
HAL Id: hal-04455967
https://hal.science/hal-04455967

Preprint submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum Weight Entropy
Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis

To cite this version:
Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis. Maximum Weight
Entropy. 2024. �hal-04455967�

https://hal.science/hal-04455967
https://hal.archives-ouvertes.fr


Maximum Weight Entropy

Antoine de Mathelin1,2 ANTOINE.DE-MATHELIN-DE-PAPIGNY@MICHELIN.COM

François Deheeger1 FRANCOIS.DEHEEGER@MICHELIN.COM

Mathilde Mougeot2 MATHILDE.MOUGEOT@ENS-PARIS-SACLAY.FR

Nicolas Vayatis2 NICOLAS.VAYATIS@ENS-PARIS-SACLAY.FR
1Manufacture Française des pneumatiques Michelin, Clermont-Ferrand, 63000, France
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Abstract
This paper deals with uncertainty quantification and out-of-distribution detection in deep learn-

ing using Bayesian and ensemble methods. It proposes a practical solution to the lack of prediction
diversity observed recently for standard approaches when used out-of-distribution (Ovadia et al.,
2019; Liu et al., 2021). Considering that this issue is mainly related to a lack of weight diversity,
we claim that standard methods sample in ”over-restricted” regions of the weight space due to the
use of ”over-regularization” processes, such as weight decay and zero-mean centered Gaussian pri-
ors. We propose to solve the problem by adopting the maximum entropy principle for the weight
distribution, with the underlying idea to maximize the weight diversity. Under this paradigm, the
epistemic uncertainty is described by the weight distribution of maximal entropy that produces neu-
ral networks ”consistent” with the training observations. Considering stochastic neural networks,
a practical optimization is derived to build such a distribution, defined as a trade-off between the
average empirical risk and the weight distribution entropy. We develop a novel weight parameteri-
zation for the stochastic model, based on the singular value decomposition of the neural network’s
hidden representations, which enables a large increase of the weight entropy for a small empiri-
cal risk penalization. We provide both theoretical and numerical results to assess the efficiency of
the approach. In particular, the proposed algorithm appears in the top three best methods in all
configurations of an extensive out-of-distribution detection benchmark including more than thirty
competitors.
Keywords: Epistemic Uncertainty, Out-of-distribution detection, Deep Ensemble, Bayesian Neu-
ral Networks, Maximum Entropy

1. Introduction

In many practical deep learning scenarios, neural network models are deployed on unknown data
distributions that can significantly differ from the training distribution. For instance, when building
deep learning models of object detection for autonomous cars, the training dataset cannot cover
any potential situation that the model can encounter, in terms of weather conditions, geography
or camera obstructions for examples. In this context, the learner aims at providing confidence
guarantees on the model prediction for any data belonging to the whole input space. This task
is related to uncertainty quantification and out-of-distribution (OOD) detection for deep learning
(Abdar et al., 2021; Shen et al., 2021). In this research area, the general framework is depicted by
an input and output spaces X , Y , a training set S containing several paired observations (x, y) ∈
X × Y , drawn independently of the training distribution p(x, y), and a hypothesis set H of neural
networks of specified architecture mapping X to Y . The primary goal is to find the hypothesis
h∗ in H with the best predictive power on X . To provide an approximation of h∗, the learner

1

ar
X

iv
:2

30
9.

15
70

4v
1 

 [
cs

.L
G

] 
 2

7 
Se

p 
20

23
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typically considers a hypothesis ĥ with low empirical risk on S, computed through empirical risk
minimization algorithms. In the epistemic uncertainty quantification framework (Kendall and Gal,
2017; Hüllermeier and Waegeman, 2021), the learner aims at estimating, for any input x ∈ X ,
the potential discrepancy between the predicted value ĥ(x) and the best possible prediction h∗(x).
When dealing with neural network hypotheses, the set H is typically very large and many different
hypotheses may provide low empirical risk on the training set S. Informally, this collection of
consistent hypotheses form a subset HS ⊂ H which provides probable candidates for the best
hypotheses h∗. Prediction uncertainty for a novel input observation x ∈ X is then described by the
prediction diversity of the consistent hypotheses: {h(x); h ∈ HS} (Hüllermeier and Waegeman,
2021).

In the case of universal approximators such as neural networks, epistemic uncertainty is related
to the distance between a new test instance and previous training examples. Indeed, for an input
instance x ∈ X far from the support of the training data, there are likely two consistent hypotheses
h, h′ ∈ HS that produce very different outputs for x. More precisely, if H is the set of k-Lipschitz
functions, the error on x between any consistent hypothesis h ∈ HS and the best model is bounded
by a value proportional to the distance between x and the training inputs (Sullivan et al., 2013; Mal-
herbe and Vayatis, 2017; de Mathelin et al., 2021). Therefore, a proxy of the epistemic uncertainty
can be estimated by computing the distance to the support of the training set. Methods developed
under this paradigm are referred to as distance-based uncertainty quantifiers, which includes, for
instance, derivative of Gaussian processes (Rasmussen, 2003), Deterministic Uncertainty Quantifi-
cation (DUQ) (Van Amersfoort et al., 2020), Mahalanobis distance (Lee et al., 2018b) or Deep
Nearest Neighbors (Sun et al., 2022). The main challenge faced by distance-based uncertainty ap-
proaches is to find a relevant notion of distance to use (Liu et al., 2022). For high-dimensional
machine learning problems, using the Euclidean distance in the input space X is generally irrele-
vant and one looks for geometric distances computed in encoded spaces. For instance, (Liu et al.,
2022) and (Cao and Zhang, 2022) develop distance preserving networks using spectral normaliza-
tion. Finally, computing the distance to the training distribution support can also be performed by
density estimation techniques, such as auto-encoders or GANs, which have been used for OOD
detection (Zhou, 2022; Ryu et al., 2018). The distance to the training set is then computed through
the reconstruction error of the decoder or by the predicted likelihood of the discriminator.

The main alternative to distance-based approach consists in directly looking for a set of hy-
potheses that are coherent with the observations and to use the diversity of their predictions as
uncertainties. It essentially includes ensemble and Bayesian methods (Lakshminarayanan et al.,
2017; Mackay, 1992). The ongoing challenge of this approach is to produce diversity in the en-
semble of networks, i.e. to avoid sampling similar hypotheses. It has been observed, indeed, that
most of the main baselines lead to a lack of prediction diversity, in particular outside the training
support, i.e. for out-of-distribution data (Ovadia et al., 2019; Liu et al., 2021; Henning et al., 2021).
Facing this issue, several attempts propose to increase the prediction diversity by adding a penal-
izing term to the loss. For instance, negative correlation methods penalize the correlation between
the outputs of the ensemble members on the training data (Liu and Yao, 1999; Shui et al., 2018;
Zhang et al., 2020). Related methods, referred to as contrastive approaches, penalize small output
variances on synthetic OOD data produced by sampling uniformly in the input space (Jain et al.,
2020; Mehrtens et al., 2022) or in the neighborhood of the training instances (Lakshminarayanan
et al., 2017; Segonne et al., 2022). The drawback of these methods is the lack of generalization to
any OOD data that the model can encounter (Cao and Zhang, 2022). Alternative approaches consist
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in penalizing the similarity between the ensemble members in the parameter space (Pearce et al.,
2018; D’Angelo and Fortuin, 2021), with the underlying assumption that an ensemble of neural
networks with weights distant from each other produce diversified outputs. Under this paradigm,
a recent method, called Deep Anti-Regularized Ensemble (DARE), proposes an anti-regularizing
process which penalizes small weights in the network while maintaining the training loss under an
acceptable threshold (de Mathelin et al., 2023). The authors advocate that this technique provides
a sample of hypotheses at the edge of the set of consistent hypotheses, resulting in increased pre-
diction diversity, especially for OOD data. Building on this previous work, we claim that the key
feature for producing accurate uncertainty quantification for any data point x ∈ X is to sample in
the whole space of consistent hypotheses. Indeed, we argue that standard Bayesian and ensemble
methods often provide over-confident predictions for OOD data because the hypotheses they pro-
duce are sampled in restricted regions of the consistent hypothesis space due to over-regularization
processes and hyper-parameters selection based on hold-out validation.

Considering stochastic neural networks with parameterized weight distribution (Jospin et al.,
2022), we cast the problem as a trade-off between sampling in low empirical risk regions and in-
creasing the weight diversity. We consider the entropy as a measure of weight diversity, and show
that the optimization boils down to solving a maximum entropy problem (Jaynes, 1968), where we
aim at selecting the weight distribution of maximal entropy under the constraint that the training
loss is acceptable. We derive a practical optimization formulation to solve this problem, called
Maximum Weight Entropy (MaxWEnt), and show that it can be tackled with stochastic variational
inference (Hoffman et al., 2013) using the reparameterization trick (Kingma and Welling, 2013).
The proposed optimization consists in penalizing the training loss with a term imposing the increase
of the weight distribution entropy. We provide a theoretical framework to understand the dynamics
of this approach and show that the spread of the weight distribution is inversely proportional to the
neuron activation amplitude for the training data, which extends the theoretical analysis of DARE
to stochastic neural networks. The entropic penalization of MaxWEnt can then be interpreted as an
anti-regularization, enforcing the weight distribution to cover the whole set of consistent weights.
Numerical experiments conducted on several regression and classification datasets demonstrate the
strong benefits of this approach in OOD detection compared to state-of-the-art methods dedicated
to this task.

Figure 1 presents the comparison of MaxWEnt with the main baselines Deep Ensemble (Lak-
shminarayanan et al., 2017) and MC-Dropout (Gal and Ghahramani, 2016) on a classification and a
regression synthetic datasets. We observe that Deep Ensemble and MC-Dropout produce overconfi-
dent estimation outside the training support due to a lack of hypothesis diversity. In the classification
experiment, for instance, the hypotheses produced by both methods are restricted to half-space sep-
arators. There is no prediction uncertainty in the upper left and lower right areas of the input space,
despite the lack of training data in these regions (cf. top Figures 1.a and 1.b). In contrast, MaxWEnt
provides a clear discrimination between the in-distribution and out-of-distribution domains in terms
of prediction uncertainty. In Figure 1.c, the uncertainties produced by MaxWEnt are reported when
no regularity assumption is made on the labeling function. In this case, we observe that the un-
certainty quickly increases when leaving the training support, which truly represents the epistemic
uncertainty in the absence of prior knowledge about the labeling function. Figure 1.d reports the
MaxWEnt uncertainty estimation when considering Lipschitz constraints. These results can be ob-
tained with a small modification of the previous MaxWEnt model in the form of weight clipping.
The full description of these synthetic experiments is reported in Section 7.1.
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(a) Deep Ensemble (b) MC-Dropout (c) MaxWEnt (d) MaxWEnt + Clip

Figure 1: Uncertainty Estimation Comparison. Above: ”two-moons” 2D classification dataset.
Below: 1D-regression (Jain et al., 2020). For classification, uncertainty estimates, in shades of
blue, are computed with the average of prediction entropy over multiple predictions (darker areas
correspond to higher uncertainty). For regression, the ground-truth is represented in black and the
predicted confidence intervals of length 4σw(x) in light blue, with σw(x) computed as the standard
deviation over multiple predictions. Figure (c) presents the result obtained with MaxWEnt when
no regularity assumption is made on the labeling function. Figure (d) presents the result obtained
when adding Lipschitz constraint. The full description of the synthetic experiments is presented in
Section 7.1.

2. Setup and Objective

2.1 Notations

We consider the supervised learning framework provided with the input space X of finite dimension
b ∈ N, and the output spaceY . We denote by p∗(y|x) the ”ground truth” conditional law defined over
Y for any x ∈ X . Furthermore, we distinguish the in-distribution and out-of-distribution domains
by considering that only a subset DX ⊂ X can be sampled. The subset DX is called ”training
domain” and any data from the complementary X \ DX is considered as ”out-of-distribution”. We
assume that the learner has access to the training set S = {(x1, y1), ..., (xn, yn)} ∈ DX ×Y of size
n ∈ N where the training instances (xi, yi) are supposed independently identically distributed (iid)
according to the joint distribution p(x, y) defined overDX×Y and verifying p(y|x) = p∗(y|x) ∀x ∈
DX . We consider a continuous loss function ℓ : Y × Y → R+ and define the optimal predictor
f∗ : X → Y as follows:

f∗(x) = argmin
y′∈Y

∫
y∈Y

ℓ(y′, y) dp∗(y|x). (1)

We denote H the set of neural networks of a specified architecture, mapping X to Y . The set H
is assumed to be ”large”. We denote W ⊂ Rd (d ∈ N) the set of weights corresponding to the
hypotheses inH. For any h ∈ H, we define the empirical risk as follows:

LS(h) =
1

n

∑
(x,y)∈S

ℓ(h(x), y), (2)
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denoted indifferently LS(w), when considering the weights w ∈ W associated to the hypothesis
h ∈ H, also referred as hw. Finally, we consider a metric over the space of functions mapping X to
Y , denoted |||., .|||, and define the best hypothesis h∗ as follows:

h∗ = argmin
h∈H

|||h, f∗|||. (3)

2.2 The epistemic uncertainty is described by the set of consistent hypotheses

In this work, we distinguish the following four sources of uncertainty:

1. Aleatoric uncertainty: the intrinsic random noise of the data, i.e. p∗(y|x). This uncertainty
cannot be reduced, even with an infinite number of observations (e.g. outcome of a coin flip).

2. Model uncertainty: the discrepancy between f∗ and h∗. The model uncertainty is related to
the choice of hypothesis set H. It can be reduced by increasing the size of H or by acquiring
prior knowledge about f∗ (e.g. Lipschitz constraint).

3. Statistical uncertainty: the partial knowledge about p(x, y) given by the finite number of
data S. This uncertainty, also referred as approximation uncertainty (Hüllermeier and Waege-
man, 2021) or data variability (Huang et al., 2021b), is linked to the discrepancy between h∗

and its estimation. It can be reduced by the acquisition of novel observations drawn according
to p(x, y) or by prior knowledge about the intrinsic random noise (e.g. Gaussian homoscedas-
tic noise of known variance).

4. Out-of-distribution uncertainty: the absence of observation over the out-of-distribution do-
main X \ DX . This uncertainty can remain large even with an infinite number of training
observations. Indeed, for complex hypotheses as neural networks, different hypotheses can
match h∗(x) on DX but produce different outputs on X \ DX .

The first three sources of uncertainty are described in details in (Hüllermeier and Waegeman, 2021),
sources (2) and (3) are referred to as epistemic uncertainty, and are related to the lack of knowledge
about f∗. Source (4) is an additional distinction of the epistemic uncertainty, similar to the setup
introduced in (Liu et al., 2022). This distinction is useful to understand the out-of-distribution
detection task. In the following, we focus our uncertainty estimation on the epistemic uncertainty
(sources (2-4)), moreover, considering the denseness property of neural networks, we assume that
f∗ is close to H, i.e. h∗ ≃ f∗, and then neglect the model uncertainty. Our work then focus on the
two last sources, which are related to the indetermination of the best hypothesis h∗.

The goal is then to model this epistemic uncertainty for any x ∈ X through a distribution in
the label space Y . Because of lack of complete knowledge, the learner cannot perfectly determine
the best hypothesis h∗ and then the best predictions h∗(x). If no data is available, the prediction
uncertainty for x ∈ X is given by the distribution of the predicted values h(x) for all hypotheses
h ∈ H. When acquiring more observations, the learner can discriminate between relevant and
irrelevant candidates for h∗, i.e. between ”consistent” and ”inconsistent” hypotheses with respect to
the observations S (assuming that a notion of ”consistency” can be formally defined). By denoting
HS the set of consistent hypotheses, the epistemic uncertainty for the prediction of the model for x
is then given by the distribution of predictions h(x) with h ∼ HS .

The notion of consistency depends on the underlying assumption that the learner considers about
the data sample S. A strong assumption is the ”no noise” framework, where the learner assumes
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that the best hypothesis necessarily verifies h∗(x) = y for any (x, y) ∈ S . In this case, the set
of consistent hypotheses is the set: HS = {h ∈ H; h(x) = y} (Mitchell, 1977). In general, the
learner assumes a moderated noise level. Then, the notion of consistency is related to the empirical
error LS(h), such that consistent hypotheses provide ”low” empirical error on S. For instance, if
the learner is only interested in deploying models with greater accuracy than τ = 0.99, then the
set of consistent hypotheses is defined as HS = {h ∈ H; LS(h) ≤ 1 − τ} (assuming that ℓ is
the 0-1 loss). In the Bayesian setting, a noise model, p(y|x, h) is generally assumed (e.g. Gaussian
noise of unknown mean and variance), then a gradual notion of consistency is obtained through the
likelihood of the hypothesis h ∈ H given the sample S, i.e. p(h|S) (D’Angelo and Fortuin, 2021).

2.3 The main limitation of epistemic uncertainty estimation for deep learning

Based on the previous considerations, the epistemic uncertainty estimation is then considered accu-
rate when the learner is able to determine the whole set of consistent hypothesisHS (or to determine
the likelihood of any hypotheses in the Bayesian framework). However, asH is an infinite set, com-
puting the empirical risk for any hypothesis from H to determine which hypothesis belong to HS
is impossible. Moreover, with deep neural network hypotheses, determining the subspace HS is
generally intractable, because of the non-linear relationship between the neural network parameters
and the empirical error.

