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Language Kleene Algebra with Complement: A1

Finite Relational Semantics and (Un)decidability2

Yoshiki Nakamura #3

Tokyo Institute of Technology, Japan4

Abstract5

We study the equational theory of Kleene algebra with complement w.r.t. languages. While the6

equational theory w.r.t. languages coincides with the language equivalence (under the standard7

language valuation) for terms of Kleene algebra, this coincidence is broken if we extend the terms with8

complement. In this paper, we present a finite relational semantics, which completely characterizes9

the equational theory above. As applications, we show that the equational theory is (1) undecidable10

and Π0
1-complete for full terms; (2) decidable and PSPACE-complete if the complement only applies11

to variables or constants.12

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory13

of computation → Logic and verification; Theory of computation → Formal languages and automata14

theory15

Keywords and phrases Kleene algebra, Relational model, Complexity16

1 Introduction17

Kleene algebra (KA) [12, 7] is an algebraic system for regular expressions consisting of union18

(∪), composition (·), Kleene-star (_∗), empty (⊥), and identity (I). In this paper, we consider19

the equational theory w.r.t. languages for extended KA terms. We write LANG |= t = s if20

t = s holds on all models of languages, i.e., for any sets X, when each letter maps to any21

languages over X, the two expressions, t and s, have the same language. By the completeness22

of KA, for (non-extended) KA terms, the equational theory w.r.t. languages coincides1 with23

the language equivalence under the standard language valuation (i.e., each x maps to the24

singleton language {x}): for all KA terms t, s, we have25

[t] = [s] ⇔ LANG |= t = s (†-KA)26
27

where [u] denotes the language of an expression u under the standard language valuation.28

The equivalence above is broken in general if we extend KA terms with some operators.29

The equational theory w.r.t. languages for KA terms with some operators was studied,30

e.g., with reverse [3], with tests [14] (where languages are of guarded strings, not words),31

with intersection (∩) [2], with universality (⊤) [28, 21], with variable complements (x)32

[19], and combinations of some of them [4, 5]. For example, for (variable) complements,33

Equation (†-KA) fails, e.g., by the following counter-example [19]:234

[x] = [x · x] LANG ̸|= x = x · x.35
36

LANG is more compatible with equational reasoning, in that valid equations in LANG are37

preserved under substitution (by definition), while those under the language equivalence are38

not: [ x ] = {x} ≠ {xx} = [x · x ].39

Extending with full complement significantly enhances the expressive power. For example,40

we can define ⊤ and ∩ using complement: ⊤ = ⊥ and t∩ s = t ∪ s. Moreover, we can encode41

quantifier-free formulas (including hypotheses as Horn formulas) by equations (Sect. 4).42

1 By the completeness theorem of Kleene algebra (e.g., [13]); see also, e.g., [2, 21] and [19, Appendix A].
2 [x] = V∗ \ {x} = [x · x] where V is the alphabet. For LANG ̸|= x = x · x: By the valuation x 7→ V∗ \ {x}.
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2 Language Kleene Algebra with Complement: A Finite Relational Semantics and (Un)decidability

In this paper, we present a finite relational semantics for KA with complement w.r.t.43

languages: relational subword models RSUB (Sect. 3), which ease us to study the equational44

theory w.r.t. languages, relationally. Our relational semantics can more robustly characterize45

the equational theory than known relational semantics, e.g., for KAs (REL) [22, third page]46

and for KAs with ⊤ (GREL) [28, 21] (Remark 3.11). As applications, by transforming the47

techniques in [18] from relational models REL to RSUB, we have the following complexity48

results: the equational theory w.r.t. languages is49

1. Π0
1-complete for KA terms with full complement (Cor. 4.8 and Thms. 4.7 and 4.10);50

2. PSPACE-complete for KA terms with variable and constant complements (Thm. 6.10).51

The first result gives a natural example that the equational theory w.r.t. languages is52

undecidable, while the standard language equivalence is decidable (by a standard automata53

construction). The second result positively settles the open problem posed in [19].54

This paper is structured as follows. In Sect. 2, we give basic definitions. In Sect. 3, we55

give RSUB and show that the quantifier-free theory of LANG coincides with that of RSUB.56

In Sect. 4, we give a reduction from the quantifier-free theory into the equational theory57

and show that the equational theory is Π0
1-complete for KA terms with full complement. In58

Sect. 5, by using RSUB, we give a graph characterization for KA terms with variable and59

constant complements. In Sect. 6, we show that the equational theory for KA terms with60

variable and constant complements is PSPACE-complete. In Sect. 7, we conclude this paper.61

2 Preliminaries62

We write N for the set of non-negative integers. For l, r ∈ N, we write [l, r] for the set63

{i ∈ N | l ≤ i ≤ r}. For a set X, we write ℘(X) for the power set of X.64

For a set X (of letters), we write X∗ for the set of words over X. We write I for the65

empty word. We write wv for the concatenation of words w and v. A language over X is a66

subset of X∗. We use w, v to denote words and use L,K to denote languages, respectively.67

For languages L,K ⊆ X∗, the concatenation L ·K and the Kleene star L∗ is defined by:68

L ·K =∆ {wv | w ∈ L ∧ w ∈ K} L∗ =∆ {w0 . . . wn−1 | ∃n ∈ N,∀i < n, wi ∈ L}.69
70

A (2-pointed) graph G over a set A is a tuple ⟨|G|, {aG}a∈A, 1G, 2G⟩, where |G| is a71

non-empty set (of vertices), each aG ⊆ |G|2 is a binary relation, and 1G, 2G ∈ |G| are72

vertices. Let G,H be graphs over a set A. For a map f : |G| → |H|, we say that f is a graph73

homomorphism from G to H, written f : G −→ H if for all x, y, and a, ⟨x, y⟩ ∈ aG implies74

⟨f(x), f(y)⟩ ∈ aH , f(1G) = 1H , and f(2G) = 2H . We say that f is a graph isomorphism from75

G to H if f is bijective and for all x, y, and a, ⟨x, y⟩ ∈ aG iff ⟨f(x), f(y)⟩ ∈ aH , f(1G) = 1H ,76

and h(2G) = 2H . We say that H is an edge-extension of G if |H| = |G|, aH ⊇ aG for all a,77

1H = 1G, and 2H = 2G. For a set {1G, 2G} ⊆ X ⊆ |G|, the induced subgraph of G on X is the78

graph ⟨X, {aG∩(X×X)}a∈A, 1G, 2G⟩. For an equivalence relation E, the quotient graph of G79

w.r.t. E is the graph G/E =∆ ⟨|G|/E, {⟨X,Y ⟩ | ∃x ∈ X, y ∈ Y, ⟨x, y⟩ ∈ aG}a∈A, [1G]E , [2G]E⟩80

where X/E denotes the set of equivalence classes of X by E and [x]E denotes the equivalence81

class of x. Additionally, we use the following operation:82

▶ Definition 2.1. For a graph homomorphism h : G −→ H (G, H over a set A), the edge-83

saturation of G w.r.t. h is the graph S(h) =∆ ⟨|G|, {{⟨x, y⟩ | ⟨h(x), h(y)⟩ ∈ aH}}a∈A, 1G, 2G⟩.84

▶ Example 2.2. Let h : G −→ H be the graph homomorphism indicated by green colored85

arrows and also by vertices’ colors (graphs are written as unlabelled graphs for simplicity).86
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Then the edge-saturation S(h) is the following graph, which is an edge-extension of G where87

the extended edges are derived from edges of H:88

S(h) = G = H =89

90

2.1 Syntax: terms of KA with complement91

We consider terms over the signature S =∆ {I(0),⊥(0), ·(2),∪(2),_∗(1),_−(1)}. Let V be a set92

of variables. For a term t over S, let t be s if t = s− for some s and be t− otherwise. We use93

the abbreviations:94

⊤ =∆ ⊥− t ∩ s =∆ (t− ∪ s−)−.95
96

For X ⊆ {x, I,⊤,∩,−}, let KAX be the minimal subset A of the set of terms over S satisfying97

the following:98

y ∈ V
y ∈ A I ∈ A ⊥ ∈ A

t ∈ A s ∈ A
t · s ∈ A

t ∈ A s ∈ A
t ∪ s ∈ A

t ∈ A
t∗ ∈ A

99

x ∈ X y ∈ V
y ∈ A

I ∈ X
I ∈ A

⊤ ∈ X
⊤ ∈ A

∩ ∈ X t ∈ A s ∈ A
t ∩ s ∈ A

− ∈ X t ∈ A
t− ∈ A

.100

101

We use parentheses in ambiguous situations. We often abbreviate t · s to ts.102

An equation t = s is a pair of terms. An inequation t ≤ s abbreviates the equation103

t ∪ s = s. The set of quantifier-free formulas of KAX is defined by the following grammar:104

φ,ψ ::= t = s | φ ∧ ψ | ¬φ. (t, s ∈ KAX)105
106

We use the abbreviations: φ∨ψ =∆ ¬(¬φ∧¬ψ), φ→ ψ =∆ ¬φ∨ψ, φ↔ ψ =∆ (φ→ ψ)∧(ψ → φ).107

2.2 Semantics: language models108

An S-algebra A is a tuple ⟨|A|, {fA}f(k)∈S⟩, where |A| is a non-empty set and fA : |A|k → |A|109

is a k-ary map for each f(k) ∈ S. A valuation v of an S-algebra A is a map v : V → |A|.110

For a valuation v, we write v̂ : KA{−} → |A| for the unique homomorphism extending v.111

Moreover, for a quantifier-free formula φ, we define v̂(φ) ∈ {true, false} by:112

v̂(t = s)⇔∆ (v̂(t) = v̂(s)) v̂(φ ∧ ψ)⇔∆ (v̂(φ) and v̂(ψ)) v̂(¬φ)⇔∆ (not v̂(φ)).113
114

For a quantifier-free formula φ and a class of valuations (of S-algebra) C,3 we write115

C |= φ ⇔∆ v̂(φ) holds for all valuations v ∈ C.116
117

We abbreviate {v} |= φ to v |= φ. The equational theory of C is the set of all equations t = s118

such that C |= t = s. The quantifier-free theory of C is the set of all quantifier-free formulas119

φ such that C |= φ.120

The language model A over a set X, written langX , is the S-algebra defined by |A| =121

℘(X∗), IA = {I}, ⊥A = ∅, and for all L,K ⊆ X∗,122

L ·A K = L ·K L ∪A K = L ∪K L∗
A

= L∗ L−
A

= X∗ \ L.123
124

3 This paper considers classes of valuations rather than classes of S-algebras (cf. Remark 3.12).
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We write LANGX for the class of all valuations of langX and write LANG for
⋃
X LANGX .125

The equational theory (resp. quantifier-free theory) w.r.t. languages means that of LANG.126

