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Language Kleene Algebra with Complement: A
Finite Relational Semantics and (Un)decidability

Yoshiki Nakamura &
Tokyo Institute of Technology, Japan

—— Abstract
We study the equational theory of Kleene algebra with complement w.r.t. languages. While the
equational theory w.r.t. languages coincides with the language equivalence (under the standard
language valuation) for terms of Kleene algebra, this coincidence is broken if we extend the terms with
complement. In this paper, we present a finite relational semantics, which completely characterizes
the equational theory above. As applications, we show that the equational theory is (1) undecidable
and TI9-complete for full terms; (2) decidable and PSPACE-complete if the complement only applies
to variables or constants.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting; Theory
of computation — Logic and verification; Theory of computation — Formal languages and automata
theory

Keywords and phrases Kleene algebra, Relational model, Complexity

1 Introduction

Kleene algebra (KA) [12, 7] is an algebraic system for regular expressions consisting of union
(U), composition (-), Kleene-star (_*), empty (L), and identity (I). In this paper, we consider
the equational theory w.r.t. languages for extended KA terms. We write LANG =t = s if
t = s holds on all models of languages, i.e., for any sets X, when each letter maps to any
languages over X, the two expressions, ¢ and s, have the same language. By the completeness
of KA, for (non-extended) KA terms, the equational theory w.r.t. languages coincides® with
the language equivalence under the standard language valuation (i.e., each x maps to the
singleton language {z}): for all KA terms ¢, s, we have

t]=[s] < LANGEt=s (t-KA)

where [u] denotes the language of an expression u under the standard language valuation.

The equivalence above is broken in general if we extend KA terms with some operators.
The equational theory w.r.t. languages for KA terms with some operators was studied,
e.g., with reverse [3], with tests [14] (where languages are of guarded strings, not words),
with intersection (N) [2], with universality (T) [28, 21], with variable complements ()
[19], and combinations of some of them [4, 5]. For example, for (variable) complements,
Equation ({-KA) fails, e.g., by the following counter-example [19]:?

[Z] = [ - 7] LANG£Z =T - T.

LANG is more compatible with equational reasoning, in that valid equations in LANG are
preserved under substitution (by definition), while those under the language equivalence are
not: [T] = {z} # {zz} = [T -T|.

Extending with full complement significantly enhances the expressive power. For example,

we can define T and N using complement: T = | and tNs =t U35. Moreover, we can encode
quantifier-free formulas (including hypotheses as Horn formulas) by equations (Sect. 4).

1 By the completeness theorem of Kleene algebra (e.g., [13]); see also, e.g., [2, 21] and [19, Appendix A].
2 [#] = V*\ {2z} = [Z-T] where V is the alphabet. For LANG §~ T = T-Z: By the valuation z — V*\ {z}.
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In this paper, we present a finite relational semantics for KA with complement w.r.t.

languages: relational subword models RSUB (Sect. 3), which ease us to study the equational
theory w.r.t. languages, relationally. Our relational semantics can more robustly characterize
the equational theory than known relational semantics, e.g., for KAs (REL) [22, third page]
and for KAs with T (GREL) [28, 21] (Remark 3.11). As applications, by transforming the
techniques in [18] from relational models REL to RSUB, we have the following complexity
results: the equational theory w.r.t. languages is
1. M9-complete for KA terms with full complement (Cor. 4.8 and Thms. 4.7 and 4.10);
2. PSPACE-complete for KA terms with variable and constant complements (Thm. 6.10).
The first result gives a natural example that the equational theory w.r.t. languages is
undecidable, while the standard language equivalence is decidable (by a standard automata
construction). The second result positively settles the open problem posed in [19].

This paper is structured as follows. In Sect. 2, we give basic definitions. In Sect. 3, we
give RSUB and show that the quantifier-free theory of LANG coincides with that of RSUB.
In Sect. 4, we give a reduction from the quantifier-free theory into the equational theory
and show that the equational theory is II9-complete for KA terms with full complement. In
Sect. 5, by using RSUB, we give a graph characterization for KA terms with variable and
constant complements. In Sect. 6, we show that the equational theory for KA terms with
variable and constant complements is PSPACE-complete. In Sect. 7, we conclude this paper.

2 Preliminaries

We write N for the set of non-negative integers. For I,r € N, we write [l,r] for the set
{i e N|l<i<r} Foraset X, we write p(X) for the power set of X.

For a set X (of letters), we write X* for the set of words over X. We write | for the
empty word. We write wv for the concatenation of words w and v. A language over X is a
subset of X*. We use w, v to denote words and use L, K to denote languages, respectively.
For languages L, K C X*, the concatenation L - K and the Kleene star L* is defined by:

L-K =2 {w|weL ANweK} L" 2 {wy...w,_1|IneEN,Vi<n, w; €L}

A (2-pointed) graph G over a set A is a tuple (|G|, {a%}aca,19,29), where |G| is a
non-empty set (of vertices), each a® C |G|? is a binary relation, and 1¢,2% € |G| are
vertices. Let G, H be graphs over a set A. For a map f: |G| — |H|, we say that f is a graph
homomorphism from G to H, written f: G — H if for all z, y, and a, (z,y) € a® implies
(f(z), f(y)) € a, f(19) = 15 and f(2¢) = 2H. We say that f is a graph isomorphism from
G to H if f is bijective and for all z, y, and a, (z,y) € a® iff (f(2), f(y)) € o', f(1¢) = 17,
and h(2%) = 2. We say that H is an edge-extension of G if |H| = |G|, af D a“ for all a,
1 = 1% and 2 = 2%, For a set {1¢,2¢} C X C |G/, the induced subgraph of G on X is the
graph (X, {a%N (X x X)}aea,1%,2). For an equivalence relation E, the quotient graph of G
w.r.t. E is the graph G/E 2 (|G|/E,{{X,Y) |3z € X,y € Y, (x,y) € a®}aca, [1%]E, [2%]E)
where X/FE denotes the set of equivalence classes of X by E and [z]g denotes the equivalence
class of x. Additionally, we use the following operation:

» Definition 2.1. For a graph homomorphism h: G — H (G, H over a set A), the edge-
saturation of G w.r.t. h is the graph S(h) = (|G|, {{{(z,y) | (h(z),h(y)) € a}}aea,1¢,29).

» Example 2.2. Let h: G — H be the graph homomorphism indicated by green colored
arrows and also by vertices’ colors (graphs are written as unlabelled graphs for simplicity).



87

88

89

90

91

92

93

94

97

98

99

100

101

102

103

104

105
106

107

108

109

110

111

112

115

119

120

121

122

123
124

Y. Nakamura

Then the edge-saturation S(h) is the following graph, which is an edge-extension of G where
the extended edges are derived from edges of H:

S(h) = - G= +o\.o\‘o+ H = @

2.1 Syntax: terms of KA with complement

We consider terms over the signature S £ {I(o), L0)s(2)5 U(2)77*(1),7_(1)}. Let V be a set
of variables. For a term t over S, let t be s if t = s~ for some s and be t~ otherwise. We use
the abbreviations:

T 2 1- tNs = (" Us’)”

For X C {z,1,T,N,—}, let KAx be the minimal subset A of the set of terms over S satisfying
the following;:

yev teA scA teA scA te A

ycA JecA l1leA t-seA tuse A tr e A

zeX yeV JeX TeX neX teAd scA —-€X teA
geA flea Ted tNnse A t—eA

We use parentheses in ambiguous situations. We often abbreviate t - s to ts.
An equation t = s is a pair of terms. An inequation t < s abbreviates the equation
tUs = s. The set of quantifier-free formulas of KAx is defined by the following grammar:

oY u= t=s|pAp| . (t,s € KAx)

We use the abbreviations: ©Vi) £ =(mpA=), o — P 2 =pVh, @ < b = (o — P)A(Y — p).

2.2 Semantics: language models

An S-algebra A'is a tuple (JA|, {f4},, es), where | A is a non-empty set and f4: |A[F — | A|
is a k-ary map for each f) € S. A wvaluation v of an S-algebra A is a map v: V — |A|.
For a valuation v, we write 0: KAy_y — |A| for the unique homomorphism extending v.
Moreover, for a quantifier-free formula ¢, we define 6(p) € {true, false} by:

Bt =s) & (0(t) =08(s))  B(pAY) S (B(p) and B(¥))  B(~p) & (not b(y)).
For a quantifier-free formula ¢ and a class of valuations (of S-algebra) C,3 we write
CEy & 9(p) holds for all valuations v € C.

