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Abstract. We consider the problem of uncertainty quantification in high
dimensional regression and classification for which deep ensemble have
proven to be promising methods. Recent observations have shown that
deep ensemble often return overconfident estimates outside the training
domain, which is a major limitation because shifted distributions are
often encountered in real-life scenarios. The principal challenge for this
problem is to solve the trade-off between increasing the diversity of the
ensemble outputs and making accurate in-distribution predictions. In this
work, we show that an ensemble of networks with large weights fitting the
training data are likely to meet these two objectives. We derive a simple
and practical approach to produce such ensembles, based on an original
anti-regularization term penalizing small weights and a control process
of the weight increase which maintains the in-distribution loss under
an acceptable threshold. The developed approach does not require any
out-of-distribution training data neither any trade-off hyper-parameter
calibration. We derive a theoretical framework for this approach and show
that the proposed optimization can be seen as a "water-filling" problem.
Several experiments in both regression and classification settings highlight
that Deep Anti-Regularized Ensembles (DARE) significantly improve
uncertainty quantification outside the training domain in comparison to
recent deep ensembles and out-of-distribution detection methods. All the
conducted experiments are reproducible and the source code is available
at https://github.com/antoinedemathelin/DARE.

Keywords: Deep Ensemble · Uncertainty · Out-of-distribution · Anti-
regularization

1 Introduction

With the adoption of deep learning models in a variety of real-life applications
such as autonomous vehicles [4,9], or industrial product certification [23], pro-
viding uncertainty quantification for their predictions becomes critical. Indeed,
various adaptations of classical uncertainty quantification methods to deep learn-
ing predictions have been recently introduced as Bayesian neural networks [22,27],
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MC-dropout [11], quantile regression [32] and deep ensembles [17,42,43]. These
methods appear to be quite efficient in predicting the uncertainty in the train-
ing domain (the domain defined by the training set), called in-distribution or
aleatoric uncertainty [1]. However, when dealing with data outside the training
distribution, i.e. out-of-distribution data (OOD), the uncertainty estimation
often appears to be overconfident [6,20,28]. This is a critical issue, because deep
models are often deployed on shifted distributions [24,34,44]; overconfidence on
an uncontrolled domain can lead to dramatic consequences in autonomous cars
or to poor industrial choices in product design.

One problem to be solved is to increase the output diversity of the ensemble
in regions where no data are available during training. This is a very challenging
task as neural network outputs are difficult to control outside of the training
data regions. In this perspective, contrastive methods make use of real [29,39]
or synthetic [14,26,36] auxiliary OOD data to constrain the network output
out-of-distribution. However, these approaches can not guarantee prediction
diversity for unseen OOD data as the auxiliary sample may not be representative
of real OODs encountered by the deployed ensemble. Another set of methods
assumes that the diversity of the ensemble outputs is linked to the diversity of
the networks’ architectures [45], hyper-parameters [43], internal representations
[31,38] or weights [5,30]. The main difficulty encountered when using these
approaches is to solve the trade-off between increasing the ensemble diversity
and providing accurate prediction in-distribution. The current approach to deal
with this issue consists in setting a trade-off parameter with hold-out validation
[13,21,30] which is time consuming and often penalizes the diversity.

Considering these difficulties, a question that naturally arises is how to ensure
important output diversity for any unknown data region while maintaining
accurate in-distribution predictions? In this work, we tackle this question with
the following reasoning: an ensemble of large weights networks essentially produces
outputs with large variance for all data points. Furthermore, to make accurate
prediction on the training distribution, the output variance for training data
needs to be reduced, which requires that some of the network’s weights are also
reduced. However, to prevent the output variance from being reduced anywhere
other than the training domain, the network weights should then be kept as large
as possible. Following this reasoning, we seek an ensemble providing accurate
prediction in-distribution and keeping the weights as large as possible.

To meet these two objectives, deviating from traditional recommendations for
deep learning training, we propose an anti-regularization process that consists in
penalizing small weights during training optimization. To find the right trade-off
between increasing the weights and providing accurate prediction in-distribution,
we introduce a control process that activates or deactivates the weight increase
after each batch update if the training loss is respectively under or above a
threshold. Thus, an increase of the weights induces an increase of the prediction
variance while the control on the loss enforces accurate in-distribution predictions.
Synthetic experiments on toy datasets confirm the efficiency of our proposed
approach (cf Figure 1). We observe that the uncertainty estimates of our Deep
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Anti-Regularized Ensembles (DARE) increase for any data point deviating from
the training domain, whereas, for the vanilla deep ensemble, the uncertainty
estimates remain low for some OOD regions.

(a) "Two-moons" classification (b) 1D-regression [13]

Fig. 1: Synthetic datasets uncertainty estimation. White points represent
the training data. For each experiment, the ensemble are composed of 20 neural
networks. For classification, darker areas correspond to higher predicted uncer-
tainty. For regression, the confidence intervals for ±2σ are represented in light
blue. The full experiment description is reported in Appendix.

The contributions of the present work are the following:

– A novel and simple anti-regularization strategy is proposed to increase deep
ensemble diversity.

– An original control process addresses the trade-off issue between in-distribution
accuracy and reliable OOD uncertainty estimates.

– We provide theoretical arguments to understand DARE as a "water-filling" op-
timization problem where a bounded global amount of variance is dispatched
among the network weights.

– A new experimental setup for uncertainty quantification with shifted dis-
tribution is developed for regression. Experiments are also conducted for
out-of-distribution detection following the setup of [5].