The language [t] ⊆ V∗ of a term t is v̂st(t) where vst is the valuation on the language127

model over the set V defined by vst(x) = {x} for x ∈ V. Since vst ∈ LANG, we have128

LANG |= t = s ⇒ [t] = [s] (†-KA{−})129
130

The converse direction fails, as in the introduction. In the sequel, we consider the equational131

theory w.r.t. languages.132

2.3 (Generalized) relational models133

We write △A for the identity relation on a set A: △A =∆ {⟨x, x⟩ | x ∈ A}. For binary relations134

R,S on a set B, the composition R ·S, the n-th iteration Rn (where n ∈ N), and the reflexive135

transitive closure R∗ are defined by:136

R · S =∆ {⟨x, z⟩ | ∃y, ⟨x, y⟩ ∈ R ∧ ⟨y, z⟩ ∈ S} Rn =∆
{
R ·Rn−1(n ≥ 1)
△B (n = 0)

R∗ =∆
⋃
n∈N

Rn.137

138

Let U be a binary relation on a non-empty set B. A generalized relational model4 A on139

U is an S-algebra such that |A| ⊆ ℘(U), IA = △B , ⊥A = ∅, and for all R,S ⊆ U ,140

R ·A S = R · S R ∪A S = R ∪ S R∗
A

= R∗ R−
A

= U \R.141
142

A is a relational model if U = B ×B and |A| = ℘(B ×B). We write GREL (resp. REL) for143

the class of all valuations of generalized relational models (resp. relational models).5144

3 Finite relational models for language models145

In this section, we present the finite relational semantics RSUB for LANG. Sect. 3.1 introduces146

the class SUB, which is intuitively an intermediate class between LANG and RSUB, and show147

that the quantifier-free theory of LANG coincides with that of SUB. Sect. 3.2 introduces148

RSUB and show that the quantifier-free theory of LANG coincides with that of RSUB.149

3.1 SUB: subword models150

For the standard language valuation (vst), the membership w ∈ v̂st(t) can determined from151

w′ ∈ v̂st(t′) where w′ ranges over subwords of w (and t′ ranges over subterms of t). This152

situation is the same also for any valuations v ∈ LANG, To reflect this property to LANG, we153

define the following class: subword models SUB. These models are language models where154

the universe is bounded to the set of subwords of a word ℓ0 . . . ℓn−1.155

▶ Definition 3.1. Let n ∈ N and let ℓ0, . . . , ℓn−1 be pairwise distinct letters. Let U =156

{ℓi . . . ℓj−1 | 0 ≤ i ≤ j ≤ n}. The subword language model A of length n, written SUBn, is157

the S-algebra defined by: |A| = ℘(U), IA = {I}, ⊥A = ∅, and for all L,K ⊆ U ,158

L ·A K = (L ·K) ∩ U L ∪A K = L ∪K L∗
A

= L∗ ∩ U L−
A

= U \ L. ⌟159
160

4 By definition, U is a preorder. Reflexivity: By △B = IA ∈ |A| ⊆ ℘(U), we have △B ⊆ U . Transitivity:
By ∅ = ⊥A ∈ |A|, U = ∅−A

∈ |A|, and U · U = U ·A U ∈ |A| ⊆ ℘(U), we have U · U ⊆ U .
5 Generalized relational models and relational models are variants of proper relation algebras and full

proper relation algebras (see, e.g., [23]), respectively, where B is non-empty set and the converse operator
is not introduced (due to this, U is possibly not symmetric, cf. [23, Lem. 3.4]) here.
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We write SUBn for the class of all valuations of subn and write SUB for
⋃
n∈N SUBn.161

We use the following transformation of valuations from LANG into SUB.162

▶ Definition 3.2 (letters-to-letters valuations; cf. words-to-letters valuations [19]). Let X be a163

set and let v ∈ LANGX . Let n ∈ N and let a0, . . . , an−1 be (possibly not pairwise distinct)164

letters over X. Then we define v⟨a0,...,an−1⟩ as the following valuation in SUBn:165

v⟨a0,...,an−1⟩(x) =∆ {ℓi . . . ℓj−1 | 0 ≤ i ≤ j ≤ n ∧ ai . . . aj−1 ∈ v(x)}. ⌟166

▶ Example 3.3. If v(x) = {aba, a, bb}, then v⟨a,b,a⟩(x) = {ℓ0ℓ1ℓ2, ℓ0, ℓ2}. Note that v⟨a,b,a⟩167

only reflects w.r.t. subwords of aba.168

Using this, we can embed the membership in LANG into that in SUB.169

▶ Lemma 3.4. Let X be a set and let v ∈ LANGX . Let n ∈ N and let a0, . . . , an−1 be letters170

over X. For all terms t and 0 ≤ i ≤ j ≤ n, ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(t) iff ai . . . aj−1 ∈ v̂(t).171

Proof. By easy induction on t, cf. [19, Lem. 23] (see Appendix D, for detailed proof).6 ◀172

Moreover, this transformation is a surjective map to SUB, as follows:173

▶ Proposition 3.5. Let n ∈ N and let v′ ∈ SUBn. Let v ∈ LANG{ℓ0,...,ℓn−1} be the valuation174

defined by v(x) = v′(x). Then v⟨ℓ0,...,ℓn−1⟩ = v′.175

Proof. By Def. 3.2, ℓi . . . ℓj−1 ∈ v⟨ℓ0,...,ℓn−1⟩(x) iff ℓi . . . ℓj−1 ∈ v(x) iff ℓi . . . ℓj−1 ∈ v′(x). ◀176

From them, we have that the quantifier-free theory of LANG coincides with that of SUB.177

▶ Lemma 3.6. For all quantifier-free formulas φ, we have: LANG |= φ ⇔ SUB |= φ.178

Proof. By v |= t = s ↔ (t ≤ s ∧ s ≤ t) and v |= t ≤ s ↔ t ∩ s− ≤ ⊥ for v ∈ LANG ∪ SUB,179

without loss of generality, we can assume that each equation in φ is of the form u ≤ ⊥.180

By taking the conjunctive normal form, it suffices to show when φ is of the form (
∨
k tk ≤181

⊥) ∨ (
∨
k ¬sk ≤ ⊥). By v |= (t ≤ ⊥∧ s ≤ ⊥)↔ t ∪ s ≤ ⊥ for v ∈ LANG ∪ SUB, it suffices to182

show when φ is of the form (
∨m
k=1 tk ≤ ⊥) ∨ (¬s ≤ ⊥). Then, we have:183

SUB ̸|= (
m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥)184

⇒ ∃n, v ∈ LANG{ℓ0,...,ℓn−1}, v
⟨ℓ0,...,ℓn−1⟩ ̸|= (

m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥) (Prop. 3.5)185

⇒ LANG ̸|= (
m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥) (By Lem. 3.4 and v ∈ LANG)186

⇒ ∃n ∈ N, i1, j1, . . . , im, jm s.t. 0 ≤ i1 ≤ j1 ≤ i2 ≤ j2 ≤ · · · ≤ im ≤ jm ≤ n,187

∃X, v ∈ LANGX , a0, . . . , an−1 ∈ X, (
m∧
k=1

aik . . . ajk−1 ∈ v̂(tk)) ∧ v̂(s) = ∅188

⇒ SUB ̸|= (
m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥). (By Lem. 3.4 and v⟨a0,...,an−1⟩ ∈ SUBn) ◀189

190

6 This equivalence holds thanks to that ai, . . . , aj−1 are letters not words. For words-to-letters valuations,
the direction ⇒ of Lem. 3.4 only holds [19, Lem. 23].
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3.2 RSUB: relational subword models191

Next, we introduce RSUB, the relational version of SUB.192

▶ Definition 3.7. Let n ∈ N. The relational subword language model A of length n, written193

rsubn, is the generalized relational model on the set U = {⟨i, j⟩ ∈ [0, n]× [0, n] | i ≤ j} s.t.194

|A| = {R ∈ ℘(U) | R ⊇ △[0,n] ∨ U \R ⊇ △[0,n]}.195

We write RSUBn for the class of all valuations of rsubn and write RSUB for
⋃
n∈N RSUBn.196

▶ Proposition 3.8. For each n ∈ N, subn is isomorphic to rsubn.197

Proof. By the bijective7 map f : L 7→ {⟨i, j⟩ | ℓi . . . ℓj−1 ∈ L}.8 Fig. 1 presents illustrative

{I} 7→ 0 1 2 3

{ℓ0, ℓ1ℓ2, ℓ0ℓ1, ℓ2} 7→ 0 1 2 3

{ℓi . . . ℓj−1 | 0 ≤ i ≤ j ≤ 3} 7→ 0 1 2 3

Figure 1 Illustrative instances of the bijective map from subn to rsubn when n = 3 (Prop. 3.8).
198

examples of this map (we display binary relations as graphs in a standard way). ◀199

▶ Theorem 3.9. For all quantifier-free formulas φ, we have: LANG |= φ⇔ RSUB |= φ.200

Proof. By Lem. 3.6 and Prop. 3.8. ◀201

▶ Corollary 3.10. The quantifier-free theory w.r.t. languages is in Π0
1 for KA{−} terms.202

Proof. By the finite model property of RSUB (the universe |rsubn| is finite for each n). ◀203

▶ Remark 3.11 (RSUB and GREL). For KA{⊤}, the equational theory of LANG coincides with204

that of GREL [21, REL′ in Sect. 5][28]. However for KA{−}, this coincidence is broken, e.g.,9205

LANG |= ab ∩ cd ≤ a⊤d ∪ b⊤c GREL ̸|= ab ∩ cd ≤ a⊤d ∪ b⊤c a b
c d

206

LANG |= a ≤ bab ∪ bab (G)REL ̸|= a ≤ bab ∪ bab a

b

207

208

(Each right figure denotes a valuation for (G)REL ̸|= _ where some edges are omitted.) ⌟209

▶ Remark 3.12 (the subclass of RSUB for the standard language valuation). Let210

RSUBst =∆
⋃
n∈N

{
v ∈ RSUBn

∣∣∣ ⋃
a∈V v(a) = {⟨i− 1, i⟩ | i ∈ [1, n]}

v(a) (where a ranges over V) are disjoint sets

}
.211

By an analogy of Thm. 3.9, we have that [t] = [s] iff RSUBst |= t = s (Appendix A). ⌟212

7 f({I}) = △[0,n] (cf. Def. 3.7) and f({ℓi . . . ℓj−1}) = {⟨i, j⟩} is singleton if i < j.
8 This map is the same as Pratt’s embedding [22, third page], cf. [28, 21]: L 7→ {⟨w, wv⟩ | w ∈ X∗ ∧v ∈ L},

up to isomorphism, except that the universe is bounded to subwords of ℓ0 . . . ℓn−1.
9 LANG |= ab ∩ cd ≤ a⊤d ∪ b⊤c: By Levi’s inequation [15][5, Example 26]. LANG |= a ≤ bab ∪ bab: for

every valuation v of LANG, v |= a ≤ bab if I ∈ v(b) and v |= a ≤ bab if I ̸∈ v(b).
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EqT(REL)

EqT(GREL)

EqT(RSUBst)

EqT(RSUB)

EqT({vst})

EqT(LANG)
⊇ ⊆

=

=

⊉⊆

⊉

⊈
a ≤ a⊤a [28, 21]

a ∩ b = ⊥ when a ̸= b
V∗ = ⊤ when V finite, cf. [21, Remark 3.6]
a = a a [19]

(ab) ∩ I = (a ∩ I)(b ∩ I) [2]
a ≤ bab ∪ bab (Remark 3.11)

Figure 2 Equational theories for KA{−} under GREL.

