
HAL Id: hal-04455961
https://hal.science/hal-04455961

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Accurate Importance Weighting for Correcting
Sample Bias

Antoine de Mathelin, Francois Deheeger, Mathilde Mougeot, Nicolas Vayatis

To cite this version:
Antoine de Mathelin, Francois Deheeger, Mathilde Mougeot, Nicolas Vayatis. Fast and Accurate
Importance Weighting for Correcting Sample Bias. Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 2022, Grenoble, France. pp.659-674. �hal-04455961�

https://hal.science/hal-04455961
https://hal.archives-ouvertes.fr

Fast and Accurate Importance Weighting for
Correcting Sample Bias

Antoine de Mathelin1,2�, Francois Deheeger1, Mathilde Mougeot2, and Nicolas
Vayatis2

1 Manufacture Française des Pneumatiques Michelin, Clermont-Ferrand, France
{antoine.de-mathelin-de-papigny, francois.deheeger}@michelin.com

2 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, Gif-sur-Yvette,
France {mathilde.mougeot, nicolas.vayatis}@ens-paris-saclay.fr

Abstract. Bias in datasets can be very detrimental for appropriate
statistical estimation. In response to this problem, importance weighting
methods have been developed to match any biased distribution to its
corresponding target unbiased distribution. The seminal Kernel Mean
Matching (KMM) method is, nowadays, still considered as state of the art
in this research field. However, one of the main drawbacks of this method
is the computational burden for large datasets. Building on previous
works by Huang et al. (2007) and de Mathelin et al. (2021), we derive
a novel importance weighting algorithm which scales to large datasets
by using a neural network to predict the instance weights. We show, on
multiple public datasets, under various sample biases, that our proposed
approach drastically reduces the computational time on large dataset
while maintaining similar sample bias correction performance compared
to other importance weighting methods. The proposed approach appears
to be the only one able to give relevant reweighting in a reasonable time
for large dataset with up to two million data.

1 Introduction

The most common assumption in a traditional learning scenario is that training
data are independently and identically distributed (iid) and drawn from the
same distribution as the target data. However, in real cases, the training dataset
often appears to be biased with respect to the target dataset. This happens in
particular in medical applications, when, for example, the age distribution of the
patients does not match the distribution of the overall population. In product
design, predictive models of product performances may be biased by the large
amount of data corresponding to outdated products. For both previous cases, it
often happens that the learner has access to the unbiased distribution, either
because it is known from an external source (the age distribution in the whole
population is known) or because he has access to an unbiased dataset (a sample
of data of the recent products).

In this paper we assume that the learner owns a sample drawn from a source
biased distribution ps(x, y) as well as a sample coming from the target marginal

ar
X

iv
:2

20
9.

04
21

5v
1

 [
cs

.L
G

]
 9

 S
ep

 2
02

2

2 A. de Mathelin et al.

distribution pt(x) such that ps(x) 6= pt(x). Our goal is to estimate pt(y|x) or
pt(y) where y is the variable of interest (e.g. patient survival expectancy for a
clinical model or product performances for product design). Given the bias on
the marginals, the estimation of pt(y|x) on the target domain will be biased as
well.

To correct this type of sample bias, importance weighting methods can be
used. These methods seek to reweight the source data to debias the marginals
by looking for the weights corresponding to w(x) = pt(x)/ps(x). A successful
non-parametric method in this field is the Kernel Mean matching (KMM) method
[16] which reweights the sources in order to minimize the MMD distance between
the reweighted sources and the targets [14]. Although KMM is one of the first
non-parametric method developed to handle sample bias, it is still used nowadays
in modern sample bias correction methods for deep learning [11] or for deriving
two-sample hypothesis testing under sample bias [1]. KMM solves a quadratic
problem for the minimization of the MMD with as many parameters as the
number of source instances. Thus, when the number of source data is large, one
faces a computational burden because of the large kernel matrix to compute. Some
methods have proposed to reduce the problem in batch and to perform a KMM
on each of them [6], [27]. This lightens the memory, but the computational time
remains important as the number of KMM sub-problems to compute increases
with the number of data. Other importance weighting methods reduce the number
of parameters to be optimized by linking the weights of the source instances
by a parametric function as done for KLIEP [33] and ULSIF [17]. These two
methods propose to write each of the weights as a linear combination of kernels
centered on target points. Thus, the number of parameters is fixed (in general by
selecting a hundred centers in the target domain), however, the computational
cost of the pairwise distance calculations between the centers and all the source
data still remains. Moreover, this large matrix of pairwise distances is used in
the resolution of the gradient descent algorithm which slows the optimization.
A last method, NearestNeighborsWeighting (NNW) consists in computing the
weights of the source instances according to their number of target nearest
neighbors [21]. This heuristic, not relying on the minimization of a distance
between distributions, is quite efficient, and its computation time is generally
less than its KMM counterpart. However, the search for the nearest neighbors
requires the computation of pairwise distances between source and target data
and despite the optimization algorithms of type KDTree [12] and BallTree [29],
the method encounters computational burden for datasets with many instances
and features.