To overcome this issue, common practice consists in using empirical risk minimization algo-
rithms to produce a sample or a distribution of consistent hypotheses. To avoid sampling always
the same empirical risk minimizer, deep ensemble methods use random initialization and random
batch order with early stopping (Lakshminarayanan et al., 2017), while Bayesian neural networks
algorithms learn a weight distribution (Kendall and Gal, 2017). Although such approaches foster
hypothesis diversity, they cannot guarantee to produce a representative sample of the whole set of
consistent hypotheses. Moreover, common practices in deep learning training induce important bi-
ases which narrow the sampling in a restricted region of the consistent hypotheses’ subspace. For
instance, the use of weight decay (ℓ2 penalization) and random weights initialization of relatively
small variance (e.g. equal to the inverse of the number of neurons in the layer (Glorot and Ben-
gio, 2010)) drive the sample in low weight regions. Consistent hypotheses with high weights are
then excluded, even though they can explain the observations as well, but in a different way, which
would contribute to increase the potential prediction diversity. Similarly, in the Bayesian frame-
work, it has been recently observed that the most commonly used prior, i.e. the Gaussian centered
prior, is ”unintentionally informative” (Wenzel et al., 2020a). Finally, the evaluation of uncertainty
quantification methods and their hyper-parameters selection is traditionally driven by the negative-
log-likelihood metric (NLL) computed over a validation dataset belonging to the training domain
(Liu and Yao, 1999; Pearce et al., 2018; Jain et al., 2020). However, such practice does not account
for the epistemic uncertainty out-of-distribution and then does not foster methods which accurately
estimate it. This issue is illustrated by the four bottom graphics of Figure 1, the four methods pro-
vide almost the same prediction uncertainty on the training domain, their validation NLL is then
similar, but their OOD epistemic uncertainty estimation is very different.

Therefore, we identify the inability of standard approaches to produce a representative sample
of consistent hypotheses as their main limitation. We argue that this limitation is the principal cause
of their lack of prediction diversity for OOD data, observed recently (Ovadia et al., 2019; Liu et al.,
2021; Henning et al., 2021) (cf. Section 5.2).

6
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3. Maximum Weight Entropy

The main contribution of this work is the development of a practical algorithm to produce a sample
of hypotheses that tends to be representative of the whole space of consistent hypotheses. Consid-
ering stochastic neural networks, we propose to learn the scale parameters of a distribution over
the network weights, centered on a hypothesis of low empirical risk, with the double objective of
minimizing the average empirical risk and maximizing the distribution diversity, measured through
the weight entropy.

3.1 Optimization formulation

We consider the stochastic neural network approach, where samples of hypotheses are produced
through a parameterized weight distribution qϕ in the set Φ = {qϕ}ϕ∈RD composed of several
distributions overW parameterized by ϕ ∈ RD, with D ∈ N the parameter dimension. We propose
to penalize the average training risk over qϕ with the entropy of the weight distribution, leading to
the following optimization formulation:

min
ϕ∈RD

Eqϕ [LS(w)]− λEqϕ [− log(qϕ(w))] , (4)

with λ ∈ R+ the trade-off parameter.

• The first term: Eqϕ [LS(w)] of the optimization objective in Equation (4) is the average empir-
ical risk over the weight distribution. This term induces the increase of the probability mass
qϕ(w) in regions where the weights w ∈ W produce accurate hypotheses on the training
dataset, i.e. where LS(w) is small.

• The second term: −λEqϕ [− log(qϕ(w))] in Equation (4) is a penalty that induces the increase
of the weight entropy, which is generally related to expand the support of the weight distribu-
tion qϕ as broad as possible.

It should be underlined that both terms in Equation (4) evolve in opposite direction with re-
spect to the weight distribution: the first term induces a peaked weight distribution around the best
performing weight, while the second term induces a uniform distribution over the whole weight
space. To solve this trade-off, the weight distribution tends to flatten in regions of little impact on
the empirical risk, while remaining concentrated in directions where a small weight perturbation
causes an important risk increase. The theoretical analysis in Section 4 shows, indeed, that the
distribution spread of the weights is inversely proportional to the neuron activation amplitude. The
weight variance is then larger for weights in front of neurons weakly activated by the training data.
This theoretical result is supported by numerical results observed on synthetic datasets in Section
7.1 which provide a direct illustration of this link between the neuron activation and the weight
variance (cf. Figure 6).

Objective (4) can be understood as a maximum entropy problem (Jaynes, 1957), where, in
presence of partial information about the optimal weight, the uncertainty is best described by the
distribution of low risk hypotheses with maximal entropy (see Section 5.1). In the Bayesian neural
network setting, a similar objective can be derived through the ELBO formulation by using the
prior of maximum entropy (Jaynes, 1968), which, in this case, is the uniform distribution overW
(see Section 5.3). To highlight the link between our proposed approach and the maximum entropy
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principle, we call the method: Maximum Weight Entropy (MaxWEnt) in reference to the general
maximum entropy modeling framework, commonly named MaxEnt (Berger et al., 1996).

3.2 Optimization algorithm

Equation (4) is solved through stochastic gradient descent with mini-batches. To compute the ex-
pectation over qϕ, we use the reparameterization trick (Kingma and Welling, 2013; Rezende et al.,
2014). We introduce a sampling variable z ∼ Z with Z a distribution over Rd and a parameteriza-
tion function ω : Rd×Rd → Rd such that: w = ω(z, ϕ). Typically, z follows a distribution that can
be numerically sampled as the normal or uniform distribution. In case of simple parameterization,
the weight entropy can be directly derived from the weight parameters ϕ, such that there exists a
function H : Rd → R verifying H(ϕ) = EZ [− log(qϕ(ω(z, ϕ)))]. This leads to the following
objective function, computed on a mini-batch of data Sb ⊂ S of size B > 0:

G(ϕ,Sb) = EZ [LSb
(ω(z, ϕ))]− λH(ϕ). (5)

By sampling z(1), ..., z(N) iid according to Z , we can compute an estimation of the objective
function gradient for each mini-batch as follows:

∇ϕG(ϕ,Sb) ≃ ∇ϕ

 1

N

N∑
j=1

LSb
(ω(z(j), ϕ))− λH(ϕ)

 . (6)

Note that choosing N = 1 appears to be sufficient, in practice, to obtain efficient results
(Kingma and Welling, 2013). Several gradient updates are performed until convergence to obtain
the estimated parameters ϕ̂. The training part of the algorithm is summarized in Algorithm 1. For
inference on x ∈ X , a set of P predictions (P ∈ N∗) is obtained by sampling multiple z(j) ∼ Z
with j ∈ [|1, P |], and computing the corresponding outputs {hwj (x); wj = ω(z(j), ϕ̂)}j∈[|1,P |] (cf.
Algorithm 2)

Algorithm 1 MaxWEnt Training
1: Inputs: Training set S, learning rate ν, trade-

off λ, batch size B, parameterization ω
2: Outputs: Scaling vector ϕ
3: Init: ϕ ∈ Rd

4: while stopping criterion is not reached do
5: z ∼ Z , Sb ∼ U(SB)
6: ϕ←ϕ− ν∇ϕ [LSb

(ω(z, ϕ))− λH(ϕ)]

7: end while

Algorithm 2 MaxWEnt Inference
1: Inputs: Input data x, parameterization ω,

scaling vector ϕ, sample size P
2: Outputs: Prediction sample (ŷ1, ..., ŷP )
3: for 1 ≤ i ≤ P do
4: z ∼ Z;
5: w ← ω(z, ϕ)
6: ŷi ← hw(x)

7: end for

3.3 Weight Parameterization

3.3.1 SCALING PARAMETERIZATION

Obviously, the choice of the weight parameterization ω has an important impact on the resulting
weight distribution. In line with the purpose of the MaxWEnt approach, the guidelines for choosing
ω should follow these three principles: enable the sampling in regions of accurate hypotheses, foster

8
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the increase of the weight entropy and be practical to use. Moreover, one should consider weight
parameterizations that provide a tractable formulation of the weight entropy H(ϕ). Following these
guidelines, we consider the sampling variable z ∼ Z such that E[z] = 0,V[z] = Idd and propose
the ”scaling” parameterization defined as follows:

ω(z, ϕ) = w + ϕ⊙ z. (7)

Where ⊙ is the element-wise product between two vectors, such that ϕ⊙ z = (ϕ1z1, ..., ϕdzd) with
ϕ = (ϕ1, ..., ϕd) ∈ Rd and z = (z1, ..., zd) ∈ Rd. The weight vector w ∈ Rd is the weight mean
Eqϕ [w] = w. It is typically defined as the weights of a pretrained network hw fitted on the training
data. For Z defined as a normal N (0, Idd) or uniform distribution U([−

√
3,
√
3]d), the parameters

ϕ = (ϕ1, ..., ϕd) act as scaling factors: the higher ϕk, the wider the distribution wk ∼ wk + ϕkzk.
The scaling parameterization (7) meets the three previous requirements for a relevant choice of

stochastic model. The mean of the weight distribution verifies Eqϕ [w] = w with w the weights of
a pretrained network fitted on S, the weight distribution is then centered in a region of the weight
space of low empirical risk. If ϕ ≃ 0, the resulting weight distribution is equivalent to a peaked
distribution around w, which meets the first objective to provide samples of accurate hypotheses.
Moreover, the weight entropy is directly controlled by the parameters ϕ : when ϕ increases, the
weight distribution becomes wider and the entropy increases. We show, indeed, in the next section,
that the weight entropy H(ϕ) can be expressed directly as a function of ϕ. Finally, it can be no-
ticed that the scaling parameterization only involves element-wise multiplications, which makes it
practical to compute.

We show, through the theoretical analysis developed in Section 4, that the increase of the ϕ
parameters is inversely proportional to the neuron activation amplitude. Indeed, if a neuron is
weakly activated by the training data, all the weights wk in front of this neuron have little impact
on the network predictions in the training domain. Therefore, the parameters ϕk can be enlarged
without degrading the average empirical risk Eqϕ [LS(w)]. In the extreme case, if the neuron is never
activated by the training data (it always returns 0), then the parameters ϕk can go to infinity without
impacting the network outputs on the training domain. Based on this theoretical observation, we
argue that the weight entropy can be further increased without impacting the training risk by taking
into account the correlation between neurons. Indeed, let’s consider, for instance, two neurons
of the same hidden layer, totally correlated, both with activation amplitude a > 0 on average on
the training data. The scales of the weights wk in front of these neurons will verify ϕk ∝ 1/a.
However, by expressing the outputs of these neurons in their singular value decomposition basis,
the novel representation is now composed of one component of average amplitude a and the other
of null amplitude. In that case, some parameters ϕk can be further increased without impacting the
training risk. Motivated by these arguments, we propose the ”SVD” parameterization described in
the following subsection.

3.3.2 SVD PARAMETERIZATION

Let’s consider a pretrained neural network hw of L hidden layers. We denote ψ(l)(X) ∈ Rn×bl

the hidden representation of the input data X ∈ Rn×b in the lth layer of hw, with bl the hidden
layer dimension (i.e. the number of neurons). The singular values decomposition of ψ(l)(X) is
written: ψ(l)(X) = U(l)S(l)V(l) with U(l) ∈ Rn×n, S(l) ∈ Rn×bl and V(l) ∈ Rbl×bl . We propose
the SVD parameterization, which consists in ”aligning” the weight distribution with the principal

9
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components of ψ(l)(X) such that:

w(l) = w(l) + V T
(l)(ϕ(l) ⊙ z(l)), (8)

for any l ∈ [|0, L|]], where w(l), w(l), ϕ(l), z(l) ∈ Rbl×bl+1 are respectively the matrix of weights,
average weights, scaling parameters and sampling variables between the lth layer and the next layer.
A compact formulation of the parameterization can be written as follows:

ω(z, ϕ) = w + V (ϕ⊙ z). (9)

Where V denotes the block matrix: V =
[
V T
(1), ..., V

T
(1), V

T
(2), ..., V

T
(L)

]
of dimension

∑
bl × bl+1.

Similar to the previous one, the SVD parameterization fulfills the guidelines. Indeed, the weight
distribution is still centered onw, which ensures to sample in a weight space region of low empirical
risk. Moreover, the weight entropy can be increased by enlarging the ϕ parameters. This can be
done more efficiently compared to the previous approach due to the integration of the neurons’
correlations (cf. Section 4.1.3). The SVD parameterization requires additional computational time
compared to the scaling one, due to the SVD decomposition and the matrix multiplication. It should
be noticed that the SVD decomposition for each layer is computed only once. Before the stochastic
gradient descent, a forward pass of the training data in hw is required to compute each hidden
representation ψ(l)(X), then the SVD decomposition of ψ(l)(X) is performed to compute the matrix
V(l). However, the matrix multiplications between V(l) and ϕ(l)⊙z(l) are performed at each gradient
update, which requires an additional computational burden during the gradient descent compared to
the scaling parameterization (cf. Section 5.4 for the complexity calculation). Finally, we show in
the next section, that a similar expression of the weight entropy H(ϕ) can be written in function of
ϕ for both parameterizations.

3.4 Entropy function

The following proposition states that the previous weight parameterizations provide a closed-form
expression of the weight entropy H(ϕ):

Proposition 1 (Closed-form expression of the weight entropy) Let qϕ be a weight distribution
described by Equation (7) or (9) with z ∼ Z . If Z is defined as the normal N (0, Idd) or the
uniform distribution U([−

√
3,
√
3]d), there exists two constants C1, C2 such that the weight entropy

H(ϕ) is expressed as follows:

H(ϕ) = C1

d∑
k=1

log(ϕ2k) + C2, (10)

with ϕ = (ϕ1, ..., ϕp) ∈ Rd the scaling parameters of the weight distribution qϕ.

Proof The full proof is reported in Appendix A.1. The proof consists in considering that, for a
normal distribution N (0,Σ) or for a uniform distribution defined over a parallelotope described by
Σ, the entropy verifies H(ϕ) ∝ log(|det(Σ)|). Then, by showing that for both parameterizations
det(Σ) ∝ det(diag(ϕ)), the above result can be derived.

10
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Note that, the C2 constant can be removed in the objective function of Equation (5) as it does
not impact the optimization and the C1 constant can be integrated in the trade-off parameter λ. This
expression of the entropy function is easy to implement. It highlights the direct link between the
scale parameter ϕk and the weight entropy. When ϕk grows, the weight distribution becomes wider
and the entropy increases.

4. Theoretical Analysis

In this section, we develop a theoretical framework to understand the MaxWEnt approach in the
specific case where the loss function is defined by the mean squared error. We first develop theo-
retical results in the linear regression case, and further extend these results to deep fully-connected
neural networks.

4.1 Linear Regression

Linear regression can be seen as a particular case of deep fully-connected neural networks where the
networks are composed of exactly two layers: the input layer of b neurons and the output layer of
1 neuron with linear activation function. The linear regression case is not representative of the
framework considered in this work, as the hypotheses h ∈ H can no longer be considered as
universal approximators. However, the following study provides valuable insights on what happened
between the neurons of one hidden layer and one neuron of the next layer. In particular, we highlight
the link between the scale parameters ϕ and the amplitude of the input features.

4.1.1 NOTATIONS

We consider the linear regression framework, where the learner has access to an input dataset X ∈
Rn×b composed of n row data xi ∈ Rb drawn iid according to the distribution p(x) and an output
vector y ∈ Rn such that y = (y1, ..., yn). Each input xi is associated to the scalar output yi ∈ R
drawn according to p(y|xi). We denote S = {(x1, y1), ..., (xn, yn)} the set of training observations.
We consider the set H = {x →

∑b
k=1 xkwk; w ∈ Rb} of linear hypotheses. The loss function

is the mean squared error, and we define the empirical risk for any weight w ∈ Rb as LS(w) =
1
n ||Xw − y||22. We denote by a = (a1, ..., ab) ∈ Rb

+ the amplitude of the input features of the
training set, such that a2j = 1

n ||Xj ||22 for any j ∈ [|1, b|], with Xj the jth column of X . We assume
that aj > 0 for any j ∈ [|1, b|].

4.1.2 SCALING WEIGHT PARAMETERIZATION

We first consider the weight parameterization defined in Equation (7) such that qϕ ∼ w + ϕ ⊙ z
with z ∼ Z such that Z ∼ N (0, Idb) or Z ∼ U([−

√
3,
√
3]b). The weight vector w ∈ Rb is the

weight mean: Eqϕ [w] = w. Finally, we consider the entropy penalty H(ϕ) defined by H(ϕ) =∑b
k=1 log(ϕ

2
k). The optimization problem (4) can then be written:

min
ϕ∈Rb

EZ

[
1

n
||X(w + ϕ⊙ z)− y||22

]
− λ

b∑
k=1

log(ϕ2k). (11)

We show that the MaxWEnt optimization problem of Equation (11) has a unique solution, which
can be expressed with the following closed-form expression:

11
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Proposition 2 (Closed-form solution for the scaling parameterization) Equation (11) has a
unique solution ϕ∗ ∈ Rb verifying for any k ∈ [|1, b|]:

ϕ∗k
2 =

λ

a2k
. (12)

Proof The proof consists in first developing the average risk as follows:

EZ

[
1

n
||X(w + ϕ⊙ z)− y||22

]
=

b∑
k=1

a2kϕ
2
k +

1

n
||Xw − y||22. (13)

Optimization (11) can then be written:

min
ϕ∈Rb

b∑
k=1

a2kϕ
2
k − λ

b∑
k=1

log(ϕ2k). (14)

This is a convex problem, for which the derivative of the objective function with respect to ϕ2 is
null for:

a2k − λ/ϕ2k = 0. (15)

This closed-form solution of ϕ∗ is particularly insightful: ϕ∗k is inversely proportional to a2k,
which means that the optimal scale parameters ϕ∗k are larger for weights in front of low amplitude
features a2k. Applied to the hidden layers of a neural network, Proposition (2) states that the weight
distribution is wider in front of neurons weakly activated by the training data. As a consequence,
if an OOD data activates these neurons, large values are propagated through the network, which
produces an important output variance. These statements are formalized in Section 4.2 when con-
sidering deep fully connected neural networks.