2 Deep Anti-Regularized Ensemble

2.1 Notations

We consider the supervised learning scenario where X ⊂ Rp and Y ⊂ Rq are
respectively the input and output space, with p, q ∈ N. The learner has access to
a training sample, S = {(x1, y1), ..., (xn, yn)} ∈ X ×Y of size n ∈ N. We consider
a set H of neural networks hθ ∈ H where θ ∈ Rd refers to the network weights.
We consider a loss function l : Y × Y → R+ and define the average error of any
hθ ∈ H on S, LS(hθ) = 1

n

∑
(xi,yi)∈S l(hθ(xi), yi).
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2.2 Optimization formulation

The main assumption of this present work is that accurate in-distribution predic-
tion and output diversity for OOD can be obtained by increasing the networks’
weights as much as possible while maintaining the training loss under a threshold.
We further assume that the variance is increased when the weights of each net-
work is increased. Based on these assumptions, we propose the simple following
optimization for every member hθ ∈ H of the ensemble:

min
θ
LS(hθ)− λR(θ) (1)

with R : Rd → R+ a monotone function growing with ||θ||2. The parameter
λ ∈ {0, 1} is a binary variable which controls the trade-off between the in-
distribution loss and the regularization. At each batch computation, λ is updated
as follows:

λ =

{
1 if LS(hθ) ≤ τ
0 if LS(hθ) > τ

(2)

with τ ∈ R a predefined threshold which defines the acceptable level of perfor-
mance targeted by the learner.

– The first term of the optimization objective in Eq. (1): LS(hθ) is the loss
in-distribution. This term induces the network to fit the training data which
implies smaller in-distribution prediction variances.

– The second term −λR(θ) acts as an "anti-regularization" term which induces
an increase of the network weights. This implies a larger variance of the
ensemble weights, and therefore a larger prediction variance especially for
data "far" from the training distribution on which the network’s predictions
are not conditioned.

The underlying idea of the proposed optimization is that, to fulfill both objectives:
reducing the loss in-distribution and increasing the weights, large weights will
appear more likely in front of neurons which are never or weakly activated by
the training data. Therefore, if an out-of-distribution data point activates one of
these neurons, large values are propagated through the networks which induces
larger prediction variances. We show in Section 4, that this claim is supported
by theoretical analysis and empirical observations.

The control process is necessary to temper the weight increase, because a
large increase of the weights induces an unstable network with reduced accuracy
on training data. To be sure to fulfill a performance threshold τ , the weight
increase is stopped (λ = 0) until the loss in-distribution comes back under the
threshold. Therefore, the resulting ensemble is composed of networks fitting the
training data with weights as large as possible.

3 Implementation

Parallel optimization. Each network of the ensemble is trained independently
of the others with the objective of Eq. (1). This approach allows parallel training
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of the ensemble. It is theoretically possible that each network ends up reaching
the same optimum resulting in no ensemble diversity. However, we observe that
this degenerate case never occurs in our experiments due to the random process
of the optimization and aleatoric weights initialization.
Regularization function. We propose the following choice of regularization
function:

R(θ) =
1

d

d∑
k=1

log(θ2k) (3)

With θ = (θ1, ..., θk) the network weights. The use of the logarithmic function is
motivated by the "water-filling" interpretation of DARE (cf. Section 4).
Control threshold. The control threshold τ should be chosen by the learner
based on his targeted error level in-distribution. Smaller τ leads to smaller increase
of the weights. For τ = −∞, DARE is equivalent to a vanilla deep ensemble. A
selection heuristic for τ is proposed and discussed in Section 6.
Optimization algorithm Each network is trained through batch gradient
descent. The optimization algorithm is described in Algorithm 1.

Algorithm 1 Anti-Regularized Network
1: Inputs: Training set S, threshold τ , learning rate µ
2: Outputs: network hθ
3: Init: θ ← random
4: while stopping criterion is not reached do
5: if LS(hθ) ≤ τ then
6: θ ← θ − µ∇θ

[
LS(hθ)− 1

d

∑d
k=1 log(θ

2
k)
]

7: else
8: θ ← θ − µ∇θ [LS(hθ)]
9: end if
10: end while

4 Theoretical Analysis

The purpose of the following theoretical analysis section is to support the funda-
mental claim that : "large weights do not activate on in-distribution samples while
mostly activate for OOD, leading to larger output variance". We first provide
theoretical insights on a simple case of linear networks which is then extended to
multi-layer fully-connected networks. In a third part, an in-depth analysis of the
layer activations is conducted on a syntetic dataset to illustrate this leveraged
assumption.
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4.1 Theoretical insights on linear networks

In the following, we propose theoretical insights for anti-regularized ensemble
of linear networks (equivalent to linear regression). This theoretical result helps
to understand the underlying dynamic of DARE. In particular, we show both
following results which hold under appropriate assumptions:

– The weights’ variance of the DARE networks is inversely proportional to the
variance of the input features (Theorem 1).

– As a consequence of the previous results, the DARE prediction variance is
very sensitive to small deviations of low variance input features (Corollary 1).

To formalize and demonstrate these results we consider the regression problem
with scalar outputs (q = 1) where X ∈ Rn×p and y ∈ Rn are respectively the input
and output data of the training set S. We consider the ensemble of linear networks
H = {x → xT θ; θ ∈ Rp} such that, any hθ ∈ H is composed of two layers: the
input and output layers of respective dimension p and 1. The loss function is
the squared error such that for any hθ ∈ H we have nLS(hθ) = ||Xθ − y||22.
To simplify the calculation without loosing in generality, we assume that the
problem is linear, i.e. there exists θ∗ ∈ Rp such that LS(hθ∗) = 0. We denote
s2 = (s21, ..., s

2
p) ∈ R∗+

p the diagonal of the matrix 1
nX

TX. We now consider an
anti-regularized ensemble Hτ produced by Algorithm 1. To characterize this
ensemble, we make the following assumptions for any hθ ∈ Hτ :

θ ∼ Θσ2 ; E[θ] = θ∗, Cov(θ) = diag(σ2) (4)

E [LS(hθ)] ≤ δ τ (5)

Where δ > 0 and diag(σ2) is the diagonal matrix of values σ2 ∈ Rp+ verifying:

σ2 = argmax
σ2=(σ2

1 ,...,σ
2
p)

p∑
k=1

log
(
θ∗k

2 + σ2
k

)
(6)

As presented in Assumption (4), the anti-regularized ensemble distribution is
described by the random variable θ centered in θ∗ with variance σ2. Assumption
(5) implies that P (LS(hθ) ≥ τ) ≤ δ, by Markov inequality, which models the
fact that the loss of each member of DARE is maintained above a threshold τ
thanks to the control process on λ (cf Section 2.2). Definition (6) approximates
the impact of the anti-regularization term −R(θ) in the DARE optimization
formulation with an upper bound of maxσ E[R(θ)]. The weights are increased as
much as possible while the loss stays under the threshold.