Finally, all these algorithms rely on hyper-parameters to be tuned. The choice
of the kernel and its bandwidth for the KLIEP and KMM methods are very
important, as well as the number of nearest neighbors to consider for NNW.
To choose these parameters, a cross-validation procedure using an unsupervised
metric (which does not require the y data on the target domain) is mainly used
such as the J-score for KLIEP [33], the normalized mean squared error (NMSE)
between the actual and estimated density ratios for KMM [26], an information

Fast and Accurate Importance Weighting for Correcting Sample Bias 3

criterion for ULSIF [17], or any divergence metric between distributions such
as the linear discrepancy or the domain classifier divergence [2], [8], [22]. This
hyper-parameter selection procedure, necessary to use these methods in practice,
adds to the computational time.

Considering the drawbacks of the previous mentioned methods, we propose,
in this paper, a new importance weighting algorithm that scales to large datasets.
Our goal is to obtain the same level of performance than KMM but with less
computational time. To do so, we propose to minimize the objective of KMM,
i.e. the MMD, by a batch gradient descent to avoid the memory burden of the
huge kernel matrix. However, it should be underlined that optimizing the weights
of the source instances individually brings no complexity gain since each source
weight is only updated in its corresponding batch. Assuming w(x) = pt(x)/ps(x)
continuous and regular, for two close source points x1 ' x2, the weights will be
similar w(x1) ' w(x2). Consequently, we propose to optimize at each batch the
parameters θ of a parametric and continuous functionWθ(x) in order to minimize
the empirical MMD on the batch. Inspired from recent works of weighting
adversarial neural network (WANN) [25], this function Wθ is chosen as a neural
network. The advantage of the networks is the fast update of the θ parameters by
backpropagation of the gradient through the layers which is highly parallelizable
[19]. This avoids working with huge matrices of pairwise kernel as done in the
KLIEP algorithm. We show on several datasets that this approach allows to
obtain importance weighting at least as efficient as KMM in a drastically reduced
time. The source code of the experiments is publicly available on GitHub3.
Our contributions can be listed as follows:

– We derive a fast and scalable importance weighting algorithm. This is achieved
by using batch gradient descent optimizing the MMD and by parameterizing
the weights by a neural network.

– The developed algorithm optimizes the kernel parameters of the MMD in the
gradient-descent optimization and thus avoid a time consuming CV process
to select it.

2 Problem Setting and Proposed Approach

2.1 Learning scenario

Given an input space X ∈ Rp of dimension p > 0 and an output space Y ∈ Rq
with q > 0, we consider the sample bias scenario in which the learner has access
to a source sample S = {(x1, y1), ..., (xm, ym)} ⊂ X × Y drawn iid from a source
distribution ps(x, y) on X ×Y and a target sample T = {x1, ..., xn)} ⊂ X drawn
iid according to a target distribution pt(x) on X . We suppose that ps(x) 6= pt(x)
and that pt(x) is absolutely continuous with respect to ps(x). Finally, we make
the covariate-shift assumption [3] which states that the conditional probabilities
of y|x remain unchanged for the two distributions: ps(y|x) = pt(y|x).
3 https://github.com/antoinedemathelin/Importance-Weighting-Network

https://github.com/antoinedemathelin/Importance-Weighting-Network

4 A. de Mathelin et al.

2.2 MMD

Let’s consider φσ : X → Fσ with Fσ the RKHS of Gaussian kernel kσ such that
∀x, x′ ∈ X , kσ(x, x′) = 〈φσ(x), φσ(x′)〉 = exp(−σ||x − x′||2) with σ > 0. The
Maximum Mean Discrepancy (MMD) between the source and target distributions
is defined as follows:

MMDσ(ps(x), pt(x)) =
∣∣∣∣∣∣∣∣ E
x∼ps(x)

[φσ(x)]− E
x∼pt(x)

[φσ(x)]

∣∣∣∣∣∣∣∣ (1)

The MMD is a distance characterizing how close are the two marginal distri-
butions ps(x), pt(x). As we consider a Gaussian kernel, MMDσ = 0 if and only if
ps(x) = pt(x) [14].

