
HAL Id: hal-04456071
https://hal.science/hal-04456071v1

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context Normalization Layer with Applications
Bilal Faye, Hanane Azzag, Mustapha Lebbah, Mohamed-Djallel Dilmi, Djamel

Bouchaffra

To cite this version:
Bilal Faye, Hanane Azzag, Mustapha Lebbah, Mohamed-Djallel Dilmi, Djamel Bouchaffra. Context
Normalization Layer with Applications. 2023 IEEE International Conference on Data Mining (ICDM
2023). workshop Deep Learning and Clustering (DLC), Dec 2023, Shangai, China. �hal-04456071�

https://hal.science/hal-04456071v1
https://hal.archives-ouvertes.fr

Context Normalization Layer with Applications

1st Bilal FAYE

LIPN, UMR CNRS 7030

Sorbonne Paris Nord University

Villetaneuse, France

faye@lipn.univ-paris13.fr

2rd Hanane AZZAG

LIPN, UMR CNRS 7030

Sorbonne Paris Nord University

Villetaneuse, France

azzag@univ-paris13.fr

3th Mustapha Lebbah

DAVID Lab, University of Versailles,

Université Paris-Saclay,

Versailles, France

mustapha.lebbah@uvsq.fr

4nd Mohamed-Djallel DILMI

LIPN, UMR CNRS 7030

Sorbonne Paris Nord University

Villetaneuse, France

dilmi@lipn.univ-paris13.fr

5th Djamel BOUCHAFFRA

Center for Development of Advanced Technologies

Algiers, Algeria

djamel.bouchaffra@gmail.com

Abstract—Deep neural networks (DNNs) have gained promi-
nence in many areas such as computer vision (CV), natural
language processing (NLP), robotics, and bioinformatics. While
their deep and complex structure enables powerful representation
and hierarchical learning, it poses serious challenges (e.g., in-
ternal covariate shift, vanishing/exploding gradients, overtting,
and computational complexity), during their training phase.
Neuron activity normalization is an effective strategy that lives
up to these challenges. This procedure consists in promoting
stability, creating a balanced learning, improving performance
generalization and gradient ow efciency. Traditional normal-
ization methods often overlook inherent dataset relationships. For
example, batch normalization (BN) estimates mean and standard
deviation from randomly constructed mini-batches (composed of
unrelated samples), leading to performance dependence solely
on the size of mini-batches, without accounting for data cor-
relation within these batches. Conventional techniques such
as Layer Normalization, Instance Normalization, and Group
Normalization estimate normalization parameters per instance,
addressing mini-batch size issues. Mixture Normalization (MN)
utilizes a two-step process: (i) training a Gaussian mixture
model (GMM) to determine components parameters, and (ii)
normalizing activations accordingly. MN outperforms BN but
incurs computational overhead due to GMM usage. To overcome
these limitations, we propose a novel methodology that we named
”Context Normalization” (CN). Our approach assumes that the
data distribution can be represented as a mixture of Gaussian
components. However, unlike MN that assumes a-priori that data
are partitioned with respect to a set of Gaussian distributions,
CN introduces the notion of concept that accounts for data
relationship via a neural network classication scheme. Samples
that are gathered within a cluster dene a context. The estimation
of the Gaussian components parameters is conducted through a
supervised neural network-based concept classication. CN is
more precise when clusters are thick and not sparse. Extensive
comparative experiments conducted on various datasets demon-
strates the superiority of CN over BN and MN in terms of
convergence speed and performance generalization. In fact, CN
outperforms BN and MN with a convergence speed margin of
5% and a performance margin of 10%. These results reveal
the importance and the need of capturing inherent data context
to learn the Gaussian component parameters. Our proposed
approach harnesses data relationships, and therefore enhances
deep learning models in various applications.

I. INTRODUCTION

Normalization is a general process that transforms data to

possess specic statistical properties. Various methods exist for

data normalization, with some of the most common techniques

including centering, scaling, standardizing, decorrelating, and

whitening [1]. Input normalization can be used in deep neural

networks (DNNs) training to remove the magnitude difference

between features, speeding convergence during linear model

optimization [2]. In layered neural networks, as the input

is only directly connected to the rst weight matrix, it is

not clear how the input impacts the optimization landscape

with respect to other weight matrices. The initial weights are

typically not normalized, and this can indeed have a signicant

impact on the gradient optimization procedure. To overcome

this, some methods employ weight-initializing techniques to

obtain equal variances for layer input/output gradients across

different layers [3]. However, due to the updating of the weight

matrices during training, the equal variance property across

layers may be broken. From this perspective, it is important to

normalize activations during training, to obtain similar benets

of normalizing inputs.

Different normalization techniques, including activation nor-

malization, weight normalization, and gradient normalization,

are employed to enhance the training performance of DNNs.

To normalize activations, the most common technique is Batch

Normalization (BN) [4]. BN has been proposed to solve the

problem caused by the changing distribution of the inputs

of each layer during training, called internal covariate shift.

In fact, the distribution change problem often requires lower

learning rates and careful parameter initialization, which slows

down the training process and makes it difcult to train models

with saturating nonlinearity. As a layer of the neural network,

BN methods perform the normalization on each training mini-

batch with its respective mean and variance. This mini-batch-

wise approach allows for a more appropriate representation of

the data and, therefore, faster processing, thus increasing the

performance of the neural network in terms of convergence.

a
rX

iv
:2

3
0
3
.0

7
6
5
1
v
2

[c

s.
C

V
]

 2
 F

e
b
 2

0
2
4

Despite the good performance, the effect of BN depends on

the mini-batch size, and it is not obvious how to apply it to

some DNNs architectures. To address this, several variants and

alternative methods have been proposed [5].

BN and its few extensions can be studied from the viewpoint

of Fisher kernels that arise from generative probability models.