Our first theoretical result shows that the weight variance of the anti-
regularized ensemble is solution of a "water-filling" optimization problem [2], and
is proportional to 1/s2, i.e. the inverse of the input features variance.

Theorem 1. There exist a constant C > 0 such that for any k ∈ [|1, p|], the
variance of the kth weight component is expressed as follows:

σ2
k = max

[
C δ τ

s2k
− θ∗k

2, 0

]
(7)
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Sketch of Proof. A detailed proof is reported in Appendix. The proof consists
in first noticing that E[LS(hθ)] =

∑p
k=1 s

2
kσ

2
k. By combining this result with

Assumptions 5 and 6, we show that σ2 is solution of the above water filling
problem:

maximize
σ2∈Rp+

p∑
k=1

log(σ2
k + θ∗k

2)

subject to
p∑
k=1

s2kσ
2
k ≤ δ τ

(8)

As the log function is strictly concave, and the constraints form a compact set
on Rp, the problem (8) has a unique solution which is given by (7).

The "water-filling" interpretation of the DARE optimization (8) is very
insightful: δ τ is the "global variance capacity" that can be dispatched to the
network weights. As, it grows as a function of τ , the more the learner accept a
large error in-distribution, the more the global variance capacity increases. We
stress that each weight component has a different "variance cost" equal to s2k: for
high feature variance s2k, the increase of the corresponding weight variance σ2

k

penalizes more the training loss. Thus, large weights appear more likely in front
of low variance features. Notice also that, when θ∗k

2 is high, C δ τ
s2k
− θ∗k

2 is more

likely to be negative, leading to σk = 0 (cf Eq. (7)). Besides, θ∗k
2 is generally

higher for higher s2k as it corresponds to more informative feature, enhancing the
effect σk = 0 for large s2k.

We see the importance of choosing a strictly concave function like the logarithm
(cf Section 3), if instead of log, we choose the identity function for instance, then
the solution of (8) degenerates to σ2 =

(
0, ..., 0, δ τs2p

)
with s2p the lowest feature

variance. In this case, all the weight variance is assigned to one component, which
reduces the likelihood to detect a deviation of a potential OOD input on another
low variance feature.

From Theorem 1, we now derive the expression of the DARE prediction
variance for any data x ∈ Rp:

Corollary 1. Let Hτ be the large weights ensemble defined by Assumptions 4,
5, 6 and x ∈ Rp an input data, the variance of prediction for hθ ∈ Hτ is:

Var
θ∼Θσ2

[hθ(x)] =

p∑
k=1

x2k max

[
C δ τ

s2k
− θ∗k

2, 0

]
(9)

We deduce from Corollary 1 that the prediction variance for x is large when
the components x2k are large for features with low variance (s2k � 1). Thus, the
predicted uncertainty of DARE is correlated with deviations in directions in
which the training input data has small variance.
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4.2 Extending the results to multi-layer fully connected networks

Transposed to the hidden layers of a multi-layer neural network, Theorem 1
means that higher network weights likely appear in front of neurons which are
weakly activated by the training data. To generalize Corollary 1 to the multi-layer
case, we introduce an anti-regularized ensemble Hτ of fully-connected deep neural
networks with L hidden layers and network weights distributed according to Θσ2

in Rd. We denote p` > 0, the number of neurons of the layer ` ∈ [0, L+ 1]. We
denote g : R→ R the activation function applied at each hidden layer. For every
` ∈ [|0, L|], we denote φ(`)(X) ∈ Rn×p` the representation of the `th layer, with
` = 0 the input layer. For any j ∈ [|1, p`+1|], we denote θ(`,j) ∈ Rp` the network
weights between the layer ` and the jth component of the layer `+ 1.

We assume that, for any random variable Z in R there exists α > 0 such
that Var[g(Z)] > αVar[Z]. This condition is true for the leaky-relu activation,
and also true for other classic activations as relu, softplus and sigmoid if Z is
centered. We define φ∗(`)(X) = E[φ(`)(X)] and denote s2(`) the diagonal of the
matrix 1

nφ
∗
(`)(X)Tφ∗(`)(X).

We finally assume that, there is δ > 0 such that, for any ` ∈ [|0, L|] and any
j ∈ [|1, p`+1|], φ(`)(X) and θ(`,j) verify Assumptions (4), (5), (6) with θ ≡ θ(`,j),
X ≡ φ∗(`)(X), y ≡ φ∗(`)(X)θ∗(`,j) and θ

∗ ≡ θ∗(`,j) ≡ E[θ(`,j)]

Theorem 2. There exists a constant γ > 0 such that, for any hθ ∈ Hτ and
x ∈ Rp, the prediction variance verifies:

Var
θ∼Θσ2

[hθ(x)] ≥ γ
L∑
`=0

〈φ∗(`)(x)2, σ̄2
(`)〉

With, σ̄2
(`) =

∑p`+1

j=1 max

[
C(`,j)

s2
(`)

− θ∗(`,j)
2, 0

]
; C(`,j) ∈ R∗+

Theorem 2 states that the prediction variance for any x ∈ X is a growing
function of 〈φ∗(`)(x)2, 1/s2(`)〉, which means that the uncertainty predicted by
DARE is high if one hidden neuron weakly activated by the training data is
strongly activated by x. Figure 2 shows an illustration of the expected behavior
of DARE for one OOD data xood. The underlying assumption is that the distance
D between xood and the learning domain is expressed on one hidden feature with
low variance for the training data.

4.3 Verification on a synthetic dataset

We consider the "two-moons" binary classification dataset and use a three hidden-
layer network with 100 neurons each and ReLU activations as base network. We
use a linear activation for the output layer and the mean squared error as loss
function. As we consider a classification task, uncertainty can be obtained with
a single network through the formula: min

(
hθ(x)2, (1− hθ(x))2

)
. The DARE
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Fig. 2: Schematic description of DARE behavior: an OOD data xood is
distant from D > 0 from the training domain. In a hidden layer ` of the network
hθ, the training domain is composed of a strong component φ(`)(X)1 of variance
s21 � 1 and a weak component φ(`)(X)2 of variance s22 � 1. In this representation,
φ(`)(xood) is distant from D to the training domain in the weak direction φ(`)(X)2,
resulting in Var[hθ(xood)] ≥ γD2σ2

2 '
γD2

s22
� 1.

uncertainty is the sum of the individual network members uncertainty plus the
prediction variance between members.