As our goal is to correct the sample bias between the source and target
distributions with importance weighting, we aim at finding the weights w(x) ∈ R+

that solve the following optimization problem:

min
w:X→R+

∣∣∣∣∣∣∣∣ E
x∼ps(x)

[w(x)φσ(x)]− E
x∼pt(x)

[φσ(x)]

∣∣∣∣∣∣∣∣2
subject to w(x) ≥ 0 ∀x ∈ X and E

x∼ps(x)
[w(x)] = 1

(2)

As we consider pt(x) absolutely continuous with respect to ps(x), the solution
of the optimization problem (2) is the density ratio w(x) = pt(x)/ps(x) [16].

In practice, we only have access to samples {x1, .., xm} and {x′1, .., x′n} respec-
tively drawn according to both distributions ps(x) and pt(x), we then consider
the empirical formulation of the previous optimization problem (2) which is
written:

min
w∈Rm

1

m2

m∑
i,j

wiwjkσ(xi, xj) +
1

n2

n∑
i,j

kσ(x
′
i, x
′
j)−

2

nm

m∑
i

n∑
j

wikσ(xi, x
′
j)

subject to wi ≥ 0∀i ∈ [|1,m|] and 1

m

m∑
i

wi = 1

(3)

2.3 Importance Weighting Network

The optimization problem (3) is a quadratic optimization problem which can be
solved by gradient descent. However computing the MMD requires to compute a
kernel matrix of size O((n+m)2) which can cause memory burden. We propose,
in this paper, to compute the MMD on small batches of size B. At each batch,
we impose the constraints on the weights by taking their absolute values and
dividing them by their sum. It has been shown that, although self-normalizing the
weights creates a biased estimation of the MMD, the estimator is asymptotically
unbiased, with the bias decreasing at a rate of O(1/B) [9], [23].

Fast and Accurate Importance Weighting for Correcting Sample Bias 5

To obtain a fast update of all weights at each batch, we parameterized the
weights through a neural network Wθ : X → R such that wi =Wθ(xi) for each
i ∈ [|1,m|]. In this way, at each batch, the parameters θ are updated and then
all the parameters wi are updated with them. Notice that the MMD estimation
produced by the batch of size B is approaching the true MMD at a strong rate
of O(1/

√
B) [14] which comforts the idea that the update of θ at each batch will

be in favor of finding the optimal weights for all xi.
It should be stressed that the MMD quantity depends on σ wich corresponds

to the kernel bandwidth. In the seminal paper of KMM [16] the choice of σ
is not clearly motivated, but a method proposed by KLIEP [33] consists in
choosing between several predefined σ and compute the optimal weights for each
σ value. The value which provides the best matching of the target distribution is
finally selected. This type of selection is time consuming and requires fixing a
pre-selection of σ values.

We propose, instead, to optimize the σ parameter at the same time as the
weights. Inspired by the works on MMD-GAN [20], the kernel parameter σ is
modified at each batch in order to maximize the MMD. The idea behind this
choice of implementation is to increase the discriminative power of the MMD
and thus reduce the risk of estimating, from finite samples, that the source and
target distributions are the same when this is not the case. By maximizing over
σ, we end with an alternate gradient descent-ascent algorithm, where we aim
at finding a saddle point. The final optimization formulation can be written as
follows:

max
σ

min
θ

∑B
i,j |Wθ(xi)Wθ(xj)|kσ(xi, xj)∑B

i,j |Wθ(xi)Wθ(xj)|

+
1

B2

B∑
i,j

kσ(x
′
i, x
′
j)

−
2
∑B
i

∑B
j |Wθ(xi)|kσ(xi, x′j)

B
∑B
i |Wθ(xi)|

(4)

We therefore introduce the Importance Weighting Network (IWN) which
searches for the saddle points that solve the above optimization problem (cf
Algorithm 1).