We abbreviate {v} |= ¢ to v |= ¢. The equational theory of C is the set of all equations ¢ = s
such that C =t = s. The quantifier-free theory of C is the set of all quantifier-free formulas
o such that C = ¢.

The language model A over a set X, written langy, is the S-algebra defined by |A| =
o(X*), M ={1}, LA =0, and for all L, K C X*,

A

LAK=LK LUK =LUK L =1L* L~ =X\ L.

3 This paper considers classes of valuations rather than classes of S-algebras (cf. Remark 3.12).
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s We write LANGx for the class of all valuations of langy and write LANG for |, LANGx.
s The equational theory (resp. quantifier-free theory) w.r.t. languages means that of LANG.
127 The language [t] C V* of a term t is 04 (¢) where vy is the valuation on the language
s model over the set V defined by vg(2) = {a} for € V. Since vy € LANG, we have

LANG ): t=s = [t] = [S] (T—KA{,})

1 The converse direction fails, as in the introduction. In the sequel, we consider the equational
12 theory w.r.t. languages.

w 2.3 (Generalized) relational models

s We write A 4 for the identity relation on a set A: Ay = {(z,2) | * € A}. For binary relations
s R,S on aset B, the composition R- S, the n-th iteration R™ (where n € N), and the reflezive
e transitive closure R* are defined by:

R-R"(n>1

wo R-S={(z,2) |3y, (r,y) € RN (y,z) €S} R"= -
AB (TL:O

138

) neN

139 Let U be a binary relation on a non-empty set B. A generalized relational model* A on
w U is an S-algebra such that |A|] C p(U), I* = Ap, LA =0, and for all R, S C U,

w  RAS=R.S RUAS=RUS R =R R =U\R

142

ws A is a relational model if U = B x B and | A| = p(B x B). We write GREL (resp. REL) for
s the class of all valuations of generalized relational models (resp. relational models).?

ws 3 Finite relational models for language models

16 In this section, we present the finite relational semantics RSUB for LANG. Sect. 3.1 introduces
17 the class SUB, which is intuitively an intermediate class between LANG and RSUB, and show
us  that the quantifier-free theory of LANG coincides with that of SUB. Sect. 3.2 introduces
1 RSUB and show that the quantifier-free theory of LANG coincides with that of RSUB.

s 3.1 SUB: subword models

151 For the standard language valuation (bg;), the membership w € 94 (t) can determined from
2w € 04 (') where w' ranges over subwords of w (and ¢’ ranges over subterms of ). This
153 situation is the same also for any valuations v € LANG, To reflect this property to LANG, we
1« define the following class: subword models SUB. These models are language models where
155 the universe is bounded to the set of subwords of a word ¢y...4,,_1.

156 B Definition 3.1. Let n € N and let {y,...,l,_1 be pairwise distinct letters. Let U =
7 {l; ... 0j_1]0<1i<j<n}. The subword language model A of length n, written SUB,,, is
s the S-algebra defined by: |A| = p(U), 1 = {1}, LA =0, and for all L, K C U,

w  LAK=(L-K)nU LUAK=LUK L7 =L"nU L =U\L J

160

By definition, U is a preorder. Reflexivity: By Ap = I* € |A] C p(U), we have Ap C U. Transitivity:
By )= 14 ¢ \A\,U:(B*A €lAl,and U-U =U -4 U € |A| C p(U), we have U - U C U.

Generalized relational models and relational models are variants of proper relation algebras and full
proper relation algebras (see, e.g., [23]), respectively, where B is non-empty set and the converse operator
is not introduced (due to this, U is possibly not symmetric, cf. [23, Lem. 3.4]) here.
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We write SUB,, for the class of all valuations of sub,, and write SUB for UneN SUB,,.

We use the following transformation of valuations from LANG into SUB.

» Definition 3.2 (/etters-to-letters valuations; cf. words-to-letters valuations [19]). Let X be a
set and let v € LANGx. Let n € N and let ag,...,a,—1 be (possibly not pairwise distinct)
letters over X. Then we define v'%0=1) qs the following valuation in SUB,,:

plaomtn-t)(z)y 2 L 4 1 |0<i<j<n A a;...aj_1 €v(z)}. J

» Example 3.3. If v(z) = {aba, a, bb}, then v{®>%) () = {£yl14y, €y, l5}. Note that v(e0:®
only reflects w.r.t. subwords of aba.

Using this, we can embed the membership in LANG into that in SUB.

» Lemma 3.4. Let X be a set and let v € LANGx. Let n € N and let ag, .. .,a,—1 be letters
over X. For all terms t and 0 <i < j<m, £;...0;_y € 6{9%0n=1)(1) iff a;...a;_1 € B(t).

Proof. By easy induction on ¢, cf. [19, Lem. 23] (see Appendix D, for detailed proof).® =
Moreover, this transformation is a surjective map to SUB, as follows:

» Proposition 3.5. Let n € N and let v € SUB,,. Let v € LANGy,,
defined by v(z) = v'(x). Then pllorfn-1) =y’

¢,_1} be the valuation

,,,,

Proof. By Def. 3.2, ¢; .. .53;1 S U(ZO""’K"’H(JJ) iff ;... @;1 € U(.I) iff ;... gj,1 € U/(.’lﬁ). <«
From them, we have that the quantifier-free theory of LANG coincides with that of SUB.
» Lemma 3.6. For all quantifier-free formulas ¢, we have: LANG = ¢ < SUB | ¢.

Proof. Byo Et=s< (t<sAs<t)andov |t <s<+tnNs <1 forve LANGUSUB,
without loss of generality, we can assume that each equation in ¢ is of the form u < L.
By taking the conjunctive normal form, it suffices to show when ¢ is of the form (\/ tx <
DV(Ve—se<1).ByvE(t<LAs< 1)« tUs <1 forve LANGUSUB, it suffices to
show when ¢ is of the form (\/}_, tx < L)V (-s < L1). Then, we have:

SUB b (\/ < 1)V (s < 1)

k=1
= 3n,0 € LANGyy, gy, 00t e (\/ tp < L)V (ms < 1) (Prop. 3.5)
k=1
= LANG I (\/ tx < L)V (s < 1) (By Lem. 3.4 and v € LANG)
k=1
= ElnENazlvjlvvlmm]m s.t. ngl S]l §Z2 §]2 é Szm S]m Sny

3X,0 € LANGx, ag, .., an-1 € X, (/\ @i, ... aj,—1 € B(tx)) AD(s) =0
k=1

= SUBKE(\th<L)V(ns< ). (By Lem. 3.4 and v{@an-1) € SUB,,) =

T<<s

6 This equivalence holds thanks to that a;,...,a;_1 are letters not words. For words-to-letters valuations,
the direction = of Lem. 3.4 only holds [19, Lem. 23].
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3.2 RSUB: relational subword models
Next, we introduce RSUB, the relational version of SUB.

» Definition 3.7. Let n € N. The relational subword language model A of length n, written
rsub,,, is the generalized relational model on the set U = {(i,j) € [0,n] x [0,n] | i < j} s.t.

Al = {RecpU)|R2Apn V U\RD Ay}

We write RSUB,, for the class of all valuations of rsub,, and write RSUB for | RSUB,,.

neN
» Proposition 3.8. For each n € N, sub,, is isomorphic to rsub,,.

Proof. By the bijective” map f: L~ {(i,5) | £;...¢;—1 € L}.® Fig. 1 presents illustrative

=9 9 ¢ ¢
{lo, (rla, by, 62}

{41 10<i<j5<3} — = =E)—0)

Figure 1 Illustrative instances of the bijective map from sub,, to rsub,, when n = 3 (Prop. 3.8).

examples of this map (we display binary relations as graphs in a standard way). <

» Theorem 3.9. For all quantifier-free formulas ¢, we have: LANG = ¢ < RSUB E .
Proof. By Lem. 3.6 and Prop. 3.8. <
» Corollary 3.10. The quantifier-free theory w.r.t. languages is in 119 for KA_y terms.
Proof. By the finite model property of RSUB (the universe |rsub,| is finite for each n). <
» Remark 3.11 (RSUB and GREL). For KAy, the equational theory of LANG coincides with
that of GREL [21, REL" in Sect. 5][28]. However for KA(_y, this coincidence is broken, e.g.,?