Figure 3 presents the predicted uncertainty heat-map for one DARE network
as well as the internal layer representations. We observe that the OOD component
values grow from one layer to the next. A correspondence between features with
low variance for the training data and large weights can be clearly observed. In
the last hidden layer (layer 3), the OOD components are large in direction of
low training variance (components 80 to 100) to which correspond large weights.
This observation explains the large uncertainty score for the OOD example.

5 Related Works

Increasing ensemble diversity has been an enduring paradigm since the early days
of the ensemble learning research. At first, diversity was seen as a key feature
for improving the generalization ability of the ensembles [3,16,21,46]. Then,
with the growing interest in uncertainty quantification, the primary objective
of ensemble diversity becomes to produce good uncertainty estimates. In this
perspective, a first category of methods propose to increase diversity by using
diverse architectures or training conditions among an ensemble of deep neural
networks [17,42,43,45]. The underlying idea is that the diversity of architecture or
local minima reached by the different networks induces a diversity of predictions.
Another category of methods proposes to explicitly impose a diversity constraint
in the loss function of the networks. The loss function is then written L+ λP
where L is the loss for the task (e.g. mean squared error or negative log-likelihood
(NLL)), P is a penalty term which decreases with the diversity of the ensemble and
λ is the trade-off parameter between the two terms. Three kinds of penalization
are distinguished in the literature. The first kind makes use of training data
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Fig. 3: Internal analysis of a large weights network The uncertainty pro-
duced by one member of an anti-regularized ensemble is presented on the left. On
the right, the two figures on top present the expression of the training distribution
in the three hidden layers (in blue) compared to the representation of one OOD
example (in red). The components are sorted in descending order of training
variance. The two bottom figures present the average weight in front of each
component, i.e. the mean weights that multiply the layer components to produce
the next layer representation.

to compute the penalty term. It includes the Negative Correlation method
(NegCorr) [37,48] which applies the penalization from [21] to deep ensembles to
enforce a negative correlation between the errors of the networks on the training
set. Similarly, [33] imposes an orthogonality constraint between the gradients
of the ensemble members on training data. Penalizing the similarity between
hidden representations of the networks has also been proposed by [31,38] using
adversarial training. The second kind of penalization refers to contrastive methods
that enforces diversity on potential OOD instances rather than training data.
This avoids the issue of being over-conditioned by the training domain that can
be encountered by previous methods. In this category, several methods suppose
that an unlabeled sample containing OOD is available, [29,39]. Others avoid
this restrictive assumption and simulate potential OOD with random uniform
data [14,26] or instances localized around the training data [36]. In the last
approach, considered by Anchored-Networks (AnchorNet) [30] and Repulsive
Deep Ensemble (RDE) [5], the penalization P is a function of the network’s
parameters which forces the networks to reach local minima spaced from each
other in parameters space. Our proposed DARE approach relates particularly to
these two methods. Our assumption is that imposing weights diversity has more
chance to obtain a global output diversity rather than imposing it on specific data
regions as done by the two previous kind of penalization. Anchored-Networks
appears to be an efficient tool, for instance, in the detection of corrupted data
[40], however, it is very hard to set the right anchors and trade-off parameter [35].
Large initial variance can lead to large weight variance but may not converge
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to accurate model in-distribution. The DARE approach is more practical as it
starts to increase the weights after reaching an acceptable loss threshold which
ensures to fit the training data.

6 Experiments

The experiments are conducted on both regression and classification datasets. In
the majority of previous works, OOD uncertainty quantification is studied in the
perspective of OOD detection in the classification setting where examples from
other classes / datasets are considered as OOD [5,17,19,41]. For regression, few
attempts of uncertainty quantification on shifted datasets have been conducted:
[14] separates male and female faces for age prediction dataset and [10,14,36]
propose OOD version of several UCI regression datasets [8]. In this work, we
propose a novel regression setup for uncertainty estimations on shifted domains
based on the CityCam dataset [47] which has been used in several domain
adaptation regression experiments [25,49]. Our setup models real-life domain
shift scenarios where uncertainty quantification is challenged and offers a clear
visual understanding of the domain shifts (cf Figure 4). For the classification
experiments, we consider the OOD detection setup developed in [5]. The source
code of the experiments is available on GitHub3.

6.1 Regression experiments on CityCam

We consider the CityCam dataset [47]. This dataset is composed of images
recorded from different traffic cameras. The task consists in counting the number
of vehicles present on the image, which is useful, for instance, to control the
traffic in the city. To get relevant features for the task, we use the features of
the last layer of a ResNet50 [12] pretrained on ImageNet [7]. We propose three
different kinds of domain shift:

Fig. 4: CityCam experimental setups. The top blue images correspond to
in-distribution examples and bottom orange images to OOD examples.

3 https://github.com/antoinedemathelin/DARE

https://github.com/antoinedemathelin/DARE
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1. Camera-shift: This experiment uses the images from 10 cameras in
the CityCam dataset. For each round, 5 cameras are randomly selected as in-
distribution while the 5 remaining cameras are considered as out-of-distribution.

2. Bigbus-shift: Images marked as "big-bus" referring to the fact that a
bus appears and masks a significant part of the image [47] are used to create the
OOD dataset.

3. Weather-shift: Blurry images caused by water drops landed on the camera
are used as OOD dataset.

These three experiments model real-life uncertainty quantification problems
as the generalization of uncertainty estimates to unseen domains (camera-shift),
the robustness to changes in data acquisition (weather-shift) and the detection of
rare abnormal event (bigbus-shift). Further details on these experimental setups
are provided in Appendix.