3 Related work

Instance-based domain adaptation. Our work is in line with instance-based
unsupervised transfer learning or domain adaptation [30]. Most of the instance-
based methods have already been introduced previously as KMM, KLIEP, ULSIF
and RULSIF [16], [33], [17], [36]. All of these methods aim to compute the source
weights which minimize a distance between the input distributions like the MMD

6 A. de Mathelin et al.

Algorithm 1 Importance Weighting Network
Inputs: Source and target datasets SX , T , initial bandwidth σ, batch size B, neural
network Wθ, learning rate ν
Initialization: Fit Wθ with loss L =

∑
i ||Wθ(xi)− 1||2

while stopping criterion is not reached do
Take batches {x1, ..., xB} ⊂ SX and {x′1, ..., x′B} ⊂ T
Forward propagation
wi ← |Wθ(xi)|/

∑B
j |Wθ(xj)| ∀xi

MMDσ,θ =
∑B
i,j wiwjkσ(xi, xj) +

1
B2

∑n
i,j kσ(x

′
i, x

′
j)− 2

B

∑B
i

∑B
j wikσ(xi, x

′
j)

Backward propagation
θ ← θ − ν∇θMMDσ,θ
σ ← σ + ν∇σMMDσ,θ

or the Kullback-Leibler. Other methods have also proposed to take into account
the model used to estimate y using appropriate metrics such as the discrepancy [7],
[22]. Most of the unsupervised instance-based approaches make the assumption
of covariate-shift [3].

Importance weighting and deep learning. This work is related to existing
works in importance weighting using deep learning. Recently, Fang et al. [11]
have developed a task-oriented sample-bias correction method where a KMM is
performed at each batch in different depths of the neural network. In a different
context from ours, Diesendruck et al. [9] have developed a sample bias correction
method for deep generative models. In this approach, the MMD is also minimized
by batch, however the weights are not parameterized but assumed to be known
(e.g. a uniform proportion of classes is desired). Importance weighting methods
have also been used along with deep feature transformation in partial domain
adaptation [4], i.e. when the number or the proportion of classes differ between
targets and sources. In this category of methods, the output of a domain classifier
network is often used to reweight the source instances. The domain classifier is
either trained in parallel to the feature transformation [5], [37], [38] or after it [31],
[34]. Other methods in this field consider the uncertainty of a task classifier to
reweight both source and target instances during the feature transformation [15],
[35]. These works are interesting from a computational point of view and may be
seen as an alternative to MMD minimization. Finally, the weighting adversarial
neural network (WANN) [25], explicitly proposes to use a neural network to
learn the source weights minimizing a distance between distribution called the
Y-discrepancy [28]. Their approach, however, is developed in the supervised
context and involves a task network fitted at the same time as the weights. Their
approach is then deep learning specific. The present work generalizes this last
approach as any estimator can be used once the weights are computed.

Fast and Accurate Importance Weighting for Correcting Sample Bias 7

4 Experiments

We conduct the experiments on a synthetic dataset and 15 UCI datasets4 [10] of
various size and number of features. The experiments are conducted on a 3.3Ghz
computer with 64G RAM and 24 Cores. The source code of the experiments is
available on GitHub5.

4.1 IWN Settings

The purpose of IWN is to provide a simple and fast tool to perform importance
weighting. We observe that the choice of network has little incidence on the
learned weights (see Section 4.5), we then arbitrarily choose a three layers neural
network with 100 neurons each and a ReLU activation. This architecture is used
in all experiments without fine-tuning. We choose the Adam optimizer [18]. The
optimization parameters are also fixed for all experiments to a learning rate of
0.001, a batch size of 256 and a maximal number of iterations set to 5 · 104. Early
stopping on the objective function is used, if the objective has not improved after
2 · 104 iterations, the learning is stopped.

We remind that the kernel bandwidth σ used to compute the MMD is learned
in the gradient descent (cf Algorithm 1) and does not require a cross-validation
process. The initial value of σ is set to 0.1 for all experiments.

4.2 Competitors Settings

We consider the following competitors which have already been introduced
previously in this paper:

– KMM [16]. We use a Gaussian kernel and the default optimization parameters
B = 1000 and ε =

√
m− 1/

√
m. The bandwidth σ of the kernel is selected

in the set {10(i−4)}i∈[|0,8|] with unsupervised cross-validation using the linear
discrepancy [22].

– KLIEP [33]. We use a Gaussian kernel and a learning rate of 0.01 with a
maximum number of iterations of 1000 as parameters for the gradient descent.
These parameters have been selected to obtain an important decrease of
the objective function with a fast convergence for most of the datasets. The
bandwidth σ of the kernel is selected in the set {10(i−4)}i∈[|0,8|] with the
native Likelihood Cross-Validation (LCV) procedure of KLIEP.