It can be further noticed that Equation (14) is equivalent to a log determinant optimization
problem (Boyd et al., 2006). The maximum entropy optimization can then be interpreted as a max-
imum ellipsoid volume problem, where the volume

∏
ϕ2k is maximized under the linear constraint∑

k a
2
kϕ

2
k ≤ λb. If Z is a uniform distribution, this boils down to maximizing the support of the

weight distribution while maintaining the average empirical risk on the training data under an ac-
ceptable threshold. This is in line with the purpose of the approach to find the weight distribution
that covers as many consistent weights as possible.

4.1.3 SVD WEIGHT PARAMETERIZATION

According to Proposition (2), the optimal scale parameters verify ϕ∗2 = λ/a2. When injecting
this solution in the entropy formulation, we obtain: H(ϕ) = −

∑
log(a2k) + cste. Considering this

formula, it appears clearly that the weight entropy is particularly important if some a2k are small,
i.e. if some input features have a low amplitude. However, in the presence of correlated features,
all amplitudes a2k may be high while the input training data may present small variation in some
directions of the input space. The SVD parameterization (9) proposes to exploit these directions
of small variation by aligning the weight distribution with the singular value components of the
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input data. For this purpose, we now consider V ∈ Rb×b, the matrix of eigenvectors of 1
nX

TX
and s2 = (s21, ..., s

2
b) ∈ Rb

+ the vector of eigenvalues, and assume that sj > 0 for any j ∈ [|1, b|].
The SVD weight parameterization is written w = w + V (ϕ ⊙ z) with z ∼ Z and the MaxWEnt
optimization problem (4) becomes:

min
ϕ∈Rb

EZ

[
1

n
||X(w + V (ϕ⊙ z)− y||22

]
− λ

b∑
k=1

log(ϕ2k). (16)

In comparison to the previous optimization problem in Equation (11), there is now the presence
of the matrix V betweenX and ϕ⊙z. By definition of V , the matrixXV is the expression ofX in its
singular values basis. Thus, the vector ϕ⊙ z is now aligned with the singular value components. As
for the previous parameterization, the optimal parameter vector ϕ∗ admits a closed-form expression
as follows:

Proposition 3 (Closed-form solution for the SVD parameterization) Equation (16) has a
unique solution ϕ∗ ∈ Rb verifying for any k ∈ [|1, b|]:

ϕ∗k
2 =

λ

s2k
. (17)

Proof The proof consists in developing the average risk, such that:

EZ

[
1

n
||X(w + V (ϕ⊙ z))− y||22

]
=

b∑
k=1

s2kϕ
2
k +

1

n
||Xw − y||22. (18)

Optimization (16) is then written:

min
ϕ∈Rb

b∑
k=1

s2kϕ
2
k − λ

b∑
k=1

log(ϕ2k), (19)

which is similar to Equation (14) with s2k instead of a2k.

Proposition (3) states that the optimal parameters ϕ∗ are now inversely proportional to the singu-
lar values of the training data instead of the feature amplitudes. We show, with the next Proposition,
that this difference implies a larger weight entropy for the same level of average empirical risk.

Proposition 4 (Comparison between scaling and SVD parameterization) Let q(1)ϕ∗ , q(2)ϕ∗ be the
respective optimal weight distributions for the scaling and the SVD parameterization. The following
propositions hold:

E
q
(1)
ϕ∗

[LS(w)] = E
q
(2)
ϕ∗

[LS(w)] (20)

E
q
(1)
ϕ∗

[
− log(q

(1)
ϕ∗ (w))

]
≤ E

q
(2)
ϕ∗

[
− log(q

(2)
ϕ∗ (w))

]
. (21)

Proof The average empirical risk equality can be derived as follows:

E
q
(1)
ϕ∗

[LS(w)] = λ
b∑

k=1

a2k
a2k

+ ϵ = λ b+ ϵ = λ
b∑

k=1

s2k
s2k

+ ϵ = E
q
(2)
ϕ∗

[LS(w)] , (22)
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with ϵ = 1
n ||Xw − y||

2
2. The weight entropy inequality is derived from Hadamard’s inequality.

In light of Proposition (4), it appears that the SVD parameterization leads to a more efficient weight
distribution according to the maximum entropy principle. Indeed, for the same level of explana-
tion of the observations (same average empirical risk), the SVD parameterization provides more
entropy. Experiments conducted on both synthetic and real datasets show that this last weight pa-
rameterization provides, indeed, a better evaluation of the epistemic uncertainty (cf. Section 7)
which advocates in favor of the use of the entropy as a measure of weight distribution quality.

4.2 Deep fully connected neural network

In this subsection, we extend the previous result to deep fully connected networks under the mean
squared error loss. In particular, we formally derive the connection between the neuron activation
amplitude and the optimal scaling parameters suggested by Proposition (2).

4.2.1 NOTATIONS

We consider fully-connected neural networks hw ∈ H of L hidden layers with w ∈ W . For the sake
of simplicity, we assume that every hidden layer is composed of b neurons with b the dimension of
the input data, the last layer is composed of 1 neuron such that the neural networks produce scalar
outputs. For any x ∈ X and for any l ∈ [|1, L|], ψ(l)(x) ∈ Rb denotes the hidden representation
of the input data x in the lth layer; ψ(0)(x) ∈ Rb and ψ(L+1) ∈ R are respectively the input and
output layer representation, such that ψ(0)(x) = x and ψ(L+1)(x) = hw(x). Notice that the hidden
representations depend on w; the notation ψ(l)(x) is a contraction of ψ(l)(x,w) or ψ(l)w

(x). The
set of network weights verifiesW ⊂ Rd, with d = Lb2 + b the number of weights in the network
(bias parameters are not considered here). For any weights w ∈ W , w(l,j) ∈ Rb denotes the weights
between the layer l and the jth components of the layer l + 1 for l ∈ [|0, L|] and j ∈ [|1, bl|], with
bl = 1 if l = L and bl = b otherwise. We consider the activation function ζ : R → R such that,
for any x ∈ X , any l ∈ [|0, L − 1|] and any j ∈ [|1, b|], ψ(l+1,j)(x) = ζ

(
ψ(l)(x)

Tw(l,j)

)
with

ψ(l+1,j)(x) the jth component of the hidden representation ψ(l+1)(x). The weight distributions are
denoted qϕ with ϕ ∈ Rd. The loss function ℓ is the mean squared error and the problem to be solved
is written:

min
ϕ∈Rd

Eqϕ [LS(w)]− λ
d∑

k=1

log(ϕ2k). (23)

We assume that Problem (23) has a unique solution, denoted ϕ∗ ∈ Rd.

4.2.2 SCALING WEIGHT PARAMETERIZATION

We focus our deep neural networks analysis on the scaling parameterization (7) such that qϕ ∼
w + ϕ ⊙ z with z ∼ Z where Z ∼ N (0, Idd) or Z ∼ U([−

√
3,
√
3]d) and w the weight of a

pretrained network hw. In the following, we aim at extending the results of Proposition (2) to the
hidden layers of deep neural networks and show that the MaxWEnt optimization leads to scaling
parameters inversely proportional to the neuron activation amplitude. For this purpose, we consider
the following assumption on the activation function ζ. Assumption (5) states that the order of the
first and second moment of the neuron activation are preserved by ζ. This assumption is verified,
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for instance, for most of the common activation functions, as ReLU or Leaky-ReLU, if the neuron
activation follows a centered independent Gaussian distribution.

Assumption 5 (Moments preserving property of the activation function) For any ϕ1, ϕ2 ∈ Φ,
l ∈ [|0, L− 1|] and any j ∈ [|1, b|], the activation function ζ verifies:

n∑
i=1

Eqϕ1
[Uij ] ≤

n∑
i=1

Eqϕ2
[Uij ] =⇒

n∑
i=1

Eqϕ1
[ζ (Uij)] ≤

n∑
i=1

Eqϕ2
[ζ (Uij)] (24)

n∑
i=1

Eqϕ1

[
UiU

T
i

]
≼

n∑
i=1

Eqϕ2

[
UiU

T
i

]
=⇒

n∑
i=1

Eqϕ1

[
ζ (Ui) ζ (Ui)

T
]
≼

n∑
i=1

Eqϕ2

[
ζ (Ui) ζ (Ui)

T
]

(25)

Where Ui = (Ui1, ..., Uip) and Uij = ψ(l)(xi)
Tw(l,j) ∀i ∈ [|1, n|], ∀j ∈ [|1, b|]. For two matrices

A,B, the notation A ≼ B states that B −A is a positive semi-definite matrix.

Proposition 6 (Optimal scaling parameters) Let ϕ∗ ∈ Rd be the unique solution of Problem (23),
then ϕ∗ verifies:

ϕ∗ =
L⊗
l=0

bl⊗
j=1

(
ϕ∗(l,j,1), ..., ϕ

∗
(l,j,p)

)

ϕ∗(l,j,k)
2 =

σ2(l,j)

b a2(l,k)
∀ l ∈ [|1, L|]; j ∈ [|1, bl|]; k ∈ [|1, b|].

(26)

Where
⊗

is the concatenation operator and for any l ∈ [|0, L|], j ∈ [|1, bl|] and k ∈ [|1, b|]:

a2(l,k) =
1

n

n∑
i=1

Eqϕ∗

[
ψ(l,k)(xi)

2
]

(27)

σ2(l,j) =
1

n

n∑
i=1

Vqϕ∗

[
ψ(l)(xi)

T
(
w(l,j) − w(l,j)

)]
. (28)

Proof The full proof is reported in Appendix A.5. The main idea of the proof consists in first divid-
ing Problem (23) by layer and output neurons. The parameters ϕ defined in Equation (26) provide
the solution for each sub-problem. Then, considering Assumption (5) on the activation function and
the uniqueness of the solution, it can be shown that ϕ = ϕ∗.

Proposition (6) states that the solution ϕ∗ of the MaxWEnt optimization (23) is the inverse
of the average neuron activation amplitude over the training data. We emphasize that the aim of
Proposition (6) is not to provide an exact solution (as the quantities a2(l,k) and σ2(l,j) are intractable)
but to offer a theoretical understanding of MaxWEnt in the case of deep fully connected neural
networks. Numerical observations described in Section 7.1.4 confirm this ”inverse proportionality”
relationship between the scaling parameters and the neuron activation amplitude. This means that
maximizing the weight entropy leads to put more emphasis on the activation of neurons that are
weakly activated by the training data. Thus, it can be considered that these neurons act as ”detectors”
for the out-of-distribution data that activate them.
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5. Discussion

5.1 Maximum Entropy

The maximum entropy principle was originally proposed by Jaynes for modeling the uncertainty
that one has about a system with a probability distribution (Jaynes, 1957). It states that one should
consider the distribution of maximal entropy which is compatible with the current state of knowl-
edge about the system. This principle provides a practical framework to describe the system un-
certainty through distributions (Guiasu and Shenitzer, 1985) often referred as ”MaxEnt” (Cortes
et al., 2015), which is used in various research fields as natural language processing (Berger et al.,
1996), (Ratnaparkhi, 1996), (Rosenfeld et al., 1996), biology (Finnegan and Song, 2017), as well as
ecology, to model the geographic distribution of species (Phillips et al., 2004; Elith et al., 2011).

The MaxWEnt approach developed in this work is built under this framework. In the super-
vised learning scenario described in Section 2.1, the system is described by the set of hypothesesH
(equivalent to the set of weightsW), and the observations S. The goal is to model the uncertainty
about the best weights w∗ through a distribution over W . To provide a formal constraint on such
distribution, we assume the knowledge of a performance threshold τ ∈ R+, such that w∗ verifies
LS(w∗) ≤ τ . In the absence of further consideration, the maximum entropy principle then states
that the uncertainty over w∗ is best described by the uniform distribution over the set of consistent
weights Wτ ≡ {w ∈ W; LS(w) ≤ τ}, denoted U(Wτ ). However, due to technical limitation,
the set of weight distributions considered by the learner, Φ, is generally composed of simple distri-
butions such as independent multi-variate uniform distributions over Rd, which offer a poor model
for U(Wτ ). Moreover, because of the complex structure of Wτ , covering consistent weights with
qϕ ∈ Φ generally involves to include some inconsistent weights in the distribution support. To over-
come both issues, the technical limitation is taken into account in the maximum entropy framework
and the threshold constraint over the empirical risk is relaxed through averaging over qϕ, leading to
the following expression of the problem:

max
qϕ∈Φ

Eqϕ [− log(qϕ(w))]

subject to Eqϕ [LS(w)] ≤ τ.
(29)

The MaxWEnt optimization derived in Equation (4) is the penalized version of the maximum en-
tropy problem (29).

Formulating the epistemic uncertainty quantification as a maximum entropy problem offers a
natural classification among the weight distributions qϕ ∈ Φ. Between two weight distributions that
provide the same level of empirical error on the training data, the learner should select the one of
largest entropy. The maximum entropy paradigm also offers an interesting guideline to drive the
selection of the weight distribution family Φ: the learner should foster weight parameterization that
enables larger increases of the entropy, such as the SVD-parameterization (cf. Proposition (4)) or
ensemble of MaxWEnt networks (cf. Section (7.5). Although, this quest of entropy maximization
is counter-balanced by the computational efficiency of the weight parameterization.

Finally, It should be underlined that the maximum entropy principle has been applied with
deep learning in previous works, as for instance, to the outputs of a classifier in outlier exposure
methods (Hendrycks et al., 2018) or to the generator’s outputs for energy based generative models
(Kumar et al., 2019). These previous methods fundamentally differ from the present approach, as
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they consider the entropy of the network predictions instead of the weight distribution entropy, as
considered in MaxWEnt.

5.2 Overfitting, Weight Diversity and Evaluation

In Section 2.3, we identify the main limitation of standard ensemble and Bayesian approaches as
their inability to produce a representative sample of the whole consistent hypothesis set. We argue
that this limitation is related to over-regularization processes and hyper-parameters selection driven
by hold-out validation. Indeed, the use of weight regularization for deep neural network is first
designed as a tool to avoid overfitting (Krogh and Hertz, 1991), with the underlying idea that large
weights induce the over-specification of the network on the observations. This technique has proven
to improve the model accuracy in most cases. However, when applied in ensemble and Bayesian
learning, it induces the counter effect of penalizing the diversity of the resulting sample of neural
networks. On the contrary, anti-regularization fosters weight diversity (de Mathelin et al., 2023).
The MaxWEnt optimization can be seen as a form of anti-regularization as it induces the sampling
of large weights. Moreover, the use of broad weight distribution avoids overfitting thanks to the
marginalization process (Wilson, 2020).

Regarding the use of hold-out validation for hyper-parameters selection, we claim that such a
technique fosters narrowed weights distributions. As mentioned in Section 5.1, the covering of a
large portion of consistent hypotheses generally comes with the inclusion of inconsistent weights in
the support of the weight distribution. As a consequence, the in-distribution performance for distri-
bution of high entropy is usually degraded (confirmed numerically in our experiments). Moreover,
for a large number of training data, the in-distribution epistemic uncertainty becomes negligible in
front of the aleatoric uncertainty. Its accurate estimation is then not required to obtain good vali-
dation NLL. However, for out-of-distribution data, the main source of uncertainty is epistemic, and
its estimation is critical. Then, narrowed weights distributions, although improving the validation
NLL, fail to produce relevant uncertainty quantification out-of-distribution (Ovadia et al., 2019; Liu
et al., 2021; Henning et al., 2021).

It should be underlined that, although MaxWEnt tends to enlarge the weight distribution, it can-
not fully guarantee to capture the whole set of consistent hypotheses due to the technical limitation
of the stochastic model qϕ. However, the MaxWEnt approach is an important step in this direction.
It already provides significant improvements compared to the baselines, as demonstrated by our
numerical experiments.

5.3 Bayesian Neural Network

In the Bayesian variational inference framework, the learner aims at approximating the posterior
distribution p(w|S) with a parameterized distribution qϕ defined overW . The minimization of the
Kullback-Leibler (KL) divergence between p(w|S) and qϕ leads to the maximization of the evidence
lower bound (ELBO) expressed as follows (Wenzel et al., 2020a):

max
ϕ∈RD

Eqϕ

 ∑
(x,y)∈S

log(p(y|hw(x))

−DKL (qϕ(w), p(w)) . (30)

Where p(y|hw(x)) is the log likelihood of y with respect to hw(x), DKL is the Kullback-Leibler
divergence and p(w) is the prior distribution defined overW .
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If we consider a uniform prior over the whole weight space: p(w) ∼ U(W) (assuming W
bounded), the second term of the ELBO maximization: DKL (qϕ(w), p(w)), is equal to the negative
entropy of qϕ (up to a constant). Therefore, if the empirical risk LS(w) can be written as a quan-
tity proportional to the negative log-likelihood, the ELBO maximization (30) is equivalent to the
MaxWEnt optimization problem (4). This is in line with the application of the maximum entropy
principle to the Bayesian framework (Jaynes, 1968), which states that the prior should be selected
as the distribution of maximal entropy that integrates prior information. In our case, without any
regularity assumption about the optimal hypothesis, the maximum entropy principle then leads to
consider a uniform prior over the whole weight spaceW (bounded), i.e. p(w) ∼ U(W).