—~O—_
LANG EFabNed <aTdUbTce GREL - abNed <aTdUbTe ol Z)o
~So—

LANG = a < bab U bab (G)REL £ a < bab U bab a0y
b

(Each right figure denotes a valuation for (G)REL }= _ where some edges are omitted.)
» Remark 3.12 (the subclass of RSUB for the standard language valuation). Let

Usev ol@) = {(i= L,i) | i € [l,nn}.

v(a) (where a ranges over V) are disjoint sets

RSUBy: = | J {n € RSUB,

neN

By an analogy of Thm. 3.9, we have that [¢] = [s] iff RSUBg =t = s (Appendix A). N

T = Aqo,n) (cf. Def. 3.7) and f({£;...£;—1}) = {(i,J)} is singleton if i < j.

8 This map is the same as Pratt’s embedding [22, third page], cf. [28, 21): L+ {(w,wv) | w € X*Av € L},
up to isomorphism, except that the universe is bounded to subwords of g ... ¢n_1.

9 LANG = abNed < aTdUbTe: By Levi’s inequation [15][5, Example 26]. LANG |= a < bab U bab: for
every valuation v of LANG, v |= a < bab if | € v(b) and v |= a < bab if | ¢ v(b).
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EqT(GREL)
2 <
EqT(REL) 2  EqT(RSUB) = EqT(LANG)
N L
EqT(RSUBy) = EqT({vs})

Figure 2 Equational theories for KA;_; under GREL.

In Fig. 2, we summarize the equational theories for KAy _y terms above where the
inclusions are shown by REL C GREL O RSUB O RSUBy and Thm. 3.9 and the non-
inclusions are shown by counter-examples.!©

4  From quantifier-free formulas to equations

Using SUB/RSUB, we give a reduction from the quantifier-free theory into the equational
theory of LANG. For n € N, v € SUB,,, and 7,5 s.t. 0 <14 < j < n, we define v,4,j = ¢ as

v,7,7 ):t: s & (fi...€j71 S 6(t) lﬂ.&f],1 € 6(8))

The following shows that to check SUB |= ¢t = s, it suffices to check about the pairs of the
left-most and right-most vertices.

» Lemma 4.1. For all terms t,s, SUBlEt=s < Vn e N,Vb € SUB,,0,0,n Et=s.

Proof. Because t =s < (t <sAs<t)and t < s+ tNs~ < L hold for “RSUB = _” and
“0,0,n = _7, it suffices to show when the equation is of the form ¢ < L. We then have

SUB Rt < L

= JeLANG,neNi,jst. 0<i<j<m, £...0j_1cplfota-1)(t)  (Prop. 3.5)
= JoelANG,neN,i,jst. 0<i<j<n, {;...0;_1 €0(t) (Lem. 3.4)
= JelANG,neNi,jst. 0<i<j<m, fy...lj_;i_1€otbt-1(t) (Lem. 3.4)
= 3neNveSUB,, l...l,_1 € d(t) (Let n 2 j —i as vllti-1) € SUB;_;)
= SUBKEt< L. (Trivial)

(The second line from the bottom is equivalent to In € N, v € SUB,;,0,0,n £t < L)) <

Lem. 4.1 fails for quantifier-free formulas, e.g., a < 1. Va < L only holds in the right-hand
side. We consider replacing each inequation v < 1 with TuT < 1. Then we have that
o Eu<Lliffv,0,n | TuT < L, where n € Nand v € SUB,, (see Lem. 4.2). More generally,
for a quantifier-free formula ¢, let Tr(¢) be the term defined by:!*

Tr(t=s) 2 T((tNs)UE# Ns)T Tr(pAy) = Tr(p) UTr(y) Tr(=p) = Tr(p)~.

9 Note that EqT(LANG) = EqT(GREL) for KAt} and EqT({vst}) = EqT(GREL) for KA [28, 21].
Y Tr(t = s) can be simplfied for specific cases, e.g., Tr(t < s) = T(tNs7)T and Tr(t < 1) = T¢T.
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22 » Lemma 4.2. Letn € N and v € SUB,,. Let ¢ be a quantifier-free formula. Then,
203 vEe < 0,0,nkETr(p) < L.

24 Proof. By easy induction on . Case ¢ = (t = s): Let u = (tNs~)U(t~Ns). Thenv =t =5
2 iffO(u)=0iff by... 0,1 €0(TuT)iff 0,0,n = TuT < Liff v,0,n = Tr(t = s). For A: By
2 0,0nE(E<L)A(s< L)+ (tUs<Ll). For—: Byo,0,nkE(-(t<1)< (" <1l) <=

27 » Theorem 4.3 (cf. Schréder-Tarski translation [27]). There is a polynomial-time reduction
xus  from the quantifier-free theory of LANG into the equational theory of LANG.

20 Proof. By Lems. 4.1 and 4.2, SUB = ¢ iff SUB |= Tr(p) < L. Thus by Thm. 3.9. <
0 B Corollary 4.4 (Hoare hypotheses elimination). For all terms t, s, u,
251 LANG)ZUSJ_—)tSS =4 LANG':tSSUTuT

»2  Proof. By set-theoretic equivalences, we have

253 SUBFu<l—ot<s < SUBET(ENs )T <TuT (By Thm. 4.3)
254 < SUBEtNs <TuT (= Byl<T< ByTT<T)
255 = SUB'ZtSSUT’UJT <

256

7 B Remark 4.5. Note that LANG £ (—u < L) «+ T < TuT, cf. Schroder-Tarski translation
s [27, XXXII.] for REL. If 6(u) = {w} where v € LANGx and w # |, then 8(T) = [X*] £
20 [X*wX*] =06(TuT). This is why we go via “0,0,n = _" (Lems. 4.1 and 4.2). Similarly for
%0 Cor. 44, LANGE (u< L —-t<s)«< (t<sUTuT),eg,whent=T and s = L. a

4.1 Undecidability via the Hoare hypotheses elimination

%2 Thm. 4.3/Cor. 4.4 implies the undecidability of the equational theory of LANG for full terms.

263 A context-free grammar (CFG) € over a finite set A is a tuple (X, R,s), where
264 X is a finite set of non-terminal labels s.t. ANX = ;

265 R is a finite set of rewriting rules x <~ w of z € X and w € (AU X)*;

266 s € X is the start label.

21 We write [€] for the language of €. Tt is well-known that the universality problem for CFGs—
2 given a CFG €, does [€] = A* hold?—is II{-complete. We can naturally encode this problem
20 by the quantifier-free theory of LANG, as follows (cf. [18, Lem. 47]).

2o » Lemma 4.6. Let € = (X, R,s) be a CFG over a finite set A. Then,
[€]=A4" & LANGE( A w<az)—> (4" <s).
(z—w)ER
o2 Here, A denotes the term (a1 U---Uay,) in the right-hand side where A = {a1,...,an}.

oz Proof Sketch. By an analogy of [18, Lem. 47] (for REL). The relational models used in [18]
o are of the form of RSUB. See Appendix E for a detail. <

25 » Theorem 4.7. The equational theory w.r.t. languages is I19-complete for KAz}

z  Proof. (in I1Y): By Cor. 3.10. (Hardness): Let € = (X, {z; < w; | i € [1,n]},s) be a
an CFG over a finite set A. By Lem. 4.6 and by Cor. 4.4 with LANG [= (A;cp  wi < @) <
278 (UiE[Ln] w; ﬂfi) < 1, we have: [Qj = A* iff LANG ': A* <sU T(Uie[l,n] W; ﬂfi)"l'. Hence,
a9 we can give a reduction from the universality problem of CFGs. <
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» Corollary 4.8. The equational theory w.r.t. languages is I13-complete for KA.
Proof. By Cor. 3.10 and Thm. 4.7. |

Moreover, we also have the following, as LANG |= 1= AT — A* = T holds (see Appendix E).

» Lemma 4.9. Let € = (X, R,s) be a CFG over a finite set A. Then,

[@=4" & LANGE(1=ATA A w<a)—(T<s).
(z+w)ER

Hence, the undecidability still holds even without Kleene star.

» Theorem 4.10. The equational theory w.r.t. languages is 119-complete for KA (_y without
Kleene star.

Proof. In the same way as Thm. 4.7 (by using Lem. 4.9 instead of Lem. 4.6). |

5 Graph characterization for KA{f,i,T,m} terms

In Sects. 5 and 6, we consider the decidability of KA FiT) We recall Sect. 2 for graphs. In
this section, we give a graph characterization of the equational theory of RSUB for KA FiT.Ap
by generalizing the graph characterization of REL [18, Thm. 18].