– NNW [21]. The nearest neighbors are computed with the optimized Near-
estNeighbors algorithm of scikit-learn [32] which optimizes the computation
approach between brute force and KD-Ball-Tree in function of the num-
ber of features and samples in the dataset. The Euclidean distance is used
and the number of nearest neighbors for averaging is chosen in the set
{1, 5, 10, 20, 50, 100} with unsupervised cross-validation using the linear dis-
crepancy.

4 https://archive.ics.uci.edu/ml/datasets.php
5 https://github.com/antoinedemathelin/Importance-Weighting-Network

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/antoinedemathelin/Importance-Weighting-Network

8 A. de Mathelin et al.

The implementation of the competitors are provided by the ADAPT library6

[24]. The library also provides the metric for the cross-validation processes.
To offer the best chance to the competitors, the parameters selection with

cross-validation are performed with parallel computing for KMM and NNW. For
KLIEP, the parallel computing is not available in ADAPT and thus not used,
this explains why its computational time is higher than the others.

4.3 Synthetic dataset

We consider the synthetic experiment, inspired from [7], where ps(x) is a mixture
of M = 10 Gaussians, i.e. ps(x) =

∑M
k=1 πkN (µk, 0.2)(x) where the centers

µk ∈ RN are drawn according to the distribution N (0, 1) in RN , the ratios
πk are set such that πk = 0.8/(M − 1) ∀k 6= M and πM = 0.2. The output
variable is written y = βTk x for any x drawn according to the kth Gaussian. The
coefficients βk ∈ RN are drawn according to the distribution N (0, 1) in RN . The
target distribution pt(x) is drawn according to the same mixture of Gaussians
but with ratios π′k = 0.1/(M − 2) ∀k < M − 1, π′M−1 = 0.1 and π′M = 0.8. We
suppose that the learner has access to a sample of size n of source labeled instance
{(xi, yi)}1≤i≤n drawn according to the source distribution ps(x, y) on RN and
an unlabeled set of size n, {x′j}1≤j≤n drawn according to the target distribution
pt(x) on RN . An illustration of the problem for dimension N = 2 is given in
Figure 1.A.

We conduct several experiments on this synthetic dataset. First, we fit IWN for
the setting N = 32, n = 10000. We make 4000 batch updates with batch size 256,
at each of them, we use the weights wi returned by the weighting network to fit
a weighted Ridge regression model of parameters β on the set {(xi, yi, wi)}1≤i≤n,
we then record the mean absolute error (MAE) of this model on the target dataset:
1
n

∑
i |βTx′i − y′i|. We also record, at each batch, the computed MMD on the

batch and the "true" MMD computed with the whole samples. We also record the
current value of the parameter σ which is also updated during the optimization
(see Section 2.3). We report the results of this experiment on Figure 1.B, 1.C, 1.D.
We first represent the final importance weights returned by the weighting network
at the end of the 4000 iterations in Figure 1.B. As we can observe, the learned
weights are very close to the true sampling probability. On Figure 1.C, we report
the evolution of the recorded MAE in plain orange, the batch and true MMD
in blue and the value of σ in green. We also report, for comparison with "MAE
(IWN)", the MAE of a Ridge model fitted with uniform weights: "MAE (Unif)"
and the MAE of the model fitted with the weights obtained using KMM: "MAE
(KMM)". We observe that the importance weighting produced by IWN helps
to learn the task on the target domain as the error decreases of 20% compared
to the error of the model fitted with uniform weights. Concerning the recorded
MMD, we observe that both the batch and "true" MMD decrease very fast, but
an offset remains between the two due to the estimation error made with finite
samples. We then see on the zoom of Figure 1.D that the error decreases very
6 https://github.com/adapt-python/adapt

https://github.com/adapt-python/adapt

Fast and Accurate Importance Weighting for Correcting Sample Bias 9

fast as well as the MMD. After 100 iterations, the MMD is minimized and the
target error of IWN is on the same level than the error produced by KMM. We
notice that the MAE increases a little after some iterations which may indicates
some overfitting effect of the weighting network. This observation argues for the
use of early stopping based on the evolution of the MMD.

Fig. 1. Visualization of the synthetic experiments. The corresponding experimental
settings are: (A) n = 10000, N = 2, (B, C, D) n = 10000, N = 32, (E) n ∈ [100, 2 ·
105], N = 128, (F) n = 2 · 104, N ∈ [16, 4096]

10 A. de Mathelin et al.

We finally remark, in Figure 1.C, that the σ parameter becomes relatively stable
around 0.15 after some iterations which comforts the idea that the parameter
can be efficiently set during the optimization thanks to the adversarial learning
(see Section 2.3). We could however argue, that the increase of the target error
after the 100th iteration is correlated to the increase of σ from 0.1 to 0.15. This
is a plausible explanation as σ is updated in order to make the MMD more
discriminative which may provoke overfitting. This is a limitation of the proposed
approach which we propose to study in future work.

