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Abstract

The semi-empirical nature of best-estimate models closing the balance equa-
tions of thermal-hydraulic (TH) system codes is well-known as a significant source
of uncertainty for accuracy of output predictions. This uncertainty, called model
uncertainty, is usually represented by multiplicative (log-)Gaussian variables whose
estimation requires solving an inverse problem based on a set of adequately cho-
sen real experiments. One method from the TH field, called CIRCE2, addresses
it. We present in the paper a generalization of this method to several groups of
experiments each having their own properties, including different ranges for input
conditions and different geometries. An individual (log-)Gaussian distribution is
therefore estimated for each group in order to investigate whether the model uncer-
tainty is homogeneous between the groups, or should depend on the group. To this
end, a multi-group CIRCE is proposed where a variance parameter is estimated for
each group jointly to a mean parameter common to all the groups to preserve the
uniqueness of the best-estimate model. The ECME algorithm for Maximum Like-
lihood Estimation developed in [1] is extended to the latter context, then applied
to relevant demonstration cases. Finally, it is tested on a practical case to assess
the uncertainty of critical mass flow assuming two groups due to the difference of
geometry between the experimental setups.

1. Introduction

Numerical simulations are used in the field of nuclear engineering and research to
design innovating systems and to achieve safety demonstration and licensing of power
plants. In the three past decades, a new methodology has emerged, named Best Estimate
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Plus Uncertainty (BEPU) [2, 3, 4], to reproduce nominal and accidental conditions of a
nuclear power plant with a thermal-hydraulic system code. This methodology aims to
simulate as realistically as possible System Response Quantities (SRQs), for example the
peak cladding temperature during a loss-of-coolant accident.

Identifying and quantifying the sources of uncertainty tainting the BEPU simulations
is thus a necessary stage as part of a Verification, Validation and Uncertainty Quantifica-
tion (V&V UQ) process [5, 6]. Those uncertainties mostly arise from numerical approx-
imations (mesh size, nodalization) and physical simplifications due to the use of Closure
Relationships (CRs) for mass, momentum and energy balance equations. Being semi-
empirical, every CR suffers from model uncertainty, also called epistemic uncertainty.
This is often represented by a multiplicative random factor that is intrinsically more
suited to thermal-hydraulic experiments with SRQs of different scales (than an additive
uncertainty) [7].

Such a probabilistic treatment of model uncertainty is convenient because of ease
of forward propagation through Monte-Carlo sampling [8, 9]. The distribution of each
random factor is usually estimated by means of some adequate experimental data col-
lected from down-scaled simplified experimental facilities, known as Separate Effect Tests
(SETs) [10]. A probabilistic equation relates those data to the corresponding simulations
whose inputs contain the random factor(s) to estimate. Solving such an inverse problem
can be carried out by several methods (see [11] for an up-to-date comprehensive review).
Among them, the CIRCE method developed in CEA3 is often employed [12, 13]. This
method assumes that each factor follows a Gaussian distribution whose mean and vari-
ance are estimated by maximizing the likelihood function related to the inverse problem.
The statistical algorithm used by CIRCE for doing so is called ECME for Expectation/-
Conditional Maximization Either [1].

Among the limitations in using CIRCE, the small number of experimental data points
can lead to poor statistical precision. In such a small data context, the reliability of the
estimates also strongly depends on the adequacy of the experimental database with regard
to the phenomenon of interest. Some guidelines have been presented in the SAPIUM
project [14] to choose adequately the tests of the database by means of the criteria of
representativeness and completeness [14, 15]. Until now in using CIRCE, the adequate
experimental database has been made up of several groups of tests reproducing the same
physical phenomenon. In general, each group comes from different setups characterized
by different geometries and/or input conditions. However, no posterior check has yet
been performed to confirm whether or not CIRCE may assume the same magnitude of
uncertainty for all the groups. In fact, the resulting uncertainty might be an average of
the different probability distributions that would be estimated if CIRCE were applied
on each group separately. The risk is therefore to underestimate the uncertainty of one
or several group(s). This problem has motivated us to suggest a generalization of the
CIRCE method, called the multi-group CIRCE.

3The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research,
development and innovation in nuclear and renewable energies.
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Indeed, even though the multiplicative uncertainty factor is generally suitable to
capture the different scales of the experimental data, this may not be fully true in some
instances. Thus, the probability distribution of the factor should change between the
groups in order to fully capture the scaling of the uncertainty. In this context, the multi-
group CIRCE aims to evaluate whether or not the multiplicative uncertainty must embed
a dependence on the geometry and/or input conditions.

The multi-group CIRCE is based on a novel ECME algorithm for Maximum like-
lihood estimation which computes a Gaussian probability distribution for each group.
More precisely, a specific variance parameter is estimated for each group but the mean
parameter is kept constant across the groups. The latter assumption allows us to pre-
serve the uniqueness of the best-estimate model, that we define as the reference model
established by thermal-hydraulic experts shifted by the estimated mean.

The paper is organized as follows. Section 2 recalls the statistical basis of the CIRCE
method and guidelines for a proper use. Section 3 presents the new ECME algorithm
for several groups of experiments. Section 4 deals with two academic examples that
illustrate the multi-group CIRCE. Section 5 deals with a TH application to quantify the
uncertainty of critical mass flow. Section 6 ends the paper with conclusions.

2. The CIRCE method

2.1. Modeling
The CIRCE method aims to quantify the uncertainty of TH models via multiplicative

random factors that are assumed to follow (log-)Gaussian distributions. Let Mref be the
reference mathematical expression of a TH model having scalar responses, such that

MΛ(x, θ) := Λ×Mref (x, θ) (1)

with x ∈ Rd and θ ∈ Rd′ being respectively input physical conditions (e.g. initial and
boundary conditions, geometry parameters) and constant calibration parameters. Since
the reference model is multiplied by the (log-)Gaussian random variable Λ, the resulting
model in Eq. (1) is random and quantifies model uncertainty. Although there may be
experimental and epistemic uncertainties, respectively in x [16] and θ [17, 7], we assume
them to be negligible in this work.

Models MΛ act as closure relationships of the balance equations on which best-
estimate system codes rely. Prior to propagation of model uncertainty to output SRQ(s)
simulated by those codes, the probability distribution of Λ has to be quantified using
adequate experimental data collected from down-scaled simplified facilities called SETs.
As experimental data are often only indirect realizations of MΛ, the system code, denoted
by G(.), will be used to relate them to Λ.