The use of ”uninformative” parameter priors is considered as the guideline to model epistemic
uncertainty in the Bayesian framework (Wilson, 2020). In practice, however, the most commonly
used priors for Bayesian neural networks are Dropout (Gal and Ghahramani, 2016; Kendall and
Gal, 2017; Boluki et al., 2020) which has been shown to produce over-confident predictions for
out-of-distribution data (Liu et al., 2021) and the isotropic Gaussian prior p(w) ∼ N (0, σ20 Idd)
(Zhang et al., 2018; Osawa et al., 2019; Jospin et al., 2022), which is recently considered to be often
”non-optimal” or ”unintentionally informative” (Wenzel et al., 2020a; Fortuin et al., 2021).

When considering a Gaussian isotropic prior p(w) ∼ N (0, σ20 Idd) with σ0 ∈ R and an inde-
pendent multivariate Gaussian stochastic model qϕ ∼ N (µ, diag(σ2)) with µ, σ ∈ Rd the mean
and scale parameters such that ϕ = (µ, σ), the following expression can be derived for the KL
divergence between the approximate posterior and the prior (Duchi, 2007):

DKL (qϕ(w), p(w)) =
||µ||22
2σ20

+
1

2

d∑
k=1

(
σ2k
σ20
− log

(
σ2k
σ20

))
− d

2
. (31)

From this expression, it appears that the KL divergence operates a ”double” regularization regime
on the scale parameters σ. When σ2k is below σ20 , the term − log(σ2k/σ

2
0) dominates σ2k/σ

2
0 , which

induces the increase of the σ2k parameter similar to the MaxWEnt penalization. Whereas, for σ2k
above σ20 , the dominant term becomes σ2k/σ

2
0 which stops the increase of the scaling parameter.

Then, for σ0 → +∞, the regularization over σ2 induced by the KL divergence converges to the
maximum entropy penalization. However, as a side effect, the term ||µ||22/2σ20 is reduced to zero
and no regularization on the mean is operated, which is generally avoided. In many previous works
which consider isotropic Gaussian priors, the commonly considered prior bandwidth σ20 are rela-
tively small (Zhang et al., 2018; Osawa et al., 2019; Ashukha et al., 2019), or at least, not designed
in a maximum entropy perspective. Moreover, a trade-off parameter λ < 1 is often added between
the log likelihood and the KL divergence in optimization (30) (Wenzel et al., 2020a) which further
tempers the KL divergence regularization. Our interpretation is that the hyper-parameter selection
is often driven by the in-distribution performances (computed on a validation set for instance) which
fosters narrowed posterior distributions. Indeed, extending the weight distribution to any consistent
weight, generally penalizes the test performances as observed in our experiments (cf. Sections 7.1.3
and 7.2.2). However, we argue that such penalization could be accepted when considering OOD
detection.

5.4 SVD-parameterization

The SVD-parameterization has been introduced in Section 3.3.2 (cf. Equation (9)) with the aim of
allowing a larger increase of the weight entropy while limiting the average empirical risk penalty.
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We argue, indeed, that using independent weight components in the stochastic model sets the di-
rections of weight distribution expansion to the canonical basis of Rd, which seems intuitively sub-
optimal. We could include correlations between weight components as additional parameters to
optimize in ϕ. However, this solution would require the optimization of O(d2) parameters which
may become intractable, especially for large neural networks as ResNet (He et al., 2016), for in-
stance, for which d > 106. Through the SVD-parameterization, we propose to set the correlation
between weight components, at each hidden layer, according to the singular value decomposition
of the neuron activation on the training data. Our theoretical analysis in Section 4.1.3 shows, in
the case of linear regression, that this weight parameterization provides the same level of average
empirical risk as independent weight components but with larger weight entropy.

Previous works consider the use of weight correlations in stochastic model in the form of ma-
trix Gaussian distribution (Louizos and Welling, 2016; Sun et al., 2017) or through more sophis-
ticated models such as weight distributions defined over ”well-chosen” subspace of Rd (Izmailov
et al., 2020), as well as normalizing flows (Louizos and Welling, 2017) and implicit weight models
(Pawlowski et al., 2017). A notable use of correlation between weights is the Laplace approxi-
mations (MacKay, 1992; Foong et al., 2019; Ritter et al., 2018), where the correlation matrix for a
Gaussian model is given by a ”closed-form” solution which can be computed using one forward and
backward step through the network. Similarities can be observed between the Kronecker Laplace
approximation (Ritter et al., 2018) and the SVD-parameterization, as both method involve the corre-
lation matrix of the neuron activation, but identifying the link between both methods would require
further investigation. In our case, the parameters ϕ are still optimized through stochastic variational
gradient descent, whereas the Laplace approximation does not require multiple gradient updates.
As we manage to find a closed-form expression for ϕ∗ in the linear case (cf. Propositions (2)
and (3)), interesting future work directions include ”Laplace-like” approximation in the MaxWEnt
framework, which can potentially speed up the computation of the parameters ϕ∗.

Regarding the complexity of the SVD parameterization, we can consider the case of a fully
connected neural network with L layers of b neurons each. Computing the SVD decomposition
matrix V (cf. Section 3.3.2) requires one forward pass of the training inputs and the computation of
the SVD decomposition at each layer with complexity O(Lb3) (Pan and Chen, 1999). Storing the
matrices adds O(Lb2) of memory burden, which is equivalent to O(d) with d ∈ N the dimension
of the network weight vector. During the variational gradient descent, the matrix multiplication
between the matrix V and the vector ϕ ⊙ z has a complexity of order O(Lb3). For comparison, a
forward pass with a batch of size B, for the scaling parameterization, is of complexityO(LBb2). If
we consider that b ≃ B with B the batch size, we can say that the SVD parameterization requires
twice as much computational time as the scaling one, which corresponds approximately to what we
observed in our experiments.

5.5 Entropy function

In the case of scaling (Equation (7)) or SVD parameterization (Equation (9)), we manage to provide
an expression of the entropy H(ϕ) function of ϕ (cf. Equation (10)), which is a convenient property
to speed up the MaxWEnt optimization. For other weight parameterizations, one may not be able to
derive such a closed-form expression. If the probability density function qϕ(w) can be computed,
one can estimate the entropy through sampling, as done for the empirical risk. An alternative solu-
tion is to use a proxy of the entropy which is directly linked to the parameters ϕ. If the entropy is a
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growing function of ϕk for any k ∈ [|1, d|], we propose to consider the following general expression
for the penalization term related to the entropy:

H(ϕ) =

d∑
k=1

gk(ϕ
2
k), (32)

with gk : R+ → R predefined growing functions such that ϕ2k grows with H(ϕ). Typical choices
are gk(u) = log(u) or gk(u) =

√
u. In the case, gk(u) = log(u), Equation (32) matches the

entropy expression derived in Proposition (1) within a constant factor. Equation (32) can be seen as
a ”proxy” of the weight ”entropy” as it increases with ϕk as the entropy.

6. Related Work

The main related works in distance based and ensemble based uncertainty quantification are pre-
sented in Section 1. The vast uncertainty estimation literature also includes notable methods as
conformal prediction (Vovk et al., 2005; Lei et al., 2018; Angelopoulos et al., 2020), calibration
(Guo et al., 2017b; Kuleshov et al., 2018) and evidential learning (Sensoy et al., 2018; Amini et al.,
2020). Our focus in this present work is on the Bayesian and ensemble approaches, for which we
propose a specific improvement through the MaxWEnt algorithm. Readers interested in the alter-
native approaches will find further details in the following surveys (Abdar et al., 2021; Shen et al.,
2021).

6.1 Deep Ensembles and prediction diversity Out-of-distribution

The main challenge, faced by Bayesian and ensemble methods, is the lack of explicit correlation
between the prediction diversity and the distance to the training domain, leading to the observa-
tion that standard methods in this category often produce over-confident predictions for OOD data
(Henning et al., 2021; Ovadia et al., 2019; Liu et al., 2021).

As described in Section 1, two main approaches are considered to increase the prediction di-
versity of deep ensemble, especially out-of-distribution: the first approach works on the diversity
of the network outputs, gradients or hidden representations (Liu and Yao, 1999; Shui et al., 2018;
Zhang et al., 2020; Ross et al., 2020; Ramé and Cord, 2021; Sinha et al., 2021). In this category,
contrastive approach make use of auxiliary real or synthetic OOD data (Pagliardini et al., 2022;
Tifrea et al., 2022; Kristiadi et al., 2022; Jain et al., 2020; Mehrtens et al., 2022; Yu and Aizawa,
2019; Wang et al., 2022b). The second approach works on the hypothesis diversity through random
initialization and different architectures (Lakshminarayanan et al., 2017; Wen et al., 2020; Wenzel
et al., 2020b; Zaidi et al., 2021) or by imposing the weight diversity (Pearce et al., 2018; Tagasovska
and Lopez-Paz, 2019; D’Angelo and Fortuin, 2021; de Mathelin et al., 2023).

These last methods particularly relate to MaxWEnt. In particular, the DARE algorithm
(de Mathelin et al., 2023) produces a sample at the edge of the consistent hypothesis set by en-
larging the network weights while maintaining the loss under an acceptable threshold. However,
DARE presents some limitations when using softmax activation at the end layer, as the use of large
weights induces the saturation of the activation for out-of-distribution data. Moreover, the DARE
training requires the control of the penalization term to avoid numerical issues when the weights
become too large. With the MaxWEnt approach, the training is more stable, as the weight distri-
bution is centered on the weights w of a pretrained network. It also works with softmax activation
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because of the symmetric increase of the weights. Indeed, enlarging the weight variance causes the
prediction of both highly negative and positive network outputs for OOD data.

6.2 Bayesian Neural Network Priors and Stochastic Models

Since the seminal work of Jaynes on Bayesian priors (Jaynes, 1968), an ongoing discussion has
been opened about the use of the maximum entropy method for assigning priors in Bayesian model-
ing. This method, considered ”thought-provoking” (MacKay, 2003), is generally not recommended
(Gelman, 2020). With the proposed MaxWEnt approach, we do not plan to further extend this
discussion. We do not argue that the maximum entropy method is the ”optimal” way to select a
prior, as such a statement depends on the considered notion of optimality. Actually, we advocate
for the use of MaxWEnt for OOD detection, but do not recommend this method to improve the test
accuracy. Enlarging the weight entropy may, indeed, induce a loss of test accuracy due to the large
weight variance. However, we show in our experiments that one can always use ”shrunk” version of
the weight distribution learned by MaxWEnt when looking for accurate inference while sampling
over the whole distribution for OOD detection (cf. Section 7.2.2).

The question of the prior choice has been extensively discussed in the Bayesian literature, a
recent review provides the main considered approaches (Fortuin et al., 2021). For Bayesian neural
networks, two main groups of priors can be distinguished: weight-space priors and function-space
priors. The latter includes priors defined in function space, i.e. overH. Many recent works consider
this approach (Sun et al., 2018; Louizos et al., 2019; Tran et al., 2022; Fortuin, 2022; Rudner et al.,
2023), which mainly use Gaussian process priors. These methods can be related to the distance
based uncertainty approach, as they make explicit the link between uncertainty and distance to
training data through Gaussian processes. The former group corresponds to prior defined over
the weights of the neural network, i.e. over W . Our work relates particularly to this approach,
as discussed in Section 5.3. The main considered priors in this category are Dropout (Gal and
Ghahramani, 2016; Gal et al., 2017; Boluki et al., 2020; Nguyen et al., 2022), isotropic Gaussians
(Zhang et al., 2018; Osawa et al., 2019; Jospin et al., 2022), mixture of Gaussians (Blundell et al.,
2015), hierarchical (Wu et al., 2018) and horseshoe priors (Ghosh et al., 2019). Some methods
also propose to define the prior based on empirical observation of the weight distribution of non-
Bayesian networks (Atanov et al., 2018; Fortuin et al., 2021).

Regarding the stochastic model of the weight distribution, previous works have considered the
use of diagonal Gaussian (Graves, 2011) and matrix Gaussian to include the weight correlations
(Louizos and Welling, 2016; Sun et al., 2017). In the case of multivariate Gaussian model with
fixed mean, approximation methods can be used to derive the posterior distribution without using
gradient descent as Laplace approximations (MacKay, 1992; Foong et al., 2019; Ritter et al., 2018;
Kristiadi et al., 2020) and tractable approximate Gaussian inference (TAGI) (Goulet et al., 2021).
More sophisticated stochastic model have been developed with techniques as normalizing flows
(Rezende and Mohamed, 2015; Louizos and Welling, 2017), implicit distribution (Pawlowski et al.,
2017) or distribution defined over subspaces ofW (Izmailov et al., 2020).
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7. Experiments

We conduct several experiments on both synthetic and real datasets. We primarily focus on OOD
detection performances to compare the methods. The implementation details for the MaxWEnt
algorithm are presented in Section 7.5. The source code of the experiments is available on GitHub1.

7.1 Synthetic Experiments

In this section, we provide a qualitative analysis of the MaxWEnt algorithm on low dimensional
synthetic datasets. Specifically, we compare the uncertainty estimation produced by MaxWEnt and
standard ensemble and Bayesian methods.

7.1.1 SETUP

We consider both classification and regression experiments, performed respectively on the two fol-
lowing datasets:

• Two Moons Classification : We consider the two-moons classification dataset from scikit-
learn2 which simulates a two-dimensional binary classification task with moons like dis-
tributed classes. The training set is composed of 200 data points generated from the two-
moons generator; 50 additional instances are generated to form a validation dataset. The
noise level of the generator is set to 0.1.

• 1D Regression : We reproduce the synthetic univariate regression experiment from (Jain
et al., 2020) with 100 training and 20 validation instances. The input instances are drawn in
X ⊂ R according to the mixture of two Gaussians centered respectively in −0.5 and 0.75
with standard deviation 0.1. The outputs y ∈ Y ⊂ R are drawn according to the conditional
distribution: p(y|x) ∼ f∗(x) + ϵ with ϵ ∼ N (0, 0.02) the noise variable and f∗(x) the
”ground truth” defined as:

f∗(x) = 0.3 (x+ sin(2πx) + sin(4πx)) . (33)

In both experiments, the base estimator is a fully-connected neural network with three layers
of 100 neurons, each with ReLU activations. For classification, the end layer is composed of one
layer with sigmoid activation to produce probabilistic outputs. The end layer for regression is made
of two neurons which respectively encode for the conditional mean µw(x) and conditional standard
deviation σw(x) of the univariate Gaussian N (µw(x), σw(x)) as suggested in (Nix and Weigend,
1994) to produce probabilistic outputs in the regression setting. We consider the five following
uncertainty quantification methods:

• Vanilla Network, the baseline, which produces uncertainty estimation based on the network
probabilistic outputs hw(x) ∈ [0, 1] for classification and σw(x) ∈ R+ for regression. Notice
that an ensemble of Vanilla Networks corresponds to the Deep Ensemble method.

• MC-Dropout (Gal and Ghahramani, 2016), with dropout rate selected through hold-out val-
idation NLL, computed using the validation data, among [0.05, 0.1, 0.2, 0.3, 0.5];

1. https://github.com/antoinedemathelin/maxwent-expe
2. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
moons.html
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• standard BNN (Bayesian Neural Network) (MacKay, 1992; Graves, 2011), trained with
stochastic variational inference and reparameterization trick (Hoffman et al., 2013; Kingma
and Ba, 2015), we use an independent multivariate Gaussian stochastic model q(µ,σ) ∼
N (µ, diag(σ2)) and a Normal prior p(w) ∼ N (0, Id). Following common practices for varia-
tional Bayes approach to BNNs, we consider a trade-off parameter λ between the NLL and the
KL divergence (Wenzel et al., 2020a). The trade-off parameter is selected in {10k}k∈[|−3,3|]
through hold-out validation NLL.

• MaxWEnt, with an independent multivariate uniform stochastic model centered on the re-
sulting weights of the Vanilla Network.

• MaxWEnt-SVD, which uses the ”SVD” parameterization of Equation (9) in addition to the
previous MaxWEnt settings.

We use the Adam optimizer (Kingma and Ba, 2015) with learning rate 0.001 and batch-size
32. 10k iterations are used to train the Vanilla Network and 20k iterations for other methods, as
the stochastic variational inference requires more iterations to converge. For both tasks, the loss
function is the Negative Log Likelihood (NLL). It can be written for the respective classification
and regression settings as follows:

LS(w) = −
1

n

∑
(x,y)∈S

y log(hw(x)) + (1− y) log(1− hw(x)) (Classification) (34)

LS(w) = −
1

n

∑
(x,y)∈S

1

2

(
log(σw(x)

2) +
(y − µw(x))2

σw(x)2

)
(Regression), (35)

with hw ∈ H the neural network of weights w ∈ W such that, for any x ∈ X , hw(x) =
(µw(x), σw(x)) for the regression setting (cf. (Lakshminarayanan et al., 2017)).