We then conduct several experiments to observe the evolution of the computa-
tional time in function of the sample size and the number of features. We first fix
the number of features to N = 128 and vary the number of samples from 100 to
2 · 105 and report the computational time in Figure 1.E. Then, we fix the number
of samples to n = 20000 and vary N from 16 to 4096 and report the results in
Figure 1.F. We observe, on these two Figures, that for the number of samples has
a stronger impact on the computational time than the number of features. The
two methods KMM and NNW have a quadratic complexity O(n2) which is well
reflected in Figure 1.E. The computational time of KLIEP evolves linearly due
to the fixed number of target centers considered. Figure 1.E clearly demonstrates
the computational supremacy of IWN compared to the other methods. It should
be pointed out that the quality of the importance weighting is similar between
methods, the corresponding scores are reported in appendix.

4.4 UCI datasets

We perform the experiments on several UCI datasets [10] with different sizes
and dimensions. We record the computational time used by each importance
weighting method for computing the source importance weights (cf Figure 3).
For each dataset, the score is computed with a Ridge model fitted with the
importance weights and without importance weighting. The ratio between the
two scores is reported in Figure 2.

To evaluate the importance weighting methods we consider different kind of
sample bias following the setting of [16]:

– Sample bias on the input features: the source training set is biased on the
input features X with a gaussian weighting on the first component of the
PCA of mean m+ (µ−m)/3 and standard deviation (µ−m)/8 with m,µ
the respective minimum and mean of the first PCA component.

– Sample bias on the output features: the source training set is biased on the
output features y with a weighting on the first component of the PCA defined
as exp(3(y1 − 1))/(1 + exp(3(y1 − 1))) with y1 the first PCA component of y.

The training set is built by taking n data with replacement using the sampling
bias as probabilities of selection. The target set is the original dataset without
selection bias. For each experiment, we apply the following preprocessing: standard
scaling of the numerical inputs (using the mean and standard deviation of the
unbiased inputs) and one-hot-encoding of the categorical inputs. The dimension
p of the input space corresponds to the dimension after preprocessing.

Fast and Accurate Importance Weighting for Correcting Sample Bias 11

To evaluate the weighting scheme of each method, we fit a Ridge model
with trade-off parameters α selected by leave-one-out process between values
{10(i−4)}i∈[|0,8|]. For regression datasets, we compute the mean absolute error
(MAE) on the target testing set (the original dataset without bias). We then
fit another Ridge model with the uniformly weighted biased source data and
compute the MAE on the target set. We can then compute a score ratio for each
method as follows:

Score Ratio =

∑
i |βTIWx′i − y′i|∑
i |βTUnifx′i − y′i|

(5)

where βIW , βUnif are respectively the coefficients of the Ridge models fitted
with the importance weights and the uniform weights.

Fig. 2. Score ratio for the experiments with the sample bias applied on input features.
In each column, the values correspond to the ratios between the mean absolute error
(MAE) of the corresponding methods (IWN, NNW, KLIEP and KMM) and the MAE
of the Uniform Weighting approach where no reweighting is performed. The MAEs are
computed on the target dataset with a Ridge model fitted on the reweighted source data.
The two first columns n and p are respectively the number of sample and number of
features of the dataset. The lightest colors correspond to the best ratios. The experiment
stopped after 500 seconds are marked with Nan.

12 A. de Mathelin et al.

We repeat each experiment 10 times and report the results of the experiments
with the sample bias on the input features in Figures 2 and 3, the standard
deviation over the 10 repetitions are given in appendix. The first Figure presents
the score ratios computed with Eq (5). We observe that the quality of the
weighting scheme provided by IWN is competitive with other methods. IWN is
in the top 2 best ratios for all experiments except one. Even more impressive are
the computational time of IWN compared to other methods (Figure 3), IWN
provides a fast computation of no more than 25 seconds for samples of size
< 5× 105. Whereas the other methods failed to provide importance weights in
a reasonable time for samples above 5× 104 samples and > 100 features. The
same observations are made on Table 1 which reports the summary results of the
experiments conducted on the same datasets with a sample bias on the outputs.

Fig. 3. Computational times (in second) for the experiments with the sample bias
applied on input features. The two first columns n and p are respectively the number
of sample and number of features of the dataset. The computational time are given in
second. The lightest colors correspond to the lowest computational time. The experiment
stopped after 500 seconds are marked (>500).