We consider the following competitors: Deep-Ensemble (DE) [17], Neg-
Corr [37], AnchorNet [30], MOD [14] and RDE [5]. All are deep ensemble
methods which focus on increasing the diversity among members. AnchorNet,
NegCorr and MOD introduce a penalty term in the loss function multiplied by a
trade-off parameter λ. The trade-off λ and the anchor initialization parameter σ
for AnchorNet are selected through hold-out validation, as suggested in [14,30].
The kernel bandwidth for RDE is adaptive and chosen with the median heuristic
as suggested in the corresponding work [5]. The parameter τ of DARE is cho-
sen equal to 1 + δ times the DE validation loss. The underlying heuristic is to
maintain the in-distribution performance level close to that of the vanilla DE.
However, a small penalty δ > 0 should be accepted to allow the weight increase.
In these experiments, we intuitively select δ = 0.25 without further fine-tuning.
An ablation study of the impact of the δ parameter on the DARE performances
is presented in Appendix.

The experiments are performed with ensemble of 5 fully-connected networks
with 3 hidden layers of 100 neurons each and ReLU activations. The Adam
optimization algorithm is used with learning rate 0.001 [15]. The batch size is
chosen equal to 128. The experiments are repeated 5 times to compute standard
deviations for the scores. We use the NLL defines in [17] as loss function.

Choosing the right number of optimization epochs to perform is not trivial.
Previous works have used a fixed number of epochs [30] or early stopping [14].
For DARE, a natural checkpoint strategy is to save the network if the validation
loss of the current epoch is below the threshold τ . This process ensures a targeted
level of in-distribution performance and allows the weight increase during several
epochs. For the competitors, we observed that restoring the weights of the best
validation loss epoch provides the best results.

To assess the ensemble quality for the regression experiments, we consider the
NLL and expected calibration error (ECE) computed on the out-of-distribution
dataset as used in the works [17], [26]. The results are averaged over 5 runs
and reported in Table 1. We observe that DARE outperforms other uncertainty
quantification methods in both term of NLL and ECE for the bigbus-shift and
camera-shift experiments. For the weather-shift experiment, DARE provides
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Camera-shift Bigbus-shift Weather-shift
Methods NLL ECE NLL ECE NLL ECE

DE 6.04 (0.40) 0.28 (0.02) 3.66 (0.17) 0.28 (0.01) 2.25 (0.09) 0.12 (0.02)
AnchoreNet 6.03 (0.24) 0.28 (0.02) 3.86 (0.16) 0.29 (0.01) 2.25 (0.12) 0.12 (0.03)
MOD 6.24 (0.89) 0.29 (0.02) 3.66 (0.21) 0.29 (0.01) 2.32 (0.17) 0.15 (0.03)
NegCorr 5.97 (0.54) 0.29 (0.03) 4.02 (0.27) 0.29 (0.01) 2.30 (0.10) 0.14 (0.02)
RDE 5.05 (0.25) 0.27 (0.02) 3.67 (0.11) 0.28 (0.00) 2.22 (0.14) 0.13 (0.04)
DARE 3.64 (0.34) 0.23 (0.03) 2.99 (0.13) 0.25 (0.01) 2.33 (0.13) 0.07 (0.04)

Table 1: Out-of-distribution NLL and ECE for CityCam

DE AnchorNet MOD NegCorr RDE DARE

Cameras 1.03 (0.08) 1.00 (0.07) 1.04 (0.06) 1.04 (0.06) 1.06 (0.06) 1.18 (0.09)
Bigbus 0.89 (0.03) 0.87 (0.02) 0.91 (0.04) 0.89 (0.06) 0.91 (0.03) 1.06 (0.04)
Weather 1.25 (0.04) 1.24 (0.05) 1.26 (0.05) 1.26 (0.06) 1.28 (0.05) 1.27 (0.06)

Table 2: In-distribution NLL for CityCam

the best ECE score. Moreover, these gains in uncertainty estimation come with
little penalization of the performance in-distribution as reported in Table 2: in
the camera-shift experiment for instance, the in-distribution NLL of DARE is
increased of only 0.18 compare to the deep ensemble method, while the NLL
out-of-distribution is decreased of 2.4 (cf Table 1). The impact of the λ control
in the DARE optimization is presented in Figure 5, we observe that the setting
λ = 0 (equivalent to DE) leads to a small weight increase whereas the setting
λ = 1 leads to a loss explosion. The control setting λ ∈ {0, 1} allows the weight
increase while maintaining the loss above τ .

6.2 Classification Experiments

We consider the experimental setup defines in [5] for OOD detection on Fashion-
MNIST and CIFAR10. The MNIST dataset is used as OOD dataset for Fashion-
MNIST and the SVHN dataset for CIFAR10. We extend the experiments by
adding CIFAR10 as OOD for Fashion-MNIST and CIFAR100 as OOD for CI-
FAR10. Thus, for both experiments, OOD detection is performed on both "Near-
OOD" and "Far-OOD" datasets [19].

We first observed that a direct application of DARE to this setup leads to
negative results. The first issue comes from the softmax activation at the end
layer, which cancels the effect of increasing the weights. Indeed, the softmax
activation inverses the correlation between large outputs and high uncertainty,
resulting in over-confidence for OOD data. A second issue comes from the use
of convolutional layers in the CIFAR10 experiment. These layers have fewer
parameters than fully-connected ones, which reduces the possibility of increasing
the weights in front of weakly activated neurons.

To overcome these difficulties, considering that DARE is efficient for fully-
connected networks and linear end-activation, we remove the softmax activation at
the end-layer of the DARE networks and use the mean squared error. Uncertainty
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Fig. 5: Training behaviors for different λ settings. Evolution of the weights,
the training loss and the average trade-off parameter over the epochs ((a) ≡ DE
and (b) ≡ DARE).

scores are then obtained by computing the distance between the predicted
logits and the one-hot-encoded vector of the predicted class. For the CIFAR10
experiment, we use a pretrained ResNet32 and replace the end layer by deep
ensemble of fully-connected networks. This setup is more practical, as only one
ResNet32 is required, which reduces the need of computational resources [18].