In Fig. 2, we summarize the equational theories for KA{−} terms above where the213

inclusions are shown by REL ⊆ GREL ⊇ RSUB ⊇ RSUBst and Thm. 3.9 and the non-214

inclusions are shown by counter-examples.10
215

4 From quantifier-free formulas to equations216

Using SUB/RSUB, we give a reduction from the quantifier-free theory into the equational217

theory of LANG. For n ∈ N, v ∈ SUBn, and i, j s.t. 0 ≤ i ≤ j ≤ n, we define v, i, j |= φ as218

v, i, j |= t = s⇔∆ (ℓi . . . ℓj−1 ∈ v̂(t) iff ℓi . . . ℓj−1 ∈ v̂(s))219

v, i, j |= φ ∧ ψ ⇔∆ (v, i, j |= φ and v, i, j |= ψ) v, i, j |= ¬φ⇔∆ (not v, i, j |= φ).220221

The following shows that to check SUB |= t = s, it suffices to check about the pairs of the222

left-most and right-most vertices.223

▶ Lemma 4.1. For all terms t, s, SUB |= t = s ⇔ ∀n ∈ N,∀v ∈ SUBn, v, 0, n |= t = s.224

Proof. Because t = s↔ (t ≤ s ∧ s ≤ t) and t ≤ s↔ t ∩ s− ≤ ⊥ hold for “RSUB |= _” and225

“v, 0, n |= _”, it suffices to show when the equation is of the form t ≤ ⊥. We then have226

SUB ̸|= t ≤ ⊥227

⇒ ∃v ∈ LANG, n ∈ N, i, j s.t. 0 ≤ i ≤ j ≤ n, ℓi . . . ℓj−1 ∈ v̂⟨ℓ0,...,ℓn−1⟩(t) (Prop. 3.5)228

⇒ ∃v ∈ LANG, n ∈ N, i, j s.t. 0 ≤ i ≤ j ≤ n, ℓi . . . ℓj−1 ∈ v̂(t) (Lem. 3.4)229

⇒ ∃v ∈ LANG, n ∈ N, i, j s.t. 0 ≤ i ≤ j ≤ n, ℓ0 . . . ℓj−i−1 ∈ v̂⟨ℓi,...,ℓj−1⟩(t) (Lem. 3.4)230

⇒ ∃n ∈ N, v ∈ SUBn, ℓ0 . . . ℓn−1 ∈ v̂(t) (Let n =∆ j − i as v⟨ℓi,...,ℓj−1⟩ ∈ SUBj−i)231

⇒ SUB ̸|= t ≤ ⊥. (Trivial)232
233

(The second line from the bottom is equivalent to ∃n ∈ N, v ∈ SUBn, v, 0, n ̸|= t ≤ ⊥.) ◀234

Lem. 4.1 fails for quantifier-free formulas, e.g., a ≤ ⊥ ∨ a ≤ ⊥ only holds in the right-hand235

side. We consider replacing each inequation u ≤ ⊥ with ⊤u⊤ ≤ ⊥. Then we have that236

v |= u ≤ ⊥ iff v, 0, n |= ⊤u⊤ ≤ ⊥, where n ∈ N and v ∈ SUBn (see Lem. 4.2). More generally,237

for a quantifier-free formula φ, let Tr(φ) be the term defined by:11
238

Tr(t = s) =∆ ⊤((t ∩ s−) ∪ (t− ∩ s))⊤ Tr(φ ∧ ψ) =∆ Tr(φ) ∪ Tr(ψ) Tr(¬φ) =∆ Tr(φ)−.239
240

241

10 Note that EqT(LANG) = EqT(GREL) for KA{⊤} and EqT({vst}) = EqT(GREL) for KA [28, 21].
11 Tr(t = s) can be simplfied for specific cases, e.g., Tr(t ≤ s) = ⊤(t ∩ s−)⊤ and Tr(t ≤ ⊥) = ⊤t⊤.
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▶ Lemma 4.2. Let n ∈ N and v ∈ SUBn. Let φ be a quantifier-free formula. Then,242

v |= φ ⇔ v, 0, n |= Tr(φ) ≤ ⊥.243

Proof. By easy induction on φ. Case φ = (t = s): Let u = (t∩s−)∪(t−∩s). Then v |= t = s244

iff v̂(u) = ∅ iff ℓ0 . . . ℓn−1 ̸∈ v̂(⊤u⊤) iff v, 0, n |= ⊤u⊤ ≤ ⊥ iff v, 0, n |= Tr(t = s). For ∧: By245

v, 0, n |= ((t ≤ ⊥)∧ (s ≤ ⊥))↔ (t∪ s ≤ ⊥). For ¬: By v, 0, n |= (¬(t ≤ ⊥))↔ (t− ≤ ⊥). ◀246

▶ Theorem 4.3 (cf. Schröder-Tarski translation [27]). There is a polynomial-time reduction247

from the quantifier-free theory of LANG into the equational theory of LANG.248

Proof. By Lems. 4.1 and 4.2, SUB |= φ iff SUB |= Tr(φ) ≤ ⊥. Thus by Thm. 3.9. ◀249

▶ Corollary 4.4 (Hoare hypotheses elimination). For all terms t, s, u,250

LANG |= u ≤ ⊥ → t ≤ s ⇔ LANG |= t ≤ s ∪ ⊤u⊤.251

Proof. By set-theoretic equivalences, we have252

SUB |= u ≤ ⊥ → t ≤ s ⇔ SUB |= ⊤(t ∩ s−)⊤ ≤ ⊤u⊤ (By Thm. 4.3)253

⇔ SUB |= t ∩ s− ≤ ⊤u⊤ (⇒: By I ≤ ⊤ ⇐: By ⊤⊤ ≤ ⊤)254

⇔ SUB |= t ≤ s ∪ ⊤u⊤ ◀255
256

▶ Remark 4.5. Note that LANG ̸|= (¬u ≤ ⊥)↔ ⊤ ≤ ⊤u⊤, cf. Schröder-Tarski translation257

[27, XXXII.] for REL. If v̂(u) = {w} where v ∈ LANGX and w ≠ I, then v̂(⊤) = [X∗] ̸⊆258

[X∗wX∗] = v̂(⊤u⊤). This is why we go via “v, 0, n |= _” (Lems. 4.1 and 4.2). Similarly for259

Cor. 4.4, LANG ̸|= (u ≤ ⊥ → t ≤ s)↔ (t ≤ s ∪ ⊤u⊤), e.g., when t = ⊤ and s = ⊥. ⌟260

4.1 Undecidability via the Hoare hypotheses elimination261

Thm. 4.3/Cor. 4.4 implies the undecidability of the equational theory of LANG for full terms.262

A context-free grammar (CFG) C over a finite set A is a tuple ⟨X,R, s⟩, where263

X is a finite set of non-terminal labels s.t. A ∩X = ∅;264

R is a finite set of rewriting rules x← w of x ∈ X and w ∈ (A ∪X)∗;265

s ∈ X is the start label.266

We write [C] for the language of C. It is well-known that the universality problem for CFGs—267

given a CFG C, does [C] = A∗ hold?—is Π0
1-complete. We can naturally encode this problem268

by the quantifier-free theory of LANG, as follows (cf. [18, Lem. 47]).269

▶ Lemma 4.6. Let C = ⟨X,R, s⟩ be a CFG over a finite set A. Then,270

[C] = A∗ ⇔ LANG |= (
∧

(x←w)∈R

w ≤ x)→ (A∗ ≤ s).271

Here, A denotes the term (a1 ∪ · · · ∪ an) in the right-hand side where A = {a1, . . . , an}.272

Proof Sketch. By an analogy of [18, Lem. 47] (for REL). The relational models used in [18]273

are of the form of RSUB. See Appendix E for a detail. ◀274

▶ Theorem 4.7. The equational theory w.r.t. languages is Π0
1-complete for KA{x,∩}.275

Proof. (in Π0
1): By Cor. 3.10. (Hardness): Let C = ⟨X, {xi ← wi | i ∈ [1, n]}, s⟩ be a276

CFG over a finite set A. By Lem. 4.6 and by Cor. 4.4 with LANG |= (
∧
i∈[1,n] wi ≤ xi) ↔277

(
⋃
i∈[1,n] wi ∩ xi) ≤ ⊥, we have: [C] = A∗ iff LANG |= A∗ ≤ s ∪ ⊤(

⋃
i∈[1,n] wi ∩ xi)⊤. Hence,278

we can give a reduction from the universality problem of CFGs. ◀279
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▶ Corollary 4.8. The equational theory w.r.t. languages is Π0
1-complete for KA{−}.280

Proof. By Cor. 3.10 and Thm. 4.7. ◀281

Moreover, we also have the following, as LANG |= I = A⊤ → A∗ = ⊤ holds (see Appendix E).282

283

▶ Lemma 4.9. Let C = ⟨X,R, s⟩ be a CFG over a finite set A. Then,284

[C] = A∗ ⇔ LANG |= (I = A⊤ ∧
∧

(x←w)∈R

w ≤ x)→ (⊤ ≤ s).285

Hence, the undecidability still holds even without Kleene star.286

▶ Theorem 4.10. The equational theory w.r.t. languages is Π0
1-complete for KA{−} without287