Kalayeh and al. [6] show that assuming samples within a mini-

batch are from the same probability density function, then BN

is identical to the Fisher vector of a Gaussian distribution.

More specically, each instance in the mini-batch is assigned

to a component of the Gaussian Mixture Model (GMM), where

the GMM approximates the probability density function of the

input activations. Instead of computing one set of statistical

measures from the entire population (of instances in the mini-

batch) as BN does, Mixture Normalization (MN) [6] proposes

a normalization on sub-populations which can be identied by

disentangling modes of the distribution, estimated via GMM.

In addition to speeding up training, MN allows better accuracy

results to be achieved.

In this perspective, we propose a novel normalization tech-

nique called context normalization (CN). In fact, assuming that

the data are well modeled by a mixture of several components,

each sample in the mini-batch is normalized using the mean

and variance of the associated component. Indeed, the capabil-

ity of GMM to approximate any continuous distribution with

arbitrary precision has been demonstrated by [7]. Building

upon this foundation, our paper follows a similar track but

introduces a novel method. In particular, we dene a context

that can come from various sources that describe the structure

of the dataset. A context can be conceptualized as a coherent

cluster of samples that share common characteristics and can

be effectively grouped together. Each context can be viewed as

a component of the Gaussian mixture with its own probability

density function. By normalizing samples from the same

context with the parameters learned during backpropagation,

CN allows an estimation of the mean and variance of each

mixture component thus improving the discrimination power

of the data representation according to the target task.

In summary, the main contributions of this work are as

follows:

• We propose Context Normalization (CN), a novel ap-

proach that utilizes dened contexts to capture under-

lying distribution variations. In CN, each sample in a

mini-batch is normalized using the mean and standard

deviation specic to its context. By treating contexts

as components of a Gaussian mixture, we learn their

parameters during model training, eliminating the need

for the EM algorithm. This leads to improved efciency

and simplied implementation of CN.

• Through a comprehensive set of experiments, we demon-

strate that CN not only accelerates model convergence,

but also achieves superior nal test accuracy. These

results highlight the effectiveness of our proposed method

in improving the overall performance of models.

For consistency, we use the variable notation proposed in

Table I for all sections.

Variable Denition

T number of context

K number of components

N mini-batch size

C channels

H height

W width

Net neural network

Θ trainable parameters of neural network

x ∈ R
N×C×H×W 4-D activation tensor

B = {x1:m} attened x across axis N , H and W

Bi attened x across axis H and W

µr the mean on the context r

σr standard deviation on the context r

onehot(.) One-Hot Encoding function

TABLE I: Table of notations

II. RELATED WORK

A. Batch Normalization

Let x ∈ R
N×C×H×W denote the activation for a given

neuron in a layer of a convolutional neural network where N ,

C, H and W are respectively the batch, channel, height, and

width axes. Batch normalization (BN) [4] standardizes with m

samples mini-batch B = {x1:m : m ∈ [1, N]×[1, H]×[1,W]}
with attened x across all but the channel axis by:

x̂i =
xi − µB

σ2

B + ϵ
, (1)

where µB = 1

m

m
i xi, σ

2

B = 1

m

m
i (xi−µB)

2 are the mean

and variance respectively, and ϵ > 0 a small number to prevent

numerical instability.

Due to the constraints introduced by standardization, addi-

tional learnable parameters γ and β are introduced to eliminate

the linear regime of nonlinearity of some activations:

x̃i = γx̂i + β (2)

During inference, population statistics are needed for deter-

ministic inference. They are usually computed by running the

average over the training iterations, as follows:

µ̂ = (1− λ)µ̂+ λµB

σ̂2 = (1− λ)σ̂2 + λσ2

B

(3)

If the samples within the mini-batch are from the same

distribution, the transformation in Equation (1) generates a

zero mean and unit variance distribution. This zero-mean and

unit-variance constraint allows stabilizing the distribution of

the activations and thus benets training.

This mini-batch-wise approach makes it possible to have

a more suitable representation of the data and, therefore,

faster processing, thus increasing the performance of the

neural network in terms of convergence. Despite the good

performance, the effect of BN is dependent on the mini-batch

size, and the discrepancy between training and inference limits

its usage in complex networks (e.g. recurrent neural networks).

To tackle these challenges and address parameter estimation on

unrelated samples, numerous variants, and alternative methods

have been proposed.

B. Variants of Batch Normalization

Some extensions to batch normalization (BN) have been

proposed, in particular, Layer Normalization (LN), Instance

Normalization (IN), Group Normalization (GN) and Mixture

Normalization (MN) [5], [6].

The general transformation x → x̂ according to a mini-batch,

on the attened spatial domain (L = H×W) , can be written

as follows

vi = xi − EBi
(x), x̂i =

vi

EBi
(v2) + ϵ

, (4)

given Bi = {j : jN ∈ [1, N], jC ∈ [iC], jL ∈ [1, L]},
where i = (iN , iC , iL) a vector indexing the activations

x ∈ R
N×C×L.

Layer Normalization (LN) eliminates inter-dependency of

batch-normalized activations by calculating mean and variance

based on specic layer neuron inputs. LN is effective for

recurrent networks but may face challenges with convolutional

layers due to variations in visual information across the spatial

domain.

Instance Normalization (IN) is a normalization technique

that normalizes each sample individually, focusing on remov-

ing style information, especially in images. By computing

mean values and standard deviations in the spatial domain,

IN improves the performance of specic deep neural networks

(DNNs) and nds widespread application in tasks like image

style transfer [8] [9].

Group Normalization (GN) is a normalization technique that

divides neurons into groups and independently standardizes

layer inputs for each sample within the groups. It excels in

visual tasks with limited batch sizes, like object detection and

segmentation.

Mixture Normalization In the context of deep neural net-

works (DNNs), the distribution of activations is almost certain

to have multiple modes of variation due to the non-linearities.