Fast and Accurate Importance Weighting for Correcting Sample Bias 13

method Avg Score Ratio Avg Rank Avg Comp. Time (in sec.)

IWN 0.9 2.0 8.06
NNW 0.92 2.37 182.81
KLIEP 1.03 2.93 223.16
KMM 0.87 2.7 290.01

Table 1. Summary of the results of the output sample bias experiments (extensive
results are reported in appendix).

4.5 Impact of Network Architecture and Batch Size

Finally, we study the impact of the network architecture and the batch size on
the solution of IWN. We conduct the experiments on the CTscan dataset7 [13]
biased through the sample bias on the input features described previously. First,
we fix the batch size to 256 and vary the number of hidden layers of the weighting
network from 0 to 4 and the number of neurons per layer between [10, 100, 300].
Then, we fix the number of hidden layers to 3 and the number of neurons to
100 and vary the batch size on a geometric scale of ratio 4 from 16 to 4096. We
repeat each experiment 10 times and report the means and standard deviations
of the scores in Table 2. We observe that the architecture of the network has
little impact on the score, however, we observe a slight improvement of the score
between the simplest architectures and the more complex ones (0.88 for 0 hidden
layer and 0.85 for 4 layers and 300 neurons). The impact of the batch size is more
significant on the performance of IWN, enlarging the batches produce better
corrections of sample bias. This is due to the more accurate estimation of the
MMD made with larger batch. However, increasing the batch size comes with an
increase of the computational time as shown in the last column of Table 2.

Neural Network Architecture Batch Size

Layers
Neurons 10 100 300 Size Score Time (s)

0 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 16 0.96 (0.01) 9.7 (8.2)
1 0.86 (0.02) 0.86 (0.02) 0.85 (0.02) 64 0.90 (0.01) 6.6 (0.2)
2 0.86 (0.02) 0.86 (0.02) 0.85 (0.02) 256 0.85 (0.02) 7.4 (0.3)
3 0.86 (0.02) 0.85 (0.02) 0.85 (0.02) 1024 0.82 (0.03) 12.1 (0.1)
4 0.86 (0.02) 0.85 (0.02) 0.85 (0.02) 4096 0.83 (0.04) 117.9 (1.3)

Table 2. Summary of the study on the impact of weighting network architecture and
batch size. Standard deviation over the 10 repetitions are given in brackets.

7 https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+
on+axial+axis

https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis

14 A. de Mathelin et al.

5 Conclusion

This work introduces a novel algorithm for importance weighting called Im-
portance Weighting Network and shows that sample biases can be efficiently
corrected by fitting a weighting neural network with the MMD as loss function.
This approach appears to provide very competitive results with state-of-the-
art instance-based domain adaptation methods for a minimal cost in term of
computational time.

References

1. Bellot, A., van der Schaar, M.: A kernel two-sample test with selection bias. In:
Uncertainty in Artificial Intelligence. pp. 205–214. PMLR (2021)

2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for
domain adaptation. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in
Neural Information Processing Systems 19, pp. 137–144. MIT Press (2007)

3. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift.
Journal of Machine Learning Research 10(9) (2009)

4. Cao, Z., Long, M., Wang, J., Jordan, M.I.: Partial transfer learning with selective
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 2724–2732 (2018)

5. Cao, Z., You, K., Long, M., Wang, J., Yang, Q.: Learning to transfer examples for
partial domain adaptation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2985–2994 (2019)

6. Chandra, S., Haque, A., Khan, L., Aggarwal, C.: Efficient sampling-based kernel
mean matching. In: 2016 IEEE 16th International Conference on Data Mining
(ICDM). pp. 811–816. IEEE (2016)

7. Cortes, C., Mohri, M.: Domain adaptation and sample bias correction theory and
algorithm for regression. Theoretical Computer Science 519 (2014)

8. Deheeger, F., MOUGEOT, M., Vayatis, N., et al.: Handling distribution shift in tire
design. In: NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods
and Applications (2021)

9. Diesendruck, M., Elenberg, E.R., Sen, R., Cole, G.W., Shakkottai, S., Williamson,
S.A.: Importance weighted generative networks. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. pp. 249–265. Springer
(2019)

10. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.
uci.edu/ml

11. Fang, T., Lu, N., Niu, G., Sugiyama, M.: Rethinking importance weighting for
deep learning under distribution shift. Advances in Neural Information Processing
Systems 33, 11996–12007 (2020)

12. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software (TOMS)
3(3), 209–226 (1977)

13. Graf, F., Kriegel, H.P., Schubert, M., Pölsterl, S., Cavallaro, A.: 2d image registration
in ct images using radial image descriptors. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. pp. 607–614. Springer
(2011)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Fast and Accurate Importance Weighting for Correcting Sample Bias 15

14. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel
two-sample test. The Journal of Machine Learning Research 13(1), 723–773 (2012)

15. Guan, D., Huang, J., Xiao, A., Lu, S., Cao, Y.: Uncertainty-aware unsupervised
domain adaptation in object detection. IEEE Transactions on Multimedia 24,
2502–2514 (2021)

16. Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., Smola, A.J.: Correcting
sample selection bias by unlabeled data. In: Schölkopf, B., Platt, J.C., Hoffman, T.
(eds.) Advances in Neural Information Processing Systems 19, pp. 601–608. MIT
Press (2007)

17. Kanamori, T., Hido, S., Sugiyama, M.: A least-squares approach to direct importance
estimation. The Journal of Machine Learning Research 10, 1391–1445 (2009)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

20. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: Mmd gan: Towards
deeper understanding of moment matching network. Advances in neural information
processing systems 30 (2017)

21. Loog, M.: Nearest neighbor-based importance weighting. In: 2012 IEEE Inter-
national Workshop on Machine Learning for Signal Processing. pp. 1–6. IEEE
(2012)

22. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds
and algorithms. In: COLT (2009)

23. Martino, L., Elvira, V., Louzada, F.: Effective sample size for importance sampling
based on discrepancy measures. Signal Processing 131, 386–401 (2017)

24. de Mathelin, A., Deheeger, F., Richard, G., Mougeot, M., Vayatis, N.: Adapt:
Awesome domain adaptation python toolbox. arXiv preprint arXiv:2107.03049
(2021)

25. de Mathelin, A., Richard, G., Deheeger, F., Mougeot, M., Vayatis, N.: Adversarial
weighting for domain adaptation in regression. In: 2021 IEEE 33rd International
Conference on Tools with Artificial Intelligence (ICTAI). pp. 49–56. IEEE (2021)

26. Miao, Y.Q., Farahat, A.K., Kamel, M.S.: Auto-tuning kernel mean matching. In:
2013 IEEE 13th International Conference on Data Mining Workshops. pp. 560–567.
IEEE (2013)

27. Miao, Y.Q., Farahat, A.K., Kamel, M.S.: Ensemble kernel mean matching. In: 2015
IEEE International Conference on Data Mining. pp. 330–338. IEEE (2015)

28. Mohri, M., Muñoz Medina, A.: New analysis and algorithm for learning with
drifting distributions. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T.
(eds.) Algorithmic Learning Theory. pp. 124–138. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

29. Omohundro, S.M.: Five balltree construction algorithms. International Computer
Science Institute Berkeley (1989)

30. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 22(10), 1345–1359 (Oct 2010). https://doi.org/10.1109/
TKDE.2009.191

31. Park, S., Bastani, O., Weimer, J., Lee, I.: Calibrated prediction with covariate
shift via unsupervised domain adaptation. In: International Conference on Artificial
Intelligence and Statistics. pp. 3219–3229. PMLR (2020)

http://arxiv.org/abs/2107.03049
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191

16 A. de Mathelin et al.

32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

33. Sugiyama, M., Nakajima, S., Kashima, H., Bünau, P.v., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: Proceedings of the 20th International Conference on Neural Infor-
mation Processing Systems. p. 1433–1440. NIPS’07, Curran Associates Inc., Red
Hook, NY, USA (2007)

34. Wang, X., Long, M., Wang, J., Jordan, M.: Transferable calibration with lower bias
and variance in domain adaptation. Advances in Neural Information Processing
Systems 33, 19212–19223 (2020)

35. Wen, J., Zheng, N., Yuan, J., Gong, Z., Chen, C.: Bayesian uncertainty matching
for unsupervised domain adaptation. arXiv preprint arXiv:1906.09693 (2019)

36. Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., Sugiyama, M.: Relative density-
ratio estimation for robust distribution comparison. Advances in neural information
processing systems 24 (2011)

37. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2720–2729 (2019)

38. Zhang, J., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets for
partial domain adaptation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 8156–8164 (2018)

http://arxiv.org/abs/1906.09693

	Fast and Accurate Importance Weighting for Correcting Sample Bias

