Antoine De Mathelin
email: antoine.de-mathelin-de-papigny@michelin.com

Mounir Atiq
email: mounir.atiq@ens-paris-saclay.fr

Guillaume Richard
email: guillaume.richard@ens-paris-saclay.fr

Alejandro De La Concha
email: alejandro.delaconchaduarte@ens-paris-saclay.fr

Mouad Yachouti
email: mouad.yachouti@ens-paris-saclay.fr

François Deheeger
email: francois.deheeger@michelin.com

Mathilde Mougeot
email: mathilde.mougeot@ens-paris-saclay.fr

Nicolas Vayatis
email: nicolas.vayatis@ens-paris-saclay.fr

ADAPT : Awesome Domain Adaptation Python Toolbox

Keywords: Domain Adaptation, Transfer learning, Deep networks, Importance weighting, Fine tuning, Machine learning, Python

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction and Motivation

Transfer learning and domain adaptation (DA) aim to correct the shifts that exist between the training distribution of a machine learning model (referred as source) and the target distribution on which the model is deployed. This research field has known an important development over the past decades. The presence of "domain shifts" between source and target distributions is the typical framework encountered in real-life applications which makes domain adaptation algorithms particularly usefull for numerous use-cases. Domain adaptation techniques are often needed in scenarios where labels are easily available on a source domain but are expensive on the target domain. For example, it may be used to leverage information from a synthetic dataset to build a classifier for real data [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] such as the adaptation of GTA images for autonomous car segmentation [START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF]. Furthermore, domain adaptation is of great interest to correct bias from the training samples such as sample bias [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF] when one population in the training set is over-represented with respect to the overall population. DA methods are also used to correct shifts in the input features, caused by sensor or technological drifts [START_REF] Courty | Optimal transport for domain adaptation[END_REF]. Finally domain adaptation is useful for specifying a pre-trained model on a sub-task with few labels, as segmentation of medical images [START_REF] Ravishankar | Understanding the mechanisms of deep transfer learning for medical images[END_REF].

Nowadays, domain adaptation has become an essential tool to handle domain shifts in real applications. Many DA methods have been developed in recent years and a large number of DA implementations are spread on the web. Paradoxically, the large number of DA variants makes their accessibility to users more difficult. Indeed, finding which methods will best fit a given domain adaptation problem is a difficult task. In practice, the user would like to try different methods and select the most promising one. However, most DA algorithms available on the web are not implemented under the same basis, some of them rely on PyTorch (Paszke et al., 2019), others use scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] or TensorFlow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]. Moreover, most open source implementations have for primary objective to reproduce the experimental results of a particular publication and an extra effort is then required to apply them on other data. Facing these difficulties, we propose ADAPT 1 , a new open-source Python library compatible with scikit-learn and TensorFlow. This library aims at facilitating the access to transfer learning and domain adaptation methods to a wide public including industrial practitioners. Inspired by the scikit-learn library, which manages to make machine learning accessible to everyone, ADAPT offers DA methods that can be easily used in the same format as each object implements the fit, predict and score functions as any scikit-learn estimator. In a model deployment perspective, the ADAPT objects are compatible with the convenient features of scikit-learn as cloning and gridsearch. DA specific metrics are provided to allow an unsupervised selection of hyper-parameters. Finally, as we consider that the accessibility of a DA method essentially relies on the user understanding, a very detailed documentation is available online with many real and synthetic examples. A user guide is provided to allow newcomers to find the right DA method for their problem based on practical considerations (see the ADAPT flowchart 2). ADAPT offers the possibility of developing its own transfer method easily by subclassing existing classes. The library works on Linux, Mac and Windows for the four latest Python versions 3.6 to 3.9. ADAPT is nowadays appreciated by various users both from the academic and industrial world, with more than 1k downloads by month.

Existing transfer libraries

The emergence of domain adaptation algorithms first started around 2006. Progressively, many algorithms have been developed and open source implementations have been released. At some point, it became necessary to group several algorithms together to allow their comparison by the machine learning community. Some compilations of algorithms have then been developed as libTLDA (Wouter, 2015) or DA-Toolbox [START_REF] Yan | Domain adaptation toolbox[END_REF]. These libraries implement "classic" DA methods, i.e which do not use deep learning, as KMM [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF] or TCA [START_REF] Sinno Jialin Pan | Domain adaptation via transfer component analysis[END_REF]. These first attempts to group DA methods offered the opportunity to quickly test several methods on a same basis. However the proposed libraries were lacking of documentation and modularity. After that, many deep DA methods have been developed and some libraries have then proposed to group several variants under the same repository such as salad [START_REF] Schneider | Salad: A toolbox for semi-supervised adaptive learning across domains[END_REF]. Since then, many repositories for deep learning have been released, the most notable one being TLlib (Junguang Jiang, 2020) which makes the great work of regrouping more than 40 deep DA algorithms. It should be noted that all these repositories propose PyTorch implementations and are designed in a benchmark purpose, i.e. they mainly focus on comparing the results of each variant on well known datasets. Using these repositories on the user dataset often requires an extra effort. In 2021, ADAPT has been released, with the purpose to open the DA algorithms to newcomers and, in particular, industrial players. For this purpose, we group the main "classic" and "deep" DA methods into a same library and provide a very detailed documentation and robust code, tested through unit tests. The library is available on PyPI, offering more than 30 algorithms implemented in a user friendly scikit-learn style (cf Table 1).