The batch normalization (BN) [4] hypothesis that a Gaussian

distribution can model the generative process of mini-batch

samples is less valid. To address this, Mixture Normalization

(MN) [6] investigates BN from the viewpoint of Fisher kernels,

which arise from generative probability models. Rather than

using a mean and standard deviation calculated over entire

instances within a mini-batch, MN uses a Gaussian Mixture

Model (GMM) to affect each instance in the mini-batch to

a component and then normalizes with respect to multiple

means and standard deviations associated with different modes

of variation in the underlying data distribution.

MN normalizes each sample in the mini-batch using the

mean and standard deviation of the mixture component to

which the sample belongs to. The probability density function

pθ that describes the data can be parameterized as a Gaussian

Mixture Model (GMM). Let x in R
D, if θ = {λk, µk,Σk :

k = 1, ..., K},

p(x) =

K

k=1

λkp(x|k), s.t. ∀k : λk ≥ 0,

K

k=1

λk = 1, (5)

where

p(x|k) =
1

(2π)D/2|Σk|1/2
exp

− (x− µk)
T
Σ

−1

k (x− µk)

2

,

is the kth Gaussian in the mixture model p(x), µk the mean

vector and Σk is the covariance matrix.

The probability that x has been generated by the kth Gaussian

component in the mixture model can be dened as:

τk(x) = p(k|x) =
λkp(x|k)

K
j=1

λjp(x|j)
,

Based on these assumptions and the general transform in

Equation (4), the Mixture Normalizing Transform for a given

xi is dened as

x̂i =

K

k=1

τk(xi)√
λk

x̂k
i , (6)

given

vki = xi −EBi
[τ̂k(x).x], x̂k

i =
vki

EBi
[τ̂k(x).(vk)2] + ϵ

, (7)

where

τ̂k(xi) =
τk(xi)

j∈Bi
τk(xj)

,

is the normalized contribution of xi with respect to the mini-

batch Bi in the estimation of the statistical measures of the

kth Gaussian component.

With this approach, Mixture Normalization can be done in two

stages:

• estimation of mixture model’s parameters θ =
{λk, µk,Σk : k = 1, ..., K} by Expectation-

Maximization (EM) [10] algorithm.

• normalization of each sample with respect to the esti-

mated parameters (Equation (7)) and aggregation using

posterior probabilities (Equation (6)).

On convolutional neural networks, this method allows Mixture

Normalization to achieve better results than batch normal-

ization in terms of convergence and accuracy in supervised

learning tasks.

III. PROPOSED METHOD: CONTEXT NORMALIZATION

A. Method description

Based on the Mixture Normalization (MN) hypothesis pro-

posed by [6] (ref. to Figure 1), our Context Normalization

(CN) approach operates under a similar assumption that data

can be effectively represented by a mixture of multiple com-

ponents, as opposed to batch normalization (BN) [4]). In the

Context Normalization (CN) approach, a fundamental concept

is introduced, namely, the notion of context, which represents

a cluster of samples sharing common characteristics that

can be efciently grouped together. Unlike the Expectation-

Maximization (EM) algorithm [10] typically employed for

parameters estimation in each component, CN utilizes a deep

neural network to learn these parameters through context-

based normalization. In our approach, we assign a unique

identier to each context and utilize it for normalization during

training. Samples within the same context share the same

identier, allowing for alignment in a shared space that aligns

with the target task. This approach not only facilitates the

normalization of samples within the same context but also

enables the estimation of optimal parameters for all contexts,

promoting the convergence of the model. By leveraging these

context identiers, our approach enhances the alignment and

adaptability of the model to different contexts, leading to

improved performance.

Each sample xi in k is normalized

using λk, µk and σk

pre-processing step training step
Dataset

For each Gaussian

component (k),

estimateλk, µk and σk

using EM algorithm

For each context (r),

estimate µr and σr on

the deep neural

network

Each sample xi in r is normalized

using µr and σr
training step

Dataset

Mixture Normalization

Context Normalization

For each random

mini-batch (B),

compute µB and σB

Each sample xi in B is normalized

using µB and σB

training step
Dataset

Batch Normalization

Fig. 1: A concise overview of the processing steps involved

in Batch Normalization (BN), Mixture Normalization (MN),

and Context Normalization (CN). The dashed line in the

Batch Normalization diagram indicates a mini-batch parameter

update, highlighting a key step in the process.

B. Parameters learning

For a given xi in Bi, the mean (µr) and standard deviation

(σr) are estimated based on the context r associate to xi. This

estimation process is outlined in Algorithm 1 and visually

depicted in Figure 2. Subsequently, these estimated parameters

are used to normalize xi according to Equation (8). The CN

transform can be added to a deep neural network to provide

a better representation of the input data. In Algorithm 1,

x̂i = CN(xi, r) indicates that the parameters µr and σr are

to be learned depending on each training example according

to the context r. Algorithm 2 summarizes the procedure for

training context-normalized networks.

x̂i ←
xi − µr

σ2
r + ϵ

(8)

In algorithm 1, we use an afne transformation followed by

element-wise linearity:

αr ← Embedderr(onehot(r)) : Wr onehot(r) + br,

µr ← Embedderµ(αr) : Wµ αr + bµ,

σ2

r ← Embedderσ(αr) : Wσ αr + bσ

where W and b are learned parameters of the Embedder

model and r is the context associated to xi. The onehot(.) is
the function that performs one-hot encoding on the categorical

Algorithm 1: CN- Context Normalizing Transform

Input : Values of x over the mini-batch

Bi = {xi}
m
i=1

; context r associated to xi

Output: {x̂i = CN(xi, r)}
αr ← Embedderr(onehot(r)) // identier embedding

µr ← Embedderµ(αr) // mean estimation

σ2

r ← Embedderσ(αr) // variance estimation

x̂i = CN(xi, r): Normalize xi using Equation 8

Algorithm 2: CN-Training (Context-Normalized Deep

Neural Network)

Input : Deep neural network Net with trainable

parameters Θ; subset of activations

Bi = {xi}
m
i=1

Output: Context-Normalized deep neural network for

training, NettrCN

NettrCN = Net // Training CN deep neural network

for i ← 1 to m do
• Add Algorithm 1 transformation: x̂i = CN(xi, r)

// normalize xi using associated context, r

• Modify each layer in NettrCN with xi to take x̂i

instead
end

Train NettrCN to optimize the parameters:

Θ = Θ ∪ {µr,σr}
T
r=1

variable representing the context r, which is embedded in the

continuous space αr.