To compute uncertainty estimates, we use the entropy metric for classification and the standard
deviation of the ”Gaussian mixture approximation” introduced in (Lakshminarayanan et al., 2017)
for regression. All uncertainty quantification methods except the Vanilla Network produce stochas-
tic outputs, i.e. for any x ∈ X , hw(x) is a random variable as w follows a stochastic model. To
produce uncertainty estimates at inference, we then compute P = 50 predictions {hwi(x)}i∈[|1,P |]
with wi drawn iid according to the learned weight distribution. Then, the uncertainty estimates for
each setting becomes, for any x ∈ X :

u(x) = −hw(x) log
(
hw(x)

)
−
(
1− hw(x)

)
log
(
1− hw(x)

)
(Classification) (36)

u(x) =
1

P

P∑
i=1

(
σwi(x)

2 + µwi(x)
2
)
− µw(x)2 (Regression), (37)

with hw(x), µw(x), the average of the respective sets {hwi(x)}i and {µwi(x)}i. It should be un-
derlined that, the uncertainty metric for classification in Equation (36) is the entropy metric applied
to the average predicted output over the P stochastic inferences, while the uncertainty metric for
regression in Equation (37) is the variance formula for the Gaussian mixture composed of P Gaus-
sians of mean µwi(x) and variance σwi(x)

2 (Lakshminarayanan et al., 2017). Notice also that, for
the Vanilla Network, the estimated uncertainty is independent of P as the method produces the de-
terministic outputs hw(x). In the regression case, the Vanilla Network uncertainty is u(x) = σw(x).
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To complete the experiments, we also consider ensembles of the previously mentioned uncer-
tainty quantification methods. We build ensembles of N = 5 networks trained independently with
different random weight initialization. In this case, the uncertainty metrics are computed in the
same way as in the single-network setting through Equation (36) and (37) with P predictions for
each network in the ensemble, i.e. with a total of NP = 250 predictions.

7.1.2 RESULTS

The regression experiment results are reported in Figure 2. Predicted uncertainties for each method
are presented in the form of confidence intervals in light blue. We observe that the Deep Ensemble,
MC-Dropout and BNN methods provide larger uncertainty estimates out-of-distribution than in-
distribution, which offers an efficient way to detect OODs in this case. However, the three methods
fail to capture the full epistemic uncertainty, as a significant part of the ground-truth lies outside
the confidence intervals. In contrast, MaxWEnt provides relevant confidence intervals outside the
training support when extrapolating on the right and left side of the domain. Although, the predicted
uncertainties between the two separated parts of the training domain are still under-estimated. This
behavior is corrected by MaxWEnt-SVD which fully manages to produce tight confidence intervals
in-distribution and uncertainties as large as possible out-of-distribution.
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Figure 2: 1D-Regression Uncertainty Estimation. The horizontal and vertical axes correspond
respectively to the 1D input space X and the 1D output space Y . The black line represents the
ground truth f∗(x) and the blue line the average predictions µw(x). Training instances are reported
as white dots. Uncertainty estimations are reported in the form of confidence intervals centered
around the average prediction (in light blue). The length of the intervals is equal to 4

√
u(x) with

u(x) defined according to Equation (37).

The results of the classification experiment are reported in Figure 3. As for the regression exper-
iment, we observe that Deep Ensemble, MC-Dropout and BNN fail to provide relevant uncertainties
estimation whereas MaxWEnt and MaxWEnt-SVD are close to the expected behavior of an ideal
uncertainty quantifier. Moreover, in this experiment, the first three methods do not offer a proper
discrimination between out-of-distribution and in-distribution data. The produced uncertainties are
concentrated in the margin between classes and do not increase in the OOD areas behind the train-
ing instances. We observe that MaxWEnt and MaxWEnt-SVD manage to increase the uncertainty
outside the margin between classes.
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Figure 3: Two-Moons Classification Uncertainty Estimation. The horizontal and vertical axes
correspond to both dimensions of the input space X . Training instances are represented by white
dots. The two ”moons” formed by the training instances correspond to two different classes. Pre-
dicted uncertainties u(x), computed through Equation (36), are reported in shades of blue (darker
areas correspond to larger uncertainties).

7.1.3 DISCUSSION

Both experiments on synthetic data strongly highlight the benefit of using MaxWEnt for uncertainty
quantification over standard Bayesian and ensemble methods. As discussed in Section 5.3, the
MaxWEnt implementation is related to BNN algorithms, however, the predicted uncertainties of
MaxWEnt and BNN are very different (cf. Figures 2 and 3). These observed discrepancies between
the two methods can be explained by their different paradigms. In standard BNN optimization,
the main objective is to produce relevant uncertainty estimation inside the training domain. In this
perspective, the prior distribution and the trade-off parameters are selected in order to minimize
the validation NLL. Consequently, the expansion of the weight distribution is generally limited. In
MaxWEnt optimization, the primary goal is to maximize the entropy of the weight distribution as
long as the sampled weights are consistent. Although this approach induces a slight penalization
of the validation NLL as suggested in Figure 3 (predicted uncertainties in the training domain are
larger for MaxWEnt and MaxWEnt-SVD than for BNN), it significantly improves the predicted
epistemic uncertainties outside the training domain. Notice that one can sample from the whole
MaxWEnt weight distribution to detect OOD and then from ”shrunk” weight distribution to provide
more accurate prediction for data identified as in-distribution (cf. Figure 4).

When considering the MaxWEnt-SVD results for both experiments (cf. right side of Figures
2 and 3), we might judge that the produced out-of-distribution uncertainties are over-estimated;
especially in the regression experiment, where the predicted uncertainties become very large almost
instantly at the borders of the training domain. However, this behavior is optimal according to the
notion of epistemic uncertainty considered in this work. Indeed, epistemic uncertainty is defined
through the set of potential candidates for the best hypothesis hw∗ . Then, as soon as there exist
a neural network h in H which fits the training instances and produces very high outputs out-of-
distribution, the learner has no reason, in absence of further regularity consideration, to exclude
that the best hypothesis can be modeled by h. If, for some reason, the learner wants to add some
prior information on hw∗ , such as Lipschitz constraints on the network output, this can be achieved,
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for example, by clipping the scaling variable ϕ ⊙ z during the MaxWEnt inference as done for
the weights of the Wasserstein-GAN to impose the 1-Lipschitz constraint (Arjovsky et al., 2017).
This boils down to considering a reduced hypothesis spaceH, which de facto reduces the epistemic
uncertainty, but potentially increases the discrepancy between hw∗ and f∗. We present in Figure 4
the impact of clipping on the predicted uncertainties of MaxWEnt-SVD on the regression dataset.
We observe that the clipping parameter enables the interpolation between the behavior of the vanilla
probabilistic network and the MaxWEnt-SVD behavior. Notice that clipping is performed at ”test
time”, i.e. after the MaxWEnt optimization, which is convenient as the clipping parameter can be
selected ”a posteriori”.

C = +∞ C = 1.5 C = 1 C = 0.5 C = 0

Figure 4: MaxWEnt-SVD Uncertainties for different clipping parameters. Clipping is per-
formed ”a posteriori” on the scaling variable ϕ ⊙ z (cf. Equation (9)) of the fitted MaxWEnt-SVD
network, such that qϕ ∼ w + V min(ϕ⊙ z, C), with C the clipping parameter.

The comparison between the regression and classification results suggest that out-of-distribution
detection is a more difficult task in the classification setting. Indeed, in this setting, the uncertainty
quantification methods do not fully manage to increase uncertainty for OOD data behind the train-
ing instances of each class. This behavior can be explained by the use of the sigmoid activation
at the end-layer, which hardens the epistemic uncertainty estimation as different large outputs are
reduced in the same probabilistic output (close to 1 if positive or 0 if negative). In fact, recent out-
of-distribution detection methods often abandon the use of softmax and sigmoid activation functions
at the end layer in favor of distance-based approaches where class assignment is computed through
distance to class prototypes (Van Amersfoort et al., 2020). Notice that, we do not consider distance-
based uncertainty methods in these synthetic experiments. For these low dimensional problems,
using the Euclidean distance to the training instances would provide an almost perfect OOD detec-
tor. However, for high dimensional datasets, ensemble-based approaches generally provide better
performances (Yang et al., 2022).

In both experiments, we observe that MaxWEnt-SVD produces uncertainty estimates of better
quality than MaxWEnt. The theoretical analysis in Section 4.1.3 suggests that this improvement is
related to the weight entropy increase. To evaluate this theoretical claim, we report the evolution
of the predicted uncertainties and the weight entropy H(ϕ) through the epochs for both methods
in the regression setting (cf. Figure 5). We observe, for both methods, a strong correlation be-
tween the increase of the weight diversity (measured by H(ϕ)) and the increase of the uncertainty
estimates out-of-distribution. Moreover, the predicted uncertainties of MaxWEnt-SVD quickly in-
crease around epoch 100 as well as its distribution entropy H(ϕ), which becomes higher than the
MaxWEnt entropy (H(ϕ) = −0.03 at epoch 125 for MaxWEnt-SVD while H(ϕ) = −2.51 for
MaxWEnt). After this stage, the predicted OOD uncertainties are better for MaxWEnt-SVD than
for MaxWEnt, especially in the interpolation regime between the two parts of the training domain.
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These observations comfort the idea that higher weight diversity for the same level of in-distribution
risk produces better uncertainty quantification out-of-distribution.
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Figure 5: MaxWEnt Uncertainties Evolution through Epochs. One epoch corresponds to 100
iterations. The entropy term H(ϕ) is defined here as H(ϕ) = 1

d

∑d
k=1 log(ϕ

2
k) with ϕ the scale

parameters of the weight distribution. Notice that MaxWEnt and MaxWEnt-SVD have different
parameter initialization, respectively: ϕinit = softplus(−5) and ϕinit = softplus(−10).

7.1.4 NEURON ACTIVATION AMPLITUDE AND SCALING PARAMETERS

In the theoretical analysis in Section 4, we show, in the case of fully-connected neural network,
that the scaling parameters ϕk are inversely proportional to the neuron activation amplitude on the
training data denoted a2(l,k) for the lth layer (cf. Proposition (6)). We aim at comforting this theoret-
ical result with empirical observations. For this purpose, we estimate the activation amplitudes in
each layer of the MaxWEnt neural network and compare their values with the average of their cor-
responding scaling parameters (1/bl)

∑bl
j=1 ϕ(l,j,k). We report the result in Figure 6. The top three

graphics present the scaling parameters as a function of the activation amplitudes in the three layers
of the MaxWEnt neural network trained on the two moon dataset. We observe a clear relation of
inverse proportionality between the two quantities, in line with the theoretical outcomes. The three
graphics below present the results for the standard BNN method. We observe the inverse propor-
tionality relationship for the first layer but to a lesser extent than for MaxWEnt. This relationship is
diminished in the two next layers. Moreover, we observe that the scaling parameters in the two first
layer are globally larger for MaxWEnt than for BNN.

7.2 UCI Regression Datasets

7.2.1 SETUP

In this section, we consider the most common UCI regression datasets used to evaluate uncertainty
quantification methods. Most previous works evaluate the methods based on the in-distribution NLL
computed on a test set drawn from the same distribution as the training set (Lakshminarayanan et al.,
2017). In this work, we focus on the methods’ ability to detect whether a data point is outside the
training support or not. For this purpose, we build OOD detection problems by splitting each dataset
in two distinct parts, with one part modeling the training domain and the other part the OOD data.
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Figure 6: Neuron activation amplitude for the three hidden layers of MaxWEnt and BNN for
the synthetic classification experiment: The top three graphics correspond to MaxWEnt while the
three bottom to BNN. Each graphic reports the value of the average scaling parameter as a function
of the training neuron activation amplitude in the three layers of the neural network.

Inspired by (Foong et al., 2019) and (Jain et al., 2020), which propose OOD splits for UCI datasets,
we split the dataset along the first component of the input PCA: we define the internal domain with
the data between the 25% and 75% percentiles of the input PCA first component while the rest of
the data form the external domain. We then consider the two following experimental setup:

• Extrapolation: The training data are defined by the internal domain, while the data from the
external domain are considered as OOD.

• Interpolation: The training data are defined by the external domain, while the data from the
internal domain are considered as OOD.

In all experiments, we consider as base estimator, a fully-connected network with three hid-
den layers of 100 neurons each and ReLU activation. The end-layer is composed of two neurons,
which respectively predict the conditional mean and standard deviation µw(x), σw(x) (cf. Section
7.1.1). We consider 13 different uncertainty quantification approaches: five deep ensemble meth-
ods: Deep Ensemble (Lakshminarayanan et al., 2017), Negative Correlation (Liu and Yao, 1999;
Shui et al., 2018), Maximize-Overall-Diversity (MOD) (Jain et al., 2020), Anchored-Networks
(Pearce et al., 2018), Repulsive-Deep-Ensemble (RDE) (D’Angelo and Fortuin, 2021) and four
”Bayesian” methods: MC-Dropout, BNN, MaxWEnt, MaxWEnt-SVD (described in Section
7.1.1), and ensemble version of these four previous Bayesian methods. The competitor charac-
teristics are summarized in Table 1. We use the Gaussian NLL loss for regression, as defined in
Equation (35) and the Adam optimizer (Kingma and Ba, 2015) with learning rate 0.001 and batch
size 128. The number of iterations is chosen such that the minimum validation NLL is generally
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reached by every method on every dataset. We then consider 10k iterations for ensemble methods
and 50k iterations for Bayesian and Bayesian ensemble methods, as stochastic variational inference
converges slower than stochastic gradient descent. A callback process is used to monitor the valida-
tion NLL of the model every 100 iterations, the network weights corresponding to the iteration of
best validation NLL are restored at the training end. For MaxWEnt, the scale parameters are saved
if the validation NLL is below the threshold defined in Section 7.5.

Methods Abrv. Kind Nets Preds Total Parallel Hyper-parameters

Deep Ensemble DE Ensemble 5 1 5 ✓ None
Negative Correlation NC Ensemble 5 1 5 ✓ λ ∈ {10−k; k ∈ [|0, 5|]}
Maximize-Overall-Diversity MO Ensemble 5 1 5 × λ ∈ {10−k; k ∈ [|0, 5|]}
Anchored-Networks AN Ensemble 5 1 5 ✓ Σ, λ ∈ [0.1, 1, 10]
Repulsive-Deep-Ensemble RE Ensemble 5 1 5 × σ = median heuristic

MC-Dropout (×1) MD Bayesian 1 50 50 N/A rate ∈ [0.05, 0.1, 0.2, 0.3, 0.5]
Bayesian Neural Net (×1) BN Bayesian 1 50 50 N/A λ ∈ {10k; k ∈ [| − 2, 2|]}
MaxWEnt (×1) ME Bayesian 1 50 50 N/A λ = 10, ϕinit = soft(−5)
MaxWEnt-SVD (×1) ME+ Bayesian 1 50 50 N/A λ = 10, ϕinit = soft(−10)

MC-Dropout (×5) MD Bay Ens 5 50 250 ✓ rate ∈ [0.05, 0.1, 0.2, 0.3, 0.5]
Bayesian Neural Net (×5) BN Bay Ens 5 50 250 ✓ λ ∈ {10k; k ∈ [| − 2, 2|]}
MaxWEnt (×5) ME Bay Ens 5 50 250 ✓ λ = 10, ϕinit = soft(−5)
MaxWEnt-SVD (×5) ME+ Bay Ens 5 50 250 ✓ λ = 10, ϕinit = soft(−10)

Table 1: Competitors Summary. The columns ”Nets” and ”Preds” respectively report the number
of networks in the ensemble and the number of predictions at inference for one network. ”Total” is
the total number of predictions (Nets× Preds). The ”Parallel” column reports whether the ensemble
can be trained in parallel or not. When a list is given in the ”Hyper-parameters” section, the value
is selected based on hold-out validation NLL. ”soft” is the abbreviation for the ”softplus” function:
soft(x) = log(1 + exp(x)).

7.2.2 RESULTS

To evaluate the model performances, we use the metric defined in Equation (37) which defines an
uncertainty score for each data point, this score is used to compute the AUROC metric between
in-distribution and OOD data which is a commonly used metric in the OOD detection setting (Yang
et al., 2022). All results are reported in Table 2. Each experiment is performed only once to reduce
the computational time of the experiments. As many different datasets are used, this is sufficient to
obtain statistically significant results. We report the results by kind of methods: ensemble, Bayesian
and Bayesian ensemble. The best results for each dataset in each category is emphasized in bold.
We report the average AUROC among extrapolation and interpolation experiments and the rank of
the methods. Our observations can be summarized as follows:

• MaxWEnt-SVD (ME+) outperforms all other approaches, with or without ensembling.
The second-best non MaxWEnt approach is 11.3 points behind in extrapolation and 18 points
in interpolation in terms of average AUROC. Ensembling improves from 4.5 points in extrap-
olation and 1.2 points in interpolation.
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Data
Meth Ensemble Bayesian Bayesian Ensemble

DE NC MO AN RE BN MD ME ME+ BN MD ME ME+
E

xt
ra

po
la

tio
n

yacht 98.9 99.1 99.1 98.1 99.5 89.5 78.2 97.1 99.4 95.3 83.1 99.6 99.1
energy 81.0 93.6 91.3 79.9 92.9 88.2 55.6 74.3 99.6 92.0 81.9 91.7 99.9
concrete 78.4 89.8 88.9 83.8 87.7 75.7 68.7 74.3 90.8 79.5 72.1 81.8 95.6
wine 38.8 48.7 36.8 45.8 39.3 70.9 62.3 79.1 85.9 66.7 64.2 83.8 88.4
power 84.9 78.5 75.3 75.1 79.4 82.1 79.8 78.4 93.0 82.4 86.7 93.1 93.3
naval 97.5 97.7 85.3 99.7 96.0 89.5 96.1 96.9 97.2 96.8 96.8 98.9 99.6
protein 82.5 83.0 82.8 78.0 79.7 82.9 74.7 81.6 79.6 84.0 79.9 89.3 87.6
kin8nm 45.4 45.0 45.0 45.9 46.1 52.5 51.4 39.1 60.3 54.5 52.8 49.1 78.2

Avg AUC 75.9 79.4 75.6 75.8 77.6 78.9 70.8 77.6 88.2 81.4 77.2 85.9 92.7
Rank 9 5 11 10 7 6 12 7 2 4 8 3 1

In
te

rp
ol

at
io

n

yacht 77.5 78.4 80.6 76.1 79.7 46.7 48.4 71.4 98.9 51.9 48.0 90.1 98.6
energy 99.2 99.7 99.6 98.7 99.5 95.5 78.8 88.5 99.5 98.2 96.4 98.8 100.0
concrete 60.8 72.7 72.4 46.2 73.6 48.6 57.4 46.7 93.4 60.3 60.6 62.5 95.0
wine 43.3 42.7 42.7 41.1 43.8 34.8 41.6 32.2 52.5 33.9 41.0 37.0 62.1
power 43.5 42.8 17.8 67.3 48.5 38.1 42.7 58.6 94.7 57.2 47.1 65.5 96.0
naval 81.8 73.5 73.6 83.6 71.2 22.8 83.8 54.6 98.6 46.9 91.5 88.9 98.4
protein 70.6 72.5 65.9 73.7 73.3 66.0 71.6 64.2 83.8 71.0 76.1 71.9 80.6
kin8nm 63.7 63.2 63.3 64.7 64.8 53.1 56.2 55.8 67.1 54.2 58.1 56.9 67.7

Avg AUC 67.6 68.2 64.5 68.9 69.3 50.7 60.1 59.0 86.1 59.2 64.8 71.4 87.3
Rank 7 6 9 5 4 13 10 12 2 11 8 3 1

Table 2: UCI experiments OOD detection results. AUROC scores for OOD detection are re-
ported. The best score for each category is emphasized in bold (higher scores are better). The three
last rows for the extrapolation and interpolation settings report the average AUROC over the eight
datasets (Avg AUC), the rank of the method over all methods according to the average score (Rank)
and the result of the Poisson Binomial Test (PBT) which reports the probability that the method is
better than MaxWEnt-SVD (×5).