As the simulations carried out by G(.) to predict those experimental data may de-
pend on several closure relationships, Λ is considered in the sequel as a p-dimensional
(log-)Gaussian vector Λ ∼ N (m,Σ) with mean vector m ∈ Rp and variance matrix
Σ ∈ Mp(R). Each component Λj (1 ≤ j ≤ p) of Λ is thus a (log-)Gaussian variable ap-
plied to a particular closure relationship. Then, for 1 ≤ i ≤ n with n being the number
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of selected experimental data, we postulate the following equation relating the latter to
the corresponding simulations:

Yi = G(λi,xi) + ϵi (2)

where

• Yi ∈ R is the ith observed experimental SRQ,

• λi = (λi1, · · · , λip)T ∈ Rp is the ith unobserved realization of Λ,

• xi contains the conditions of the ith experiment, assumed known,

• ϵi is the ith observed realization of Ei ∼ N (0, Ri) which models the experimental
uncertainty tainting Yi. If the variance Ri is unknown, it is set to 0. In this case,
the estimated Σ may be inflated to "incorporate" the unknown Ri.

Based on Eq. (2), the goal of the CIRCE method is to estimate both the mean vector

m = (m1, · · · ,mp)
T (3)

and variance matrix Σ. As the number n of experimental SRQs is generally small (a
few tens/hundreds in the majority of applications), the CIRCE method assumes that the
matrix Σ is diagonal to reduce the number of parameters being estimated:

Σ = diag(σ21, · · · , σ2p). (4)

This means that the CIRCE method sets that the uncertain factors involved in Eq. (2)
are statistically independent among each other. Furthermore, the method requires that
Eq. (2) is linearized in λi at the reference model. Let Hi = (Hi1, · · · , Hip) be the p-
dimensional vector consisting, for 1 ≤ j ≤ p, of the partial derivatives Hij of the code
output G(λi,xi) in λij evaluated at the linearization site λnom = (1, 1, · · · , 1)T ∈ Rp

(the 1-vector of size p). Then, Eq. (2) is transformed into

Y ′
i = Hiλ

′
i + ϵi (5)

where Y ′
i = Yi − G(λnom,xi) and λ′

i = λi − λnom ∈ Rp. The vector Y ′ := (Y ′
1 , · · · , Y ′

n)
thus follows a multivariate Gaussian distribution with probability density

L(Y ′|m,Σ) =
n∏

i=1

1√
2π(HiΣHT

i +Ri)
exp

(
− 1

2

(Y ′
i −Hi(m− λnom))2

HiΣHT
i +Ri

)
. (6)

This function is called the likelihood function. The CIRCE method aims to maximize it
provided that the matrix H = [HT

1 , · · · , HT
n ]

T ∈Mn,p(R) has full rank.

Let us denote a Maximum Likelihood Estimator (MLE) by θ̂ := (m̂, Σ̂) ∈ R2p. The al-
gorithm implemented by CIRCE to compute an MLE is called ECME, for Expectation/-
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Conditional Maximization Either. It can generate successive estimates θk = (mk,Σk)
which can converge to a MLE when k increases [18].

In the rest of the paper, the prime symbol ′ used in both Eqs. (5) and (6) will
be omitted for simplicity. Hence Yi and λi have to be viewed as the experimental and
unobserved model uncertainty realizations shifted respectively by G(λnom,xi) and λnom.

2.2. Estimation via the ECME algorithm
The ECME algorithm relies on the so-called "complete likelihood", which is writ-

ten as the joint probability distribution of Z := (Y, λ) with Y and λ synthesizing the
experimental samples {Yi}1≤i≤n and unobserved samples {λi}1≤i≤n respectively:

L(Z|m,Σ) = L(Y |λ,m,Σ)L(λ|m,Σ) (7)

where both densities are Gaussian, such that

L(Y |λ,m,Σ) =
n∏

i=1

1√
2πRi

exp
(
− 1

2

(Yi −Hiλi)
2

Ri

)
(8)

and

L(λ|m,Σ) =
n∏

i=1

1√
(2π)p|Σ|

exp
(
− 1

2
(λi −m)TΣ−1(λi −m)

)
. (9)

The log-likelihood is then equal to

l(Z|m,Σ) = l(Y |λ,m,Σ) + l(λ|m,Σ). (10)

After choosing a starting point (m0,Σ0), the following two steps are run sequentially
until convergence to θ̂.

1. Step of Expectation (E): calculation of

Q((m,Σ), (mk,Σk)) = Eλ[l(Z|m,Σ)|Y,mk,Σk]

where the expectation is taken with respect to the distribution of λ conditional on
(Y,mk,Σk).

2. Steps of Conditional Maximization (CM):

• CM1: Σk+1 = argmax
Σ

Q((m,Σ), (mk,Σk)),

• CM2: mk+1 = argmax
m

l(Y |mk,Σk+1).

Hereafter, both CM1 and CM2 steps lead to exact updates of mk+1 and Σk+1 as functions
of mk and Σk.
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Proposition 1. The two steps of conditional maximization CM1 and CM2 are solved by
the following updating formulas. For 1 ≤ j ≤ p

CM1. (σ2)k+1
j = (σ2)kj +

1

n

n∑
i=1

[(
Bk

ij(V
k
i )

−1Ak
i

)2
− (Bk

ij)
2(V k

i )
−1

]
,

CM2. mk+1 =

(
n∑

i=1

HT
i (V

k+1
i )−1Hi

)−1( n∑
i=1

HT
i (V

k+1
i )−1Yi

)
,

with scalar quantities Ak
i , B

k
ij and V k

i respectively equal to Yi − Him
k, (σ2j )

kHij and
HiΣ

k+1HT
i +Ri.

Proof. See Appendix A.

Remark. Let us stress that the CM1 and CM2 formulas are special cases of those
presented in [1]. In the latter work, every Yi can be a vector and Σ is not assumed to be
a diagonal matrix, which results in updating Σk instead of σk.

The ECME algorithm should be run from several random starting points (m0,Σ0)
to escape possible local maxima. When both p = 1 and ϵi = 0 for every 1 ≤ i ≤ n, the
ECME algorithm is unnecessary because a MLE is simply given by the empirical mean
and variance of the YiH−1

i samples.

