurement angle on the Cramer-Rao bound for the object 
function 𝛾G under Born approximation, and a known object radius, [radius of the cir-
cle 𝛴 = 5𝜆, surrounding an object 𝐷 of a radius = 0.5𝜆 (𝜆: wavelength)] 
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11.3. Non-linear quantitative USCT 

In the context of linear USCT, the fluid-like modeling thus fails to provide 
quantitative information about the physical parameters of bone tissues. For 
certain configurations, e.g., in the case of adjacent bones, the phenomena 
described above affect the signals received so much that an inversion done 
under the hypothesis of a fluid medium introduces important artefacts. 
Recently, J. Wiskin et al., (James W. Wiskin et al. 2019) worked on a 
complete knee organ (skin, muscles and bone) using a quantitative combined 
reflection/transmission-mode USCT algorithm. Because of the redundancy of 
the data and the 3D nature of the reconstruction algorithm, the quantitative 
accuracy for soft tissues that are closely juxtaposed with the bone is very 
relevant. The resolution of the resulting images is comparable to that of an 
MRI image. Nevertheless, the images do not seem to correctly quantify the 
velocity of waves in the bone. Inaccuracies are due to the mathematical 
approach involved, which does not take into account shear waves. This is 
appropriate for an anatomical reconstruction of the bone, but for the 
identification of its elastic properties shear waves are needed. The problem is 
thus complex. It can be addressed by suitable nonlinear iterative inversion 
strategies, either keeping the projection-like geometry of Radon and the high-
order Born approximations, or by introducing canonical models, or by 
implementing the complete waveform inversion without any a priori 
information on the media. 

11.3.1. Compound-mode USCT  

The first step to avoid including shear waves in the model was to adapt the 
acquisition protocol. Our group proposed first the Compound-mode USCT to 
geometrically combine reflection- and transmission-mode acquisitions. 
Experimentally, this approach is comparable to the non-linear Distorted Born 
Iterative Method (discussed below) adapted to a bone sample considered as a 
tube-like sample (Philippe Lasaygues et al. 2005). The solutions are iteratively 
determined using an inhomogeneous Green function of the background, i.e., 
the set consisting of the homogeneous solid circular cylinder and the 
surrounding homogeneous fluid medium, adapted for every iteration. The 
refraction effects are canceled using a specific set-up in order to correct the 
temporal bias τ(r, e, 𝒙) and to impose straight-line propagation inside the shell 
of the tube/bone (Fig.11.12): 
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𝜏(𝑟, 𝑒,𝒙) = 4

R"
∫ R(𝒙′)'R"	

R"X𝒙Y𝒙Z 𝑑𝒙′   (11. 28) 

 
Fig.11.12 Quantitative iterative Compound-mode USCT, Refraction effects accord-
ing to the Snell-Descartes laws (left), Geometrical corrections of the acquisitions to 
impose straight-line propagation inside the shell of the bone (right) 

Hence the overall correction is the sum of the respective temporal corrections 
along the emitter path (𝑒𝒙, located at 𝑒) and along the receiver path (𝒙𝑟). Via 
the iterative procedure, the dimension of the intercepting circular cylinder is 
adapted to the external shape of the bone, measured in echo mode. The 
unknown wave velocity 𝑐(𝒙) is initialized on the basis of prior information 
which may for instance correspond to the bone average velocity for a patient 
of equivalent age and health status. Despite limitations due to heavy data 
processing requirements (even though the WCE method is not added) and 
complex acoustic signals resulting from the multiple physical effects involved 
(various paths inside the shell, roughness of the water/bone interfaces), this 
approach yields correct estimates of the size and shape of the bone and correct 
identification of the compression wave velocities in a cross-section of a cortical 
shell. Fig.11.13 shows the Compound-mode USCT of a human femoral 
diaphysis with an external diameter of about 32 ± 5 mm and an internal 
diameter of 16 ± 2 mm. The initial velocity of the compression wave 
propagating in the bone was set at 3400 m.s-1. The error remained within 
reasonable limits of about 7% (Philippe Lasaygues et al. 2005; Ouedraogo et 
al. 2002). More recently, the Langton group has proposed, as an extension of 
this compounding approach, a two-component model of the cortical shell to 
accurately calculate the wave velocity and the thickness (Shortell et al. 2017). 
Despite promising results, these approaches still remain incompatible with an 
automatic process involving a large number of data, and thus still difficult to 
exploit in a clinical field. 
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Fig.11.13 Compound-mode USCT (90 angles, 128 translations, 256 x 256 pixels) of 
a human femur using linear inversion algorithm and adapted experimental Distorted 
Born Iterative Method [3D mapping of compression wave velocity (m/s) vs. mor-
phometry (mm)] 