During the training process, it is necessary to backpropagate

the gradient of the loss function, denoted as ℓ, through the

transformation. Additionally, the gradients with respect to the

parameters of the CN transform need to be computed. This

is achieved using the chain rule, as shown in the following

expression (before simplication):

∂ℓ

∂µr
=

∂ℓ

∂x̂i
.
∂x̂i

∂µr
= − ∂ℓ

∂x̂i
.(σ2

r + ϵ)−1/2

∂ℓ

∂σ2
r

=
∂ℓ

∂x̂i
.
∂x̂i

∂σ2
r

=
µr + xi

2(σ2
r + ϵ)3/2

CN transform is a differentiable operation in deep neural

networks that normalizes input data. By applying CN, the

model can continuously learn from input distributions and

adapt its representations to the target task, leading to improved

performance. This normalization helps mitigate the inuence

of variations in input distributions, allowing the model to

focus on relevant patterns and features. The differentiability

of CN enables efcient gradient ow during training, facil-

itating parameter updates and learning from the normalized

data while preserving differentiation through the normalization

process. Overall, CN plays a vital role in enhancing model

performance by promoting effective learning and adaptability

through data normalization. It demonstrates higher exibility

compared to MN due to its ability to establish consistent data

grouping based on provided contexts, without the need for

additional algorithms. This is advantageous over MN since

the Expectation-Maximization (EM) algorithm employed in

MN can exhibit slower convergence. In the specic case of

classifying dog images, where data scarcity is a challenge, the

method addresses this issue by partitioning the dog class into

subclasses. This approach enables the acquisition of specic

features applicable to all dogs, facilitating the normalization

of images within the dog superclass and creating a more

coherent and easily learnable feature space. Importantly, the

context identier used for learning the normalization param-

eters is unrelated to the images themselves. Instead, it can

be viewed as noise, contributing to the regularization of the

deep neural network during training, similar to techniques like

dropout, thereby enhancing the generalization performance of

the model [11].

Context Normalization Layer

F
o
rw
a
rd
p
a
s
s

B
a
c
k
w
a
rd
p
a
s
s

Fig. 2: Context Normalization Layer applied to a given acti-

vation xi. The context identier (r) is encoded by a neural

network, the output of which is then used as input to two

different neural networks to generate a mean (µr) and a

standard deviation (σr), respectively, for normalizing xi.

After the model has converged, we enter a scenario similar

to mixture normalization, where the parameters of each context

are known and dependent on the target task. During the

inference step, we have the option to normalize the data

directly using CN or consider all the contexts collectively. This

enhanced approach is referred to as CN+ (ref. Algorithm 3).

For a given xi in Bi and using the Equation 6, CN+ can be

formulated as

x̂i =
√
T

T

r=1

τr(xi)x̂
r
i , (9)

given

vri = xi − EBi
[τ̂r(x).x], x̂r

i =
vri

EBi
[τ̂r(x).(vr)2] + ϵ

,

where

τ̂r(xi) =
τr(xi)

j∈Bi
τr(xj)

,

under the assumption that prior probabilities (λr = 1

T , r =
1, ..., T) are constant;

Algorithm 3: CN-Inference (Context-Normalized

Deep Neural Network)

Input : Deep Neural Network NettrCN with trainable

parameters Θ ∪ {µr,σr}
T
r=1

(ref.

Algorithm 2); mini-batch of activation

{xi}
m
i=1

; choice ∈ {CN, CN+}
Output: Context-Normalized deep neural network for

inference, Net
inf
CN

Net
inf
CN ← NettrCN // Inference CN deep neural network

//with frozen parameters

if choice = CN then

for i ← 1 to m do
Normalize using context(r) parameters (µr and

σr learned during training) associated to xi.

x̂i ← CN(xi, r)
end

end

if choice = CN+ then

for i ← 1 to m do
• Normalize xi using Equation 9 // Normalization +

aggregation

end

end

IV. EXPERIMENTS

In the proposed experiments, we will assess the performance

of the context normalization method and compare it to BN and

MN. Detailed descriptions of the methods under consideration

are provided in Table II.

CN-Patches can be used as layer on Transformer-based ar-

chitecture [12] like Vision Transformer (ViT) [13]. ViT model

takes as input a grid of non-overlapping contiguous image

patches. CN-Patches consist of normalizing image patches

with a vector µ and σ that are learned from the context

identier embedding (ref. Figure 2 and Algorithm 1). Images

are grouped by context (each context is a component of the

mixture of Gaussian distributions), and for each context, a

unique vector (context identier) is associated. The context

Model Description

BN model with batch normalizing transform (ref. Sec-
tion II-A)

MN model with mixture normalizing transform (ref.
Section II-B)

CN Context Normalization model which uses CN-
Training (ref. Algorithm 2) in the training step and
CN method (ref. Algorithm 3) in the inference step.
Two versions of CN are used in the experiments:
CN on Patches (CN-Patches) and CN on Channels
(CN-Channels).