Kleene star.288

Proof. In the same way as Thm. 4.7 (by using Lem. 4.9 instead of Lem. 4.6). ◀289

5 Graph characterization for KA{x,I,⊤,∩} terms290

In Sects. 5 and 6, we consider the decidability of KA{x,I,⊤}. We recall Sect. 2 for graphs. In291

this section, we give a graph characterization of the equational theory of RSUB for KA{x,I,⊤,∩},292

by generalizing the graph characterization of REL [18, Thm. 18].293

5.1 Graph languages for KA{x,I,⊤,∩}294

Let Ṽ =∆ {x, x | x ∈ V} ∪ {I,⊤} and ṼI =∆ Ṽ ∪ {I}. For a KA{x,I,⊤,∩} term t, the graph295

language G(t) is a set of graphs over ṼI defined by:12
296

G(x) =∆ { x } where x ∈ Ṽ G(⊥) =∆ ∅ G(I) =∆ { }297

G(t ∩ s) =∆ { G
H

| G ∈ G(t) ∧H ∈ G(s)} G(t ∪ s) =∆ G(t) ∪ G(s)298

G(t · s) =∆ { G H | G ∈ G(t) ∧H ∈ G(s)} G(t∗) =∆
⋃
n∈N
G(tn).299

300

(We use series-composition for (·) and parallel-composition for (∩).)301

For a valuation v ∈ GREL on a binary relation on a set B and ⟨x, y⟩ ∈ v̂(⊤), let G(v, x, y)302

be the graph defined by:303

G(v, x, y) =∆ ⟨B, {v̂(a)}a∈ṼI
, x, y⟩.304

For a class C ⊆ GREL, let GRC be the graph language {G(v, x, y) | v ∈ C and ⟨x, y⟩ ∈ v̂(⊤)}.305

We say that a graph language G is induced subgraph-closed if every induced subgraph of306

every G ∈ G is isomorphic to a member of G. We say that a class C ⊆ GREL is induced307

subgraph-closed if GRC is induced subgraph-closed. By the form of rsubn, RSUB is induced308

subgraph-closed.309

We recall edge-saturations S(h) of Def. 2.1. For a graph G and graph language G, let310

SC(G) =∆ {S(h) | ∃H ∈ GRC , h : G −→ H} SC(G) =∆
⋃
H∈G
SC(H).311

312

12 We introduce ⊤-labelled edges, cf. [18, Def. 6], because ⊤ is not fixed to the full relation.
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▶ Example 5.1. The following is an instance of SRSUB(G) where V = {a}:313

SRSUB( a a ) =


a, I,⊤ a, I,⊤

a, I,⊤ a, I,⊤ a, I,⊤

I,⊤
, a, I,⊤ a, I,⊤
a, I,⊤ a, I,⊤ a, I,⊤

I,⊤
,

a, I,⊤
a, I,⊤

a, I,⊤
a, I,⊤ a, I,⊤ a, I,⊤

I,⊤
, a, I,⊤ a, I,⊤

a, I,⊤
a, I,⊤ a, I,⊤ a, I,⊤

I,⊤


.314

(In the sequel, we often omit ⊤- or I-labelled edges for simplicity.)315

By the form of GRRSUB, each H, where H ∈ SRSUB(H ′) for some H ′, satisfies316

⊤H is a total preorder;317

aH ⊇ IH or aH ⊇ IH holds for each a ∈ V. ⌟318

Additionally, let HQ =∆ H/(IH)= and GQ =∆ {HQ | H ∈ G} where R= denotes the319

equivalence closure of R. We then have the following graph language characterization. This320

is an analogy of [18, Theorem 18], but is generalized for including RSUB.321

▶ Theorem 5.2. Let C ⊆ GREL be induced subgraph-closed. For all KA{x,I,⊤,∩} terms t, s,322

C |= t ≤ s ⇔ ∀H ∈ SC(G(t))Q,∃G ∈ G(s), G −→ H.323

Proof. As with [18, Theorem 18]. See Sect. 5.3 for a detailed proof. ◀324

By Thm. 5.2, we can show inequations by graph homomorphisms, e.g., as follows.325

▶ Example 5.3. We recall the inequations in Remark 3.11. Gray-colored edges are extended326

by edge-saturations SRSUB. We omit unimportant edges.327

LANG |= ab ∩ cd ≤ a⊤d ∪ c⊤b: For each graph H ∈ SRSUB(G(ab ∩ cd))Q, we can give a328

graph homomorphism from some graph in G(a⊤d ∪ c⊤b) as follows:329

G(a⊤d ∪ c⊤b) = { a ⊤ d , c ⊤ b }

SRSUB(G(ab ∩ cd))Q ∋ H :
a b

c d
⊤

a b

c d
⊤

(Case ⟨ , ⟩ ∈ ⊤H ) (Case ⟨ , ⟩ ∈ ⊤H )

330

LANG |= a ≤ bab ∪ bab:331

G(bab ∪ bab) = { b a b , b a b }

SRSUB(G(a))Q ∋ H : a

b b

a

b b

(Case bH ⊇ IH ) (Case bH ⊇ IH )

332

(Additionally, _Q is necessary, e.g., for ⊤ ≤ I ∪ I [18, Remark 19].) ⌟333

5.2 Word languages for KA{x,I,⊤}334

Particularly for KA{x,I,⊤}, Thm. 5.2 can be rephrased by word languages.335

For a word w = a1 . . . an over Ṽ, let G(w) be the following graph where |G(w)| = [0, n]:336

0 1 2 . . . na0 a1 an .337

G(w) is the unique graph in G(w) up to graph isomorphisms.338

For a KA{x,I,⊤} term t, we write [t]Ṽ for the word language [t] over Ṽ where x, I,⊤339

are also viewed as letters; e.g., [x]Ṽ = {x} and [x] = V∗ \ {x} for x ∈ V. Note that340

G(t) = {G(w) | w ∈ [t]Ṽ}. Hence, graph languages are expressible by word languages for341

KA{x,I,⊤} terms.342
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Additionally, we introduce nondeterministic finite word automata with epsilon transitions343

(NFAs). NFAs are (2-pointed) graphs over ṼI where the source and target vertices denote344

the initial and (single) accepting states, respectively, and I-labelled edges denote epsilon345

transitions. For a graph H and a word w = a1 . . . an, we write δHw for the binary relation346

(IH)∗ ·aH1 ·(IH)∗ ·. . .·aHn ·(IH)∗. For q ∈ |H|, we let δHw (q) =∆ {q′ | ⟨q, q′⟩ ∈ δHw }. For Q ⊆ |H|, we347

let δHw (Q) =∆
⋃
q∈Q δ

H
w (q). The word language [H]Ṽ is defined as {w ∈ Ṽ∗ | ⟨1H , 2H⟩ ∈ δHw }.348

Note that [H]Ṽ = {w ∈ Ṽ∗ | G(w) −→ HQ} if IH is an equivalence relation. Then we have349

the following:350

▶ Corollary 5.4. Let C ⊆ GREL be induced subgraph-closed. For all KA{x,I,⊤} terms t, s,351

C |= t ≤ s ⇔ [t]Ṽ ⊆ {w ∈ Ṽ∗ | ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅}.352

Proof. By Thm. 5.2. See Sect. 5.3 for a detailed proof. ◀353

5.3 Proof of Thm. 5.2 and Cor. 5.4354

Let v ∈ GREL. For a graph H and a graph language G, we write355

v̂(H) =∆ {⟨x, y⟩ | H −→ G(v, x, y)} v̂(G) =∆
⋃
H∈G

v̂(H).356

357

358

▶ Lemma 5.5. Let v ∈ GREL. For all KA{x,I,⊤,∩} terms t, we have v̂(t) = v̂(G(t)).359

Proof (cf. [18, Prop. 11]). By easy induction on t. See Appendix F for a detail. ◀360

▶ Lemma 5.6. Let C ⊆ GREL, v ∈ C, and H be a graph. Then v̂(SC(H)Q) = v̂(H).361

Proof. (⊆): Because, for any J ∈ SC(H), we have J −→ JQ by H −→ J and J −→ JQ. (⊇):362

Let h : H −→ G(v, x, y). Then S(h) −→ G(v, x, y). Because IG(v,x,y) is the identity relation,363

S(h)Q −→ G(v, x, y). Hence v̂(SC(H)Q) ⊇ v̂(H). ◀364

▶ Proposition 5.7. Let h : H −→ G(v, x, y). Then the graph S(h)Q is isomorphic to the365

induced subgraph of G(v, x, y) on the range of h.366

Proof. Easy, by construction. Note that since IG(v,x,y) is the identity relation, IS(h) is an367

equivalence relation (see, e.g., Example 2.2). ◀368

Proof of Thm. 5.2. We have369

C |= t ≤ s ⇔ ∀v ∈ C, v̂(t) ⊆ v̂(s) ⇔ ∀v ∈ C, v̂(SC(G(t))Q) ⊆ v̂(G(s)) (Lems. 5.5 and 5.6)370

⇔ ∀G ∈ SC(G(t))Q,∀J ∈ GRC , (G −→ J) implies (∃H ∈ G(s), H −→ J) (Def. of v̂)371

⇔ ∀G ∈ SC(G(t))Q,∃H ∈ G(s), H −→ G. (♡)372
373

Here, for (♡), ⇐: Let H ∈ G(s) be s.t. H −→ G. Then for all J s.t. G −→ J , we have374

H −→ J by transitivity of −→. ⇒: By Prop. 5.7 and that GRC is induced subgraph-closed,375

we have SC(G(t))Q ⊆ GRC . Thus by letting J = G, this completes the proof. ◀376

Proof of Cor. 5.4. We have377

C |= t ≤ s ⇔ ∀w ∈ [t]Ṽ,∀H ∈ SC(G(w)),∃v ∈ [s]Ṽ,G(v) −→ HQ

(Thm. 5.2 and G(s) = {G(v) | v ∈ [s]Ṽ})
378

⇔ ∀w ∈ [t]Ṽ,∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅ ([H]Ṽ = {v ∈ Ṽ∗ | G(v) −→ HQ})379

⇔ [t]Ṽ ⊆ {w ∈ Ṽ∗ | ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅}. ◀380
381
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6 PSPACE decidability for KA{x,I,⊤} terms382

In this section, we show that the equational theory w.r.t. languages for KA{x̄,̄I,⊤} is decidable383

and PSPACE-complete. We consider graphs over ṼI / NFAs, instead of KA{x̄,̄I,⊤} terms /384

regular expressions over the alphabet Ṽ. Relying on the graph characterization (Cor. 5.4),385

we consider that, given an NFA J (corresponding to the term s in Cor. 5.4), we give an NFA386

recognizing the following word language:387

LJ =∆ {w ∈ Ṽ∗ | ∃H ∈ SRSUB(G(w)), [J ]Ṽ ∩ [H]Ṽ = ∅}.388

Note that RSUB |= t ≤ s ⇔ [t]Ṽ ∩ LJ = ∅ when [s]Ṽ = [J ]Ṽ. We first give an equivalent389

notion of “w ∈ LJ” in Sect. 6.1, and then we give an NFA construction in Sect. 6.2.390

6.1 Saturable paths for RSUB391

We first give an equivalent notion of [J ]Ṽ ∩ [H]Ṽ = ∅, compatible with edge-saturations.392