The obtained results are reported in Table 3 for DARE and the competitors.
To fully evaluate the impact of the DARE optimization, we add the results
obtained with a Deep Ensemble trained with the mean squared error (DE (MSE))
which is equivalent to a DARE with λ = 0. We train 5 networks in each ensemble
and repeat the experiments 5 times. The AUROC metric is used, computed with
the the uncertainty score defined previously for DARE and DE (MSE) and the
entropy for the other methods. We observe that DARE globally improves the
OOD detection. For instance, in Fashion-MNSIT, we observe an improvement of
8 points on CIFAR10 and 34 points on MNIST, with a lost of only 2 points of
in-distribution accuracy.

CIFAR10 Fashion-MNIST
Methods SVHN CIFAR100 Accuracy CIFAR10 MNIST Accuracy

DE (NLL) 90.9 (0.4) 86.4 (0.2) 91.8 (0.1) 89.7 (0.9) 62.7 (6.2) 89.2 (0.2)
AnchorNet 91.0 (0.3) 86.5 (0.2) 91.8 (0.0) 88.8 (1.1) 68.7 (6.2) 89.1 (0.2)
MOD 91.3 (0.3) 86.3 (0.3) 91.7 (0.1) 89.4 (1.7) 60.8 (2.7) 88.7 (0.4)
NegCorr 91.3 (0.4) 86.3 (0.4) 91.7 (0.1) 91.5 (0.8) 68.9 (4.5) 86.1 (0.6)
RDE 91.2 (0.5) 86.4 (0.3) 91.8 (0.1) 90.1 (0.9) 70.9 (5.8) 89.1 (0.3)
DE (MSE) 85.9 (1.2) 77.7 (0.8) 91.7 (0.1) 96.5 (0.5) 93.0 (5.3) 88.6 (0.1)
DARE 92.6 (0.7) 82.7 (0.5) 91.8 (0.1) 97.7 (0.5) 97.4 (1.3) 87.2 (0.2)

Table 3: OOD detection results. AUROC scores and ID accuracy are reported
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7 Limitations and Perspectives

For now, the efficiency of DARE is limited to fully-connected neural network
with piece-wise linear activation. We have seen, however, that DARE can benefit
to a final fully-connected network head placed on top of deep features obtained
with convolutions. Thanks to the practical aspect of DARE, the method can be
combined to other deep ensemble or OOD detection methods. One can use a
specific training process and then apply DARE afterwards to increase diversity.
Future work will consider a Bayesian version of DARE by adding gaussian noise
with increasing variance to the weights of pretrained networks.
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A Proof of Theorem 1

We first remind the assumptions and notations used for the Theorem:
Notations:

– X ∈ Rn×p and y ∈ Rn are respectively the input and output data which
compose the training set S.

– H = {x→ xT θ; θ ∈ Rp} is the ensemble of linear networks.
– LS(hθ) = 1

n ||Xθ − y||
2
2 is the mean squared error.

– s2 = (s21, ..., s
2
p) ∈ R∗+

p is the diagonal of the matrix 1
nX

TX.
– Θσ2 is the weights distribution of the anti-regularized ensemble Hτ ⊂ H,

with σ2 the weights variance.

Assumptions:
∃ θ∗ ∈ Rp;Xθ∗ = y (10)

For any hθ ∈ Hτ :

θ ∼ Θσ2 ; E[θ] = θ∗, Cov(θ) = diag(σ2) (11)

E [LS(hθ)] ≤ δ τ (12)

Where δ > 0 and diag(σ2) is the diagonal matrix of values σ2 ∈ Rp+ verifying:

σ2 = argmax
σ2=(σ2

1 ,...,σ
2
p)

p∑
k=1

log
(
θ∗k

2 + σ2
k

)
(13)

Theorem A.1. There exist a constant C > 0 such that for any k ∈ [|1, p|], the
variance of the kth weight component is expressed as follows:

σ2
k = max

[
C δ τ

s2k
− θ∗k

2, 0

]
(14)

Proof. Let’s introduce the variable z ∼ N (0, diag(σ2)), verifying: θ = θ∗ + z.
From Assumption 12, we derive that:

LS(hθ) =
1

n
||Xθ − y||22

=
1

n
||X(θ∗ + z)− y||22

=
1

n
||Xθ∗ − y +Xz||22

=
1

n
||Xz||22 (by definition of θ∗)

=
1

n

n∑
i=1

p∑
k=1

p∑
j=1

XikXijzkzj

(15)
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Thus, we have:

E[LS(hθ)] =
1

n

n∑
i=1

p∑
k=1

p∑
j=1

XikXijE[zkzj ]

=
1

n

n∑
i=1

p∑
k=1

X2
ikσ

2
k (by definition of z)

=

p∑
k=1

(
1

n

n∑
i=1

X2
ik

)
σ2
k

=

p∑
k=1

s2kσ
2
k

(16)

Combining this results with Assumption 13, we show that σ2 verifies:

maximize
σ2∈Rp+

p∑
k=1

log(σ2
k + θ∗k

2)

subject to
p∑
k=1

s2kσ
2
k ≤ δ τ

(17)

This expression is a "water-filling" problem (cf [2] Example 5.2) with weighted
constraint. The inequality constraint

∑p
k=1 s

2
kσ

2
k ≤ δ τ can be written as an

equality constraint, as any increase of σ2
k induces an increase of the objective

function.
To solve this problem, we introduce the Lagrange multipliers µ ∈ Rp+ for the
constraints σ2 ≥ 0 and the multiplier α ∈ R for the constraint

∑p
k=1 s

2
kσ

2
k = δ τ .