CN+ Context Normalization model which uses CN-
Training (ref.Algorithm 2) in training step and
CN+ method (ref. Algorithm 3) in inference step

TABLE II: Normalization method used in the experiments

identier is rst embedded for a better representation, and the

resulting vector is used to learn the corresponding parameters

µ and σ independently. This process is repeated for each input

(image) to the neural network during training. CN-Patches is a

way of integrating the context information into the image patch

normalization process. It allows the image patch representation

to be adapted to the context of the image, which improves the

overall performance of the model.

CN-Channels is designed to be applied directly to images.

The parameters µ and σ are vectors of size the number of

channels. They are learned independently according to the

context by using context identiers. CN-Channels incorporates

the context identier into the image normalization process. In

this case, the context identier embedding is used to directly

adjust the image representation per channel. This allows the

model to adapt the image representation to the context, which

improves the overall performance of the model.

A. Datasets

The experiments in this study utilize several benchmark

datasets commonly used in the classication community:

• CIFAR-10: A dataset with 50,000 training images and

10,000 test images, each of size 32×32 pixels, distributed

across 10 classes [14].

• CIFAR-100: Derived from the Tiny Images dataset, it

consists of 50,000 training images and 10,000 test images

of size 32× 32, divided into 100 classes grouped into 20

superclasses [15].

• MNIST digits: Contains 70,000 grayscale images of size

28 × 28 representing the 10 digits, with around 6,000

training images and 1,000 testing images per class [16].

• VERI-Wild: Comprises 416,314 vehicle images with

40,671 identities, captured from different angles and at

different times [17].

• SVHN: A challenging dataset with over 600,000 digit

images, focusing on recognizing digits and numbers in

natural scene images [18].

Table III illustrates the mapping of each dataset to the corre-

sponding experiments in which it is employed.

B. Context Normalization vs Mixture Normalization on CIFAR

In this experiment, we use a shallow convolutional neural

network architecture as described in Table IV.

The mixture normalization approach replaces the BN layer

in conv3 with mixture normalization layer, and the context

normalization experiment uses CN-Channels as the rst CI-

FAR ConvNet layer, incorporating context information directly

into the base image. According to [6], we experiment with

two different learning rates, one 5 times larger than the

other. The same is done with weight decay. The mini-batch

is set to 256, and all models are trained for 100 epochs

using RMSprop [19] with 0.9 momentum. During training

on CIFAR-10 and CIFAR-100, we t a Gaussian mixture

model by Maximum Likelihood Estimation (MLE). We use

K-menas++ [20] to initialize the centers of the mixture com-

ponent and Expectation-Maximization (EM) [10] to estimate

Dataset Task

CIFAR-10 This dataset is used for training CIFAR Con-
vNet (ref. Table IV), ensuring consistent conditions
with the study on mixture normalization (ref. Sec-
tion IV-B).

CIFAR-100 Three experiments (ref. Sections IV-B, IV-C,
and IV-D) use this dataset: comparing with mixture
normalization methods, utilizing superclass struc-
ture as context, and blending with MNIST digits
for domain adaptation.

MNIST digits MNIST digits is employed in two domain adap-
tation experiments, serving as the blended dataset
with CIFAR-100 in the rst (ref. Section IV-D)
and as the source domain in the second (ref.
Section IV-F).

VERI-Wild This dataset facilitates the analysis of context pa-
rameters obtained through model training using
an image similarity measurement strategy (ref.
Section IV-E), thereby constructing the American
night.

SVHN SVHN is used in conjunction with MNIST dig-
its as the target dataset to train the AdaMatch
model in unsupervised domain adaptation (ref.
Section IV-F).

TABLE III: Summary of datasets and associated training

experiments

layer type size kernel (stride, pad)

input input 3 × 32 × 32
conv1 conv+bn+relu 64 × 32 × 32 5 × 5 (1, 2)
pool1 max pool 64 × 16 × 16 3 × 3 (2, 0)
conv2 conv+bn+relu 128 × 16 × 16 5 × 5 (1, 2)
pool2 max pool 128 × 8 × 8 3 × 3 (2, 0)
conv3 conv+bn+relu 128 × 8 × 8 5 × 5 (1, 2)
pool3 max pool 128 × 4 × 4 3 × 3 (2, 0)
conv4 conv+bn+relu 256 × 4 × 4 3 × 3 (1, 1)
pool4 avg pool 256 × 1 × 1 4 × 4 (1, 0)
linear linear 10 or 100

TABLE IV: CIFAR ConvNet architecture on mixture normal-

ization paper for a comparison of MN and BN for small and

large learning rate regimes

the parameters of the mixture model θ = {λk, µk,Σk :
k = 1, ..., K = 3}. In mixture normalization, each sample

is normalized using the mean and standard deviation of the

mixture component to which it belongs. Context normalization

treats each Gaussian component as an individual context,

enabling sample normalization within each component. It

employs separate multi-layer perceptrons (MLPs) to estimate

the mean and standard deviation for each context using the

one-hot encoded context identier (onehot(.)).
Our primary objective is not to achieve state-of-the-art

results, which require computationally expensive architectures

and careful parameter tuning. Instead, we aim to demonstrate

that by replacing or incorporating our context normalization

technique, the convergence rate can be improved, leading to

superior test accuracy. This showcases the signicant impact of

our approach in enhancing model performance. Increasing the

learning rate from 0.001 to 0.005 increases the convergence

gap, showing the ability of context normalization as mixture

normalization to take advantage of higher learning rates for

training. From Table V and Figure 3 we can see that regardless

of the weight decay and learning rates, CN models not only

CIFAR-10

model (lr, weight decay) test accuracy (%)

BN-1 (0.001, 1e-4) 86.9
BN-2 (0.001, 2e-5) 85.9
BN-3 (0.005, 1e-4) 82.56
BN-4 (0.005, 2e-5) 83.71