5.1 Graph languages for KA ;1

Let V2 {27 |2 VIU{,T} and~V| 2 VU({l}. Fora KA i1y term ¢, the graph
language G(t) is a set of graphs over V| defined by:!2

G(z) 2 { »o—z—0> } wherez €V HER ) GH=2{ o }
Gtns) ={ 60 [GeG(t)AH €G(s)} G(tUs) £ G(t)Ug(s)
G(t-s)=2{ so—Goo—H—0~ |GEG{Ht)ANH€G(s)} G(t*) = U Gg(t").
neN

(We use series-composition for (-) and parallel-composition for (N).)
For a valuation v € GREL on a binary relation on a set B and {(x,y) € 8(T), let G(v,x,y)
be the graph defined by:

Go,z,y) = (B, {8(a)}secv, ,0)-

For a class C C GREL, let GR¢ be the graph language {G(v,z,y) | v € C and (z,y) € 6(T)}.
We say that a graph language G is induced subgraph-closed if every induced subgraph of
every G € G is isomorphic to a member of G. We say that a class C C GREL is induced
subgraph-closed if GR¢ is induced subgraph-closed. By the form of rsub,,, RSUB is induced
subgraph-closed.

We recall edge-saturations S(h) of Def. 2.1. For a graph G and graph language G, let

Se(@) & {S(h)|3H € GRe,h: G — H} Se(G) = | Se(H).
Heg

2We introduce T-labelled edges, cf. [18, Def. 6], because T is not fixed to the full relation.
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as > Example 5.1. The following is an instance of Srsys(G) where V = {a}:

I, T T.T\
Mﬂfm , jha/LTjh%a.l.T Q>
a,l,T a,l, a,l, T a,l, T

a1, al,T
314 Srsug( ~0—a—o—g—0> ) = . .
I, T— 1, T—

*mﬁﬁ M ; »ﬂ%ﬁ}\'\m

a,, T 7 al, T a,, T @, T al, T 7 @l T
315 (In the sequel, we often omit T- or I-labelled edges for simplicity.)
316 By the form of GRrsug, each H, where H € Srsyg(H') for some H’, satisfies
a7 TH is a total preorder;
318 a® D11 or g D 1" holds for each a € V. J

319 Additionally, let H = H/(1#)= and G¢ = {H? | H € G} where R~ denotes the
s20 equivalence closure of R. We then have the following graph language characterization. This
a1 is an analogy of [18, Theorem 18], but is generalized for including RSUB.

2 B Theorem 5.2. Let C C GREL be induced subgraph-closed. For all KA{ETT ny termst,s,
323 CEt<s < VHESc(g(t))Q,HGEg(s),G—)H.
s« Proof. As with [18, Theorem 18]. See Sect. 5.3 for a detailed proof. <

s By Thm. 5.2, we can show inequations by graph homomorphisms, e.g., as follows.

s » Example 5.3. We recall the inequations in Remark 3.11. Gray-colored edges are extended
27 by edge-saturations Sgsyg. We omit unimportant edges.
328 LANG = abNed < aTdU cTh: For each graph H € Srsus(G(abned))€, we can give a

329 graph homomorphism from some graph in G(aTd U ¢Tb) as follows:
G(aTdUcTb) ={ -o0—a—e—T—0—d—0+ , -0—Cc—0—T—0—b—0> |
330 Srsus(GlabNed))2 s H - »“o<a/I\b>:o"+ fo<a/z\b>o"+
C b -d c\[,(g/d
(Case (@, @) € TH) (Case (@, @) € TH)
331 LANG = a < bab U bab:
G(bab U bab) ={ -e—p—e—a—0—p—0> , -+0—b—0—a—0—b—0> |
Q . " . X 1,

o Srsu(G(a))* > H : ﬁaﬁ »&—a—?ﬁ»

(Case b7 D 1) (Case b D 1)
53 (Additionally, < is necessary, e.g., for T < U1 [18, Remark 19].) 2

= 5.2 Word languages for KA{E,LT}

15 Particularly for KA @i Thm. 5.2 can be rephrased by word languages.
336 For a word w = aj ... a, over V, let G(w) be the following graph where |G(w)| = [0, n]:

337 *@*a()"@*alﬂ@* —an—v@v .

ss G(w) is the unique graph in G(w) up to graph isomorphisms.

339 For a KA j+, term ¢, we write [t} for the word language [t] over V where T, 1, T
s are also viewed as letters; e.g., [T]y = {T} and [Z] = V*\ {z} for € V. Note that
s G(t) = {G(w) | w € [t]y}- Hence, graph languages are expressible by word languages for
w2 KA (z1,7) terms.
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Additionally, we introduce nondeterministic finite word automata with epsilon transitions
(NFAs). NFAs are (2-pointed) graphs over V| where the source and target vertices denote
the initial and (single) accepting states, respectively, and |-labelled edges denote epsilon
transitions. For a graph H and a word w = aj .. .a,, we write 62 for the binary relation

(1H)*.q (IH) . call (1) For g € |H|, welet 62 (q) = {¢' | (g,¢') € 61}. For Q C |H|, we
let 6H(Q) Useo 55( ). The word language [H]y is defined as {w € V* | (1 2H) ¢ I},
Note that [H]g = {w € V* | G(w) — H2} if I is an equivalence relation. Then we have

the following:
» Corollary 5.4. Let C C GREL be induced subgraph-closed. For all KA{ETT} terms t, s,

Cht<s o [y C{we V" |VH €Se(Gw)), sy N [Hy # 0}.
Proof. By Thm. 5.2. See Sect. 5.3 for a detailed proof. |

5.3 Proof of Thm. 5.2 and Cor. 5.4
Let v € GREL. For a graph H and a graph language G, we write

(H#H) = {{zy) | H— G(v,2,y)} 6g) = ).

>

> Lemma 5.5. Let v € GREL. For all KA+ -\ terms t, we have o(t) = 0(G(1)).
Proof (cf. [18, Prop. 11]). By easy induction on ¢t. See Appendix F for a detail. <
» Lemma 5.6. Let C C GREL, v € C, and H be a graph. Then 6(S¢(H)<) = 6(H).

Proof. (C): Because, for any J € S¢(H), we have J — JC by H — J and J — J<. (D):
Let h: H — G(v,,y). Then S(h) — G(v,2,y). Because I5(®¥) is the identity relation,

S(h)2 — G(v,z,y). Hence 6(Sc(H)<) 2 6(H). <

» Proposition 5.7. Let h: H — G(v,z,y). Then the graph S(h)< is isomorphic to the
induced subgraph of G(v,x,y) on the range of h.

Proof. Easy, by construction. Note that since 1% is the identity relation, 15" is an
equivalence relation (see, e.g., Example 2.2). <

Proof of Thm. 5.2. We have

CEt<s & YocCb(t) Co(s) & YoecC,o(Se(G(t)2) C6(G(s)) (Lems. 5.5 and 5.6)
& VG € Se(G(t)2,VJ € GRe, (G — J) implies (3H € G(s), H — .J) (Def. of b)
S VG e Se(G(t)2,3H e G(s), H — G. (V)

Here, for (©), <: Let H € G(s) be s.t. H — G. Then for all J s.t. G — J, we have

H — J by transitivity of —. =: By Prop. 5.7 and that GR¢ is induced subgraph-closed,

we have Sc(G(t))2 € GRe. Thus by letting J = G, this completes the proof. <
Proof of Cor. 5.4. We have
CEt<s & Ywc [tly,VH € S¢(G(w)), I € [s]y, G(v) — HC
(Thm. 5.2 and G(s) = {G(v) | v € [s]/})
& Vweltly,VH € Se(Gw), [sly n[Hlg #0  (Hly ={ve V* | G(v) — HS})
& [ty S{we V" |VH € Sc(G(w)), [s]ly N[H]y # 0}. <

11



12

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

Language Kleene Algebra with Complement: A Finite Relational Semantics and (Un)decidability

6 PSPACE decidability for KA{E,T,T} terms

In this section, we show that the equational theory w.r.t. languages for KA (z1,T} I8 decidable
and PSPACE-complete. We consider graphs over V| / NFAs, instead of KA{:E,T,T} terms /
regular expressions over the alphabet V. Relying on the graph characterization (Cor. 5.4),
we consider that, given an NFA J (corresponding to the term s in Cor. 5.4), we give an NFA
recognizing the following word language:

Ly = {we V*|3IH € Spsus(G(w)), [J]y N [Hly = 0}

Note that RSUB =t < s & [t|y NLy = 0 when [s]g = [J]y. We first give an equivalent
notion of “w € L;” in Sect. 6.1, and then we give an NFA construction in Sect. 6.2.