• The ensemble version of MaxWEnt (ME) is third best behind the two versions of
MaxWEnt-SVD. The single-network MaxWEnt, however, provides poor performances,
which advocates for the use of ensembling or SVD parameterization.

• AUROC scores are higher in extrapolation than in interpolation, suggesting that the sec-
ond task is more difficult. This seems reasonable as the network is conditioned on both sides
of the domain in the interpolation case, while being conditioned only in one side of the OOD
domain in extrapolation.

• Ensembling of Bayesian methods generally improves the results compared to the single-
net from 7 points on average. However, using Bayesian combined in ensemble increases the
training and inference time by the number of members as well as the required memory size.
Note that, for these methods, the ensemble training can be conducted in parallel, which can
alleviate the training time burden.

Finally, to evaluate the in-distribution performance of the methods, we compute, on the test
set, the Negative Log Likelihood (NLL) as well as the Expected Calibration Error (ECE) (Levi
et al., 2022). The average metrics computed over the eight datasets are reported in Table 3. To
evaluate the impact of clipping on the in-distribution performance, we also report the average met-
rics for the ”clipped” MaxWEnt weight distribution: qϕ ∼ w + min(ϕ ⊙ z, C) (independent)
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Metric
Baselines MaxWEnt MaxWEnt + Clip

DE BN1 BN5 ME1 ME1+ ME5 ME5+ ME1 ME1+ ME5 ME5+
E

xt
ra Avg NLL -0.69 -0.61 -0.75 -0.44 -0.33 -0.41 -0.04 -0.61 -0.71 -0.59 -0.71

Avg ECE 0.37 0.37 0.35 0.36 0.33 0.36 0.39 0.31 0.36 0.29 0.35

In
tr

a Avg NLL -0.45 -0.49 -0.54 -0.26 -0.12 -0.23 -0.06 -0.27 -0.45 -0.28 -0.45
Avg ECE 0.33 0.32 0.30 0.32 0.30 0.30 0.34 0.33 0.33 0.33 0.33

Table 3: UCI experiments In-distribution performances. The average Negative Log Likelihood
(NLL) and Expected Calibration Error (ECE) over the eight datasets are reported. The scores are
computed on the test set, the lower the score the better. The number at the end of the acronyms
correspond to the number of networks (ME1 refers to a MaxWEnt single network and ME5 to an
ensemble of 5 MaxWEnt networks).

and qϕ ∼ w + V min(ϕ ⊙ z, C) (SVD), with C the clipping parameter selected in [+∞, 10, 5,
2, 1, 0.5, 0.2, 0.1, 0] according to the validation NLL performance. We observe that the MaxWEnt
algorithms generally penalize the test NLL and ECE compared to the baselines. In particular, the
average NLL of MaxWEnt-SVD (x5) is larger than the ones produced by the other methods, sug-
gesting that stronger OOD detection results come with weaker test performances. However, we
observe that the use of weight clipping improves the MaxWEnt test performances, which become
comparable to those of the baselines. These results suggest that the learner should use the ”un-
clipped” MaxWEnt predicted uncertainties to perform OOD detection and the ”clipped” MaxWEnt
inferences to provide predictions for data identified as in-distribution. This requires two different
inferences: one for OOD detection and one for prediction.

7.3 CityCam Regression Datasets

7.3.1 SETUP

This section is dedicated to uncertainty quantification on the real-world dataset CityCam (Zhang
et al., 2017). This dataset is composed of images gathered from several cameras monitoring the
traffic in a city. Each camera records between 1k and 6k images dispatched over several days and
hours. The task consists in counting the number of vehicles in the image using a neural network.
This task is useful, for instance, to monitor the traffic in the city. To produce in-distribution vs out-
of-distribution splits, we consider the three following experiments introduced in (de Mathelin et al.,
2023):

• Camera-Shift: Images coming from ten different cameras are selected for this experiment.
At each round, five cameras are randomly selected to form the training dataset, while the five
remaining cameras are used as OOD dataset. On average, both dataset contain around 20k
images.

• BigBus-Shift: Images from five cameras are considered in this experiment. Some of them
are marked as ”big-bus” if a large vehicle mask a significant part of the image (cf. Zhang
et al. (2017)). These images are selected to form the OOD dataset, while the remaining ones
compose the training set. The in-distribution and OOD datasets respectively contain around
17k and 1k images.
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• Weather-Shift: For this experiment, we consider the images gathered from three cameras
recorded during February the 23th from 9 am to 6 pm. On this particular day, weather con-
ditions changed considerably between the beginning and end of the day. The dataset is split
into two subsets: images recorded before 2 pm are considered as in-distribution, while the
others as out-of-distribution. After 4 pm, water drops landed on the cameras blur the images,
which causes a clear domain shift (cf. Table 4).

Camera-Shift BigBus-Shift Weather-Shift

So
ur

ce
Ta

rg
et

Table 4: CityCam Experiments setup. An example of a webcam image is given for each domain
for the three settings: Camera-Shift, BigBus-Shift and Weather-Shift.

The three previous experiments model different out-of-distribution scenarios. OOD data for
the BigBus-Shift and Weather-Shift experiments can be considered as ”anomalies”. When a large
vehicle masks an important part of the image or when the images become too blurry due to rain
drops, it becomes very difficult to produce accurate predictions even for a human (cf. Table 4).
In this case, the learner may expect uncertainty quantification methods to provide large prediction
uncertainty in order to detect such abnormal events. The paradigm slightly differs for the Camera-
Shift experiment. In this setting, the domain shift essentially lies in the background differences
between cameras. Since the model is trained on five different cameras, the learner might expect the
model to ”generalize” and to provide accurate predictions for the images of the novel cameras.

As preprocessing, we use the features of the last layer of a ResNet50 (He et al., 2016) pretrained
on ImageNet (Deng et al., 2009). We consider the same setting as for the UCI experiments in terms
of base estimator, optimization parameters, callbacks and competitors.

7.3.2 RESULTS

For each experiment, we compute the AUROC metric and the False Positive Rate at 95 percent
(FPR@95) using the uncertainty scores given in Equation (37). The computed metrics are reported
in Table 5. We observe an important discrepancy between the scores produced by MaxWEnt-SVD
and the ones of other methods. The gap is particularly large for the Camera-Shift experiments,
where every method produces an average FPR@95 score around 97% while MaxWEnt-SVD pro-
vides a false positive rate of 29.4% in the single-net setting and 15.3% with ensembling. Similarly,
MaxWEnt-SVD outperforms every other method for the BigBus-Shift and Weather-Shift experi-
ments. The MaxWEnt algorithm without SVD parameterization provides the second best results
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in the Bayesian and ensemble category, however, the performance gains compared to the baselines
are much smaller than the ones obtained with the SVD parameterization. Notice, however, that
MaxWEnt-SVD requires more computational time because of the additional matrix multiplication
caused by the SVD alignment (cf. Section 5.4).

Method Camera-Shift BigBus-Shift Weather-Shift
FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC

DE 98.3 (1.4) 52.1 (4.9) 82.0 (2.2) 77.9 (1.3) 79.7 (2.1) 77.5 (1.0)
NegCorr 95.6 (0.6) 56.5 (4.3) 78.4 (3.6) 79.9 (1.0) 80.0 (1.1) 78.5 (1.9)
MOD 97.0 (1.7) 57.2 (2.2) 78.0 (4.0) 79.0 (2.1) 76.7 (2.4) 78.5 (1.9)
AnchorNet 99.4 (0.4) 51.0 (5.9) 84.0 (1.7) 78.2 (0.9) 73.4 (7.2) 80.9 (3.2)
RDE 97.4 (0.4) 54.6 (3.9) 78.0 (1.4) 78.4 (1.1) 77.1 (1.0) 78.0 (0.6)

BNN (x1) 98.0 (2.8) 51.0 (2.3) 93.3 (2.1) 62.3 (7.6) 76.6 (1.4) 76.7 (1.8)
MCDropout (x1) 99.9 (0.1) 43.5 (4.4) 92.2 (1.4) 71.7 (1.8) 77.1 (4.3) 77.7 (1.9)
MaxWEnt (x1) 95.4 (0.0) 51.2 (0.0) 86.6 (0.0) 78.7 (0.0) 70.4 (0.0) 77.3 (0.0)
MaxWEnt-SVD (x1) 29.4 (6.3) 92.3 (2.5) 57.5 (5.9) 87.0 (2.5) 61.1 (3.0) 85.7 (0.7)

BNN (x5) 98.1 (2.5) 53.5 (2.9) 94.1 (1.4) 64.0 (7.9) 75.3 (1.9) 80.2 (1.1)
MCDropout (x5) 99.8 (0.1) 56.5 (1.8) 87.4 (1.4) 78.0 (0.1) 76.1 (2.5) 80.6 (2.7)
MaxWEnt (x5) 93.6 (2.1) 58.5 (5.9) 79.1 (4.9) 80.5 (1.2) 67.8 (2.7) 80.8 (0.3)
MaxWEnt-SVD (x5) 15.3 (6.3) 96.9 (1.5) 53.5 (3.4) 88.6 (0.7) 59.8 (7.6) 86.7 (2.5)

Table 5: CityCam Experiments OOD Detection Results. Average AUROC and FPR@95 over
three repetitions of the experiment are reported for each dataset and each method.

A visualization of the MaxWEnt uncertainty evolution on the Weather-Shift experiment is pre-
sented in Figure 7. We compare the evolution of the confidence intervals produced by Deep Ensem-
ble and MaxWEnt (x1) along the day. The left part of Figure 7 corresponds to the images recorded
between 2:00 pm and 2:30 pm which are the closest OOD data to the training domain. We observe
that, in this time interval, both methods produce tight uncertainty intervals which well cover the
ground-truth. The right part of Figure 7 corresponds to the time interval 4:00 pm to 6:00 pm. Dur-
ing this period of time, rain drops progressively land on the camera objective and blur the image.
At some point around 5:30 pm, the deterioration of the image becomes critical for the vehicles’
counting. We observe that, in this case, the size of the confidence intervals produced by Deep En-
semble do not increase. Paradoxically, the Deep Ensemble method seems to produce more confident
predictions around 5:30 pm than before 2:30 pm. Conversely, the MaxWEnt predicted uncertainty
progressively grows after 5:00 pm in correlation with the increasing task difficulty. Notice that, at
some point, even the ground-truth is not reliable anymore, as the human annotator was not able to
accurately count the actual number of vehicles.

7.3.3 IMPACT OF THE TRADE-OFF PARAMETER

We aim at evaluating the impact of the trade-off parameter λ in the MaxWEnt optimization (4).
We choose a fixed parameter λ = 10 in all experiments with the underlying idea that λ should not
be selected based on validation NLL to not foster small λ values (cf. Section 7.5). We present
in Figure 8 the AUROC scores of MaxWEnt (×5) for the OOD detection performed on the three
CityCam experiments for different values of λ. We observe that the considered value λ = 10
is always sub-optimal, in particular for the Camera-Shift experiment, where the AUROC score
for λ = 10 is more than 10 points below the score obtained with λ = 100. It can be noticed
that the MaxWEnt performances are above the Deep Ensemble ones for a large panel of λ values,
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Figure 7: Comparison of the uncertainty evolution across time for Deep Ensemble and
MaxWEnt on the Weather-Shift OOD dataset. The top images are examples of the camera’s
recording. The length of confidence intervals (in light blue) is equal to 2σw(x).

in particular for the Weather-Shift experiment. The score’s decrease for large values of λ in the
Camera-Shift and BigBus-Shift experiments can be explained by the instabilities caused by over-
increasing the weight entropy. This study of the trade-off parameter impact suggests that future
improvements can be reached by finding the proper way of selecting λ.

Camera-Shift BigBus-Shift Weather-Shift

Figure 8: Evolution of MaxWEnt AUROC scores as a function of λ. The OOD detection AU-
ROC scores of MaxWEnt (×5) are reported for different values of the trade-off parameter λ. The
Deep Ensemble performances are reported in dashed black lines. The red dots correspond to the
MaxWEnt AUROC scores for λ = 10.

34



MAXIMUM WEIGHT ENTROPY

7.4 OSR-OOD detection benchmark on classification datasets

7.4.1 SETUP

We consider the Open-Set-Recognition (OSR) and Out-of-Distribution detection extensive bench-
mark (OpenOOD), developed in (Yang et al., 2022) which compare more than 30 OSR and OOD
detection methods on various classification datasets. The source code for the MaxWEnt experi-
ments, conducted within the OpenOOD benchmark, is available on GitHub3. We focus on the OSR
and OOD detection experiments:

• Open-Set-Recognition: For the OSR benchmark, each dataset is divided in two parts by
removing the instances corresponding to some classes from the training set. The goal is to
detect whether an instance comes from a training class or a removed one. Each experiment is
repeated five times with random selection of the training classes. Four datasets are considered:
MNIST (Deng, 2012), CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and TinyImageNet
(Torralba et al., 2008).

• Out-Of-Distribution Detection: For the OOD detection benchmark, data coming from all
classes are used at training time. The goal is then to discriminate between the test set and data
coming from other datasets (with no overlapping classes). Two types of OOD datasets are
considered: Far-OOD which corresponds to images very different from the training instances
(e.g. CIFAR10 vs MNIST) and Near-OOD which corresponds to images close to the training
instances (e.g. CIFAR10 vs CIFAR100). This last type of OOD detection is considered more
challenging and is closely related to the OSR setting (Yang et al., 2022). Three datasets are
considered: MNIST, CIFAR10 and CIFAR100.

A summary of the datasets used in each experiment is presented in Table 6. The AUROC score is
used to evaluate the discrimination accuracy between test and OOD datasets. To compute the ”OOD
scores”, a variety of algorithms are considered. They can be classified in two main categories:

• post-hoc Methods, defined as methods that can be applied ”directly” on a pretrained single
network, independently of the training process. These methods are considered practical and
model-agnostic (Yang et al., 2022). Among them, we can further distinguish the methods that
do not require the training data: MSP (Hendrycks and Gimpel, 2017), MLS (Hendrycks et al.,
2022a), ODIN (Liang et al., 2017), EBO (Liu et al., 2020), GradNorm (Huang et al., 2021a),
ReAct (Sun et al., 2021), KLM (Hendrycks et al., 2022a) and TempScale (Guo et al., 2017a)
and the methods that uses the training set: OpenMax (Bendale and Boult, 2016), MDS (Lee
et al., 2018a), Gram (Sastry and Oore, 2020), VIM (Wang et al., 2022a), KNN (Sun et al.,
2022), DICE (Sun and Li, 2022). Notice that, except for MSP and MLS, all post-hoc methods
at least require the use of a validation dataset to fine-tune their hyper-parameters.

• Non post-hoc Methods, including all methods which do not belong to the previous cate-
gory, essentially because they require a specific training process (in terms of training loss
or data augmentation for instance). This category of methods includes anomaly detection
approaches: DeepSVDD (Ruff et al., 2018), CutPaste (Li et al., 2021), DRAEM (Zavrtanik
et al., 2021); OOD detection methods with specific training process: ConfBranch (DeVries

3. https://github.com/antoinedemathelin/OpenOOD
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and Taylor, 2018), G-ODIN (Hsu et al., 2020), CSI (Tack et al., 2020), ARPL (Chen et al.,
2021), MOS (Huang and Li, 2021), OpenGAN (Kong and Ramanan, 2021), VOS (Du et al.,
2022), LogitNorm (Wei et al., 2022); uncertainty-based approaches: MCdropout (Gal and
Ghahramani, 2016), Deep Ensemble (Lakshminarayanan et al., 2017); and data augmentation
methods: MixUp (Thulasidasan et al., 2019), CutMix (Yun et al., 2019), PixMix (Hendrycks
et al., 2022b).