▶ Definition 6.1. Let J and H be graphs. A map U : |H| → ℘(|J |) is an emptiness-witness393

for [J ]Ṽ ∩ [H]Ṽ = ∅ if the following hold where Ux =∆ U(x):394

1J ∈ U1H and ∀a ∈ ṼI,∀⟨x, y⟩ ∈ aH , δJa (Ux) ⊆ Uy;395

2J ̸∈ U2H . ⌟396

Intuitively, the first condition denotes that U is a cover of the reachable states from the pair397

“1J ∈ U1H ”. If the second condition holds, we can see that the pair “2J ∈ U2H ” is unreachable.398

As expected, we have the following (see Appendix B, for a proof).399

▶ Proposition 6.2. Let J and H be graphs where IH is reflexive. Then400

[J ]Ṽ∩[H]Ṽ = ∅ ⇔ ∃U : |H| → ℘(|J |), U is an emptiness-witness for [J ]Ṽ ∩ [H]Ṽ = ∅.401

▶ Example 6.3. We consider the following graphs. J denotes the NFA s.t. [J ]Ṽ = {w ∈402

{a, a}∗ | ∃n ∈ N, a occurs 3n+ 2 times in w}. H is a graph in SRSUB(G(aaa)) where ⊤- or403

I-labelled edges are omitted. By the form of H, one can see that [J ]Ṽ ∩ [H]Ṽ = ∅.404

J =
a

a
a

a

a

a

H = 0 1 2 3

a, I a, I a, I a, I

a a a, I
a, I

a
a

a

U0 U1 U2 U3

.405

406

If U0 = U1 = { } and U2 = U3 = { , }, then this U is an emptiness-witness; e.g., for407

⟨1, 2⟩ ∈ aH , δJa (U1) = δJa ({ }) = { } ⊆ U2. Besides this, if U0 = U1 = { } and U2 = U3 = { },408

this U is also an emptiness-witness. These witnesses also show [J ]Ṽ ∩ [H]Ṽ = ∅. ⌟409

Next, we give an equivalent notion of “w ∈ LJ”. In the following, we abstract saturated410

edges (gray-colored edges in Example 6.3) using U , as U implies the existence of edge-411

saturations.412

▶ Definition 6.4. Let J be a graph and w be a word. A pair P = ⟨H,U⟩ is a saturable path413

for w ∈ LJ if the following hold:414

(P-Ext) H is an edge-extension of G(w) such that13
415

13 In this definition, ⊤H , IH , IH and edges in IH are already edge-saturated, for preserving (P-Con) easily.
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⊤H is a total preorder and ⊤H ⊇ {⟨i− 1, i⟩ | i ∈ [1, n]} where w = a1 . . . an;416

IH = ⊤H ∩ {⟨j, i⟩ | ⟨i, j⟩ ∈ ⊤H} and IH = ⊤H \ IH ;417

∀a ∈ V, ⟨aH , aH⟩ is either ⟨aG(w) ∪ IH , aG(w)⟩ or ⟨aG(w), aG(w) ∪ IH⟩.418

(P-Con) H is consistent: ∀a ∈ V, aHQ ∩ aH
Q = ∅.419

(P-Wit) U : |H| → ℘(|J |) is an emptiness-witness for [J ]Ṽ ∩ [H]Ṽ = ∅.420

(P-Sat) H is saturable: ∀a ∈ V,∀⟨i, j⟩ ∈ IH , δJa (Ui) ⊆ Uj or δJa (Ui) ⊆ Uj. ⌟421

▶ Lemma 6.5. Let J be a graph and w be a word. Then,422

w ∈ LJ ⇔ there is a saturable path for w ∈ LJ .423

Proof. (⇒): By Prop. 6.2, let H ′ ∈ SRSUB(G(w)) and let U be an emptiness-witness for424

[J ]Ṽ ∩ [H ′]Ṽ = ∅. We define the graph H as follows:425

|H| = |H ′|;426

aH = aH
′ for a ∈ {⊤, I, I};427

aH = aG(w) ∪ (aH′ ∩ IH′) for a ∈ ṼI \ {⊤, I, I}.428

We then have that the pair P =∆ ⟨H,U⟩ is a saturable path for w ∈ LJ , as follows:429

(P-Ext): By that H ′ is an edge-saturation w.r.t. RSUB.430

(P-Con): Because H ′ is consistent by H ′ ∈ SRSUB(G(w)).431

(P-Wit): Because U is an emptiness-witness for [J ]Ṽ ∩ [H ′]Ṽ = ∅.432

(P-Sat): Because aH′ ∪ aH
′ = ⊤H′ and U is an emptiness-witness for [J ]Ṽ ∩ [H ′]Ṽ = ∅.433

(⇐): Let P = ⟨H,U⟩ be the saturable path. By (P-Ext), IH is an equivalence relation.434

We define the graph H ′ as follows:435

|H ′| = |H|;436

aH
′ = aH for a ∈ {⊤, I, I};437

for a ∈ V and ⟨x, y⟩ ∈ ⊤H ,438

if ⟨[x]IH , [y]IH ⟩ ∈ aH
Q , then ⟨x, y⟩ ∈ aH′ \ aH

′ ;439

else if ⟨[x]IH , [y]IH ⟩ ∈ aH
Q , then ⟨x, y⟩ ∈ aH′

\ aH′ ;440

else if Uy ⊆ δJa (Ux), then ⟨x, y⟩ ∈ aH′ \ aH
′ ;441

else ⟨x, y⟩ ∈ aH′
\ aH′ .442

By the construction of H ′, we have the following:443

H ′ is consistent: If [x]IH = [y]IH then Ux = Uy, because Ux ⊆ δJI (Ux) ⊆ Uy ⊆ δJI (Uy) ⊆ Ux444

by (P-Wit); thus, if [x]IH = [x′]IH and [y]IH = [y′]IH , then ⟨x, y⟩ ∈ aH′ iff ⟨x′, y′⟩ ∈ aH′ .445

for a ∈ V, aH′ = ⊤H′ \ aH′ : Because aH′ ∪ aH
′ = ⊤H′ and H ′ is consistent.446

Combining (P-Ext) and them yields H ′ ∈ SRSUB(G(w)). Also, U is an emptiness-witness for447

[J ]Ṽ ∩ [H ′]Ṽ = ∅ as follows. For edges already in H, it is shown by (P-Wit). For extended448

edges from H, it is shown by the construction of H ′ (for the last case of the four cases above,449

by Uy ̸⊆ δJa (Ux) and (P-Sat), we have Uy ⊆ δJa (Ux)). Hence, this completes the proof. ◀450

▶ Example 6.6. We recall the graphs J and H ∈ SRSUB(G(aaa)) in Example 6.3. The451

following P is a saturable path for aaa ∈ LJ where ⊤- or I-labelled edges are omitted:452

P =

 0 1 2 3

a, I a, I a, I a, I

a a a, I
a, I

{ } { } { , } { , }

.453
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(P is of the form of a path graph by taking the quotient graph w.r.t. I-labelled edges.) P is an454

abstraction of edge-saturated graphs. From P , we can construct a graph H ∈ SRSUB(G(aaa))455

s.t. [J ]Ṽ ∩ [H]Ṽ = ∅. Because both δJa ({ }) ⊆ { , } and δJa ({ }) ⊆ { , } hold, in addition456

to the graph H in Example 6.3, for instance, the following are also possible:457

0 1 2 3

a, I a, I a, I a, I

a a a, I
a, I

a
a

a
0 1 2 3

a, I a, I a, I a, I

a a a, I
a, I

a
a

a

.458

459

Thanks to saturable paths, we can replace the existence of such gray-colored edges connecting460

distant vertices with a locally defined witness U . ⌟461

Moreover, we can replace (P-Sat)—a condition between distant vertices—with a local462

condition. Let φJ(U , U) =∆ ∀a ∈ V,∀⟨u, u′⟩ ∈ U , δJa (u) ⊆ U ∨ δJa (u′) ⊆ U .463

▶ Proposition 6.7. Let J and H be graphs. Let i ∈ |H|. Then we have:464

(∀a ∈ V,∀j s.t. ⟨j, i⟩ ∈ IH , δJa (Uj) ⊆ Ui ∨ δJa (Uj) ⊆ Ui) ⇔ φJ(
⋃

j;⟨j,i⟩∈IH
Uj × Uj , Ui).465

Proof. (∀a ∈ V, δJa (Uj) ⊆ Ui ∨ δJa (Uj) ⊆ Ui) iff (∀a ∈ V, (∀u ∈ Uj , δJa (u) ⊆ Ui) ∨ (∀u′ ∈466

Uj , δ
J
a (u′) ⊆ Ui)) iff φJ(Uj × Uj , Ui) (by taking the prenex normal form). Thus by467

(∀j s.t. ⟨j, i⟩ ∈ IH , φJ (Uj×Uj , Ui)) iff φJ (
⋃
j;⟨j,i⟩∈IH Uj×Uj , Ui), this completes the proof. ◀468

6.2 Automata from saturable paths469

Let X =∆ {X ∈ ℘(ṼI) | I,⊤ ∈ X, I ̸∈ X, and ∀x ∈ V, x ∈ X ↔ x ̸∈ X}. (This set is470

equivalent to the set {{x ∈ ṼI | IH ⊆ xH} | H ∈ GRRSUB}.)471

▶ Definition 6.8 (NFA construction). Let ▶ and ◀ be two fresh symbols. For a graph J and472

a set X ∈ X , let JSX be the graph G defined as follows:473

|G| = {▶,◀} ∪ {⟨U , U⟩ ∈ ℘(|J | × |J |)× ℘(|J |) | φJ(U , U) ∧ ∀x ∈ X, δJx (U) ⊆ U};474

IG = {▶} × {⟨U , U⟩ ∈ |G| | 1J ∈ U ∧ U = ∅} ∪ {⟨U , U⟩ ∈ |G| | 2J ̸∈ U} × {◀};475

xG = {⟨⟨U , U⟩, ⟨U ′, U ′⟩⟩ ∈ |G| × |G| | ψX
x,I(U , U,U

′, U ′) ∨ ψXx,I(U , U,U ′, U ′)} for x ∈ Ṽ;476

1G = ▶;477

2G = ◀.478

Here, ψX
x,I(U , U,U

′, U ′) and ψXx,I(U , U,U ′, U ′) are as follows:479

ψX
x,I(U , U,U

′, U ′) ⇔∆

U ′ = U ∪ (U × U) ∧
∧ 

δJx (U) ⊆ U ′

δJ⊤({u | ⟨u, u⟩ ∈ U ′}) ⊆ U ′

δJI ({u | ⟨u, u⟩ ∈ U ′}) ⊆ U ′


;480

ψXx,I(U , U,U ′, U ′) ⇔∆ (U ′ = U ∧ U ′ = U ∧ x ∈ X). ⌟481

By the form of JSX , if a1 . . . an ∈ [JSX ]Ṽ, then its run is of the following form:482