To go further, the non-linear and iterative inversion schemes must integrate 
compression and shear waves. As for the linear scheme, the inverse diffraction 
problem is defined as the solution of the Lippmann-Schwinger integral 
equation (11.5), with the need to know the total field 𝑃 (𝒙, 𝜔) within the region 
of interest (ROI) containing the object 𝐷 (i.e., water/(bone and marrow), or 
(water and bone)/marrow). The forward problem is defined as the iterative 
(m) solutions of the Lippmann-Schwinger integral equation (11.5) for the total 
field: 

𝒚 ∈ 𝛴, 𝑃;(𝒚,𝜔) − 𝑃d;[(𝒚,𝜔) ≈ 	−𝑘&0 ∫ 𝐺[(𝒚, 𝒙′, 𝜔)1 𝛥𝑂(𝒙′)𝑃[(𝒙′, 𝜔)𝑑0𝒙′ (11. 29) 

The medium is then modeled without any a priori knowledge, and contrary 
to what occurs with the experimental Compound-mode USCT, these 
approaches require only one set of recorded signals. Iterative non-linear 
algorithms alternate between incrementing the estimate of the object function 
(𝛥𝑂(𝒙) =  𝑂(𝒙) − 𝑂m−1(𝒙)), of the total field 𝑃𝑚 and of the Green function 
𝐺𝑚. The set of physical parameters of the medium to be imaged, identified by 
the object function 𝑂(𝒙) is obtained by minimizing the difference between the 
diffracted field recorded at 𝑁 receivers’ positions (𝑟) and for a single source 
(𝑒) (Pmea

n (t), n = 1, ..., 𝑁) and the corresponding numerically modeled field 
(Pnum

n )(Fig.11.14).  
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Fig.11.14 Non-linear and iterative adaptative scheme for USCT 

The quadratic error or cost function 𝐶(𝑂) to minimize writes as follows: 

𝐶(𝑂) = 	∑ ∫[𝑃𝑛𝑢𝑚
𝑛 (𝑡) − 𝑃𝑚𝑒𝑎

𝑛 (𝑡, 𝑂)]0	𝑑𝑡M    (11. 30) 

The main common difficulties encountered in the minimization of 𝐶(𝑂) are its 
significant non-linearity with respect to 𝑂, the presence of numerous local 
minima in which the iterative resolution system may remain trapped, and a 
large number of parameters. An iterative method based on the calculation of 
the gradient of the cost function is generally chosen to minimize 𝐶(𝑂). 

11.3.2. Intercepting Canonical Body Approximation (ICBA) 

Our group has thus first proposed an extension of the Compound-mode USCT, 
by which the forward problem was analytically solved using the Intercepting 
Canonical Body Approximation method (Scotti and Wirgin 1995). For 
example, the diaphysis of a long bone can be approximated by two canonical 
homogeneous, circular, and concentric cylinders. In this approach, the 
modeling of the medium was nonetheless based on a priori knowledge because 
the physical parameters (velocities and mass density in this case) and the 
dimension of the intercepting circular cylinders were adapted at each position 
of the transmitter and the receiver, according to initially known values. 
Fig.11.15 shows a comparison of the reconstruction using the first-order Born 
USCT and the ICBA. The object was a Perspex circular tube, and the data 
were experimentally collected in diffraction mode. For the dimensions, the 
method, which is fairly simple to compute, gave very precise results (error less 
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than a few percent). For the physical parameters (Fig.11.16) such as the 
mass density or the elastic wave velocities, the problem was more complex, 
and the error increased up to more than 1% (Philippe Lasaygues and Le 
Marrec 2008). 

 
Fig.11.15 Comparison of the experimental reconstruction based on the first-order 
Born USCT (left) and the Intercepting Canonical Body Approximation (ICBA) 
(right) for a Perspex circular tube [radius measurements with ICBA method  vs. cal-
ipers, Rext = 5.9 ± 0.5 mm vs. 6 mm, Rint = 3.8 ± 0.25 mm vs. 4 mm] (Philippe La-
saygues and Le Marrec 2008) 

 
Fig.11.16 Parametric inversion using the Intercepting Canonical Body Approxima-
tion (ICBA) in the case of the Perspex circular tube (experimental measurements), 
Mass densities [𝜌	= 1180 kg/m3] (left), Compression (top right) [𝑐4\ =	2730 m/s] 
and shear (bottom right) [𝑐4+ =	1430 m/s] wave velocities (Philippe Lasaygues and 
Le Marrec 2008) 
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11.3.3. Full-Waveform Inversion (FWI) algorithms 