MN-1 (0.001, 1e-4) 87.08
MN-2 (0.001, 2e-5) 87.9
MN-3 (0.005, 1e-4) 82.07
MN-4 (0.005, 2e-5) 84.71

CN-1 (0.001, 1e-4) 87.32

CN-2 (0.001, 2e-5) 88.15

CN-3 (0.005, 1e-4) 83.85

CN-4 (0.005, 2e-5) 87.09

CIFAR-100

model (lr, weight decay) test accuracy (%)

BN-1 (0.001, 1e-4) 57.48
BN-2 (0.001, 2e-5) 57.69
BN-3 (0.005, 1e-4) 50.82
BN-4 (0.005, 2e-5) 52.25

MN-1 (0.001, 1e-4) 61.6
MN-2 (0.001, 2e-5) 61.9

MN-3 (0.005, 1e-4) 53.08
MN-4 (0.005, 2e-5) 52.7

CN-1 (0.001, 1e-4) 61.79

CN-2 (0.001, 2e-5) 60.53
CN-3 (0.005, 1e-4) 56.08

CN-4 (0.005, 2e-5) 53.54

TABLE V: Performance Evaluation on CIFAR-10 and CIFAR-

100 using the CIFAR ConvNet architecture (ref. Table IV)

with the incorporation of Batch Normalization (BN), Mixture

Normalization (MN), and Context Normalization (CN). Each

algorithm is followed by a corresponding number, representing

the learning rate and weight decay.

(a) CIFAR-10 (b) CIFAR-100

Fig. 3: Comparative analysis of validation error curves for

the CIFAR ConvNet architecture (ref. Table IV) trained under

different learning rate and weight decay congurations.

converge much faster than their corresponding BN and MN

counterparts but also achieve better accuracy.

After model training, each context’s parameters are known.

The use of CN+ in the inference step leads to the results shown

in Table VI. The CN method (ref. Table V) is faster than the

CIFAR-10

model (lr, weight decay) test accuracy (%)

CN+1 (0.001, 1e-4) 87.90

CN+2 (0.001, 2e-5) 88.28

CN+3 (0.005, 1e-4) 82.85
CN+4 (0.005, 2e-5) 87.50

CIFAR-100

model (lr, weight decay) test accuracy (%)

CN+1 (0.01, 1e-4) 62.01
CN+2 (0.001, 2e-5) 60.53
CN+3 (0.005, 1e-4) 55.80
CN+4 (0.005, 2e-5) 53.15

TABLE VI: Performance Evaluation on CIFAR-10 and

CIFAR-100 using CIFAR ConvNet architecture (ref. Table IV).

Introducing CN+ which is an extended version of CN for

Inference, encompassing all contexts as Mixture Normaliza-

tion. Each CN+ variant is denoted by a number, representing

the iterative exploration of learning rate and weight decay

adjustments.

CN+ method (ref. Table VI) and gives approximately the same

results. In the following experiments, we use the CN method

in the inference step (ref. Algorithm 3).

In the following experiments, we aim to demonstrate that

context normalization can be implemented in a single step

in specic scenarios, unlike mixture normalization. This ap-

proach would lead to a decrease in time complexity.

C. Context Normalization using superclass as context

As described in Section IV-A, the CIFAR-100 dataset

incorporates a superclass structure in addition to the class

partition. Our proposed context normalization leverages this

superclass information as ”prior knowledge” for classication.

Each superclass corresponds to a context, identied by a one-

hot encoded vector of size 20 (the number of superclasses). We

integrated the context normalization technique into the Vision

Transformer (ViT) architecture, using Context Normalization

on Patches (CN-Patches) and Context Normalization on Chan-

nels (CN-Channels). Training employed early stopping based

on validation performance, and images were pre-processed

by normalizing them with respect to the dataset’s mean and

standard deviation. Data augmentation techniques such as

horizontal ipping and random cropping were applied to

enhance the dataset. The AdamW optimizer with a learning

rate of 10−3 and weight decay of 10−4 was chosen to prevent

overtting and optimize model parameters [21], [22].

Table VII demonstrates the signicant performance im-

provement of context normalization over batch normalization

(BN) when using the ViT architecture trained from scratch on

CIFAR-100. Both CN-Patches and CN-Channels approaches

outperform BN by approximately 10% and 18% in terms of

accuracy and top-5 accuracy. The train and test loss compari-

son in Figure 4 further supports this observation, showing that

(a) BN (b) CN-Patches (c) CN-Channels

Fig. 4: Validation loss curves on CIFAR-100 when the ViT architecture is trained with different normalization methods.

model test accuracy test top-5-accuracy

ViT 52.37% 80.98%
ViT+BN 53.35% 79.68%
ViT+CN-Patches 63.80% 99.74%

ViT+CN-Channels 62.48% 99.83%

TABLE VII: Comparison of the two Context Normalization

methods on CIFAR-100: Context Normalization on Patches

(CN-Patches) and Context Normalization on Channels (CN-

Channels), with normalization to the mean and standard devi-

ation of the dataset (ViT) and input normalization using batch

normalization (BN).

CN-Patches and CN-Channels accelerate the learning process

and enhance classication performance. These results indicate

that the proposed approaches stabilize the distribution and

mitigate internal covariate shift, resulting in a superior data

representation aligned with the target task.

D. Image classication on blended dataset

As deep neural networks require a certain amount of labeled

data for effective training, it is well known that the lack of a

large enough corpus of accurately labeled high-quality data

can produce disappointing results. Data augmentation [23]

is one way to overcome this problem. However, current

approaches generate the data with a distribution that may

be quite different from the original one, and this data bias

will often lead to suboptimal performance [24]. Inspired by

the transfer learning [25], we study in this subsection a new

approach using the proposed context normalization. The goal

of this approach is to improve the performance of the model on

a target dataset by training the model on the combined dataset

and then applying the trained model to the target dataset. In

this framework, the proposed normalization technique allows

to obtain a domain adaptation.