6.1 Saturable paths for RSUB

We first give an equivalent notion of [J]y N [H]y = 0, compatible with edge-saturations.

» Definition 6.1. Let J and H be graphs. A map U: |H| — p(|J|) is an emptiness-witness
for [J]y N [H]y = 0 if the following hold where U, = U(x):

17 € Uyn and Va € V,¥(z,y) € a”, §](U,) CU,;

27 & Uyn. N
Intuitively, the first condition denotes that U is a cover of the reachable states from the pair
“17 € Uyr”. If the second condition holds, we can see that the pair “27 € U,r” is unreachable.
As expected, we have the following (see Appendix B, for a proof).

» Proposition 6.2. Let J and H be graphs where |7 is reflexive. Then
JyNHlg =0 < 3U: |H|— p(|J|), U is an emptiness-witness for [J]g N [H]g = 0.

» Example 6.3. We consider the following graphs. J denotes the NFA s.t. [J]y = {w €
{a,@}* | In € N, @ occurs 3n + 2 times in w}. H is a graph in Sgsys(G(aaa)) where T- or
I-labelled edges are omitted. By the form of H, one can see that [J]g N [H]y = 0.

%ﬁg’ M &@L 155
a\é UB

If Uy = Uy = {e} and Uy = Us = {o,e}, then this U is an emptiness-witness; e.g., for
(1,2) e a”, 62(Uh) = 62({e}) = {0} C Us. Besides this, if Uy = Uy = {e} and U = Uz = {o},
this U is also an emptiness-witness. These witnesses also show [J]y N [H]y = 0. 4

Next, we give an equivalent notion of “w € L;”. In the following, we abstract saturated
edges (gray-colored edges in Example 6.3) using U, as U implies the existence of edge-
saturations.

» Definition 6.4. Let J be a graph and w be a word. A pair P = (H,U) is a saturable path
for w € Ly if the following hold:
(P-Ext) H is an edge-extension of G(w) such that'3

131n this definition, TH R 1 , TH and edges in I are already edge-saturated, for preserving (P-Con) easily.
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TH s a total preorder and TH D {(i — 1,i) | i € [1,n]} where w = ay ...an;
1T = THA{(,4) | (,5) € THY and 1" = TH\ 14,
Va € V, (af @) is either () U1H g®W)) or (q®() &) y ),
(P-Con) H is consistent: Ya € V, afinat® =9.
(P-Wit) U: |H| — p(]J]) is an emptiness—witness for [J]ly N[H]g =0
(P-Sat) H is saturable: Ya € V,V(i,j) € i , 6J(U) CU; or 62(U;) C U;. a

a

» Lemma 6.5. Let J be a graph and w be a word. Then,
wely < thereis a saturable path for w € L.

Proof. (=): By Prop. 6.2, let H € Srsus(G(w)) and let U be an emptiness-witness for
[J]yv N [H']y = 0. We define the graph H as follows:

[H| = [H'];

afl =o' for a € {T, 11}

ol = aC@ U (o N1 for a € Vi \ {T,1,1}.
We then have that the pair P = (H,U) is a saturable path for w € L, as follows:

(P-Ext): By that H' is an edge-saturation w.r.t. RSUB.

(P-Con): Because H’ is consistent by H' € Srsus(G(w)).

(P-Wit): Because U is an emptiness-witness for [J]g N [H']y = 0.

(P-Sat): Because af’’ Ua"’ = TH' and U is an emptiness-witness for [J]g N [H']g = 0.

(<): Let P = (H,U) be the saturable path. By (P-Ext), I/ is an equivalence relation.

We define the graph H’ as follows:
| = |
ot = a¥ for a e {T,1,1};
for a € V and (z,y) € TH,
if ([z), [y]i=) € af® | then (z,y) € a” \ @',
else if ([z]u, [y]in) € @ then (z,y) ea™ \ o';
else if U, C §7(U,), then (z,y) € o'\ @’
else (z,y) € a™’ \ o’
By the construction of H’, we have the following:
H'is consistent: If [z];# = [y];n then U, = U, because U, C ¢/ (U,) C U, C §/(U,) C U,
by (P-Wit); thus, if [z]yr = [¢/]z and [y]yz =[]z, then (z,y) € o™ iff (a/,y/) € a¥".
fora e V,a" = TH \ a®’: Because af’’ Ua” = TH  and H' is consistent.
Combining (P-Ext) and them yields H' € Sgrsyg(G(w)). Also, U is an emptiness-witness for
[J]y N [H']y = 0 as follows. For edges already in H, it is shown by (P-Wit). For extended

edges from H, it is shown by the construction of H’ (for the last case of the four cases above,
by U, Z 67 (U,) and (P-Sat), we have U, C 6Z(U,)). Hence, this completes the proof. <

» Example 6.6. We recall the graphs J and H € Srsys(G(aaa)) in Example 6.3. The
following P is a saturable path for a@a € L; where T- or I-labelled edges are omitted:

,o- @p%#::ﬁéi

{0,0} {0,0}

13
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(P is of the form of a path graph by taking the quotient graph w.r.t. |-labelled edges.) P is an
abstraction of edge-saturated graphs. From P, we can construct a graph H € Srsus(G(aaa))
s.t. [J]y N [H]y = 0. Because both dZ({e}) C {o,e} and 5/ ({e}) C {o,e} hold, in addition
to the graph H in Example 6.3, for instance, the following are also possible:

a,l a,l a,l a, | a,l a,l a,l a, |

ISV VTR IS R ST

T—a— T—a—

Thanks to saturable paths, we can replace the existence of such gray-colored edges connecting
distant vertices with a locally defined witness U. a

Moreover, we can replace (P-Sat)—a condition between distant vertices—with a local
condition. Let ¢/ (U, U) £ Va € V,Y{(u,u') €U, (u) CU V&L (v') CU.

» Proposition 6.7. Let J and H be graphs. Let i € |H|. Then we have:

(Va € V,Vj s.t. (i) €17, 60(U) CUVEU)CU) & &' | UjxULU).
gityel”

Proof. (Va € vasfz](UJ) cuU; Vv (55](UJ) - Ul) iff (Va eV, (VU S Uj,é&’(u) - Ul) \Y (VU/ S

Uj,02(u') C Uy)) iff ¢’/ (U; x U;,U;) (by taking the prenex normal form). Thus by

(Vj s.t. (j,i) € i ol (U; xU;, Uy)) iff cpJ(Uj + it UjxUj, U;), this completes the proof. <

$(4,1)
6.2 Automata from saturable paths

Let X 2 {X € p(V) |, TeX, ¢ X, andVz € V,x € X & T ¢ X}. (This set is
equivalent to the set {{z € V| | I¥ C 2/} | H € GRgsus}.)

» Definition 6.8 (NFA construction). Let » and <« be two fresh symbols. For a graph J and
a set X € X, let JSX be the graph G defined as follows:
G| = {», ¢} U{UU,U) € (|| x |J]) x () | ¢’ (U, U) AVz € X,5](U) C U};
1=} x {U,U) € |G| |17 e UNU=0}U{U,U) €|G] |2 ¢ U} x {«};
2% = {{U,U), U, U") € |G| x |G| | z/JfT(LL uu',u’ \/z/J;f,(Z/I,U,L[’,U’)} forx e V;
19 = p;
2¢ = «.
Here, wfi(U,U,U’,U’) and wg{,(u, UU' U’ are as follows:
s (U)ycu’
XU UU U & U =UUUXU)ANSST{u | (u,u) eU}) CU S |;
& ({u | (u,u) eU'}) CU’
wﬁ(U,U,L{',U') & (U =UNU=UAzecX). g
By the form of JSX, if a; ...a, € [J¥X]y, then its run is of the following form:

- pr —|— <Z/{0,U0> —a1— <U1,U1> —a—~ (Z/[z,U2>

o an— (Un,Up) ——> 4> |

Intuitively, this run corresponds to the following saturable path where some T-, I, or I-labelled

X
edges are omitted and Kb/ denotes that an x-labelled edge exists for each z € X:

| (—‘w(X i(ui—l,Ui—lauiin))
< 15,
|1 (Otherwise)

X X X X X X
Uy U, Us U,—1 U;

U’Vl,
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Here, U; is used to denote the set Uj;(j,i)eiH U; x U; (cf. Prop. 6.7) where H is the graph of
the saturable path above.