By considering the Lagrangian as a function of σ2, the KKT conditions are then
written:

−1

θ∗k
2 + σ2

k

+ αs2k − µk = 0 ∀ k ∈ [|1, p|] (18)

σ2
k ≥ 0, µk ≥ 0, µkσ

2
k = 0 ∀k ∈ [|1, p|] and

p∑
k=1

s2kσ
2
k = δ τ (19)

Leading to:

σ2
k

(
−1

θ∗k
2 + σ2

k

+ αs2k

)
= 0 ∀ k ∈ [|1, p|] (20)

σ2
k ≥ 0, αs2k ≥

1

θ∗k
2 + σ2

k

, ∀k ∈ [|1, p|] and
p∑
k=1

s2kσ
2
k = δ τ (21)

Then, for any k ∈ [|1, p|], we have:

σ2
k = 0 or σ2 =

1

αs2k
− θ∗k

2 (22)
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As σ2
k ≥ 0, we deduce that:

σ2
k = max

[
1

αs2k
− θ∗k

2, 0

]
(23)

With α verifying:

p∑
k=1

s2k max

[
1

αs2k
− θ∗k

2, 0

]
= δ τ

p∑
k=1

max

[
1

αδ τ
− s2kθ

∗
k
2

δ τ
, 0

]
= 1

(24)

By defining C = 1
αδ τ , we have:

p∑
k=1

max

[
C − s2kθ

∗
k
2

δ τ
, 0

]
= 1 (25)

Which imposes C > 0.
We conclude then, that there exists C > 0 such that, for any k ∈ [|1, p|]:

σ2
k = max

[
Cδ τ

s2k
− θ∗k

2, 0

]
(26)

B Proof of Corollary 1

Corollary B.1. Let Hτ be the large weights ensemble defined by Assumptions
11, 12, 13 and x ∈ Rp an input data, the variance of prediction for hθ ∈ Hτ is:

Var
θ∼Θσ2

[hθ(x)] =

p∑
k=1

x2k max

[
C δ τ

s2k
− θ∗k

2, 0

]
(27)

Proof. Let’s consider x ∈ Rp and hθ ∈ Hτ :

Var
θ∼Θσ2

[hθ(x)] = Var
θ∼Θσ2

[
p∑
k=1

xkθk

]

=

p∑
k=1

x2kσ
2
k (by Assumption 11)

(28)

C Proof of Theorem 2

Notations:

– X ∈ Rn×p and y ∈ Rn are respectively the input and output data which
compose the training set S.
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– Hτ is an anti-regularized ensemble of fully-connected deep neural networks
with L hidden layers and network weights distributed according to Θσ2 in
Rd.

– For any ` ∈ [|0, L+ 1|], p` is the number of neurons of the `th layer.
– g : R→ R is the activation function applied at each hidden layer.
– For every ` ∈ [|0, L|], we denote φ(`)(X) ∈ Rn×p the representation of the `th

layer, with ` = 0 the input layer.
– For any j ∈ [|1, p`+1|], we denote θ(`,j) ∈ Rp the network weights between the

layer ` and the jth component of the layer `+ 1.
– For any ` ∈ [|0, L|], φ∗(`)(X) = E[φ(`)(X)] and s2(`) is the diagonal of the

matrix 1
nφ
∗
(`)(X)Tφ∗(`)(X).

Assumptions:

For any random variable Z in R there exists α > 0 such that:
Var[g(Z)] > αVar[Z].

(29)

There is δ > 0 such that, for any ` ∈ [|0, L|] and any j ∈ [|1, p`+1|],
φ(`)(X) and θ(`,j) verify Assumptions 11, 12, 13 with

θ ≡ θ(`,j), X ≡ φ∗(`)(X), y ≡ φ∗(`)(X)θ∗(`,j) and θ
∗ ≡ θ∗(`,j) ≡ E[θ(`,j)]

(30)

Theorem C.1. There exists a constant γ > 0 such that, for any hθ ∈ Hτ and
x ∈ Rp, the prediction variance verifies:

Var
θ∼Θσ2

[hθ(x)] ≥ γ
L∑
`=0

〈φ∗(`)(x)2, σ̄2
(`)〉

With, σ̄2
(`) =

∑p
j=1 max

[
C(`,j)

s2
(`)

− θ∗(`,j)
2, 0

]
; C(`,j) ∈ R∗+

Proof. Let’s consider x ∈ Rp and hθ ∈ Hτ :
Considering Assumption 30, we apply Theorem A.1 to φ(`)(x)j for any ` ∈ [|0, L|]
and any j ∈ [|1, p`+1|], such that:

Var[θ(`,j)] = σ2
(`,j) = max

[
C(`,j)

s2(`)
− θ∗(`,j)

2, 0

]
(31)

With C(`,j) ∈ R∗+. Notice that the max function is applied element-wise.
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For any ` ∈ [|0, L − 1|] and any j ∈ [|1, p`+1|], the following inequalities are
verified:

Var
[
φ(`+1)(x)j

]
= Var

[
g
(
φ(`)(x)θ(`,j)

)]
≥ αVar

[
φ(`)(x)θ(`,j)

]
(by Assumption 29)

≥ αVar

[
p∑̀
k=1

φ(`)(x)kθ(`,j,k)

]

≥ α
p∑̀
k=1

Var
[
φ(`)(x)kθ(`,j,k)

]
(φ(`)(x)kθ(`,k,j) independents)

≥ α
p∑̀
k=1

Var
[
φ(`)(x)k

]
Var

[
θ(`,j,k)

]
+ E

[
φ(`)(x)k

]2 Var [θ(`,j,k)]
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≥ α
p∑̀
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Var
[
φ(`)(x)k

] (
σ2
(`,j,k) + θ∗(`,j,k)

2
)

+ φ∗(`)(x)2kσ
2
(`,j,k)

≥ α〈φ∗(`)(x)2, σ2
(`,j)〉+ α

p∑̀
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Var
[
φ(`)(x)k

] (
σ2
(`,j,k) + θ∗(`,j,k)

2
)

≥ α〈φ∗(`)(x)2, σ2
(`,j)〉+ αγ(`,j)

p∑̀
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Var
[
φ(`)(x)k

]
(32)

With γ(`,j) ≥ min
k∈[|1,p`|]

(
σ2
(`,j,k) + θ∗(`,j,k)

2
)

= min
k∈[|1,p`|]

max

[
C(`,j)

s2
(`)

, θ∗(`,j)
2

]
> 0

The fourth inequality comes from the variance decomposition of the product of two
independent variables: X ⊥⊥ Y =⇒ Var[XY ] = Var[X]Var[Y ] + Var[X]E[Y ]2 +
Var[Y ]E[X]2.
The last inequality in (32) provides an expression of recurrence for Var

[
φ(`)(x)j

]
.