Experiment In-Distribution Dataset Out-Of-Distribution Datasets

OSR

MNIST6 MNIST4
CIFAR6 CIFAR4
CIFAR50 CIFAR50
TIN20 TIN180

Near-OOD
MNIST NOTMNIST, FashionMNIST
CIFAR10 CIFAR100, TIN200
CIFAR100 CIFAR10, TIN200

Far-OOD
MNIST CIFAR10, TIN200, Texture, Places-365
CIFAR10 MNIST, SVHN, Texture, Places-365
CIFAR100 MNIST, SVHN, Texture, Places-365

Table 6: OpenOOD Experiments Summary

According to (Yang et al., 2022), fair comparison between methods should be done among each
category, as non post-hoc methods may benefit from their specific training process. Notice that this
classification is not perfect. Post-hoc methods are considered model-agnostic, as they can generally
be ”plugged” to any pretrained network. However, most post-hoc methods generally require the
end-layer of the network to produce logits. post-hoc methods are considered practical because
they generally require less computational time than the non post-hoc methods. This computational
efficiency is mainly due to the training process economy. It should be mentioned, however, that
inference time for some post-hoc methods may become important for large training dataset. For
instance, KNN computes the distance between test data and all the training set in the penultimate
network layer. This may lead to important memory and computational burden if the training dataset
is very large.

The MaxWEnt algorithm can be plugged directly on a pretrained neural network hw. It may
not be totally considered as post-hoc, as it requires the additional training of the scale parameters
ϕ. However, this training may be done with few epochs and also on a small extract of the training
dataset. For our experiments, we trained MaxWEnt with the Adam optimizer (Kingma and Ba,
2015) with learning rate 5 · 10−4 and 20 epochs. We also consider an ensemble of five MaxWEnt
network. For inference, we use P = 10 predictions.

7.4.2 RESULTS

The results are reported on Figure 9, we compare AUROC scores between MaxWEnt (x1) and
MaxWEnt (x5) (in red) to the previously mentioned methods (in blue). Note that we do not include
OOD detection methods which require auxiliary OOD datasets during training to the comparison,
as MaxWEnt do not use this kind of additional information. post-hoc methods are marked with a
dagger †. We group all experiments in the three main categories: OSR, NearOOD and FarOOD as
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described in Table 6. The reported AUROC scores are averaged over all experiments inside each
category and over five different random seeds. We observe that MaxWEnt (x1) is ranked 3rd, 8th and
2nd for respectively the OSR, FarOOD and NearOOD experiments compared to all methods. When
restricting the comparison to post-hoc methods, the MaxWEnt (x1) rankings become 1st, 3rd and 1st

which demonstrates the effectiveness of the approach. It should be underlined that MaxWEnt (x1)
is outperforming all other methods in the particular setting OSR and Near-OOD which are known
to be the more challenging. For these two experiments, the MaxWEnt (x1) performance closely
match those of Deep Ensemble, which requires the training of five neural networks and thus more
computational resources. The ensemble of MaxWEnt networks provide an additional gain of around
2 points of AUROC scores and is then ranked 1st, 3rd and 1st compared to all methods. However,
this improvement requires the training of five networks, which increases the computational time.

7.5 Implementation Choices

We present hereafter the implementation choices that we consider as ”good practice” for MaxWEnt:

• Initialization: In our proposed setup, the weight mean Eqϕ [w] = w is frozen during the
MaxWEnt optimization and independent of the parameters ϕ. The weight vector w is derived
from a pretrained network hw fitted on the training data. The ϕ parameters are initialized
with a small constant value C ≪ 1. Therefore, the weight distribution qϕ is initialized as a
peaked distribution around w, which already provides low empirical risk. Notice that the use
of pretrained weights to initialize the mean of qϕ is similar to the common practice in Laplace
approximation (Ritter et al., 2018), where the mean of the posterior distribution is set to the
maximum a posteriori estimation (MAP). Moreover, in the case where a pretrained network is
already available, the use of pretrained weights reduces the computational time. Note, finally,
that we also consider a ”softplus” activation of the ϕ parameters to smooth the increase of the
weight entropy in earlier stages: ϕ = log(1 + exp(u)).

• Trade-off parameter: The MaxWEnt optimization (4) involves a trade-off between empirical
risk minimization and entropy maximization, which is controlled by the trade-off parameter
λ. A small λ penalizes larger average risks, while a large λ favors the weight distribution
expansion. Obviously, the learner has to accept to penalize the empirical risk to offer room
for the weight distribution to expand. In this perspective, we do not recommend selecting the
trade-off parameter based on validation risk minimization. The λ value should be selected
large enough to speed up the increase of the weight entropy, while not too large to avoid
optimization instabilities. We observe through numerical experiments that a relatively large
range of λ value is acceptable to provide an efficient trade-off (cf. Section 7.3.3). However,
we do not find a satisfactory heuristic to set the hyper-parameter value. In all our experiments,
we choose to consider a fixed trade-off λ = 104. Obviously, choosing the same value of λ
in any case seems intuitively sub-optimal, as the range of the training risk can vary from
one problem to another. However, we observe that, when normalizing the output labels in
regression and using logits in classification, the value λ = 10 appears to be a good trade-off.

• Stopping criterion In standard training of neural networks, a sufficiently large number of
epochs is generally performed until the full convergence of the training loss. Then the learner

4. In practice the entropy is scaled by the number of parameters such that λ = 10/D with D ∈ N the dimension of ϕ
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(a) OSR: MNIST6 + CIFAR6 + CIFAR50 + TIN20
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(b) FarOOD: MNIST + CIFAR10 + CIFAR100
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(c) NearOOD: MNIST + CIFAR10 + CIFAR100

Figure 9: OpenOOD benchmark ranking. Each method is ranked according to the average AU-
ROC score computed for the three ”global” experiments: OSR, Far-OOD, Near-OOD. Each ex-
periment is performed on 3 or 4 different datasets (cf. Table 6). The top 23 scores among the 32
competitors are reported. post-hoc methods are marked with daggers, MaxWEnt(x1) can be consid-
ered as post-hoc as it applies on a pretrained network, although it requires additional training steps
to learn the scaling parameters ϕ.
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restores the weights of the network for the epoch which provides the best validation risk. Of
course, we cannot consider such a technique for the MaxWEnt optimization, as increasing
the weight entropy generally induces a small degradation of the validation risk. We then
propose to save the network weights according to a threshold computed at the beginning of
the optimization. Motivated by the maximum entropy framework developed in Section 5.1,
we propose to estimate the performance threshold τ by the validation risk of the pretrained
network hw plus a statistical error:

τ = LSval(w) +
2

nval

√ ∑
(x,y)∈Sval

(ℓ(hw(x), y)− LSval(w))
2. (38)

The second term is proportional to the standard deviation of the errors over the validation
dataset.

• Ensemble It should be underlined that the proposed parameterizations (7) and (9) limit the
range of the weight distribution around a neighborhood of w. A straightforward improvement
would be to apply Algorithm (1) on a set of weights w(j) coming from a pretrained deep
ensemble (Lakshminarayanan et al., 2017). Conceptually, this comes down to describing qϕ
as a mixture with, for any j ∈ [|1,m|], ϕ(j) ∈ Rd, z(j) ∼ Z and π ∼ U({1, ...,m}):

qϕ ∼
m∑
j=1

1(π = j)ω(ϕ(j), z(j)), (39)

with ω(ϕ(j), z(j)) = w(j)+ϕ(j)⊙ z(j) or ω(ϕ(j), z(j)) = w(j)+V
(
ϕ(j) ⊙ z(j)

)
. In practice,

we apply Algorithm (1) to each of the pretrained networks with the scaling parameterization
ω(ϕ(j), z(j)). Notice that, if there is no overlap between the mixture components, the en-
semble parameterization necessarily results in a weight distribution of higher entropy for the
same empirical risk level, and then leads to a more efficient parameterization than the single
network setting (cf. Section 5.1). A guideline to choose the centers w(j) is then to avoid
overlapping, which can be achieved with centers distant from each other. Thus, combining
MaxWEnt with techniques as RDE (D’Angelo and Fortuin, 2021), AnchorNet (Pearce et al.,
2018) or DARE (de Mathelin et al., 2023) may offer increased performances.

8. Limitations and Perspectives

In this work, we develop the MaxWEnt algorithm to improve OOD detection with stochastic neural
networks. The main goal of MaxWEnt is to produce samples with larger weight diversity com-
pared to standard Bayesian and ensemble methods. Our experiments show that MaxWEnt fulfills its
promise, it increases the weight entropy and provides better OOD detection results. Moreover, we
show that the more the weight entropy, the better the OOD detection (for the same level of average
empirical error).

• Increasing the weight entropy: The weight entropy increase is strongly conditioned by the
weight parameterization. We show that the use of the SVD-parameterization is already an
important improvement compared to the use of independent scaling parameters. However,
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more efficient parameterization may be obtained with other techniques as normalizing flows
(Louizos and Welling, 2017) or weight subspaces (Izmailov et al., 2020). Nevertheless, the
maximum entropy framework provides a general guideline for selecting the weight parame-
terization: an efficient stochastic model should enable large increases of the weight entropy
in low empirical risk regions of the weight space.

• Penalized performances in-distribution: We have seen that increasing the entropy penalizes
the in-distribution performances. However, this negative result can be mitigated by the use
of ”shrunk” weight distribution obtained through weight clipping (cf. Section Sections 7.1.3
and 7.2.2). The learner can use the MaxWEnt uncertainties to discriminate between ID and
OOD data, and then use the prediction obtained with ”shrunk” weight distribution for the data
classified as ID.

• SVD-parameterization for Convolutions: For now, the SVD-parameterization is only de-
veloped for fully connected neural networks, but it may also be applied to convolutional
layers. Convolutions apply the same kernel to multiple windows of one channel. To use the
SVD-parameterization in this context, one idea is to concatenate all the windows on which
the kernel is applied for all training data and then compute the SVD decomposition of the
resulting dataset.

• General Bayesian and ensemble limitations: The developed MaxWEnt approach improves
upon Bayesian and ensemble methods in terms of weight diversity. However, it still inherits
the other limitations of these approaches, which principally include the computational burden
in training and inference. Future work will then consider the use of ”Laplace-like” approxi-
mation to reduce the computational time of MaxWEnt (cf. Section 5.4).

9. Conclusion

In this work, we tackle the over-confidence issue encountered with standard Bayesian and ensemble
methods outside the training domain. Building on the maximum entropy principle, we show that
penalizing the empirical average error with the weight entropy leads to larger hypothesis diversity
and, then, to improved OOD detection. Theoretical analysis shows that the behavior of the devel-
oped MaxWEnt approach is related to the amplitude of the neuron activation on the training data.
In MaxWEnt neural networks, weakly activated neurons play a more important role in the OOD
detection in comparison to vanilla probabilistic networks. Motivated by this quest of entropy maxi-
mization and by the outcomes of our theoretical analysis, we propose the SVD parameterization to
take advantage of correlations between weights with limited additional complexity. Numerical ex-
periments show the benefit of the method and highlight the link between weight entropy and OOD
detection performances. We show that the maximum entropy framework offers a guideline to rank
two weight distributions of same empirical risk, the one with the largest entropy should be preferred
to improve OOD detection. Moreover, we advocate for the use of stochastic models that foster the
increase of the weight entropy, as the SVD parameterization. We are convinced that this approach
is a step forward in the safety of deep learning. Although many challenges have to be resolved such
as the training and inference computational time.
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Appendix A. Proofs

A.1 Proof of Proposition 1

Let’s consider a matrix A ∈ Rd×d and a vector ϕ ∈ Rd such that the weights w are written:

w = w +A(ϕ⊙ z), (40)

with z ∼ Z following either a multivariate normal or a uniform distribution. We demonstrate
Proposition (1) for any orthogonal matrix A. Indeed, the weight parameterizations (7) and (9)
correspond respectively to the specific cases A = Idd and A = V T which are both orthogonal
matrices.

A.1.1 GAUSSIAN CASE

To demonstrate the result in the Gaussian case z ∼ N (0, Idd), we first derive the two following
preliminary results:

• z ∼ N (0, Idd) =⇒ A(z ⊙ ϕ) ∼ N (0, AT diag(ϕ2)A), with diag(ϕ2) the diagonal matrix of
diagonal values ϕ2 (cf. Lemma (7)).

• The entropy of a multivariate GaussianN (0,Σ) is written C + 1
2 log(|det(Σ)|) with C > 0 a

constant (independent of Σ) and det(Σ) the determinant of Σ (cf. Lemma (8)).

Lemma 7 For any A ∈ Rd×d and any ϕ ∈ Rd, we have:

z ∼ N (0, Idd) =⇒ A(z ⊙ ϕ) ∼ N (0, A diag(ϕ2)AT ). (41)

Proof We first notice that linear combinations of Gaussian variables are Gaussians. Then, it appears
that:

E[A(z ⊙ ϕ)] = A(E[z]⊙ ϕ) = 0, (42)

and:

V[A(z ⊙ ϕ)] = E[(A(z ⊙ ϕ)) (A(z ⊙ ϕ))T ]
= E[A(z ⊙ ϕ)(z ⊙ ϕ)TAT ]

= AE[(z ⊙ ϕ)(z ⊙ ϕ)T ]AT

= AV[z ⊙ ϕ]AT

= A diag(ϕ2)AT .

(43)

From which we conclude that A(z ⊙ ϕ) ∼ N (0, A diag(ϕ2)AT )

Lemma 8 The entropy of a multivariate Gaussian N (0,Σ) is written C + 1
2 log(|det(Σ)|) with

C > 0 a constant (independent of Σ) and det(Σ) the determinant of Σ.
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Proof Let’s consider the multivariate Gaussian variable Z ∼ N (0,Σ) with Σ ∈ Rd×d. We denote
pZ(z) its probability density function such that, for any z ∈ Rd:

pZ(z) =
1√

(2π)d|det(Σ)|
exp

(
−1

2
zTΣ−1z

)
. (44)

Then,

−2 log(pZ(z)) = d log(2π) + log(|det(Σ)|) + zTΣ−1z. (45)

We now consider the eigen-decomposition of Σ−1, such that Σ−1 = QT diag(1/λ)QwithQ ∈ Rd×d

an orthogonal matrix and λ the vector of eigenvalues of Σ. The following equality holds:

zTΣ−1z = (Qz)T diag(1/λ)(Qz) = uT diag(1/λ)u =
d∑

k=1

u2k
λk

. (46)

Moreover, for any z ∼ N (0,Σ), the variable u = Qz follows the distribution N (0, QΣQT ) =
N (0, diag(λ)). We then deduce that:

E[zTΣ−1z] =

d∑
k=1

E[u2k]

λ2k
=

d∑
k=1

λ2k
λ2k

= d. (47)

Finally, we can derive the following formula for the entropy of Z:

−E[log(pZ(z))] = C +
1

2
log(|det(Σ)|), (48)

with C ∈ R verifying: C = d
2 log(2π) +

d
2

Let’s now consider the variable z ∼ N (0, Idd). According to Lemma (7), the variable A(z⊙ϕ)
follows the distribution N (0, A diag(ϕ2)AT ). Then, according to Lemma (8) and by invariance of
the entropy by translation, the entropy of the distribution qϕ(w) ∼ w +A(z ⊙ ϕ) is written:

H(ϕ) = −E[log(qϕ(w))]

= C +
1

2
log(|det(A diag(ϕ2)AT )|)

= C +
1

2
log(|det(A) det(diag(ϕ2))det(AT )|),

(49)

with C ∈ R a constant. Then, as A is an orthogonal matrix, we have |det(A)| = |det(AT )| = 1 and:

H(ϕ) = C +
1

2
log(|det(diag(ϕ2))|)

= C +
1

2
log(|

d∏
k=1

ϕ2k|)

= C +
1

2

d∑
k=1

log(ϕ2k).

(50)
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A.1.2 UNIFORM CASE

The probability density function pZ(z) of a uniform distribution defined over the parallelotope P
described by the matrix Σ ∈ Rd×d is written:

pZ(z) =

{
1/V(P) z ∈ P
0 z /∈ P

, (51)

with P the subset of Rd defined as P = {Σx ; x ∈ [0, 1]d} and V(P) the volume of P which
verifies V(P) = |det(Σ)|.

Let’s now consider the variable Z of probability density function pZ(z), the entropy of Z is then
written:

E[− log(pZ(z))] = log(|det(Σ)|). (52)

We notice that, if z ∼ U([−
√
3,
√
3]d), then the variable A(z ⊙ ϕ) = A diag(ϕ)z is defined

as the uniform distribution over the parallelotope P = {A diag(ϕ)x ; x ∈ [−
√
3,
√
3]d}. As the

volume of a subset is invariant by translation, we have V(P) = V(P̃) with P̃ the parallelotope
defined as P̃ = {A diag(ϕ)x ; x ∈ [0, 2

√
3]d} = {2

√
3A diag(ϕ)x ; x ∈ [0, 1]d}. We then deduce

that the entropy of qϕ(w) ∼ w +A(z ⊙ ϕ) verifies:

H(ϕ) = E[− log(qϕ(w))]

= log(|det(2
√
3A diag(ϕ))|)

= log(|det(A)| |det(2
√
3 diag(ϕ))|).

(53)

Finally, as A is an orthogonal matrix, we have |det(A)| = 1 and:

H(ϕ) = log(|det(2
√
3 diag(ϕ))|)

= 2d−1
√
3
d

b∑
k=1

log(ϕ2k).
(54)

A.2 Proof of Proposition 2

Proof Let’s consider ϕ ∈ Rb and z ∼ Z . The training risk for the weight w = w + ϕ ⊙ z can be
written as follows:

||X(w + ϕ⊙ z)− y||22 = ||X(ϕ⊙ z) +Xw − y||22
= ||X(ϕ⊙ z)||22 + ⟨X(ϕ⊙ z), Xw − y⟩+ ||Xw − y||22.