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀I a1 a2 . . . an I .483

Intuitively, this run corresponds to the following saturable path where some ⊤-, I-, or I-labelled484

edges are omitted and
X

denotes that an x-labelled edge exists for each x ∈ X:485

X X X X X X

a1 a2 . . . ai . . . an

{
I (¬ψX

ai,I
(Ui−1, Ui−1,Ui, Ui))

I (Otherwise)

U0 U1 U2 Ui−1 Ui Un

.486
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Here, Ui is used to denote the set
⋃
j;⟨j,i⟩∈IH Uj × Uj (cf. Prop. 6.7) where H is the graph of487

the saturable path above.488

According to the correspondence above, from a word w ∈
⋃
X∈X [JSX ]Ṽ, we can construct489

a saturable path for w ∈ LJ . Conversely, from a saturable path for w ∈ LJ , we can show490

w ∈
⋃
X∈X [JSX ]Ṽ. Thus, we have the following. See Appendix C for the detailed proof.491

▶ Lemma 6.9 (Appendix C). Let J be a graph. We have LJ =
⋃
X∈X [JSX ]Ṽ.492

▶ Theorem 6.10. The equational theory of KA{x,I,⊤} w.r.t. languages is PSPACE-complete.493

Proof. (in PSPACE): Let t and s be KA{x,I,⊤} terms. Let G and J be graphs s.t. [G]Ṽ = [t]Ṽ494

and [J ]Ṽ = [s]Ṽ. Then we have495

RSUB |= t ≤ s ⇔ [G]Ṽ ∩ LJ = ∅ (Cor. 5.4)496

⇔ [G]Ṽ ∩ (
⋃
X∈X

[JSX ]Ṽ) = ∅. (Lem. 6.9)497

498

Hence, we can reduce the equational theory into the emptiness problem of NFAs of size499

exponential to the size of the input equation. Therefore, by using a standard on-the-fly500

algorithm for the non-emptiness problem of NFAs (essentially the graph reachability problem),501

we can give a non-deterministic polynomial space algorithm. (Hardness): The equational502

theory of KA coincides with the language equivalence problem of regular expressions, which503

is PSPACE-complete [16]. Hence, the equational theory of KA{x,I,⊤} is PSPACE-hard. ◀504

▶ Remark 6.11. Cf. [18, Remark 45]: the equational theory of REL for KA{x,I,⊤} is decidable505

in coNEXP, but its PSPACE-decidability is open. In RSUB, each equivalence class induced506

from I-labelled edges is always an interval. Thus, the problematic case of [18, Remark 45]507

does not occur in RSUB, fortunately. ⌟508

7 Future directions509

We leave open the axiomatizability of the equational theory of KA{x}/KA{I}/KA{x,I} w.r.t.510

languages. Note that the equational theory of KA{−} (without Kleene star) w.r.t. languages511

is not finitely axiomatizable because it is Π0
1-complete (Thms. 4.7 and 4.10).512

A natural interest is to consider variants or fragments of KA{−}, e.g., with reverse [3], with513

tests [14] (by considering guarded strings) or with (anti-)domain [8]. Also, the combination514

of variables and letters (variables under standard valuations) would be interesting in the515

context of regular expressions.516

Additionally, this paper did not so deal with the expressive power w.r.t. languages. A517

weak tool is (†-KA{−}): [t] ̸= [s]⇒ LANG ̸|= t = s; we can separate the expressive powers518

w.r.t. languages of given two term sets if their language classes are not equivalent. However,519

this cannot show e.g., the expressive power difference between KA{x} and KA, while this520

difference is an immediate consequence of the counter-example in the introduction and the521

completeness theorem of KA. To obtain a more useful tool, it is possibly interesting to modify522

existing arguments about the standard relational structures (REL), e.g., [25, 24, 26, 11, 17]523

(including finite model theoretical studies such as Ehrenfeucht-Fraïssé games [9, 10]) for524

RSUB.525
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A Proof for Remark 3.12590

▶ Definition A.1. Let591

SUBst =∆
⋃
n∈N

{
v ∈ SUBn

∣∣∣ ⋃
a∈V v(a) = {ℓi | i ∈ [0, n− 1]}

v(a) (where a ∈ V) are disjoint sets

}
.592

▶ Proposition A.2. Let n ∈ N and let v′ ∈ SUBn ∩ SUBst. For i ∈ [0, n− 1], let ai be the593

unique one s.t. v′(ai) = {ℓi}. Then v
⟨a0,...,an−1⟩
st = v′.594

Proof. By Def. 3.2, ℓi ∈ v
⟨a0,...,an−1⟩
st (x) iff ai ∈ vst(x) iff ai = x iff ℓi ∈ v′(x). Also, both595

v
⟨a0,...,an−1⟩
st (x) and v′(x) are subsets of {ℓ0, . . . , ℓn−1}. Thus, v⟨a0,...,an−1⟩

st = v′. ◀596

▶ Lemma A.3 (cf. Lem. 3.6). For all quantifier-free formulas φ, we have:597

vst |= φ ⇔ SUBst |= φ.598

Proof. As with Lem. 3.6, it suffices to prove when φ is of the form (
∨m
k=1 tk ≤ ⊥)∨ (¬s ≤ ⊥).599

SUBst ̸|= (
m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥)600

⇒ ∃n, a0, . . . , an−1 ∈ V, v⟨a0,...,an−1⟩
st ̸|= (

m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥) (Prop. A.2)601

⇒ vst ̸|= (
m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥) (By Lem. 3.4)602

⇒ ∃n ∈ N, i1, j1, . . . , im, jm s.t. 0 ≤ i1 ≤ j1 ≤ i2 ≤ j2 ≤ · · · ≤ im ≤ jm ≤ n,603

∃a0, . . . , an−1 ∈ V, (
m∧
k=1

aik . . . ajk−1 ∈ v̂st(tk)) ∧ v̂st(s) = ∅604

⇒ SUBst ̸|= (
m∨
k=1

tk ≤ ⊥) ∨ (¬s ≤ ⊥).

(By Lem. 3.4 and v
⟨a0,...,an−1⟩
st ∈ SUBn ∩ SUBst) ◀

605

606

▶ Proposition A.4 (Cor. of Prop. 3.8). For all quantifier-free formulas φ, we have:607

SUBst |= φ ⇔ RSUBst |= φ.608

Proof. By the same bijective map f : L 7→ {⟨i, j⟩ | ℓi . . . ℓj−1 ∈ L} as Prop. 3.8. ◀609

https://doi.org/10.1093/jigpal/jzv028
https://doi.org/10.1109/LICS.2017.8005122
https://doi.org/10.2307/2268577
https://doi.org/10.1145/3498690
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Combining Lem. A.3 and Prop. A.4 yields610

vst |= φ ⇔ RSUBst |= φ.611

Particularly, we have612

[t] = [s] ⇔ RSUBst |= t = s.613

This matches the following correspondence between words and binary relations (cf.614

Sect. 5).615

a0a1 . . . an−1 | . . .a0 a1 an−1 .616

B Proof of Prop. 6.2617

Let R′ ⊆ |H| × |J | be the minimal set such that618

⟨1H , 1J⟩ ∈ R′;619

∀a ∈ ṼI, x, y, x
′, y′, ⟨x, y⟩ ∈ R′ ∧ ⟨x, x′⟩ ∈ δHa ∧ ⟨y, y′⟩ ∈ δJa ⇒ ⟨x′, y′⟩ ∈ R′.620

▷ Claim B.1. [J ]Ṽ ∩ [H]Ṽ ̸= ∅ ⇔ ⟨2H , 2J⟩ ∈ R′.621

Proof Sketch. R′ is the set of all reachable states of the product NFA of H and J . Hence622

this completes the proof. ◁623

Let R ⊆ |H| × |J | be the minimal set such that624

⟨1H , 1J⟩ ∈ R;625

∀a ∈ ṼI, x, y, x
′, y′, ⟨x, y⟩ ∈ R ∧ ⟨x, x′⟩ ∈ aH ∧ ⟨y, y′⟩ ∈ δJa ⇒ ⟨x′, y′⟩ ∈ R.626

▷ Claim B.2. R = R′.627

Proof. (⊆): Clear, by aH ⊆ δHa . (⊇): By induction on derivations of R′.628

Case ⟨1H , 1J⟩ ∈ R′: Trivial by ⟨1H , 1J⟩ ∈ R.629

Case (⟨x, y⟩ ∈ R′ ∧ ⟨x, x′⟩ ∈ δHa ∧ ⟨y, y′⟩ ∈ δJa )⇒ ⟨x′, y′⟩ ∈ R′: By IH, ⟨x, y⟩ ∈ R.630

Sub-Case a ̸= I: Let x0, . . . , xn−1, xn, . . . , xm be s.t. ⟨x, x′⟩ = ⟨x0, xm⟩ and631

∗ for all i ∈ [1, n− 1], ⟨xi−1, xi⟩ ∈ IH ;632

∗ ⟨xn−1, xn⟩ ∈ aH ;633

∗ for all i ∈ [n+ 1,m], ⟨xi−1, xi⟩ ∈ IH .634

Let y0 = · · · = yn−1 = y and yn = · · · = ym = y′. Then by applying the second rule635

multiply, we have ⟨x′, y′⟩ ∈ R.636

Sub-Case a = I: By reflexivity of IH , ⟨x, x′⟩ ∈ (IH)+. Let x0, . . . , xm (m > 0) be s.t.637

⟨x, x′⟩ = ⟨x0, xm⟩ and638

∗ for all i ∈ [1,m], ⟨xi−1, xi⟩ ∈ IH .639

Let y0 = y and y1 = · · · = ym = y′. Then by applying the second rule multiply, we640

have ⟨x′, y′⟩ ∈ R. ◁641

Proof of Prop. 6.2. (⇒): By letting U as the map defined by U(x) =∆ {y | ⟨x, y⟩ ∈ R}. Here,642

2J ̸∈ U2H is shown by [J ]Ṽ ∩ [H]Ṽ = ∅ with Claim B.1 and B.2. (⇐): Let R′′ =∆ {⟨x, y⟩ | y ∈643

U(x)}. By the minimality of R, we have R ⊆ R′′. By ⟨2H , 2J⟩ ̸∈ R′′, we have ⟨2H , 2J⟩ ̸∈ R.644

Hence by Claim B.1 and B.2, we have [J ]Ṽ ∩ [H]Ṽ = ∅. ◀645



Y. Nakamura 19

C Proof of Lem. 6.9646

Proof of Lem. 6.9. (⊆): Let w = a1 . . . an ∈ LJ . Let P = ⟨H,U⟩ be a saturable path for w ∈647

LJ . Let X =∆ {a ∈ ṼI | aH ⊇ IH} (note that X ∈ X ). For each i, let Ui =∆
⋃
j;⟨j,i⟩∈IH Uj ×Uj .648