We notice that, Var
[
φ(0)(x)j

]
= Var [xj ] = 0 for any j ∈ [|1, p0|]. For the last

layer, we have:

Var [hθ(x)] = Var
[
φ(L)(x)θ(L,1)

]
≥ 〈φ∗(L)(x)2, σ2

(L,1)〉+ γ(L,1)

pL∑
k=1

Var
[
φ(L)(x)k

]
(33)

We pose γ̃ = min
`∈[|0,L|]

min
j∈[|1,p`+1|]

γ(`,j) and γ = min[1, γ̃, γ̃αL] > 0. We then deduce,

by considering the recurence expression, that:

Var [hθ(x)] ≥ γ
L∑
`=0

〈φ∗(`)(x)2, σ̄2
(`)〉 (34)

With, σ̄2
(`) =

∑p`+1

j=1 σ
2
(`,j) =

∑p`+1

j=1 max

[
C(`,j)

s2
(`)

− θ∗(`,j)
2, 0

]
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D Synthetic Experiments

We consider the two synthetic experiments : Two moons classification and 1D
regression :

– Two Moons Classification : 200 random data points are generated from
the two moons generator4 to form the training set. We consider the three
uncertainty quantification methods: Deep Ensemble (NLL), Deep Ensemble
(MSE) and Deep Anti-Regularized Ensemble (DARE). The first method
implements a softmax activation function at the end layer and use the multi-
classication NLL as loss function. The two others use a linear activation at
the end layer and the mean squared error as loss function. A fully-connected
network of three layers with 100 neurons each and ReLU activations is used
as base network. Each ensemble is composed of 20 networks. The Adam [15]
optimization is used with learning rate 0.001, batch size 32 and 500 epochs.
For DARE, the threshold is set to τ = 0.001. To compute the uncertainty
scores, the entropy metric [17] is used for Deep Ensemble (NLL) while Deep
Ensemble (MSE) and DARE use the uncertainty metric for classification
with MSE loss function defined in Appendix F. We report the uncertainty
map produced by each method in Figure 6. We also report the results for
the OOD detection task in Figure 7. To produce this last results, we sample
50 random points from the two moons generator which acts as validation
data. We compute the uncertainty scores on the validation set and use the
95% percentiles as threshold for OOD detection. Any data points below this
threshold are considered as in-distribution data (in white) and the others as
OOD (in dark blue).

– 1D Regression : We reproduce the synthetic univariate Regression experi-
ment from [13]. We consider the three methods: Deep Ensemble (NLL), Deep
Ensemble (MSE) DARE. We use the gaussian NLL loss for regression defined
in [17] for Deep Ensemble (NLL) and DARE. The mean squared error is used
as loss function for Deep Ensemble (MSE). The threshold for DARE is set to
τ = 0.1. For any data x ∈ R, each method, return two values µx and σx (cf
[17]). We report in Figure 8 the confidence intervals [µx − 2σx, µx + 2σx] (in
light blue) for any x in the input range.

4 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_moons.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
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(a) Deep Ensemble (NLL) (b) Deep Ensemble (MSE) (c) DARE

Fig. 6: Two-moons uncertainty estimation Darker areas correspond to higher
predicted uncertainty.

(a) Deep Ensemble (NLL) (b) Deep Ensemble (MSE) (c) DARE

Fig. 7: OOD detection. Data classified as OOD are in dark blue OOD while
the ones classified as in-distribution are in white.

(a) Deep Ensemble (NLL) (b) Deep Ensemble (MSE) (c) DARE

Fig. 8: 1D Regression uncertainty estimation. the confidence intervals for
±2σ are given in light blue.
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E CityCam Experiments

We consider the three following experiments:

– Weather-shift: in this experiment, we select the images of the three cameras
n°164, 166 and 572 and use the images recorded during February the 23th.
During this particular day, the weather significantly change between the
beginning and the end of the day. Thus, to evaluate the robustness of the
method to a change in the weather condition, we split the dataset in two
subsets: we consider the images recorded before 2 pm as in-distribution and
the others as out-of-distribution. we observe a shift in the weather condition
around 4 pm which produces a visual shift in the images. After 4 pm, the rain
starts to fall and progressively damages the visual rendering of the images
due to the reverberation. This is particularly the case for camera n°164, as
the water drops have landed on the camera and blur the images. Each dataset
is composed of around 2500 images.

– Camera-shift: this experiment uses the images from 10 cameras in the
CityCam dataset. For each round, 5 cameras are randomly selected as
in-distribution while the 5 remaining cameras are considered as out-of-
distribution. In average, each set is composed of around 20000 images.

– Bigbus-shift: The CityCam dataset contains images marked as "big-bus"
referring to the fact that a bus appears and masks an significant part of the
image [47]. We then select the 5 cameras for which some images are marked as
"big-bus" and use this marker to split the dataset between in-distribution and
out-of-distribution samples. The in-distribution set is composed of around
17000 images while the other set contains around 1000 images.

(a) Cameras-shift (b) Bigbus-shift (c) Weather-shift

Fig. 9: Ablation study for the δ parameter. The DARE NLL is reported for
different values of δ with τ = 1 + δ. We globally observe a decrease of the OOD
NLL and a sligth increase of the in-distribution NLL when δ increases.

F OOD Detection Experiments

For the OOD detection experiments, we follow the setup of [5]. For the Fashion-
MNIST experiemnt, a three layers fully-connected network is use as base network,
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with ReLU activations. We use the Adam optimizer [15] with learning rate 0.001
and a batch size of 128. The maximal number of epochs is set to 50. For the
CIFAR10 experiment, the same base network is used on top of a pretrained
ResNet32. We consider the same optimization parameters.
For DARE and Deep Ensemble (MSE), the uncertainty score is computed as
follows:

OOD-score(x) =
1

M

M∑
k=1

||hk(x)− ŷk||22 +
1

M

M∑
k=1

∣∣∣∣∣
∣∣∣∣∣hk(x)− 1

M

M∑
i=1

hi(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

(35)

With M the number of network in the ensemble, hk the network members and
ŷk the one-hot-encoded vector of the predicted class multiplied by the number of
classes.
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