Specically, we train ViT models with the same settings as

in Section IV-C with context normalization approaches (CN-

Channels and CN-Patches) on the combined dataset CIFAR-

100 and MNIST digits. We target two contexts r ∈ {1, 2},
corresponding to the datasets and the context identier is

encoded by onehot(r = 1) = (1, 0) for images in CIFAR-

100 and onehot(r = 2) = (0, 1) for images in MNIST digits.

The parameters µ and σ of each Gaussian distribution are

then learned using these vectors after embedding. The trained

models (on the blended dataset) are then applied to the CIFAR-

100 test dataset.

It is important to mention that the baseline models (ViT

with standard preprocessing and ViT with batch normalization)

collapsed in this blended dataset as the two datasets have

different structures, and simple normalization does not allow

a suitable representation of the data. Context normalization,

on the other hand, gives an adaptive representation per dataset

(according to the contexts), which makes training possible.

As shown in Table VIII, models with context normalization

technique achieve good results on the blended dataset. It is

also interesting to notice that this performance in terms of

accuracy is biased by the MNIST digits dataset, which is less

difcult to learn than CIFAR-100. More precisely, the model

with CN-Patches achieves 55.04% accuracy and 81.83% top-

5 accuracy, which exceeds the results of all baseline models

(ref. Figure VII) trained on CIFAR-100. The model with CN-

Channels gives 50.99% accuracy and 78.55% top-5 accuracy.

model accuracy top-5-accuracy

ViT
ViT+BN
ViT+CN-Patches 77.09% 90.92%

ViT+CN-Channels 74.92% 89.28%

TABLE VIII: Blended dataset CIFAR-100 and MNIST digits:

results of models based on the two normalization methods

(CN-Patches and CN-Channels). Baseline models collapsed in

this combined dataset.

The Latent space normalization (CN-Patches) has a better

performance than the CN-Channels in this experiment. The

drop in performance for the CN-Channels method can be

explained by the fact that the normalization is applied directly

to images located in a space with several different data

characteristics.

E. Self-supervised learning for image similarity estimation

This experiment is motivated by the interpretability of

context normalization parameters of each context obtained

after training. To illustrate this, we construct the American

night with context normalization on the VERI-Wild dataset.

American night [26] is a set of cinematic techniques used to

simulate a night scene while lming in daylight. To accomplish

this, we make a partition of two contexts on the dataset: r ∈
{Day,Night}. A context vector onehot(r = Day) = (1, 0)
is assigned to day images and onehot(r = Night) = (0, 1)
to night images. We label pairs of images containing the same

object with 1, and otherwise with 0.

We use context normalization on the backbone of a siamese

network (ViT architecture) with contrastive loss [27] to esti-

mate the similarity between images. The aim of this experi-

ment is to reveal the behavior of the parameters learned by

the model and to understand how context information has an

inuence on the normalization process. The use of a Siamese

network makes it possible to measure the similarity between

the images and to evaluate the efciency of the normalization

in preserving the relevant information.

After training, we normalize day images with the appropriate

parameters (µDay and σDay), then denormalize (scale and

shift) with the night parameters (µNight and σNight), to con-

struct night images, as shown in Figure 5. The images become

darker, giving the night effect known as the American night

(day for night) used for cinematic production in Hollywood,

where a lter is applied to emphasize the light in the blue

channel. A reverse process can be applied to night images to

obtain day images, as shown in Figure 6, with brighter images

reecting the daylight effect.

(a) Daytime image (b) Nighttime image simulation

Fig. 5: Simulation of a night image on a day image: night

image is obtained by normalizing day image with Day param-

eters, then scale and shift with Night parameters.

F. Context normalization in domain adaptation

In this experiment, we show that due to its strength in

local representation, context normalization can yield substan-

tial gains in domain adaptation. Domain adaptation [28] is

a technique for using knowledge learned by a model from

a related domain with sufcient labeled data to improve the

performance of the model in a target domain with insufcient

labeled data. In this case, two contexts can be considered:

r ∈ {source domain, target domain}. As an illustration, we

use context normalization with AdaMatch [29], a method that

(a) Nighttime image (b) Daytime image simulation

Fig. 6: Simulation of day image on night image: day image is

obtained by normalizing night image with Night parameters,

then scale and shift with Day parameters

combines the tasks of unsupervised domain adaptation (UDA),

semi-supervised learning (SSL) and semi-supervised domain

adaptation (SSDA). In UDA, we have access to a source

labeled dataset and a target unlabeled dataset. Then the task

is to learn a model that can generalize well to the target

dataset. The source and the target datasets vary in terms of

distribution. We use the MNIST dataset (ref. Section IV-A)

as the source dataset, while the target dataset is SVHN (ref.

Section IV-A). Both datasets have various varying factors in

terms of texture, viewpoint, appearance, etc. Their domains, or

distributions, are different from one another. As in [29], we use

wide residual networks [30] for the dataset pairs. The model

is trained using the Adam [22] optimizer and a cosine decay

schedule to reduce the initial learning rate, which is initialised

at 0.03. Context normalization is used as the rst layer of

AdaMatch to incorporate the context identier (source domain

and target domain) into the image normalization process.

model source data (MNIST) target data (SVHN)

AdaMatch 79.39% 20.46%
AdaMatch+CN-Channels 99.21% 43.80%

TABLE IX: Test accuracy of AdaMatch and AdaMatch with

context normalization (AdaMatch+CN-Channels) using source

domain (MNIST) as context identier.

model source data (MNIST) target data (SVHN)

AdaMatch 79.39% 20.46%
AdaMatch+CN-Channels 94.45% 23.22%

TABLE X: Test accuracy of AdaMatch and AdaMatch with

context normalization (AdaMatch+CN-Channels) using target

domain (SVHN) as context identier.