Then we have:649

φJ(Ui, Ui): By (P-Sat) and Prop. 6.7.650

∀a ∈ X, δJa (Ui) ⊆ Ui: By aH ⊇ IH ⊇ ∆|H| and (P-Wit).651

Thus ⟨Ui, Ui⟩ ∈ |JSX |. We consider the following run of the NFA JSX on w:652

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀I a1 a2 . . . an I .653

This is indeed a run of the NFA JSX as follows:654

⟨▶, ⟨U0, U0⟩⟩ ∈ IJSX : By 1J ∈ U0 (P-Wit) and U0 = ∅.655

⟨⟨Un, Un⟩,◀⟩ ∈ IJSX : By 2J ̸∈ Un (P-Wit).656

∀i ∈ [1, n], ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ
SX

i : We distinguish the following cases:657

Case ⟨i− 1, i⟩ ∈ IH :658

∗ Ui = Ui−1: By ⟨j, i⟩ ∈ IH iff ⟨j, i− 1⟩ ∈ IH , for all j.659

∗ Ui = Ui−1: By (P-Wit), we have Ui−1 ⊆ δJI (Ui−1) ⊆ Ui ⊆ δJI (Ui) ⊆ Ui−1.660

∗ ai ∈ X (aHi ⊇ IH): By aHi ∩ IH ̸= ∅ and (P-Ext), we have aHi = a
G(w)
i ∪ IH (if not,661

this contradicts to (P-Con)).662

Thus by ψXai,I(Ui−1, Ui−1,Ui, Ui), we have ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ
SX

i .663

Case ⟨i− 1, i⟩ ∈ IH :664

∗ Ui = Ui−1 ∪ (Ui−1 × Ui−1): By ⟨j, i⟩ ∈ IH iff ⟨j, i− 1⟩ ∈ IH ∨ j = i− 1, for all j.665

∗ δJai
(Ui−1) ⊆ Ui: By (P-Wit).666

∗ δJ⊤({u | ⟨u, u⟩ ∈ Ui}) ⊆ Ui: We have δJ⊤({u | ⟨u, u⟩ ∈ Ui}) = δJ⊤(
⋃
j;⟨j,i⟩∈IH Uj) =667 ⋃

j<i δ
J
⊤(Uj) ⊆ Ui by (P-Wit).668

∗ δJI ({u | ⟨u, u⟩ ∈ Ui}) ⊆ Ui: We have δJI ({u | ⟨u, u⟩ ∈ Ui}) = δJI (
⋃
j;⟨j,i⟩∈IH Uj) =669 ⋃

j<i δ
J
I (Uj) ⊆ Ui by (P-Wit).670

Thus by ψX
ai,I

(Ui−1, Ui−1,Ui, Ui), we have ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ
SX

i .671

Hence, w ∈ [JSX ].672

(⊇): Let X ⊆ X and w = a1 . . . an ∈ [JSX ]Ṽ. Let the run of JSX on w be as follows:673

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀I a1 a2 . . . an I .674

Let H be the edge-extension of G(w) defined as follows:675

⊤H = {⟨x, y⟩ ∈ [0, n]× [0, n] | ∀i ∈ [y + 1, x], ¬ψX
ai,I

(Ui−1, Ui−1,Ui, Ui)};676

IH = ⊤H ∩ {⟨x, y⟩ | ⟨y, x⟩ ∈ ⊤H} and IH = ⊤H \ IH ;677

∀a ∈ V ∩X, ⟨aH , aH⟩ = ⟨aG(w) ∪ IH , aG(w)⟩.678

Note that by definition of ⊤H , we have679

⊤H ⊇ {⟨x, y⟩ | x ≤ y};680

⊤H is transitive by case analysis.681

Hence, ⊤H is a total preorder and each equivalence class w.r.t. IH is an interval [l, r].682

Let P =∆ ⟨H,U⟩ where U is defined as i 7→ Ui for i ∈ [0, n]. The following depicts P .683

X X X X X X

a1 a2 . . . ai . . . an

{
I (¬ψX

ai,I
(Ui−1, Ui−1,Ui, Ui))

I (Otherwise)

U0 U1 U2 Ui−1 Ui Un

.684
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Then P is a saturable path for w ∈ LJ as follows:685

(P-Ext): By the definition of H.686

(P-Con): Assume that aHQ ∩ aH
Q ≠ ∅. Let x, x′, y, y′ be s.t. [x]IH = [x′]IH , [y]IH = [y′]IH ,687

⟨x, y⟩ ∈ aH , and ⟨x′, y′⟩ ∈ aH . WLOG, we can assume that a ∈ X and a ̸∈ X. Then688

⟨x′, y′⟩ ∈ aG(w) (so, x′ = y′ − 1 and ay′ = a): By aH = aG(w) (since a ̸∈ X).689

⟨x, y⟩ ∈ aG(w) (so, x = y − 1 and ay = a): If not, then by aH = aG ∪ IH , we690

have [x]IH = [y]IH . Thus we have [y′ − 1]IH = [y′]IH . Then by the definition691

of ⊤H , we have ¬ψX
a,I(Uy′−1, Uy′−1,Uy′ , Uy′). By the definition of aJSX , we have692

ψXa,I(Uy′−1, Uy′−1,Uy′ , Uy′), so a ∈ X. This contradicts a ̸∈ X.693

([x, x′] ∪ [x′, x]) ∩ ([y, y′] ∪ [y′, y]) = ∅ (so, x = x′ and y = y′): If not, then because the694

interval between x and x′ and that between y and y′ have an intersection, we have695

[x]IH = [y]IH . Then, in the same manner as above, we have a ∈ X. This contradicts696

a ̸∈ X.697

Thus, we reach a contradiction, because a = ay = ay′ = a. Hence, aHQ ∩ aH
Q = ∅.698

(P-Sat): By the the form of JSX , we have Ux =
{
Ux−1 (⟨x− 1, x⟩ ∈ IH)
Ux−1 ∪ (Ux−1 × Ux−1) (⟨x− 1, x⟩ ∈ IH)

.699

Thus, Uy =
⋃
x;⟨x,y⟩∈IH Ux × Ux (⋆). Thus by Prop. 6.7, this completes the proof.700

(P-Wit): For 1J ∈ U0 and 2J ̸∈ Un, they are shown by the form of JSX . For ∀a ∈701

ṼI,∀⟨x, y⟩ ∈ aH , δJa (Ux) ⊆ Uy, we distinguish the following cases:702

Case a = I: Then we have703

∗ Ux = Uy: By ⟨x, y⟩ ∈ IH and the definition of JSX , we have that ∀i ∈ [y +704

1, x], ψXai,I(Ui−1, Ui−1,Ui, Ui). Thus, Uy = Uy+1 = · · · = Ux.705

∗ δJI (Ux) ⊆ Ux: By ⟨Ux, Ux⟩ ∈ |JSX |.706

Hence, δJI (Ux) ⊆ Uy.707

Case a = I: Let z ∈ [x + 1, y] be such that ψX
az,I

(Uz−1, Uz−1,Uz, Uz) and ∀z′ ∈708

[z + 1, y],¬ψX
az′ ,I

(Uz′−1, Uz′−1,Uz′ , Uz′). Then we have709

δJI (Ux) ⊆ δJI ({u | ⟨u, u⟩ ∈ Uz}) (by (⋆) and ⟨x, z⟩ ∈ IH (by ⟨z − 1, z⟩ ∈ IH))710

⊆ Uz (by ψX
az,I

(Uz−1, Uz−1,Uz, Uz))711

⊆ Uz+1 = · · · = Uy. (by the form of JSX , ψXaz′ ,I(Uz′−1, Uz′−1,Uz′ , Uz′))712
713

Case a = ⊤: We distinguish the following two sub-cases:714

∗ Case ⟨x, y⟩ ∈ IH : By the similar argument as Case a = I.715

∗ Case ⟨x, y⟩ ∈ IH : By the similar argument as Case a = I, we have Ux = Uy and716

δJI (Ux) ⊆ Ux, and thus δJI (Ux) ⊆ Uy.717

Case a ∈ {a, a | a ∈ V}: We distinguish the following sub-cases:718

∗ Case ⟨x, y⟩ ∈ IH : By ⟨x, y⟩ ∈ aH ∩ IH = aG(w), we have x = y− 1 and ay = a. Thus719

by ψX
ay,I

(Uy−1, Uy−1,Uy, Uy), we have δJa (Ux) ⊆ Uy.720

∗ Case a ̸∈ X: By aH = aG(w), we have x = y − 1 and ay = a. By the form of JSX721

with ¬ψXay,I(Uy−1, Uy−1,Uy, Uy) (since ay ̸∈ X), we have ψX
ay,I

(Uy−1, Uy−1,Uy, Uy).722

Hence, δJa (Ux) ⊆ Uy.723

∗ Case ⟨x, y⟩ ∈ IH and a ∈ X: By the similar argument as Case a = I, we have724

Ux = Uy (by ⟨x, y⟩ ∈ IH) and δJa (Ux) ⊆ Ux (by a ∈ X). Thus, δJa (Ux) ⊆ Uy. ◀725
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D Explicit proof of Lem. 3.4726

(The following proof is almost the same as [19, Lem. 23] except that we consider letters-to-727

letters valuations instead of words-to-letters valuations.)728

Proof of Lem. 3.4. By easy induction on t.729

Case t = x: By the definition of v⟨a0,...,an−1⟩, we have ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(x) ⇔730

ai . . . aj−1 ∈ v̂(x).731

Case t = ⊥: By ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(⊥)⇔ False⇔ ai . . . aj−1 ∈ v̂(⊥).732

Case t = I: By ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(I)⇔ i = j ⇔ ai . . . aj−1 ∈ v̂(I).733

Case t = s ∪ u: By IH, we have ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(s ∪ u) ⇔ ℓi . . . ℓj−1 ∈734

v̂⟨a0,...,an−1⟩(s) ∨ ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(u) ⇔ ai . . . aj−1 ∈ v̂(s) ∨ ai . . . aj−1 ∈ v̂(u) ⇔735

ai . . . aj−1 ∈ v̂(s ∪ u).736

Case t = s−: By IH, we have ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(s−) ⇔ ℓi . . . ℓj−1 ̸∈ v̂⟨a0,...,an−1⟩(s)737

⇔ ai . . . aj−1 ̸∈ v̂(s) ⇔ ai . . . aj−1 ∈ v̂(s−).738

Case t = s · u: We have739

ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(s · u)740

⇔ ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(s) · v̂⟨a0,...,an−1⟩(u)
(By the definition of v̂⟨a0,...,an−1⟩ and that ℓi . . . ℓj−1 is a subword of ℓ0 . . . ℓn−1)

741

⇔
∨

i≤k≤j

(ℓi . . . ℓk−1 ∈ v̂⟨a0,...,an−1⟩(s) ∧ ℓk . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(u)) (By concatenation)742