Making assumptions about the object somehow introduces a bias. The 
objective must therefore be global schemes without any a priori knowledge of 
the medium. Adapted iterative global approaches have been proposed such as 
the Distorted Born Iterative Method based on high-order Born 
approximations (Chew 1995; Lu et al. 1996; Osama S. Haddadin and Ebbini 
1997; O.S. Haddadin and Ebbini 1998) or the Contrast Source Method (Berg 
and Kleinman 1997). Experimental studies have been published in the 
Electromagnetics domain (Lobel et al. 1996; Tijhuis et al. 2001; Crocco and 
Isernia 2001; Duchêne 2001; Belkebir and Saillard 2004; Litman and Crocco 
2009), but few ultrasonic experimental results are available (Lu et al. 1996; 
Philippe Lasaygues, Guillermin, and Lefebvre 2006; R. Lavarello and Oelze 
2008; R. J. Lavarello and Oelze 2009; Guillermin et al. 2013). More recently, 
Salehi et al. have developed a mathematical similar framework for an iterative 
algorithm based on the Kaczmarz method (Salehi 2017). The idea is to 
calculate the locally adjoint operator for a hole inside a cortical tube. Belanger 
et al. have adapted a “hybrid algorithm for robust breast ultrasound 
tomography” (HARBUT) for the velocity mapping of the cortical bone 
(Falardeau and Belanger 2018). These last two algorithms have been tested 
on numerical and experimental data on bone-mimicking phantom and the 
results are very encouraging. Although artefacts were present in the images 
generated, the results obtained made it possible to discriminate between a 
healthy bone phantom and a pathological one based on measurements of the 
cortical bone thickness and of the average velocity of the ultrasonic waves. 

In our first approach, a mean-square solution was calculated using the Polak-
Ribière conjugate-gradient method to minimize 𝐶(𝑂), associated with a 
Tikhonov regularization process. The detail of the algorithm is presented in 
(Philippe Lasaygues, Guillermin, and Lefebvre 2006; Guillermin et al. 2013; 
Guillermin, Lasaygues, and Rabau 2015). In the inversion algorithm proposed, 
Green’s theorem is used to obtain a time-domain integral representation of 
the diffracted field. A discrete formulation of the integral representation is 
obtained by replacing the object to be imaged by an array of identical square 
cells. Each of which is small enough to assume that the object function 
𝑂(𝒙) and the total field P are constant inside it. However, in this first 
algorithm, the forward problem modeling assumes constant tissue mass 
density and high shear wave attenuation. The second algorithm we proposed 
consists in importing the most sophisticated techniques for a large amount of 
data, these techniques being at the forefront in the field of geophysics. The 
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method proposed uses the “full-waveform inversion” (FWI) technique, based 
on a full numerical modeling of wave propagation in the medium. The term 
“full” refers to the fact that the full-time series are used. The detail of the 
algorithm is presented in (Bernard et al. 2017; Espinosa et al. 2021). The 
mean-square solution is calculated using the quasi-Newton technique, which 
uses information based on second-order derivatives in order to accelerate 
convergence. Both approaches make it possible to converge to the minimum 
of the function in a larger or smaller number of iterations, depending on the 
method used and on the complexity of the problem. Nevertheless, the gradient 
of 𝐶(𝑂), that is, its partial derivatives with respect to each element of 𝑂(𝒙), 
cannot easily be calculated based on a standard and simple finite-difference 
approach because this would require performing as many forward calculations 
of wave propagation as the number of parameters, and this for each iteration 
of the minimization algorithm. In the FWI approach, the adjoining field 
method, introduced in Seismics in the 1970s (Bamberger et al. 1982), makes 
it possible to overcome this difficulty. It can be shown that the gradient of 
the cost function can be obtained as the convolution product of the forward 
field with an adjoint field obtained by calculating the propagation of the time-
reversed residuals: 

𝑟M(𝑡) = 	 [𝑃[X]M (−𝑡) − 𝑃M^[M (−𝑡, 𝑂)]    (11. 31) 

with each receiver acting as a source. The calculations for two phenomena of 
wave propagation in the medium are then sufficient to obtain the gradient (in 
the case of multiple sources, two calculations per source are needed). 

The other important difficulty related to the strong non-linearity of 𝐶(𝑂) is 
that gradient-based minimization algorithms only converge to the solution if 
they are started close to the global minimum, which assumes an initial low 
bias model. This is rarely the case. For bone imaging, we can exploit the linear 
USCT which provides a good geometric resolution of external contours. But 
this is the only unbiased information available. Measurements of the inner 
(marrow) area or of the compression wave velocity that can be used as a priori 
information are biased because of the fluid modeling used. Imaging of 
anatomical sites will also require to take into account the surrounding soft 
tissues. This requires a general resolution of the inverse problem, and the 
global minimum must be totally unknown. There is nevertheless a risk of 
remaining trapped in a local minimum. In particular, if there is a difference in 
propagation time greater than half a period between the computed and real 
data, the algorithm will attempt to match different cycles of the signals and 
will not be able to converge (a problem known as “cycle skipping” (Virieux 
and Operto 2009)). A method to reduce this risk is to use the incremental 
frequency-hopping approach: first, a low-pass filter is used to retain only the 
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lowest frequencies and then, once a minimum is obtained, the maximum 
frequency is slightly increased and the process is run again until all the 
frequency information is included. 