Organization

The ADAPT library is divided into three modules : feature-based, instance-based and parameter-based corresponding to the three main DA strategies. A list of all implemented methods is presented in Table 2 (Appendix A). As mentioned in the DA survey [START_REF] Weiss | A survey of transfer learning[END_REF], some DA methods are based on the use of a small number of labeled target data and are referred as supervised domain adaptation methods (SDA), others use only unlabeled target data along with the sources (UDA). Some methods perform the adaptation and the learning of the task in one stage, others in two.

Feature-Based Methods

The purpose of feature-based DA methods (Figure 1) is to learn a new representation of the input features in which both source and target distribution match. This DA strategy is mostly used for unsupervised DA. Feature-based methods generally consider the assumption that the domain shift is due to an unknown transformation of the input space caused for instance by sensor drifts or any changes in the acquisition conditions [START_REF] Courty | Optimal transport for domain adaptation[END_REF][START_REF] Ganin | Domain-adversarial training of neural networks[END_REF].

Instance-Based

The goal of instance-based methods (Figure 2) is to perform a reweighting of source instances in order to correct the difference between source and target distributions. This kind of methods are mostly used in sample bias scenario and assume that source and target distribution share the same support in the input space [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF][START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF].

Parameter-Based

Parameter-based methods (Figure 3), also called "source-free DA", aim to adapt the parameters of a pre-trained source model to a few target observations. These DA methods are mostly used in computer vision where deep model trained on huge data sets are fine-tuned on a smaller data set of images for a specific task [START_REF] Oquab | Learning and transferring mid-level image representations using convolutional neural networks[END_REF].

Installation and Usage

ADAPT provides several widely used domain adaptation methods using different approaches. The provided methods allow to cope with the main DA settings encountered in real applications as Supervised DA and Unsupervised DA which respectively refer to the cases (a) Applying CORAL (Sun et al., 2016) under Unsupervised DA.

(b) Applying TrAdaBoost [START_REF] Dai | Boosting for transfer learning[END_REF] under Supervised DA.

(c) Applying FineTuning [START_REF] Oquab | Learning and transferring mid-level image representations using convolutional neural networks[END_REF] under Source-free DA.

ADAPT Guidelines

The API is written in pure Python using scikit-learn, SciPy, NumPy, TensorFlow and cvxopt. The principal features of the API are given below:

• Documentation: Each method is documented following the standards of scikit-learn. Algorithms explanations are provided along with a full description of the parameters.

For each proposed method, illustrative examples are given on both synthetic datasets and real DA problems to offer visual understanding of the methods and empirical comparisons on known DA issues.

• Code Quality : checkers are used in all implemented objects to ensure that arguments defined by the user are valid and throw comprehensive warnings and exceptions to help the user. The code is tested with an high coverage and illustrative examples visually show that the methods are behaving as expected.

• Developer: ADAPT is released under a BSD2 License on GitHub. Anyone can contribute to the project by reporting issues and/or making pull requests. A Developer Guide is given to help DA researcher to include their works. Continuous integration is implemented to check the code compliance with unit tests.

Conclusion and Future work

Since its release, ADAPT has already been used for several research and industrial problems as fall detection [START_REF] Minvielle | Transfer learning on decision tree with class imbalance[END_REF], tire design (Mathelin et al., 2021) and even for cosmology applications [START_REF] Gilda | Unsupervised domain adaptation for constraining star formation histories[END_REF]. Future work will focus on adding more diversified algorithms to handle multisource and semi-supervised domain adaptation.

Figure 1 :

 1 Figure 1: Feature-based strategy illustration.

Figure 2 :

 2 Figure 2: Instance-based strategy illustration

Figure 3 :

 3 Figure 3: Parameter-based strategy illustration

Figure 4 :

 4 Figure 4: Examples of ADAPT usage in three different settings. X s , y s are referring to the source data and X t , y t to the target data.

Appendix A : list of implemented methods [START_REF] Uguroglu | Feature selection for transfer learning[END_REF] UDA 2-stages SA [START_REF] Fernando | Unsupervised visual domain adaptation using subspace alignment[END_REF] UDA 2-stages Feature CORAL (Sun et al., 2016) UDA 2-stages DeepCORAL (Sun and Saenko, 2016) UDA 1-stage DANN [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] UDA 1-stage ADDA [START_REF] Tzeng | Adversarial discriminative domain adaptation[END_REF] UDA 2-stage WDGRL [START_REF] Shen | Wasserstein distance guided representation learning for domain adaptation[END_REF] UDA 1-stage CCSA [START_REF] Motiian | Unified deep supervised domain adaptation and generalization[END_REF] SDA 1-stage CDAN (Long et al., 2018) UDA 1-stage MCD [START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF] UDA 1-stage MDD [START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF] UDA 1-stage KMM [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF]) UDA 2-stages KLIEP [START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF] UDA 2-stages TrAdaBoost [START_REF] Dai | Boosting for transfer learning[END_REF] SDA 1-stage IWC [START_REF] Bickel | Discriminative learning for differing training and test distributions[END_REF] UDA 2-stages LDM [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF] UDA 2-stages ULSIF [START_REF] Kanamori | A least-squares approach to direct importance estimation[END_REF] Regular Transfer NN [START_REF] Chelba | Adaptation of maximum entropy capitalizer: Little data can help a lot[END_REF]) SDA 1-stage Fine-Tuning [START_REF] Oquab | Learning and transferring mid-level image representations using convolutional neural networks[END_REF] SDA 1-stage SER-STRUT [START_REF] Segev | Learn on source, refine on target: A model transfer learning framework with random forests[END_REF] SDA 1-stage SER*-STRUT* [START_REF] Minvielle | Transfer learning on decision tree with class imbalance[END_REF] SDA 1-stage