2.3. Statistical reliability of the estimates and falsification

Let θ̂ := (m̂, Σ̂) be a MLE. The variance of θ̂ will decrease with increasing n and
also depends on the sensitivity of the code responses to the Gaussian variables being
estimated.

Proposition 2. The Fisher information of (m,Σ) is a block diagonal matrix whose
diagonal blocks are respectively equal, for 1 ≤ j, k ≤ p, to

I(mj ,mk) =
n∑

i=1

HijHik

HiΣHT
i +Ri

and I(σ2j , σ
2
k) =

1

2

n∑
i=1

H2
ijH

2
ik

(HiΣHT
i +Ri)2

. (11)

Proof. See Appendix B, where the Fisher information matrix is also defined.

This proposition can be used to compute an approximation of the asymptotic variance
of m̂ and σ̂2j for 1 ≤ j ≤ p. Indeed, if the cross terms of each block of the Fisher
information matrix are negligible, we have

Var[m̂j ] ≈ I(mj ,mj)
−1 and Var[σ̂2j ] ≈ I(σ2j , σ

2
j )

−1. (12)

Therefore, the higher n or the higher the derivatives components Hij associated with Λj ,
the smaller the asymptotic variances of (m̂j , σ̂

2
j ). An indicator of statistical identifiability
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of Λj was introduced in [1]. It is called NEC (Normalized Error Coefficient), defined as

NECj =

√
Var[m̂j ]

σ̂j
1 ≤ j ≤ p. (13)

The closer this ratio to 0, the better Λj is well-identified.

In using CIRCE, the normality and linearity assumptions may be flawed. On the
one hand, normality must be inspected through the standardized predicted residuals
whose probability distribution must be as consistent as possible with that of the standard
Gaussian. The standardized residuals, denoted by ei, are equal to:

ei =
Yi −Him̂√
HiΣ̂HT

i +Ri

1 ≤ j ≤ n. (14)

A Q-Q plot presenting the theoretical quantiles versus the empirical quantiles of the stan-
dardized residuals can diagnose a possible disagreement to normality. This plot should
be complemented by normality tests [19]. On the other hand, the linearity assumption
must be inspected across the estimated 95% prediction interval of Λj , equal to

PI95%(Λj) = [m̂j − 1.96σ̂j , m̂j + 1.96σ̂j ] 1 ≤ j ≤ p. (15)

If m̂j is not close to λnom,j or σ̂j is too large, the linear approximations and the true
code responses can hardly match each other across the whole length of the interval in
Eq. (15). In such a case, the CIRCE method must be re-run after linearizing anew the
code responses at λnom,j := m̂j . This is called iterative CIRCE. Also it is possible that
the linear approximations are more accurate in log Λj . The multiplicative factor Λj thus
becomes a log-Gaussian variable and Eq. (15) is replaced by

PI95%(Λj) = [exp (m̂j − 1.96σ̂j), exp (m̂j + 1.96σ̂j)]. (16)

3. Generalization of CIRCE to several groups of experiments

Frequently an adequate experimental database is composed by several data points
obtained from different experimental setups. The usual practice is to put all the data
points together to form a single experimental database from which the ECME algorithm
is run. The problem is then to mask a possible difference in the magnitude of the
uncertainty between the groups. To avoid this, we present an extension of the ECME
algorithm where q variance parameters (one for each group) and a single mean parameter
(the same for every group) are estimated all together. By contrast with the unpooled
model where the mean and variance for each group are estimated separately, the mean
parameter is here kept constant between the q groups to preserve the uniqueness of the
best-estimate model.
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3.1. The multi-group ECME algorithm
From now on, let us denote the whole set of experimental data

Y := (Y 1, · · · , Y s, · · · , Y q)T ∈ Rn ; 1 ≤ s ≤ q (17)

with Y s being the vector of experimental data corresponding to the sth group of experi-
ments. Thus, Y is now partitioned into q groups Y s for 1 ≤ s ≤ q. Let ns be the size of
Y s. Then,

n =

q∑
s=1

ns. (18)

We also denote by is the index of the last data point of the sth group. By setting i0 := 0,
then ns = is − is−1 for 1 ≤ s ≤ q. The indexing of data points Yi composing Y is thus
comprised between 1 = i0 + 1 and n = iq.

Let σ2s = (σ2s,1, · · · , σ2s,p)T ∈ Rp be the variance parameter of unobserved realizations
λi of the sth group for is−1 + 1 ≤ i ≤ is. Thus, we have

λi ∼ N
(
m,Σs := diag(σ2s)

)
. (19)

The likelihood can now be written as:

L(Y |m,Σ1, · · · ,Σq) =

q∏
s=1

is∏
i=is−1+1

1√
2π(HiΣsHT

i +Ri)
exp

(
− 1

2

(Yi −Him)2

HiΣsHT
i +Ri

)
.

(20)
The next proposition presents the ECME algorithm extended to this multi-group likeli-
hood.

Proposition 3. The two steps of conditional maximization CM1 and CM2 lead to the
following updating formulas:

1) (σ2s,j)
k+1 = (σ2s,j)

k +
1

ns

is∑
i=is−1+1

((
Bk

ij(V
k
i )

−1Ak
i

)2
− (Bk

ij)
2(V k

i )
−1

)
,

∀j = 1, . . . , p, ∀s = 1, . . . , q;

2) mk+1 =

(
n∑

i=1

HT
i (V

k+1
i )−1Hi

)−1( n∑
i=1

HT
i (V

k+1
i )−1Yi

)
.

where the scalar quantities Ak
i , B

k
ij and V k

i are now defined respectively as Yi − Him
k,

(σ2s,j)
kHij and HiΣ

k
sH

T
i +Ri for is−1 + 1 ≤ i ≤ is.

Proof. See Appendix C.

Once the algorithm has converged to m̂ and σ̂2s (1 ≤ s ≤ q), the identifiability of
the estimation for each group must be checked using the NEC indicator presented in Eq.
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(13). In the multi-group context, this indicator is written for the sth group of the jth
factor as

NECs,j =

√
Var[m̂j ]

σ̂s,j
1 ≤ s ≤ q, 1 ≤ j ≤ p. (21)

The components of the block diagonal Fisher information matrix needed to calculate it
are now equal to:

I(mj ,mk) =

q∑
s=1

is∑
i=is−1+1

HijHik

HiΣsHT
i +Ri

(22)

and

I(σ2s,j , σ
2
s,k) =

1

2

is∑
i=is−1+1

H2
ijH

2
ik

(HiΣsHT
i +Ri)2

. (23)

The proof is similar to that done for the regular CIRCE.