According to the correspondence above, from a word w € (Jy ¢ [/ Sx], we can construct
a saturable path for w € L;. Conversely, from a saturable path for w € L;, we can show
w € Uyxex[/°¥]y. Thus, we have the following. See Appendix C for the detailed proof.

» Lemma 6.9 (Appendix C). Let J be a graph. We have L; = Uy cx[J%*]v.
» Theorem 6.10. The equational theory of KA{E,T,T} w.r.t. languages is PSPACE-complete.

Proof. (in PSPACE): Let t and s be KA terms. Let G and J be graphs s.t. [Gly = [t]v

{1, T}
and [J]5 = [s]- Then we have
RSUBEt<s <« [GlynL;=0 (Cor. 5.4)
& [Glyn({ T%¥g) =0 (Lem. 6.9)

Xex

Hence, we can reduce the equational theory into the emptiness problem of NFAs of size
exponential to the size of the input equation. Therefore, by using a standard on-the-fly
algorithm for the non-emptiness problem of NFAs (essentially the graph reachability problem),
we can give a non-deterministic polynomial space algorithm. (Hardness): The equational
theory of KA coincides with the language equivalence problem of regular expressions, which
is PSPACE-complete [16]. Hence, the equational theory of KA F1T} is PSPACE-hard. <«

» Remark 6.11. Cf. [18, Remark 45]: the equational theory of REL for KA{E,T,T} is decidable
in coNEXP, but its PSPACE-decidability is open. In RSUB, each equivalence class induced
from I-labelled edges is always an interval. Thus, the problematic case of [18, Remark 45]
does not occur in RSUB, fortunately. 3

7 Future directions

We leave open the axiomatizability of the equational theory of KAz /KA 0 /KA @ Wt

languages. Note that the equational theory of KA;_; (without Kleene star) w.r.t. languages
is not finitely axiomatizable because it is II{-complete (Thms. 4.7 and 4.10).

A natural interest is to consider variants or fragments of KA(_, e.g., with reverse [3], with
tests [14] (by considering guarded strings) or with (anti-)domain [8]. Also, the combination
of variables and letters (variables under standard valuations) would be interesting in the
context of regular expressions.

Additionally, this paper did not so deal with the expressive power w.r.t. languages. A
weak tool is (f-KA_}): [t] # [s] = LANG [~ t = s; we can separate the expressive powers
w.r.t. languages of given two term sets if their language classes are not equivalent. However,
this cannot show e.g., the expressive power difference between KAz, and KA, while this
difference is an immediate consequence of the counter-example in the introduction and the
completeness theorem of KA. To obtain a more useful tool, it is possibly interesting to modify
existing arguments about the standard relational structures (REL), e.g., [25, 24, 26, 11, 17]
(including finite model theoretical studies such as Ehrenfeucht-Fraissé games [9, 10]) for
RSUB.
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A Proof for Remark 3.12

» Definition A.1. Let

SUBy = | J qvesuB,
v(a) (where a € V) are disjoint sets

neN

Usewol@) = {t i € 0.0 - u}},

» Proposition A.2. Let n € N and let v’ € SUB,, NSUBy. For i € [0,n — 1], let a; be the

(ao,--»an—1) /

unique one s.t. v'(a;) = {¢;}. Then vg, =v.

Proof. By Def. 3.2, ¢; € né?o"“’a"’1>(x) iff a; € vg(x) iff a; = x iff ¢; € v'(x). Also, both

Ué?o’”"a"’m(x) and v’(z) are subsets of {{,...,¢,_1}. Thus, Uéfo’”"a”“) =v' <

» Lemma A.3 (cf. Lem. 3.6). For all quantifier-free formulas ¢, we have:

v EFe <  SUBy E .

Proof. As with Lem. 3.6, it suffices to prove when ¢ is of the form (\/}*, tx < L)V (-s < 1).

SUBg = (\/ tk < L)V (s < 1)
k=1
=  3In,ag,...,an-1 €V, ugﬁo"“’“"*) = (\/ ty <L)V (-s< 1) (Prop. A.2)
k=1
= ou (/<L) V(ms< 1) (By Lem. 3.4)
k=1
= HnENazlv.]hvlma]m Stoéll Sjl §712 §J2§§'Lm§]m§na

m
Jag, ..., an—1 €V, (N i, .. a1 € bs(tx)) A bgi(s) =0
k=1

= SUBg [~ (in/ ty <L)V (s <1).
- (By Lem. 3.4 and Uéfﬁlo""’a"“) € SUB,,NSUB,;) =«
» Proposition A.4 (Cor. of Prop. 3.8). For all quantifier-free formulas ¢, we have:
SUBst E¢p <  RSUBg = .

Proof. By the same bijective map f: L+ {(3,5) | ¢;...¢;—1 € L} as Prop. 3.8. <
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Combining Lem. A.3 and Prop. A.4 yields

v EFe &  RSUBg E .

Particularly, we have
[t]=1[s] < RSUBykEt=s.

This matches the following correspondence between words and binary relations (cf.
Sect. 5).

apy ...Apn—-1 | +>0—a0—0—0a1 —0— -+ —Apn—1—0> .

B Proof of Prop. 6.2

Let R’ C |H| x |J| be the minimal set such that
(17,17) € R

> Clam B.1. [JlgyN[H]y #0 < (27,27)eR.

Proof Sketch. R’ is the set of all reachable states of the product NFA of H and J. Hence
this completes the proof. <

Let R C |H| x |J| be the minimal set such that
(17,17) € R;
Va € Vi,a,y,2,y, (x,y) € RA (a,a) € a Ay, y') €8] = («,y) € R.

> ClaimB.2. R=R.

Proof. (C): Clear, by a” C §#. (2): By induction on derivations of R'.
Case (11,17) € R': Trivial by (1%,17) € R.
Case ((x,y) € R' A {(z,2") € SE A {y,y') €6)) = (2/,y') € R": By IH, (x,y) € R.
Sub-Case a # I: Let xo,...,Zn_1,Zn,...,Tm be s.t. (z,2") = (xg, 2sm) and
for all i € [1,n — 1], (z;_1,2;) € 1H;
(Tp_1,2,) € a';
for all i € [n+ 1,m], (x;—1,x;) € I

Letyg=+=yp_1=vand y, =--- =y,, =y'. Then by applying the second rule
multiply, we have (z/,y’) € R.
Sub-Case a = |: By reflexivity of I, (z,2') € (I)*. Let x¢,...,2m (m > 0) be s.t.

(x,2") = (xg, ) and

for all i € [1,m], {x;_1,2;) € 17,
Let yo =y and y; = --- =y, = y'. Then by applying the second rule multiply, we
have (z/,y') € R. <

Proof of Prop. 6.2. (=): By letting U as the map defined by U(x) = {y | (z,y) € R}. Here,
27 & U,n is shown by [J]y N[H]y = 0 with Claim B.1 and B.2. («): Let R” = {(x,y) |y €
U(z)}. By the minimality of R, we have R C R”. By (21,27) ¢ R", we have (22 27) ¢ R.
Hence by Claim B.1 and B.2, we have [J]y N [H]y = 0. <
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C Proof of Lem. 6.9

Proof of Lem. 6.9. (C): Let w = ay ...a, € L. Let P = (H,U) be a saturable path for w €

Ls. Let X 2 {a € V| aff D1} (note that X € X). For each i, let U; 2 U e Ui X Us.

Then we have:
o’ (U;,U;): By (P-Sat) and Prop. 6.7.
Van 6] (U;) C U;: By aff D 1% 2 Ay and (P-Wit).
Thus (U;, U;) € |JS%|. We consider the following run of the NFA JSX on w:

- pr —— <u0,U(J> —ai— <M17U1> —az— <UQ,U2> cr ——Qp — (L{n,Un) —_—]— 4 >

This is indeed a run of the NFA JSx as follows:
>, Uy, Up)) € 177X By 17 € Uy (P-Wit) and Uy = 0.
(U, Uy), 4) € 17°%: By 27 ¢ U,, (P-Wit).
Vi € [1,n], (U1, Ui_1), (U, U;)) € af "> We distinguish the following cases:
Case (i —1,i) € 17
.. TH . .. ~H .
U; =U;—1: By (4,i) e I iff (j,i—1) eI, for all j.
U, = U;_1: By (P-Wit), we have U,_ 1C5 ( i—1) CU; C6J( )CUl 1.

a; € X (af D 1): By a? N7 £ () and (P-Ext), WehaveaiH—af( by (if not,

this contradicts to (P-Con)).
Thus by ¢ | (Ui— 1,UZ UL U, we have (U1, Ui_y), Us, U)) € a™
Case (i — Ll) el
u U1 U (Ui 1><U, D By (i) e iff (i —1) el vj=i—1, forall j.
6] (Ui—1) C Uy By (P-Wit).