In general, the clear improvement that context normalization

brings in terms of validation can be seen in Tables IX and X.

Normalizing with CN-Channels takes the target task into

account. The source domain (MNIST) is labeled as opposed

to the target domain (SVHN), which could explain why using

MNIST as the context identier in AdaMatch+CN-Channels

(ref. Tables IX and X) gives better results.

V. CONCLUSION

We have proposed a novel approach called ”context nor-

malization” (CN) that enhances deep neural network training

in terms of training stability, fast convergence, higher learning

rate, and viable activation functions. Similar to the conven-

tional mixture normalization (MN) method, our approach is

driven by the hypothesis that any continuous function can be

approximated in some sense by a weighted sum of Gaussian

distributions with nite mean vectors and covariance matri-

ces. In other words, our methodology assumes that the data

distribution is a mixture of Gaussian models. However, unlike

the mixture normalization technique that invokes the expecta-

tion maximization (EM) algorithms to estimate the Gaussian

components parameters, our proposed methodology relies on

the notion of concept that represents a cluster of related data.

In fact, a supervised deep neural network is built and trained

in order to learn the Gaussian components parameters. Once

these optimal values are determined after convergence, they are

utilized during the CN procedure performed on a deep neural

network activation layer. CN alleviates the slow estimation

of Gaussian component parameters inherent to EM in the

scenario of large datasets. Furthermore, unlike MN, CN pro-

vides non linear decision boundaries between context which

reects more reality. Our experimental results demonstrate the

superiority of context normalization over batch normalization

and mixture normalization, showcasing enhanced convergence

and generalization performance. The proposed method, when

applied specically to images, introduces CN-Channels and

CN-Patches for training, and CN and CN+ for inference. With

its exibility to adapt various representations and tasks, context

normalization proves to be a valuable tool in some application

such as image classication.

Our short-term perspective consists in merging seamlessly

a gradient free optimization algorithm with a gradient-based

error optimizer in order to reach global convergence. We

believe that this objective will boost training of deep neural

networks further. This precision margin gained allows gaining

insight into the neuron activation level sensitivity.

REFERENCES

[1] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decor-
relation,” The American Statistician, vol. 72, no. 4, pp. 309–314, 2018.

[2] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efcient backprop,”
in Neural networks: Tricks of the trade. Springer, 2002, pp. 9–50.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectiers:
Surpassing human-level performance on imagenet classication,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International

conference on machine learning. PMLR, 2015, pp. 448–456.
[5] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization

techniques in training dnns: Methodology, analysis and application,”
arXiv preprint arXiv:2009.12836, 2020.

[6] M. M. Kalayeh and M. Shah, “Training faster by separating modes of
variation in batch-normalized models,” IEEE transactions on pattern

analysis and machine intelligence, vol. 42, no. 6, pp. 1483–1500, 2019.
[7] D. M. Titterington and A. RM, “A. f. smith, and ue makov, 1985

statistical analysis ofnite mixture distributions.”
[8] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for

artistic style,” arXiv preprint arXiv:1610.07629, 2016.

[9] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsu-
pervised image-to-image translation,” in Proceedings of the European

conference on computer vision (ECCV), 2018, pp. 172–189.
[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” JOURNAL OF THE

ROYAL STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38,
1977.

[11] H. Noh, T. You, J. Mun, and B. Han, “Regularizing deep neural
networks by noise: Its interpretation and optimization,” Advances in

Neural Information Processing Systems, vol. 30, 2017.
[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.
[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[14] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian
institute for advanced research),” 2009. [Online]. Available: http:
//www.cs.toronto.edu/∼kriz/cifar.html

[15] ——, “CIFAR-100 (canadian institute for advanced research),” 2009.
[Online]. Available: http://www.cs.toronto.edu/∼kriz/cifar.html

[16] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[17] Y. Lou, Y. Bai, J. Liu, S. Wang, and L.-Y. Duan, “VERI-wild: A large
dataset and a new method for vehicle re-identication in the wild,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 3235–3243.
[18] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks

applied to house numbers digit classication,” in Proceedings of the 21st

international conference on pattern recognition (ICPR2012). IEEE,
2012, pp. 3288–3291.

[19] T. Tieleman and G. Hinton, “Divide the gradient by a running average of
its recent magnitude. coursera: Neural networks for machine learning,”
Technical report, 2017.

[20] D. Arthur and S. Vassilvitskii, ““k-means++: The advantages of careful
seeding,” in proceedings of the eighteenth annual acm-siam symposium
on discrete algorithms, ser. soda’07. philadelphia, pa, usa: Society for
industrial and applied mathematics,” 2007.

[21] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classication using deep learning,” arXiv preprint arXiv:1712.04621,
2017.

[24] Y. Xu, A. Noy, M. Lin, Q. Qian, H. Li, and R. Jin, “Wemix: How
to better utilize data augmentation,” arXiv preprint arXiv:2010.01267,
2020.

[25] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research

on machine learning applications and trends: algorithms, methods, and

techniques. IGI global, 2010, pp. 242–264.
[26] G. Haro, M. Bertalmı́o, and V. Caselles, “Visual acuity in day for night,”

International Journal of Computer Vision, vol. 69, pp. 109–117, 2006.
[27] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by

learning an invariant mapping,” in 2006 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2.
IEEE, 2006, pp. 1735–1742.

[28] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief review
of domain adaptation,” Advances in Data Science and Information

Engineering: Proceedings from ICDATA 2020 and IKE 2020, pp. 877–
894, 2021.

[29] D. Berthelot, R. Roelofs, K. Sohn, N. Carlini, and A. Kurakin,
“Adamatch: A unied approach to semi-supervised learning and domain
adaptation,” arXiv preprint arXiv:2106.04732, 2021.

[30] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016.