3.2. Statistical significance of the variance difference between groups
A testing procedure can be implemented to assess the degree of statistical evidence

that the variances of the groups are different to one another. To this end, we can perform
a Wald test [20] applied to the following null hypothesis:

H0 : σ2s − σ2s′ = 0, 1 ≤ s ̸= s′ ≤ q. (24)

The Wald statistic is written as:

W =
(σ̂2s − σ̂2s′)

2

Var[σ̂2s ] + Var[σ̂2s′ ]− 2Cov(σ̂2s , σ̂2s′)
∼ χ2(1) under H0, (25)

with χ2(1) denoting the chi-square distribution with one degree of freedom. The variance
terms in the denominator of Eq. (25) can be obtained from the coefficients of the Fisher
information matrix. The test can be applied to each pair of indices 1 ≤ s ̸= s′ ≤ q.

If the test is not rejected at, say, the usual 5% significance level, then it does not
necessarily mean that the single variance model is more appropriate than the multi-group
model. Another way to decide between the two models is to deal with model selection.
In a MLE framework, two models can be compared to each other through the Akaike
information criterion (AIC) [21, 22], which is a comparison of the likelihood values of
each model evaluated at their MLE including a penalty linked to the number of estimated
parameters denoted by nθ:

AIC = 2nθ − 2l(Y |θ̂). (26)

Here for the regular CIRCE model, nθ = 2p, while for the multi-group one, nθ = (q+1)p.
The lower the AIC criterion, the better the model quality.
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Figure 1: Left: Scaling induced by the regular CIRCE (σ2 = 0.04). Right: Scaling has two regimes:
σ2 = 0.04 when H < 10 and σ2 = 0.12 when H ≥ 10. The dotted lines delimit the 95% uncertainty.

4. Numerical academic examples

4.1. A first demonstration example
We present a one-dimensional academic application of the multi-group CIRCE. First,

we assume that for 1 ≤ i ≤ n = 100,

Yi = Hiλi + ϵi (27)

with λi ∼ N (m = 1, σ2 = 0.04) and ϵi ∼ N (0, Ri = 0.01Hi). Hence,

Yi ∼ N (Hi, 0.04H
2
i + 0.01Hi). (28)

If Hi (and thus Yi) ranges several orders of magnitude, then the distribution of Yi scales
up accordingly (see Figure 1 on the left). By contrast, the assumption of the multi-group
CIRCE is that several scaling regimes (or groups) exist. An illustration of this with two
groups is presented in Figure 1 on the right where σ2 is tripled from Group 1 to Group
2. Thus we have

Yi ∼ N (Hi, 0.04H
2
i + 0.01Hi) if Hi < 10 (29)

Yi ∼ N (Hi, 0.12H
2
i + 0.01Hi) if Hi ≥ 10. (30)

We have chosen arbitrarily 40 data points for Group 1 and 60 data points for Group
2. The two groups are thus made up of Y1, · · · , Y40 and Y41, · · · , Y100 sampled from Eq.
(29) and Eq. (30), respectively. The ECME algorithm presented in Section 2.2 was run
using all the data points Y1, · · · , Y100, returning the following MLEs

m̂ ≈ 1.012 and σ̂2 ≈ 0.078. (31)

Figure 2 on the left presents the resulting 95% uncertainty interval for Y . We can count
0 and 7 points outside it for Group 1 and 2 respectively. The regular CIRCE thus
underestimates the uncertainty of Group 2, and conversely for Group 1.

10



Figure 2: Left: estimation by the regular ECME algorithm. Right: estimation by the multi-group ECME
algorithm.

To fix this, the multi-group ECME was run. The MLEs obtained are equal to

m̂ ≈ 1.002 (32)

and
σ̂21 ≈ 0.031 σ̂22 ≈ 0.107. (33)

These variance estimates are coherent with the true values (σ21, σ22) = (0.04, 0.12). Figure
2 on the right presents the corresponding 95% uncertainty interval for Y . We can now
count 2 points outside for each group, which is more consistent with the expected 95%
coverage frequency. The two scaling regimes have been reconstructed well. The Wald
statistic given in Eq. (25) is equal to W = 12.99 which, as expected, largely exceeds the
5% rejection threshold (W = 3.84).

4.2. An example in higher dimension
We simulated a vector Y of artificial data according to Eq. (27) where λi is now a

3-dimensional vector (p = 3). We considered three groups with same size ñ := n1 =
n2 = n3, such that

Y = (Y 1, Y 2, Y 3)T ∈ Rn, n = 3ñ. (34)

with Y s ∈ Rñ (s = 1, 2, 3). The data Y were simulated with a matrix H ∈ Mn,3(R)
whose elements of each column H⋆j (j = 1, 2, 3) were sampled from the following uniform
distributions:

Hi1 ∼ U(60, 90), Hi2 ∼ U(40, 70), Hi3 ∼ U(20, 50), 1 ≤ i ≤ n. (35)

The parameters of the three factors for each group were set as follows:

(m1,m2,m3) = (1, 2, 4) (36)

11



and σ2s,1 = σ2s,2 = σ2s,3

=


0.9 s = 1
0.3 s = 2
0.6 s = 3

(37)

Lastly, the noise variances Ri were all zero.

From the simulated data Y , both the accuracy and precision of MLE computed by
the multi-group ECME algorithm were assessed for increasing sizes of ñ:

ñ = 125, 250, 500, 1000. (38)

For each size, 500 replications were carried out involving the random generation by Eq.
(27) of 500 different data sets Y . Each replication yielded a MLE θ̂ computed by the
multi-group ECME. Let us recall that, as we have considered three factors and three
groups for each factor, θ̂ consists of three mean estimates m̂j (j = 1, 2, 3) and three
variance estimates σ̂2s,j for each group (s = 1, 2, 3). Figures 3 and 4 present violin plots
comparing the empirical distributions of the mean and variance estimates respectively.
These distributions appear to be close in average to the true values of parameters given
by Eqs. (36) and (37), while the variances computed over the 500 replications fall with
increasing ñ. For each of the three groups (s = 1, 2, 3), we can also see in Figure 4
that the variance component σ2s,j is more precisely estimated for the first factor j = 1
(followed by the second and third factors j = 2, 3). This was expected because the larger
H⋆j the better the MLE precision, which is supported by the expression of the Fisher
information matrix in the asymptotic regime (see Eqs. (22) and (23)).