({u | (u,u) € U;}) C U;: We have 67 ({u | (u,u) € U;}) = 51{—(Uj;<j’i>€iH Uj) =
U, 82(U;) € U; by (P-Wit).

6J7({ | (u,u) € U;}) C U;: We have (5{({u | (u,u) € U;}) = (5TJ(U].;<J,71,>EIH U;) =
Uj<1 |J( ) C U by (P Wlt)

Thus by ¢ [(Us—1,Ui—1,Us, Uy), we have (Ui, Ui—), (Us, Us)) € al~.
Hence, w € [JSX]
(2):Let X CXand w=ay.. € [J5%]y. Let the run of J5% on w be as follows:
- pr —|— <U0,U()> —a]— <M1,U1> —az— (Z/[z,U2> Ap — <Un,Un> —_—]— 4 >

Let H be the edge-extension of G(w) defined as follows:

TH = {(z,y) €[0,n] x [0,n] | Vi € [y +1,z], ﬁwfi(ui—hUi—hUi,Ui)};

= TH A {(z,y) | (y,2) € THY and 17 = TH\ 11,
VYa e VN X, (o @) = (@) y1H gy,
Note that by definition of T, we have
T2 {(z,y) |2 < yh
TH is transitive by case analysis.
Hence, T# is a total preorder and each equivalence class w.r.t. 17 is an interval [l,7].
Let P = (H,U) where U is defined as i — U, for i € [0,n]. The following depicts P.

b (9 sUim1, Uiy Ui, Us))
/ 1 (Otherw1se)

X X X X X
Uy U, Us Ui—1 U; Un

19
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ss Then P is a saturable path for w € L; as follows:
686 (P-Ext): By the definition of H.

687 (P-Con): Assume that a°na’® £0. Let z,2',y,y be s.t. [y = [ ]ym, [y)m = [y]i#,
688 (z,y) € a®, and (2',y') € a"’. WLOG, we can assume that a € X and @ ¢ X. Then

689 (',y"y € a@®™ (s0, 2’ =y — 1 and a, = a): By a? =a®®) (since @ ¢ X).

690 (z,y) € a®® (so, + = y — 1 and a, = a): If not, then by a = a® U ", we
601 have [z];z = [y]jz. Thus we have [y — 1}z = [¢/]jz. Then by the definition
692 of TH, we have —\w ( 1—1,Uy—1,Uy, Uy ). By the definition of a’** . we have
603 P Uy 1, Uy 1, Uy 7U ), so @ € X. This contradicts @ ¢ X.

604 ([z, 2" U [z, 2]) N ([y, ¥'] U [y, y]) = 0 (so, z = 2’ and y = ¢'): If not, then because the
695 interval between x and z’ and that between y and 3’ have an intersection, we have
696 [z]ijz = [y];z. Then, in the same manner as above, we have @ € X. This contradicts
697 ad X.

698 Thus, we reach a contradiction, because a = a, = a,» = @. Hence, af’® ngt® = .

U1 ((z —1,z) € 1)
L{m,lu(Uw,l X U$,1) ((a:— 1,1’) GTH)‘
700 Thus, U, = Ux ()i U, x U, (%). Thus by Prop. 6.7, this completes the proof.

701 (P-Wit): For 1‘] € Uy and 27 ¢ U,, they are shown by the form of JSX. For Va €

699 (P-Sat): By the the form of JX, we have U, = {

702 Vi, Y(z,y) € a?,67(U,) C U,, we distinguish the following cases:
703 Case a = I. Then we have
708 U = U,: By (z,y) € I and the definition of J¥, we have that Vi € [y +
705 ] wa ( i— 1,U1 1,Z/[Z,Ul) ThU.S, Uy:Uerl:'":Uz.
706 )CU By <UI,U>€‘JSX|.
707 Henc 57 (U,) C
708 Case a = I: Let z € [z + 1,y] be such that w ( -1, U,—1,U,,U,) and Vz' €
700 [z +1,9], —wﬁ ( o —1,Uy—1,Uy,U,r). Then we have
J J 7H 7H
710 6 (Uy) €67 ({u | (u,u) €Us}) (by (%) and (z,z) €| (by (z—1,2) € 1))
711 g Uz (by 1/JX ( z—1, 2717UZ7UZ))
ns CU,pr1=---=Uy. (by the form of Jx ¢X ( -1, U1, U, Usr))
714 Case a = T: We distinguish the following two sub-cases:
-H . . -
715 Case (z,y) € I : By the similar argument as Case a = I.
716 Case (z,y) € II: By the similar argument as Case a = |, we have U, = U, and
717 ( ) - UT, and thus 5]( ) - Uy
718 Case a € {a,a | a € V}: We distinguish the following sub-cases:
710 Case (x,y) € el By (x,y) € a Hai = a®™) we have r =y — 1 and a,, = a. Thus
720 by¢ ( y—1,Uy—1,Uy, U,), we have 6 (U, )CU
721 Case a ¢ X: By al = aG(“’) we have ¢ =y — 1 and a, = a. By the form of JSx
e with wp A(Uy—1,Uy—1,Uy, U, ) (since a, & X), we have ¢~ i(Z/{y,l,nyl,Lly,Uy).
ay, :
723 Hence, 5({(Um) CU,y.
724 Case (x,y) € Il and a € X: By the similar argument as Case a = |, we have

725 U, =U, (by (z,y) € 1) and §/(U,) C U, (by a € X). Thus, 6/ (U,) C U,. <
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» D Explicit proof of Lem. 3.4

77 (The following proof is almost the same as [19, Lem. 23] except that we consider letters-to-
78 letters valuations instead of words-to-letters valuations.)

2o Proof of Lem. 3.4. By easy induction on ¢.

730 Case t = x: By the definition of v{®:9n-1) we have ;...¢;_1 € 6l0an-1)(z) &
B Q... 051 € ﬁ(CL‘)

732 Caset=_1: By ¥;.. _£j71 S 6<a0"“’a”*1>(J_) & False < a; ... aj—1 € 6(J_)

733 Caset=1: By ¢; .. .6];1 € 6{@0,...,an,1)<|) Si=7%&aq;. ..aj-1 € 6<|)

734 Case t = sUu: By IH, we have {;...¢;_1 € plaoman-1)(s U u) < b liy €
735 6((10,...,(171,1)(8) VY. ..@'71 S ﬁ<a°""’a"*1>(u) < Qp...0Q5-1 € 6(5) Va...aj_1 € 6(u) =4

736 Qp...0j-1 Eﬁ(SUu).
737 Case t = s7: By IH, we have ¢;...¢;_;
38 = A Q51 €ﬁ(s) < Q... Q51 66(8_).

€ Bla0rman) (s7) & 0, ;_y & Blaoran-1)(s)

730 Case t = s - u: We have
740 éi...éj_l S 6<a0 """ “"‘1>(s~u)
741 =N éj_l c 6<a0""’a"71>(8) . 6<“°""’a"*1>(u)
(By the definition of plaoan-1) and that ¢; . .. ¢;_1 is a subword of 4y ... 0y _1)
72 & \/ (Ui .. Oy € 6la0an=1) (&Y ALy 4,y € pl@03=1)(y))) (By concatenation)
i<k<j
743 <~ \/ (ai...ak_l S ﬁ(s)/\ak...aj_l S ﬁ(u)) (IH)
i<k<j
748 S a;...a;_1 €0(s-u). (By concatenation)
us  (Note that the last equivalence holds thanks to that a;,...,a;_1 are letters not words, cf.
747 [19, Lem. 23])
748 Case t = s*: We have
749 éi...fj_l S 6<a0""’a"71>(5*)
750 @&...@;1 S 6<a0""’a”71>(8)*

(By the definition of pla0man-1) and that ¢; .. l;_y is a subword of £y ... 4n_1)

m

751 < dm e N, \/ /\(Zk(l—l) .. ~€kl—1 € ﬁ<a0""’a"71>(5)) (By Kleene star)
i=ko<k1<--<km=jl=1
& 3ImeN, \/ N (@i, - ar,-1 €6(s)) (TH)

i=ko<k1 < <km=jl=1

753 S ap...a;-1 €0(s7). (By Kleene star) <«

754

» | E  Explicit proof for Sect. 4.1

76 (The following proof is almost the same as [18, Section VI] except that we consider RSUB
w7 instead of REL.)