 
Fig.11.17 Parametric (compression wave velocities) diffraction-mode USCT (64 x 64 
pixels) of a fresh lamb shoulder bone using the frequency-hopping and Polak-Ribière 
conjugate-gradient methods (Guillermin, Lasaygues, and Rabau 2015) 

Fig.11.17 shows the experimental result obtained for a fresh and clean lamb 
shoulder bone using the frequency-hopping and Polak-Ribière conjugate-
gradient methods. The usable bandwidth ranged from approximately 150 kHz 
to 750 kHz. Shear waves in the sample were assumed to be attenuated, and 
the mass density was assumed to be constant and equal to that of the 
surrounding water (𝛾𝜌 → 0). Regarding the quantitative aspects, the 
compression wave velocity was reconstructed with a relative error of about 
30% related to the reference measurement, which was 2700 ± 200 m/s. 
Fig.11.18 shows the main quantitative (compression wave velocity and mass 
density) reconstruction obtained with a numerical phantom. The phantom 
had a realistic geometry of a tibia/fibula adjacent bone, surrounded by a 
water-like medium. The incident signal was a Ricker (second derivative of a 
Gaussian) 200 kHz-wavelet, and the virtual 9 cm radius array had 8 sources 
and 128 receivers. Fig.11.19 shows non-linear USCT reconstructions for two 
20 cm long wax bars with square cross-section (16 mm x 16 mm). Included in 
one of the targets and located at its center was a 5 mm circular cavity. The 
compression (respectively, shear) wave velocity was 2050 m/s (respectively, 
750 m/s), and the attenuation was 55 Np/m/MHz and (respectively, 650 
Np/m/MHz). The wax mass density was 900 kg/m3. 
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Fig.11.18 Numerical quantitative USCT of a tibia/fibula adjacent bone using the 
non-linear full waveform inversion method. Images and details can be found in (Ber-
nard et al. 2017), Copyright (2021) with permission from IOP Publishing 

a  

b  
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c  

Fig.11.19 Ultrasound Computed Tomography based on non-linear inversion schemes 
for wax targets, without and with a hole (experimental data), a-b The frequency-
hopping and Polak-Ribière conjugate-gradient methods ), Reproduced from Guiller-
min et al. 2013, with the permission of the Acoustical Society of America, c The full 
waveform inversion and Quasi-Newton method (Espinosa et al. 2021) 

When it can be made to work, non-linear USCT offers significantly-improved 
resolution compared with simpler methods based for example on travel times 
only or on a linearization of propagation in the medium (Born approximation), 
at the price of a higher calculation cost. But the computational cost issue 
tends to be less limiting nowadays, thanks to the continuous increase in the 
power of computers, to the easier access to high-performance computing 
systems, and to the significant progress that has been made in numerical 
methods. Moreover, the understanding of the advantages and difficulties of 
the method (especially with regard to the convergence problems discussed 
above) has increased considerably in recent years. The FWI method is thus 
becoming the method of choice for the inversion of USCT data for breast and 
soft tissues imaging (Pérez-Liva et al. 2017), and we bet that this can also 
become the case for the imaging of bones in the medium term. 
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11.4. Conclusion 

Ultrasound Computed Tomography (USCT) of bone tissue is still too limited 
today to be used in clinical applications. However, it should be possible to 
achieve this goal in the near future. In its simple and fast computerized 
version, as part of Born approximation, we have shown how to perform wide-
band USCT of the cortical diaphysis of a long bone and how to obtain cross-
sections in the spatial frequency plane. Real experiments using mechanical 
and electronic control systems show that the method can be successfully 
applied in vitro. Various enhancement paths can be explored: increase in the 
number of array elements, irregular distribution of transducers to increase the 
number of independent projections (compressive sensing, statistical 
estimators), adaptive signal and image processing based for example on deep 
learning, etc., and/or other inversion algorithms, such as iterative algorithms 
adapted to non-linear inversion. The fundamental limits of non-linear 
inversion algorithms, such as the so-called “full-waveform inversion” methods, 
must be overcome. It will be necessary to move away from fluid modeling 
schemes and introduce elastic modeling. For anatomical imaging of the cortical 
interfaces of bone and surrounding soft tissue, including marrow, fluid-like 
modeling may be sufficient to provide high resolutions. For the identification 
of biomechanical information of the bone, we will have to take into account 
the shear waves, and obtain a quantitative image of the whole organ. Today, 
this is still too complicated (or numerically unstable) to be envisaged on 
experimental laboratory data, and very far from a clinical application. But if 
the scientific community takes up the challenge, then USCT will truly be the 
efficient and indispensable modality. 
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