Note that in Figure 4, a small portion of the variance estimates are negative. This
is a well-known difficulty of mixed effect models in statistics (see for instance [23] and
reference therein). The multi-group CIRCE belonging to this class of models, it is thus
affected by this difficulty in this demonstration example. In practice, of course, negative
variance estimates should be replaced by zero. More elaborated methods to guarantee
non-negative variance estimates exist, again see [23] and references therein. Nevertheless,
these methods are not the object of our work. In particular in the real data considered
in Section 5, all variance estimates are non-negative.

Then, Figure 5 presents the NEC identifiability indicators given by Eq. (21) where
Var[m̂j ] and σ̂s,j have been computed over the 500 replications4. Not surprisingly, every
NEC decreases with increasing ñ. Consistently with Figure 4, the NECs,1 indicator is
the lowest at fixed ñ followed by the NECs,2 and NECs,3 (for each s = 1, 2, 3).

Although ñ = 125 would already be considered as a large database by thermal-
hydraulic experts, the associated NEC indicators vary between 0.3 and 0.83, which is
not indicative of strong identifiability (the closer the NEC to 0, the stronger the identifi-
ability). This is due to the fact that several factors are estimated together in the inverse
problem, which limits the joint statistical identifiability of all the factors involved [24].

4σ̂s,j is taken as the expectation of the 500 corresponding estimates.
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Figure 3: Upper left (resp. upper right, bottom): violin plots of m̂1 (resp. m̂2, m̂3) constructed over 500
replications. The dotted red line on each plot is the true value of the corresponding mean parameter.
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Figure 4: Upper left: violin plots of the variance estimates σ̂2
1,j of the first group for each factor Λj

constructed over 500 replications. Upper right (resp. bottom): Same plot for the variance estimate σ̂2
2,j

(resp. σ̂2
3,j). The dotted red line on each plot is the true value of the corresponding variance parameter.

Figure 5: Decrease in NECs,j on the y-axis against the group size ñ on the x-axis.
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Figure 6: Diagram of the two test sections of the BETHSY experiment.

In the next section, we apply the multi-group CIRCE method for uncertainty quan-
tification of the critical mass flow.

5. Application to the critical mass flowrate

5.1. Description of the phenomenon
The critical mass flow rate is of primary importance to simulate the loss of coolant

accident (LOCA) in a pressurized water reactor (PWR) [25]. In such an accident, the
entire system is depressurized and the mass inventory in the core decreases because of a
discharge of coolant flow from higher to lower pressure at the break section. As the mass
flow rate is independent of the downstream pressure, its maximum value called critical
mass flow (or chocked flow) is reached. A good prediction of the critical mass flow is
thus needed to well-predict the time evolution of the mass inventory in the core.

The study of critical mass flow is commonly conducted on SETs for which pressures,
temperatures and critical mass flow rates can be measured. The experiment of interest
comes from the test facility named BETHSY Nozzle, which mimics the break occurring
in a LOCA via a convergent test section. Figure 6 presents the two test sections, that we
now refer to B2 and B6 respectively. After a careful inspection of the whole BETHSY
database [26], the adequate experiments picked for uncertainty quantification consist of
n1 = 25 tests from the 2 inches section and n2 = 24 from the 6 inches section. Table 1
presents the physical ranges of input conditions.

The TH simulations of the B2 and B6 tests are carried out with the CATHARE 2
system code [27]. Five closure models of this code may impact the numerical prediction of
the critical mass flow rates, including both interfacial and steam-to-liquid friction factors
as well as flashing. Recent work has shown that the latter phenomenon is predominant in
the code responses accuracy [26]. Thus we neglect the role played by the other phenomena
and then concentrate on uncertainty of the flashing model.

In the next, we will evaluate whether the uncertainty of the flashing model is influ-
enced by the geometry (scaling of the test section). To do so, the results of the regular
CIRCE method will be compared to those of the multi-group generalization.
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Pressure (bar) 30; 70; 100
Temperature (◦C) [203, 311]

Table 1: Input conditions ranges of the BETHSY experiments.

Figure 7: Left: Output uncertainty after propagating the regular CIRCE uncertainty. Right: Zoom on
the B2 points. The y-axis corresponds to the experimental mass flow rates shifted by the reference
simulations run at λnom = 1.

5.2. Application of the regular CIRCE
Regular CIRCE was first applied with all the n = 49 mass flow measurements re-

gardless of whether a test is B2 or B6. The best accuracy of the linear approximations
of the code responses was obtained in log Λ. The resulting distribution of Λ applied to
the flashing model is thus log-Gaussian, parametrized by the mean m and variance σ2 of
log Λ. Assuming that the experimental uncertainty is negligible (ϵi = 0 for 1 ≤ i ≤ 49),
we have obtained the MLEs5 below:

m̂ = 0.68 and σ̂2 = 0.21. (39)

The corresponding 95% prediction interval given in Eq. (16) is equal to:

PI95%(Λ) = [0.81, 4.83]. (40)

The log-normal distribution with parameters given in Eq. (39) can then be propagated
to the model output by the derivative matrix H. Figure 7 displays the resulting 95%
uncertainty ranges along with the B2 and B6 group of points. We can observe that the
uncertainty is quite oversized for the B6 points colored in blue. In Figure 8, we have also
inspected the normality assumption underpinning CIRCE from the distribution of the
standardized predicted residuals. When the residuals include all the B2 and B6 points
together, the Kolmogorov-Smirnov (KS) normality test is not rejected at the level of 5%

5As p = 1 and ϵi = 0, the ECME algorithm is unnecessary to compute them (see the end of Section
2.2).
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(p = 0.92). It is rejected if applied only to the B2 points though (p = 0.03). Same thing
happens if applied only to the B6 points (p = 0.003).

The previous analysis shows us that each group of experiments may have its own
range of uncertainty, which is overlooked by the regular CIRCE method. Therefore, the
multi-group CIRCE with the B2 and B6 groups is carried out in the next section.

Figure 8: Distribution of the standardized predicted residuals {ei}1≤i≤49: B2 (red bars) and B6 (blue
bars).