(55)

When averaging over z ∼ Z , considering that E[z] = 0, we obtain:

EZ
[
||X(w + ϕ⊙ z)− y||22

]
− ||Xw − y||22 = EZ

[
||X(ϕ⊙ z)||22

]
= EZ

[
zT diag(ϕ)XT

] (56)

The objective function of Problem (11) can then be written, for any ϕ ∈ Rb:

G(ϕ) =
b∑

k=1

(
a2kϕ

2
k − λ log(ϕ2k)

)
. (57)
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The objective function of Problem (11) is convex and admits a solution. Moreover, the partial
derivative of the objective with respect to ϕ2k is written:

∂G(ϕ)

∂ϕ2k
= a2k −

λ

ϕ2k
. (58)

As a consequence, the gradient of G is null if and only if

ϕ2k =
λ

a2k
, (59)

which is well-defined when assuming a2k > 0.

A.3 Proof of Proposition 3

Proof Let’s consider ϕ ∈ Rb, V the matrix of eigenvectors of 1
nX

TX with s2 the corresponding
vector of eigenvalues and z ∼ Z . The average training risk for the weight w = w + V (ϕ⊙ z) can
be written as follows:

EZ

[
1

n
||X(w + V (ϕ⊙ z))− y||22

]
= EZ

[
1

n
||XV (ϕ⊙ z)||22

]
+

1

n
||Xw − y||22. (60)

We notice that:

1

n
||XV (ϕ⊙ z)||22 =

1

n
||XV diag(ϕ)z||22

= zT diag(ϕ)TV T

(
1

n
XTX

)
V diag(ϕ)z

= zT diag(ϕ)T diag(s2)diag(ϕ)z

= zT diag(s2ϕ2)z

=
b∑

k=1

s2kϕ
2
kz

2
k.

(61)

Then,

EZ

[
1

n
||X(w + V (ϕ⊙ z))− y||22

]
=

b∑
k=1

s2kϕ
2
k +

1

n
||Xw − y||22. (62)

The continuation of the proof is similar to the proof in Appendix (A.2) with s2k instead of a2k.
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A.4 Proof of Proposition 4

Proof Let q(1)ϕ∗ , q(2)ϕ∗ be the respective optimal weight distributions for the scaling and the SVD
parameterization. Then,

q
(1)
ϕ∗ ∼ w +

λ

a
⊙ z (63)

q
(2)
ϕ∗ ∼ w + V (

λ

s
⊙ z), (64)

with z ∼ Z . Considering Equations (56) and (62), both average empirical losses are written:

E
q
(1)
ϕ∗

[LS(w)] =
b∑

k=1

λa2k
a2k

+
1

n
||Xw − y||22 (65)

E
q
(2)
ϕ∗

[LS(w)] =
b∑

k=1

λs2k
s2k

+
1

n
||Xw − y||22. (66)

Then,

E
q
(1)
ϕ∗

[LS(w)] = E
q
(2)
ϕ∗

[LS(w)] = λ b+
1

n
||Xw − y||22. (67)

Moreover, both entropy can be written:

E
q
(1)
ϕ∗

[
− log(q

(1)
ϕ∗ )
]
= −

b∑
k=1

log(a2k) + b log(λ) (68)

E
q
(2)
ϕ∗

[
− log(q

(2)
ϕ∗ )
]
= −

b∑
k=1

log(s2k) + b log(λ). (69)

Let’s denote M = 1
nX

TX , by definition, we have the following equalities:

M = V T diag(s2)V (70)

Mii = a2i ∀i ∈ [|1, b|]. (71)

Equation (70) implies that M = UUT with U = V T diag(s)V . For any i ∈ [|1, b|], we denote

ui ∈ Rb the ith row vector of the matrix U and ||ui||2 =
√∑b

j=1 U
2
ij its corresponding Euclidean

norm.
Applying the Hadamard inequality to the matrix U , we obtain that:

det(U) ≤
b∏

i=1

||ui||2. (72)

Then, the formula U = V T diag(s)V implies that det(U) =
∏b

i=1 si and the equality M = UUT

implies that Mii =
∑b

j=1 U
2
ij = ||ui||22. Considering Equation (71), we then deduce that:

b∏
i=1

s2i ≤
b∏

i=1

a2i . (73)
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From which, we conclude that:

− log

(
b∏

i=1

s2i

)
≥ − log

(
b∏

i=1

a2i

)
=⇒ −

b∑
i=1

log(s2i ) ≥ −
b∑

i=1

log(a2i )

=⇒ E
q
(2)
ϕ∗

[
− log(q

(2)
ϕ∗ )
]
≥ E

q
(2)
ϕ∗

[
− log(q

(1)
ϕ∗ )
]
.

(74)

A.5 Proof of Proposition 6

The proof consists in first rewriting the optimization problem (23) as a maximum entropy problem
with a constraint over the average empirical risk. Then, we show that ϕ∗ is solution of the optimiza-
tion problem (OP) augmented with additional equality constraints in the hidden layers. We then
remove the constraint over the average empirical risk and show that the solution ϕ† of the resulting
OP provides a distribution with higher entropy than ϕ∗. By splitting the OP in sub-optimization
problems by hidden layer, we show that ϕ† verifies Equation (26). Then, using recursively Assump-
tion (5) on the activation function, we show that, for any layer, the first and second moments of
the neuron activation are the same for both distribution qϕ† and qϕ∗ . We then prove the equality of
empirical risk for ϕ† and qϕ∗ , leading to show that ϕ† is solution of Problem (23), from which we
conclude that ϕ† = ϕ∗, as the solution is unique.
Proof Let’s consider w ∈ Rd and, for any ϕ ∈ Rd, the distribution qϕ ∼ w + ϕ ⊙ z with z ∼ Z
such that Z ∼ U([−

√
3,
√
3]d) or Z ∼ N (0, Idd). The optimization problem (23) is written:

min
ϕ∈Rd

Eqϕ [LS(w)]− λ
d∑

k=1

log(ϕ2k). (75)

It is assumed that the above optimization problem has a unique solution, denoted ϕ∗ ∈ Rd. Then,
there exists τ ∈ R+ such that ϕ∗ verifies the following optimization problem:

max
ϕ∈Rd

d∑
k=1

log(ϕ2k)

subject to Eqϕ [LS(w)] ≤ τ.

(76)

Indeed, for τ = Eqϕ∗ [LS(w)], if we denote ϕ∗∗ ∈ Rd the solution of problem (76), then∑d
k=1 log(ϕ

∗∗
k

2) ≥
∑d

k=1 log(ϕ
∗
k
2) and Eqϕ∗∗ [LS(w)] ≤ τ which implies that:

Eqϕ∗∗ [LS(w)]− λ
d∑

k=1

log(ϕ∗∗k
2) ≤ Eqϕ∗ [LS(w)]− λ

d∑
k=1

log(ϕ∗k
2). (77)

From which we deduce that ϕ∗∗ = ϕ∗, as the solution of Problem (75) is assumed unique. Moreover,
ϕ∗ is the unique solution of Problem (76).
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For each layer, we define the amplitude of the input neuron activation on average over the training
data:

a2(l,k) =
1

n

n∑
i=1

Eqϕ∗ [ψ(l,k)(xi)
2] ∀ l ∈ [|0, L|]; k ∈ [|1, b|]. (78)

We also define the quantities σ2(l,j), related to the variance of the output neurons, before activation,
on average over the training data:

σ2(l,j) =
1

n

n∑
i=1

Vqϕ∗

[
ψ(l)(xi)

T
(
w(l,j) − w(l,j)

)]
∀ l ∈ [|0, L|]; j ∈ [|1, bl|], (79)

with bl = 1 if l = L and bl = b otherwise.
Let’s now take l ∈ [|0, L|] and j ∈ [|1, bl|], considering the independence between ψ(l) and z(l,j),
we have:

nσ2(l,j) =
n∑

i=1

Vqϕ∗ [ψ(l)(xi)(ϕ
∗
(l,j) ⊙ z(l,j))]

=
n∑

i=1

Vqϕ∗

[
b∑

k=1

ψ(l,k)(xi)ϕ
∗
(l,j,k)z(l,j,k)

]

=

n∑
i=1

b∑
u=1

b∑
v=1

ϕ∗(l,j,u)ϕ
∗
(l,j,v)Cov

(
ψ(l,u)(xi)z(l,j,u), ψ(l,v)(xi)z(l,j,v)

)
=

n∑
i=1

b∑
u=1

b∑
v=1

ϕ∗(l,j,u)ϕ
∗
(l,j,v)Eqϕ∗

[
ψ(l,u)(xi)ψ(l,v)(xi)

]
Eqϕ∗

[
z(l,j,u)z(l,j,v)

]
.

(80)

For u ̸= v, z(l,j,u) ⊥⊥ z(l,j,v) and Eqϕ∗

[
z(l,j,u)z(l,j,v)

]
= Eqϕ∗

[
z(l,j,u)

]
Eqϕ∗

[
z(l,j,v)

]
= 0, then:

σ2(l,j) =
1

n

n∑
i=1

b∑
k=1

Eqϕ∗ [ψ(l,k)(xi)
2]ϕ∗(l,j,k)

2

=
b∑

k=1

a2(l,k)ϕ
∗
(l,j,k)

2.

(81)

The optimization problem (76) is then equivalent to:

max
ϕ∈Rd

d∑
k=1

log(ϕ2k)

subject to:

{
Eqϕ [LS(w)] ≤ τ∑b

k=1 a
2
(l,k)ϕ(l,j,k)

2 = σ2(l,j) ∀ l ∈ [|0, L|]; j ∈ [|1, bl|].

(82)

Indeed, as problem (82) includes more constraints than problem (76), its solution necessarily pro-
vides a distribution of lower or equal entropy than qϕ∗ . However, as the additional constraints are
verified by ϕ∗, ϕ∗ is the unique solution of problem (82).
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We now remove the constraint over the average empirical risk and consider the following alter-
native optimization problem:

max
ϕ∈Rd

d∑
k=1

log(ϕ2k)

subject to:
b∑

k=1

a2(l,k)ϕ(l,j,k)
2 = σ2(l,j) ∀ l ∈ [|0, L|]; j ∈ [|1, bl|].

(83)

Considering a similar argument as before, the solution ϕ† of problem (83) necessarily provides a
distribution of larger or equal entropy than ϕ∗, i.e.

d∑
k=1

log(ϕ∗k
2) ≤

d∑
k=1

log(ϕ†k
2
). (84)

Moreover, the optimization problem (83) can be decomposed in multiple sub-problems such that:

ϕ† =
L⊗
l=0

bl⊗
j=1

ϕ†(l,j), (85)

with ϕ†(l,j) ∈ Rb for any l ∈ [|0, L|], j ∈ [|1, bl|]. The operator
⊗

is the concatenation operator.

Each vector ϕ†(l,j) is a solution of the following optimization sub-problem:

ϕ†(l,j) = argmax
ϕ(l,j)∈Rb

b∑
k=1

log(ϕ2(l,j,k))

subject to:
b∑

k=1

a2(l,k)ϕ(l,j,k)
2 = σ2(l,j).

(86)

Then, by writing the Karush–Kuhn–Tucker conditions of the above optimization problem we get
the following expression for the solution:

ϕ†(l,j,k)
2
=

σ2(l,j)

b a2(l,k)
∀ k ∈ [|1, b|]. (87)

Thus, ϕ† verifies Equation (26).
We now need to show that ϕ† provides the same empirical risk than ϕ∗. For this purpose, we

consider l ∈ [|0, L− 1|] and assume that the first and the second moments of the neuron activation
in layer l are the same for ϕ∗ and ϕ†, we will then show that this property is true in layer l+1. Let’s
then assume that:

b∑
i=1

Eqϕ∗

[
ψ(l,j)(xi)

]
=

b∑
i=1

Eq
ϕ†

[
ψ(l,j)(xi)

]
∀ j ∈ [|1, b|] (88)

b∑
i=1

Eqϕ∗

[
ψ(l)(xi)ψ(l)(xi)

T
]
=

b∑
i=1

Eq
ϕ†

[
ψ(l)(xi)ψ(l)(xi)

T
]
. (89)
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Let’s define Ui = (Ui1, ..., Uip) with Uij = ψ(l)(xi)
Tw(l,j) ∀i ∈ [|1, b|], ∀j ∈ [|1, b|]. Considering

Equation (88), for any j ∈ [|1, b|], we have:

n∑
i=1

Eq
ϕ†

[Uij ] =
n∑

i=1

Eq
ϕ†

[
ψ(l)(xi)

]T
w(l,j) =

n∑
i=1

Eqϕ∗

[
ψ(l)(xi)

]T
w(l,j) =

n∑
i=1

Eqϕ∗ [Uij ] . (90)

Moreover, for any k, j ∈ [|1, b|] such that k ̸= j, we have:

n∑
i=1

Eq
ϕ†

[
UiU

T
i

]
kj

=

n∑
i=1

Eq
ϕ†

[
UikU

T
ij

]
=

n∑
i=1

Eq
ϕ†

[
ψ(l)(xi)

Tw(l,k)w
T
(l,j)ψ(l)(xi)

]
=

n∑
i=1

b∑
u=1

b∑
v=1

Eq
ϕ†

[
ψ(l,u)(xi)ψ(l,v)(xi)

]
Eq

ϕ†

[
w(l,k,u)w(l,j,v)

]
=

n∑
i=1

b∑
u=1

b∑
v=1

Eq
ϕ†

[
ψ(l,u)(xi)ψ(l,v)(xi)

]
w(l,k,u)w(l,j,v)

=
n∑

i=1

wT
(l,k)Eq

ϕ†

[
ψ(l)(xi)ψ(l)(xi)

T
]
w(l,j)

=
n∑

i=1

wT
(l,k)Eqϕ∗

[
ψ(l)(xi)ψ(l)(xi)

T
]
w(l,j) (considering Equation (89))

=
n∑

i=1

Eqϕ∗

[
UiU

T
i

]
kj
.

(91)

Then, for any j ∈ [|1, b|], we have:

n∑
i=1

Eq
ϕ†

[
UiU

T
i

]
jj

=
n∑

i=1

Eq
ϕ†

[(
ψ(l)(xi)

Tw(l,j)

)2]
=

n∑
i=1

(
Vq

ϕ†

[
ψ(l)(xi)

T (w(l,j) − w(l,j))
]
+ Eq

ϕ†

[(
ψ(l)(xi)

Tw(l,j)

)2])
=

n∑
i=1

(
b∑

k=1

Eq
ϕ†
[ψ(l,k)(xi)

2]ϕ†(l,j,k)
2
+ wT

(l,j)Eq
ϕ†

[
ψ(l)(xi)ψ(l)(xi)

T
]
w(l,j)

)

=

n∑
i=1

(
b∑

k=1

Eqϕ∗ [ψ(l,k)(xi)
2]ϕ†(l,j,k)

2
+ wT

(l,j)Eqϕ∗

[
ψ(l)(xi)ψ(l)(xi)

T
]
w(l,j)

)
.

(92)
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Where the last equality is deducted from Equation (89). Moreover, the first term can be developed
as follows:

n∑
i=1

b∑
k=1

Eqϕ∗ [ψ(l,k)(xi)
2]ϕ†(l,j,k)

2
=

b∑
k=1

na2(l,k)ϕ
†
(l,j,k)

2

=

b∑
k=1

na2(l,k)
σ2(l,j)

b a2(l,k)
by definition of ϕ†

= nσ2(l,j)

=

n∑
i=1

Vqϕ∗

[
ψ(l)(xi)

T
(
w(l,j) − w(l,j)

)]
.

(93)

We then deduce that:
n∑

i=1

Eq
ϕ†

[
UiU

T
i

]
jj

=

n∑
i=1

Eqϕ∗

[
UiU

T
i

]
jj
. (94)

Equations (91) and (94) implies that
∑n

i=1 Eq
ϕ†

[
UiU

T
i

]
=
∑n

i=1 Eqϕ∗

[
UiU

T
i

]
. Considering this

last equality, Equation (90) and Assumption (5), we then conclude that:
n∑

i=1

Eq
ϕ†

[ζ (Ui)] =

n∑
i=1

Eqϕ∗ [ζ (Ui)] (95)

n∑
i=1

Eq
ϕ†

[
ζ (Ui) ζ (Ui)

T
]
=

n∑
i=1

Eqϕ∗

[
ζ (Ui) ζ (Ui)

T
]
. (96)

Where,
ζ (Ui) =

(
ζ
(
ψ(l)(xi)w(l,1)

)
, ..., ζ

(
ψT
(l)(xi)w(l,p)

))
= ψ(l+1)(xi). (97)

Then Equations (95) and (96) are equivalent to the moments’ equality in Equations (88) and (89)
applied to layer l+1. As these equations are true for l = 0, then, by recurrence, we have Equations
(88) and (89) for l = L+ 1, then:

n∑
i=1

Eq
ϕ†

[h(xi)] =
n∑

i=1

Eqϕ∗ [h(xi)] and
n∑

i=1

Eq
ϕ†

[
h(xi)

2
]
=

n∑
i=1

Eqϕ∗

[
h(xi)

2
]
. (98)

Moreover, by developing the empirical risk, we have:

LS(w) =
n∑

i=1

(h(xi)− yi)2 =
n∑

i=1

(
h(xi)

2 − 2h(xi)yi + y2i
)
. (99)

From which we deduce that:

Eq
ϕ†

[LS(w)] = Eqϕ∗ [LS(w)] . (100)

Then, considering Equation (84) and the uniqueness of the solution of Problem (76), we conclude
that ϕ† = ϕ∗.
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