758 A context-free grammar (CFG) € over a finite set A is a tuple (X, R,s), where
750 X is a finite set of non-terminal labels s.t. AN X = (;
760 R is a finite set of rewriting rules x < w of z € X and w € (AU X)*;

761 s € X is the start label.

21



22

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

Language Kleene Algebra with Complement: A Finite Relational Semantics and (Un)decidability

The relation z k¢ w, where x € X and w € A*, is defined as the minimal relation closed

under the following rule: for all n € N, z,x1,...,x, € X and wy, ..., Wy, v1,...,0, € A" if
r1Fevy ... Tn Fe vn .
T 4 WoX W1 ... Tpw, € R, then . The language [€] is defined by

T Fe wWouiwy ... UV Wy,

[€] £ {we A* | ste w}.

For a CFG € = (X,R,s) and a word w = a3 ...a,, we write vg ,, for the following
valuation on RSUB,,:

ve (@) ={({—-1,9) | i€ [l,n] Az =q;} for x € 4

{ve,w(z)}zex are the minimal sets such that for all z € X, v € (X UA)*, and i,j € [0,n],
(i,7) € dew(v)
(i,4) € vew(x)
For instance, if A = {(,)}, € = ({s},{s « (s)s, s « I},s) (i.e., [€] is the Dyck-1 language),
and w = (()()), then ve ,, is of the following form:

S S S S S S S
! ) ! 1! ) ) 1!
Ve,w = ( (%&@*&%) )
S S

S
S

if < v € R, then

By construction, we have the following:

» Lemma E.1 (cf. [18, Lem. 47]). Let € = (X, R,s) be a CFG. Let C be s.t. {vg ,} CCC
GREL. For allx € X andw =ag...a,—1 € A*, the following are equivalent:

1. z FQ wy

2. CE (Ngrewyer @ £7) > w < a;

3. (0,n) € ve ().

Proof. 1=2: By induction on the derivation tree of -¢. Let

1 Fevy ... Tn Feo Um

T e WoULwW1 .« . . Uy Won,

where © + woziwy ... TpHwy, € R. Let v € C be any s.t. v = /\(x,<_w,)eR w' < 2. Particu-
larly, we have v | woziw; ... Tpw, < z. By IH, we have v = v < 2. Combining them
yields v | woviws ... vpwy, < . (We only need axioms of monoids, so this holds for any
Kleene algebras beyond GREL.)

2=3: By vew € C, Ve w F N wnyer @' < 2’5 and (0,n) € bew(w), we have (0,n) €
Ve w (:L’) by 2.

3=1: By induction on the derivation tree induced from the definition of ve .. Let

<17]> S tA)€,w(woxlwl cee xmwm)

<Zvj> € UC,w(x)

where © + woziwy ... Tpw, € R. Let t =49 < jo < -+ <y < Jm =J — 1 be s.t. (ig, jx) €
be,w(wk) and (jy—1,ik) € Vew(zk). By construction of ve 4, we have wy = a;, ...aj,. By
IH, z} e aj,_, ... a;,. Hence by definition of ¢, we have x ¢ a; ... a;_1. |

» Lemma E.2 (cf. [18, Lem. 48]). Let € = (X, R,s) be a CFG. Let C be s.t. {ve | w €
A*} CC C GREL. Then we have

€=4" & CE( N\ w<z) A <s
(zw)ER

Here, A* denotes the term (aqy U---Uay,)* in the right-hand side, where A = {ay,...,an}.
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Proof. We have:

[€] = A"

& Yu' € A% skew

& V' e A CE( /\ w<z)—sw <s (By Lem. E.1)

(z+w)ER
& VieNCE( /\ w<az)—A<s
(z+—w)ER
& CE( /\ w<z) > A" <s.
(z+—w)ER
(«<: By GREL |= A* < A* =: Because GREL is *-continuous) <«

Proof of Lem. 4.6. By Lem. E.2. <

Furthermore, we give a tool to eliminate Kleene star.
» Proposition E.3. RSUB 1= AT — A* =T

Proof. Let n € N and v € RSUB,,. Let i € [1
have (i — 1,4 — 1) ¢ 6(A). By (i — 1,i) € o(

A n]. By (i —1,i —1) & () (AT), we
b =
(i—1,i— 1) & 6(A)). Thus 6(4%) = {(i,) [0 < i <

=0
8(AT), we have (i — 1,7) € 6(A) (by
j<n}=50(T). <

—_

Proof of Lem. 4.9. Because v¢ ,, = I = AT, Lem. E.1 holds even if we can replace 2 with

CE(l=ATA /\ w<x)—w <z

(zw)eER
Thus for C C RSUB, by the same argument as Lem. E.2 with Prop. E.3, we have
[€@=4" & CE(I=ATA A\ w<az)>T<s «
(zw)ER
F Explicit proof of Lem. 5.5

(The following proof is almost the same as [18, Prop. 8, 11] except that we consider GREL
instead of REL. Similar arguments can also be found, e.g., in [1, 6, 20].)
We use the two notations for graphs, series-composition (-) and parallel-composition (N):

G-H = +0—G—0— H—0> GNH = +o<g)o+ .

» Proposition F.1. Let v € GREL and G, H be graphs.
8(GNH)=95(G)Nb(H) (Prop. F.1N)
(G- H)=5(G) bo(H) (Prop. F.1-)

Proof. (Prop. F.1N): It suffices to prove that for every z,y,
Elfaf: (GQH) — G(U,.T,y) ~ ElvafHa fG: G— G(U,I,y) /\fH H— G(U,I,y).

=: By letting f¢ = {{(z’, f(2')) | 2" € |G|} and [y = {(z', f(x
[ = fc U fu. Note that fG(lG) =z = fg(1") and fG(QG) =
map.

) |2’ € |H|}. <: By letting

")
y = fu(2f); so f is indeed a

23
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(Prop. F.1-): Tt suffices to prove that for every z,y,
3f, [+ (G-H) — G(v,z,y) & Fz,3fc, fu, fa: G — G(v,2,2) A fu: H — G(v, 2,y).

=: By letting 2 = f(29), fo = {{«/, f(2)) | 2" € |G}, and fur = {(2', f(2")) | 2" € |H|}. <=
By letting f = fg U fg. Note that fg(2%) = 2z = fg(17); so f is indeed a map. <

Proof of Lem. 5.5. By easy induction on t.
Case t =z where x € V = {a,a | a € V}U{l, T}: For every (z,y) € 6(T), we have

(x,y) €0(a) &  -s0o—a—0o> — G(v,2,¥)
& (z,y) €0( ~0o—a—0~ ) (Def. of b)
& (x,y) € 0(G(a)). (Def. of G)

Case t = |: For every (z,y) € 6(T), we have

(x,y) eo(l) < so—|—0o> — G(v,7,9)

& (z,y) €0( ~o—1—0~ ) (Def. of b)
& (x,y) €v( o ) (16(>=9) is the identity relation)
& (z,y) €v(g(l)). (Def. of G)

Case t = L: For every (z,y) € 6(T), we have
(z,y) € (L) & false & (z,y) € 6(0) & (z,y) € 6(G(L)). (Def. of 6 and G)

Caset=s-u:

o(s-u) = 0(s) 0(u) (Def. of v)
= 8(G(s)) - 0(G(u)) (IH)
= o(G) - 0(H) (- is distributive w.r.t. U)
GeG(s) HeG(u)
= U (G- H) (Equation (Prop. F.1.))
GeG(s) HEG(u)
= 08(G(s-u)) (Def. of G)
Caset =snNu:
o(snu) = 0(s)Nou) (Def. of b)
= 8(G(s)) N0(G(u)) (TH)
= (6(G)NbB(H)) (N is distributive w.r.t. U)
Geg(s) HeG(u)
= U U 8(GNH) (Equation (Prop. F.1N))
GeG(s) HEG(u)
= 0(G(sNu)). (Def. of G)

Caset =sUu:

b(sUu) = 0(s)Ub(u) (Def. of b)
= 8(G(s)) UB(G(u)) (TH)
= 8(G(s)UG(u)) =0(G(sUuw)). (Def. of G)
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(Def. of b)

(TH)

(- is distributive w.r.t. U)
(Equation (Prop. F.1.))
(Def. of G)

<
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