5.3. Application of the multi-group CIRCE on the B2 and B6 groups
The multi-group ECME algorithm presented in Section 3 has been run to the two

groups of B2 and B6 points (q = 2). The MLEs obtained are equal to

m̂ = 0.57 (41)

and
σ̂2B2 = 0.31 σ̂2B6 = 0.13. (42)

The variance of the B2 group is larger than that of the B6 group. The NEC indicators
for the first and second group are equal to 0.11 and 0.17 respectively. The corresponding
95% prediction intervals are equal respectively to

PI95%(ΛB2) = [0.60, 5.26] (43)

and
PI95%(ΛB6) = [0.88, 3.57]. (44)

The algorithm detects that the magnitude of uncertainty is not the same between the
B2 and B6 experiments. The prediction intervals in Eqs. (43) and (44) are respectively
larger and smaller than the one in Eq. (40) obtained with the regular CIRCE. Figure 9
presents the corresponding uncertainty ranges for the critical mass flow rate predictions
shifted by the reference calculations, which now scale differently for the two groups. The
prediction uncertainty of the B6 group actually gets narrower than that of the regular
CIRCE, and conversely for the B2 group.
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Figure 9: Left: Output uncertainty after propagating the multi-group CIRCE uncertainty. Right: Zoom
on the B2 points.

Figure 10 then presents the standardized predicted residuals for each group in red
against those coming from the regular CIRCE in blue (which were displayed in Figure
8). We can observe that the distribution of the B2 residuals is a bit less dispersed now,
and conversely for the distribution of the B6 residuals. The p-values of the KS test for
the B2 and B6 residuals are equal to 6× 10−3 and 0.053 respectively. At the level of 5%,
the Gaussian assumption is still rejected for the B2 experiments, though.

Finally, the Wald statistic W presented in Section 3 has been calculated to evaluate
whether the difference between the two variance estimates is significant. The test relies
on the asymptotic variances of σ̂2B2 and σ̂2B6 equal to the inverse of their Fisher informa-
tion (see Section 3). We calculated W = 3.62. As P[χ2(1) ≤ 3.84] = 0.95, the equality
of variances is not rejected at the 5% level (although it is close). The AIC criterion is
equal to −19.2, which is slightly larger than that of the pooled CIRCE (−19.4). From a
statistical point of view, there is thus no reason to prefer using the unpooled model to the
pooled model until more experimental data are collected to re-run the estimations. Nev-
ertheless, since the uncertainties applied to closure relationships must be demonstrated
to be conservative, the unpooled model is less likely to provide undersized uncertainty
intervals.

In this real application, we do emphasize that the assumption of a constant mean
shared by the two groups is likely to be wrong. In fact, most of the B6 predicted residuals
are below the mean prediction and conversely for the B2 predicted residuals. However,
the multi-group CIRCE can, better than the regular CIRCE, work with the incorrectness
of the common mean assumption that may be compensated by inflating the σ2 differently
for the two groups (which the regular CIRCE cannot do).

6. Conclusion

CIRCE is a well-established statistical method based on discrepancies between TH
simulations and counterpart real experiments that estimates the probability distributions
of the multiplicative factors applied to closure models. The method, which thus falls
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Figure 10: Distribution of the standardized predicted residuals: B2 (left) and B6 (right). The blue and
red bars relate to regular and multi-group CIRCE, respectively.

within the class of Inverse Problems, assumes that the factors are (log-)Gaussian, then
runs an ECME algorithm to compute the MLEs of the mean and variance parameters. In
practice, most of the closure models integrated into thermal-hydraulic system codes are
established from several adequate groups of experiments. The groups may be formed by
Separate Effect Tests (SETs) that differ in scale (geometry, TH ranges, etc). Our work
has then focused on assessing whether the parameters of the Gaussian factor(s) should
depends on the group, or not.

Therefore, we have developed a multi-group ECME algorithm which estimates a
specific variance parameter for each group keeping the mean value across all groups
constant. Such per-group algorithm is able to statistically determine either that the
magnitude of uncertainty depends on the group of experiments under consideration, or
conversely that it is homogeneous between the groups.

A limitation in applying the CIRCE method, even more pronounced with the multi-
group ECME algorithm, is when the number of thermal-hydraulic experiments is small,
i.e. between a few tens and two hundreds. As this algorithm splits the database into
several groups of experiments, the uncertainty of the MLE is likely to increase. As a
result, the Wald statistic for testing the equality of the variance parameters can hardly
reject the null hypothesis.

Finally, propagating such kind of uncertainties in transient simulations (e.g. a reactor
case) remains an open issue. Further investigations will be needed to assess the transition
between two different groups and avoid any discontinuity.
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Appendix A. Proof of Proposition 1

Let us begin by defining δi = (λi −m) ∈ Rp. Then,

Yi = Hi(δi +m) + ϵi (A.1)

with
δi ∼ N (0,Σ = diag(σ2)). (A.2)

If we denote δij the jth component of δi ∈ Rp, then

E
(

Yi
δij

)
=

(
Him
0

)
(A.3)

and for 1 ≤ j ≤ p

Var
(

Yi
δij

)
=

(
Hi diag(σ

2)HT
i +R Hijσ

2
j

σ2jHij σ2j

)
. (A.4)

Let us define
Ai = Yi −Him; Bij = σ2jHij ; Vi = HiΣH

T
i +Ri. (A.5)

With these notations, we have

E (δij | Yi) =(σ2jHij)(HiΣH
T
i +Ri)

−1(Yi −Him)

=BijV
−1
i Ai (A.6)

and

Var (δij | Yi) =σ2j − (σ2jHij)(Hi diag(σ
2)HT

i +Ri)
−1(Hijσ

2
j )

=σ2j −B2
ijV

−1
i . (A.7)

Let Zi = (Yi, δi) ∈ Rp+1 be the union of the ith experimental response and latent model
realization. The E. step of the ECME algorithm is to derive the expectation of the
complete log-likelihood with respect to the distribution of δ conditional on (Y, θk), equal
to

Q(θ, θk) = Eδ[l(Z|θ)|Y, θk] (A.8)

with θk = (mk, (σ2)k) ∈ Rp+1 and δ synthesizing the unobserved samples {δi}1≤i≤n. The
complete log-likelihood is written as:

l(Z|θ) = l(Y |δ, θ) + l(δ|θ). (A.9)

The first term is in fact independent of θ and thus maximizing Eq. (A.8) comes down to
maximizing Eδ[l(δ|θ)|Y, θk]. Defining the following canonical parameter ψ = (σ2)−1 ∈ Rp,
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l(δ|ψ) can be written as

l(δ|ψ) = −np
2

ln (2π) +
n

2
ln | diag(ψ)| − 1

2

n∑
i=1

(δ2i )
Tψ. (A.10)

We can rewrite Eq. (A.10) in the following way

l(δ|ψ) = ψT t(δ)− ln(a(ψ)) + ln(b(δ)) (A.11)

with

• t(δ) = −1/2
∑n

i=1 δ
2
i the sufficient statistics of λ;

• ln(a(ψ)) = −n
2 ln | diag(ψ)|;

• ln(b(δ)) = −np
2 ln(2π) depending on the length of δ.

Considering the canonical parameter instead of θ, we have (up to a constant)

Q(ψ,ψk) =Eδ[l(δ|ψ)|Y, ψk]

=Eδ(ψ
T t(δ)|Y, ψk)− Eδ(ln(a(ψ))|Y, ψk) + Eδ(ln(b(δ))|Y, ψk)

=ψTEδ(t(δ)|Y, ψk)− ln(a(ψ)) + ln(b(δ)) (A.12)

where the jth component of Eδ(t(δ)|Y, ψk) is equal to

E
(
− 1

2

n∑
i=1

δ2ij | Y, θk
)
= −1

2

n∑
i=1

[
E
(
δij | Y, θk

)2
+ Var

(
δij | Y, θk

)]
. (A.13)

Using Eqs. (A.6) and (A.7) we thus have

E
(
− 1

2

n∑
i=1

δ2ij | Y, θk
)
=

− 1

2

(
n(σ2j )

k +

n∑
i=1

[
(Bk

ij(V
k
i )

−1Ak
i )

2 − (Bk
ij)

2(V k
i )

−1
])
. (A.14)
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Then, the CM1 step is to find ψk+1 that maximizes (A.12).

∂Q(ψ,ψk)

∂ψ
= 0

⇐⇒ ∂Eδ[l(δ|ψ)|Y, ψk])

∂ψ
= 0

⇐⇒ ∂[ψTEδ(t(δ)|Y, ψk)− ln(a(ψ)) + ln(b(δ))]

∂ψ
= 0

⇐⇒ Eδ(t(δ)|Y, ψk)− ∂ ln(a(ψ))

∂ψ
= 0

⇐⇒ Eδ(t(δ)|Y, ψk) =
∂ ln(a)

∂ψ
(ψ).

It comes out that ψk+1 achieves the following equation

Eδ(t(δ)|Y, ψk) =
∂ ln(a)

∂ψ
(ψk+1) (A.15)

where

∂ ln(a)

∂ψ
(ψ) =− n

2
ψ−1 (A.16)

=− n

2
σ2. (A.17)

Finally, we can deduce the expression of each component of σ2 = ψ−1 at the k + 1th
iteration of this ECME algorithm:

(σ2j )
k+1 = (σ2j )

k +
1

n

n∑
i=1

((
Bk

ij(V
k
i )

−1Ak
i

)2
− (Bk

ij)
2(V k

i )
−1

)
. (A.18)

The CM2 step is then to compute mk+1 that maximizes the incomplete likelihood con-
ditional on (σ2j )

k+1. It leads to the weighted least squares estimator below

mk+1 =

(
n∑

i=1

HT
i (V

k+1
i )−1Hi

)−1( n∑
i=1

HT
i (V

k+1
i )−1Yi

)
. (A.19)

Appendix B. The Fisher information matrix

The calculation of the Fisher information matrix, called here I, allows us to derive
the asymptotic variances of θ̂ = (m̂, σ̂2). For 1 ≤ i, j ≤ 2p, then

I(θi, θj) = −EY

[ ∂2

∂θi∂θj
l(Y |θ)|θ

]
(B.1)
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where

l(Y |θ) = −n
2
ln (2π)− 1

2

n∑
i=1

ln (HiΣH
T
i +Ri)−

1

2

n∑
i=1

(Yi −Him)2

HiΣHT
i +Ri

. (B.2)

The first derivatives with respect to mj and σ2j are equal respectively for 1 ≤ j ≤ p to:

∂

∂mj
l(Y |θ) =

n∑
i=1

Hij(Yi −Him)

HiΣHT
i +Ri

(B.3)

and
∂

∂σ2j
l(Y |θ) = −1

2

n∑
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(HiΣHT
i +Ri)

− 1
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−H2
ij(Yi −Him)2

(HiΣHT
i +Ri)2

. (B.4)

Then, we can calculate the second derivatives as

∂2

∂mj∂mk
l(Y |θ) = −

n∑
i=1

HijHik

HiΣHT
i +Ri

(B.5)

and
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. (B.6)

The cross derivatives between mk and σ2j are equal to

∂2

∂σ2j∂mk
l(Y |θ) =

n∑
i=1

−HikH
2
ij(Yi −Him)

(HiΣHT
i +Ri)2

(B.7)

and
∂2

∂mk∂σ
2
j

l(Y |θ) =
n∑

i=1

−H2
ijHik(Yi −Him)

(HiΣHT
i +Ri)2

. (B.8)

As E[Yi −Him] = 0 and E[(Yi −Him)2] = HiΣH
T
i + Ri, the exact expression of every

entry of the Fisher information matrix can be readily obtained:

I(mj ,mk) =

n∑
i=1

HijHik

HiΣHT
i +Ri

(B.9)

I(σ2j , σ
2
k) =

1

2
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H2
ijH

2
ik

(HiΣHT
i +Ri)2

(B.10)

and
I(σ2j ,mk) = 0 and I(mk, σ

2
j ) = 0. (B.11)

26



Appendix C. Proof of Proposition 3

The proof is similar to that of Proposition 1. We now have q groups composing Y
where each of them has its own variance parameter, such that

Y := (Y 1, · · · , Y s, · · · , Y q)T ∈ Rn ; 1 ≤ s ≤ q. (C.1)

with Y s the subset of Y consisting of the experimental data of the sth group. The
way of indexing the n components of Y is explained in Section 3 before the proposition
statement. Let us recall that:

• σ2s = (σ2s,1, · · · , σ2s,p)T ∈ Rp is the vector of variance parameters shared by the
unobserved realizations {λi}is−1+1≤i≤is of the sth group,

• Σs is the diagonal matrix formed by σ2s ∈ Rp.

It follows that
λi ∼ N (m,Σs) is−1 + 1 ≤ i ≤ is. (C.2)

Also let us define δi = λi −m. If is−1 < i ≤ is,

Yi = Hi(δi +m) + ϵi (C.3)

where
δi ∼ N (0,Σs), (C.4)

with δi = (δi1, · · · , δip)T ∈ Rp. If Yi belongs to the sth class, we have for 1 ≤ j ≤ p

E
(

Yi
δij

)
=

(
Him
0

)
(C.5)

and

Var
(

Yi
δij

)
=

(
Hi diag(σ

2
s)H

T
i +Ri (Hij)σ

2
s,j

σ2s,jHij σ2s,j

)
. (C.6)

Let us define

Ai = Yi −Him; Bij = σ2s,jHij ; Vi = HiΣsH
T
i +Ri. (C.7)

With these notations, we have

E (δij | Yi) =σ2s,jHij(Hi diag(σ
2
s)H

T
i +Ri)

−1(Yi −Him)

=BijV
−1
i Ai (C.8)

and

Var (δij | Yi) =σ2s,j − (σ2s,jHij)(Hi diag(σ
2
s)H

T
i +Ri)

−1(Hijσ
2
s,j)

=σ2s,j −B2
ijV

−1
i . (C.9)
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Let Zi = (Yi, δi) ∈ Rp+1 be the union of the ith experimental data and unobserved model
realization shifted by m. The E. step of the ECME algorithm is to derive the expectation
of the complete log-likelihood with respect to the distribution of δ conditional on (Y, θk),
equal to

Q(θ, θk) = Eδ[l(Z|θ)|Y, θk] (C.10)

with θk = (mk, (σ21)
k, · · · , · · · , (σ2q )k) and δ synthesizing the unobserved samples {δi}1≤i≤n.

The complete log-likelihood is written as:

l(Z|θ) = l(Y |δ, θ) + l(δ|θ). (C.11)

The first term is in fact independent of θ and thus maximizing (C.10) comes down to max-
imizing Eδ[l(δ|θ)|Y, θk]. Defining the following canonical parameter ψT = (ψT

1 , · · · , ψT
q ) =

((σ21)
−1, · · · , (σ2q )−1) leads to

l(δ|ψ) = −np
2

ln(2π) +
n1
2

ln(|Σ1|) + · · ·+ nl
2
ln(|Σq|)

− 1

2

i1∑
i=1

(δ2i )
Tψ1 − · · · − 1

2

iq∑
i=iq−1+1

(δ2i )
Tψq, (C.12)

with δ2i := (δ2i1, · · · , δ2ip) ∈ Rp. We can write Eq. (C.12) in the following way

l(δ|ψ) = ψT t(δ)− ln(a(ψ)) + ln(b(δ)) (C.13)

with

• ψT = (ψT
1 , . . . , ψ

T
q ) the canonical parameter;

• t(δ)T =
(
−(1/2)

∑i1
i=1(δ

2
i )

T , . . . ,−(1/2)
∑iq

i=iq−1+1(δ
2
i )

T
)

the sufficient statistics
of λ;

• ln(a(ψ)) = −
(
n1
2 ln |diag(ψ1)|+ · · ·+ nq

2 ln |diag(ψq)|
)
;

• ln(b(δ)) = −np
2 ln(2π) depending on the length of δ.

Considering the canonical parameter instead of θ, we have (up to a constant)

Q(ψ,ψk) =Eδ[l(δ|ψ)|Y, ψk]

=Eδ(ψ
T t(δ)|Y, ψk)− Eδ(ln(a(ψ))|Y, ψk) + Eδ(ln(b(δ))|Y, ψk)

=ψTEδ(t(δ)|Y, ψk)− ln(a(ψ)) + ln(b(δ)) (C.14)

where the jth component of Eδ(t(δ)|Y, ψk) limited to the sth group is equal to

E
(
− 1

2

is∑
i=is−1+1

δ2ij | Y, θk
)
= −1

2

is∑
i=is−1+1

[
E
(
δij | Y, θk

)2
+ Var

(
δij | Y, θk

)]
. (C.15)
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Using Eqs. (C.8) and (C.9) we thus have

E
(
− 1

2

is∑
i=is−1+1

δ2ij | Y, θk
)
=

− 1

2

(
ns(σ

2
s,j)

k +

is∑
i=is−1+1

[
(Bk

ij(V
k
i )

−1Ak
i )

2 − (Bk
ij)

2(V k
i )

−1
])
. (C.16)

Then, the CM1 step is to find ψk+1 that maximizes (C.14).

∂Q(ψ,ψk)

∂ψ
= 0

⇐⇒ ∂Eδ[l(δ|ψ)|Y, ψk])

∂ψ
= 0

⇐⇒ ∂[ψTEδ(t(δ)|Y, ψk)− ln(a(ψ)) + ln(b(δ))]

∂ψ
= 0

⇐⇒ Eδ(t(δ)|Y, ψk)− ln(a(ψ))

∂ψ
= 0

⇐⇒ Eδ(t(δ)|Y, ψk) =
∂ ln(a)

∂ψ
(ψ).

It comes out that ψk+1 achieves the following equation

Eδ(t(δ)|Y, ψk) =
∂ ln(a)

∂ψ
(ψk+1). (C.17)

For 1 ≤ s ≤ q,

∂ ln(a)

∂ψs
(ψ) =− ns

2
ψ−1
s (C.18)

=− ns
2
σ2s . (C.19)

Finally, we can deduce the expression of each σ2s = ψ−1
s at the k + 1th iteration of this

ECME algorithm. For 1 ≤ s ≤ q:

(σ2s,j)
k+1 = (σ2s,j)

k +
1

ns

is∑
i=is−1+1

((
Bk

ij(V
k
i )

−1Ak
i

)2
− (Bk

ij)
2(V k

i )
−1

)
. (C.20)
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The CM2 step is then to compute mk+1 that maximizes the incomplete likelihood con-
ditional on all (σ2s)

k+1
j . It is given by the weighted least square estimator below

mk+1 =

(
n∑

i=1

HT
i (V

k+1
i )−1Hi

)−1( n∑
i=1

HT
i (V

k+1
i )−1Yi

)
, (C.21)

with V k+1
i being equal to Hidiag((σ2s)k+1)HT

i +Ri for is−1 + 1 ≤ i ≤ is.
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