⇔
∨

i≤k≤j

(ai . . . ak−1 ∈ v̂(s) ∧ ak . . . aj−1 ∈ v̂(u)) (IH)743

⇔ ai . . . aj−1 ∈ v̂(s · u). (By concatenation)744
745

(Note that the last equivalence holds thanks to that ai, . . . , aj−1 are letters not words, cf.746

[19, Lem. 23].)747

Case t = s∗: We have748

ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(s∗)749

⇔ ℓi . . . ℓj−1 ∈ v̂⟨a0,...,an−1⟩(s)∗
(By the definition of v̂⟨a0,...,an−1⟩ and that ℓi . . . ℓj−1 is a subword of ℓ0 . . . ℓn−1)

750

⇔ ∃m ∈ N,
∨

i=k0≤k1≤···≤km=j

m∧
l=1

(ℓk(l−1) . . . ℓkl−1 ∈ v̂⟨a0,...,an−1⟩(s)) (By Kleene star)751

⇔ ∃m ∈ N,
∨

i=k0≤k1≤···≤km=j

m∧
l=1

(ak(l−1) . . . akl−1 ∈ v̂(s)) (IH)752

⇔ ai . . . aj−1 ∈ v̂(s∗). (By Kleene star) ◀753
754

E Explicit proof for Sect. 4.1755

(The following proof is almost the same as [18, Section VI] except that we consider RSUB756

instead of REL.)757

A context-free grammar (CFG) C over a finite set A is a tuple ⟨X,R, s⟩, where758

X is a finite set of non-terminal labels s.t. A ∩X = ∅;759

R is a finite set of rewriting rules x← w of x ∈ X and w ∈ (A ∪X)∗;760

s ∈ X is the start label.761
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The relation x ⊢C w, where x ∈ X and w ∈ A∗, is defined as the minimal relation closed762

under the following rule: for all n ∈ N, x, x1, . . . , xn ∈ X and w0, . . . , wn, v1, . . . , vn ∈ A∗, if763

x← w0x1w1 . . . xnwn ∈ R, then
x1 ⊢C v1 . . . xn ⊢C vn
x ⊢C w0v1w1 . . . vnwn

. The language [C] is defined by764

[C] =∆ {w ∈ A∗ | s ⊢C w}.765

For a CFG C = ⟨X,R, s⟩ and a word w = a1 . . . an, we write vC,w for the following766

valuation on RSUBn:767

vC,w(x) = {⟨i− 1, i⟩ | i ∈ [1, n] ∧ x = ai} for x ∈ A;768

{vC,w(x)}x∈X are the minimal sets such that for all x ∈ X, v ∈ (X ∪A)∗, and i, j ∈ [0, n],769

if x← v ∈ R, then
⟨i, j⟩ ∈ v̂C,w(v)
⟨i, j⟩ ∈ vC,w(x)

.770

For instance, if A = {(, )}, C = ⟨{s}, {s← (s)s, s← I}, s⟩ (i.e., [C] is the Dyck-1 language),771

and w = (()()), then vC,w is of the following form:772

vC,w = 0 1 2 3 4 5 6( ( ) ( ) )

s s s s s s s

s s
s
s

773

By construction, we have the following:774

▶ Lemma E.1 (cf. [18, Lem. 47]). Let C = ⟨X,R, s⟩ be a CFG. Let C be s.t. {vC,w} ⊆ C ⊆775

GREL. For all x ∈ X and w = a0 . . . an−1 ∈ A∗, the following are equivalent:776

1. x ⊢C w;777

2. C |= (
∧

(x′←w′)∈R w
′ ≤ x′)→ w ≤ x;778

3. ⟨0, n⟩ ∈ vC,w(x).779

Proof. 1⇒2: By induction on the derivation tree of ⊢C. Let780

x1 ⊢C v1 . . . xn ⊢C vm
x ⊢C w0v1w1 . . . vmwm

781

where x← w0x1w1 . . . xmwm ∈ R. Let v ∈ C be any s.t. v |=
∧

(x′←w′)∈R w
′ ≤ x′. Particu-782

larly, we have v |= w0x1w1 . . . xmwm ≤ x. By IH, we have v |= vk ≤ xk. Combining them783

yields v |= w0v1w1 . . . vmwm ≤ x. (We only need axioms of monoids, so this holds for any784

Kleene algebras beyond GREL.)785

2⇒3: By vC,w ∈ C, vC,w |=
∧

(x′←w′)∈R w
′ ≤ x′, and ⟨0, n⟩ ∈ v̂C,w(w), we have ⟨0, n⟩ ∈786

vC,w(x) by 2.787

3⇒1: By induction on the derivation tree induced from the definition of vC,w. Let788

⟨i, j⟩ ∈ v̂C,w(w0x1w1 . . . xmwm)
⟨i, j⟩ ∈ vC,w(x)

789

where x← w0x1w1 . . . xnwm ∈ R. Let i = i0 ≤ j0 ≤ · · · ≤ im ≤ jm = j − 1 be s.t. ⟨ik, jk⟩ ∈790

v̂C,w(wk) and ⟨jk−1, ik⟩ ∈ vC,w(xk). By construction of vC,w, we have wk = aik . . . ajk
. By791

IH, xk ⊢C ajk−1 . . . aik . Hence by definition of ⊢C, we have x ⊢C ai . . . aj−1. ◀792

▶ Lemma E.2 (cf. [18, Lem. 48]). Let C = ⟨X,R, s⟩ be a CFG. Let C be s.t. {vC,w | w ∈793

A∗} ⊆ C ⊆ GREL. Then we have794

[C] = A∗ ⇔ C |= (
∧

(x←w)∈R

w ≤ x)→ A∗ ≤ s.795

Here, A∗ denotes the term (a1 ∪ · · · ∪ an)∗ in the right-hand side, where A = {a1, . . . , an}.796
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Proof. We have:797

[C] = A∗798

⇔ ∀w′ ∈ A∗, s ⊢C w′799

⇔ ∀w′ ∈ A∗, C |= (
∧

(x←w)∈R

w ≤ x)→ w′ ≤ s (By Lem. E.1)800

⇔ ∀i ∈ N, C |= (
∧

(x←w)∈R

w ≤ x)→ Ai ≤ s801

⇔ C |= (
∧

(x←w)∈R

w ≤ x)→ A∗ ≤ s.

(⇐: By GREL |= Ai ≤ A∗ ⇒: Because GREL is ∗-continuous) ◀

802

803

Proof of Lem. 4.6. By Lem. E.2. ◀804

Furthermore, we give a tool to eliminate Kleene star.805

▶ Proposition E.3. RSUB |= I = A⊤ → A∗ = ⊤.806

Proof. Let n ∈ N and v ∈ RSUBn. Let i ∈ [1, n]. By ⟨i − 1, i − 1⟩ ̸∈ v̂(I) = v̂(A⊤), we807

have ⟨i − 1, i − 1⟩ ̸∈ v̂(A). By ⟨i − 1, i⟩ ∈ v̂(I) = v̂(A⊤), we have ⟨i − 1, i⟩ ∈ v̂(A) (by808

⟨i− 1, i− 1⟩ ̸∈ v̂(A)). Thus v̂(A∗) = {⟨i, j⟩ | 0 ≤ i ≤ j ≤ n} = v̂(⊤). ◀809

Proof of Lem. 4.9. Because vC,w |= I = A⊤, Lem. E.1 holds even if we can replace 2 with810

C |= (I = A⊤ ∧
∧

(x←w)∈R

w ≤ x)→ w′ ≤ x′.811

Thus for C ⊆ RSUB, by the same argument as Lem. E.2 with Prop. E.3, we have812

[C] = A∗ ⇔ C |= (I = A⊤ ∧
∧

(x←w)∈R

w ≤ x)→ ⊤ ≤ s. ◀813

F Explicit proof of Lem. 5.5814

(The following proof is almost the same as [18, Prop. 8, 11] except that we consider GREL815

instead of REL. Similar arguments can also be found, e.g., in [1, 6, 20].)816

We use the two notations for graphs, series-composition (·) and parallel-composition (∩):817

G ·H =∆ G H G ∩H =∆ G
H

.818
819

▶ Proposition F.1. Let v ∈ GREL and G,H be graphs.820

v̂(G ∩H) = v̂(G) ∩ v̂(H) (Prop. F.1∩)821

v̂(G ·H) = v̂(G) · v̂(H) (Prop. F.1·)822
823

Proof. (Prop. F.1∩): It suffices to prove that for every x, y,824

∃f, f : (G ∩H) −→ G(v, x, y) ⇔ ∃fG, fH , fG : G −→ G(v, x, y) ∧ fH : H −→ G(v, x, y).825

⇒: By letting fG = {⟨x′, f(x′)⟩ | x′ ∈ |G|} and fH = {⟨x′, f(x′)⟩ | x′ ∈ |H|}. ⇐: By letting826

f = fG ∪ fH . Note that fG(1G) = x = fH(1H) and fG(2G) = y = fH(2H); so f is indeed a827

map.828
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(Prop. F.1·): It suffices to prove that for every x, y,829

∃f, f : (G ·H) −→ G(v, x, y) ⇔ ∃z,∃fG, fH , fG : G −→ G(v, x, z)∧ fH : H −→ G(v, z, y).830

⇒: By letting z = f(2G), fG = {⟨x′, f(x′)⟩ | x′ ∈ |G|}, and fH = {⟨x′, f(x′)⟩ | x′ ∈ |H|}. ⇐:831

By letting f = fG ∪ fH . Note that fG(2G) = z = fH(1H); so f is indeed a map. ◀832

Proof of Lem. 5.5. By easy induction on t.833

Case t = x where x ∈ Ṽ = {a, a | a ∈ V} ∪ {I,⊤}: For every ⟨x, y⟩ ∈ v̂(⊤), we have834

⟨x, y⟩ ∈ v̂(a) ⇔ a −→ G(v, x, y)835

⇔ ⟨x, y⟩ ∈ v̂( a ) (Def. of v̂)836

⇔ ⟨x, y⟩ ∈ v̂(G(a)). (Def. of G)837838

Case t = I: For every ⟨x, y⟩ ∈ v̂(⊤), we have839

⟨x, y⟩ ∈ v̂(I) ⇔ I −→ G(v, x, y)840

⇔ ⟨x, y⟩ ∈ v̂( I ) (Def. of v̂)841

⇔ ⟨x, y⟩ ∈ v̂( ) (IG(v,x,y) is the identity relation)842

⇔ ⟨x, y⟩ ∈ v̂(G(I)). (Def. of G)843844

Case t = ⊥: For every ⟨x, y⟩ ∈ v̂(⊤), we have845

⟨x, y⟩ ∈ v̂(⊥)⇔ false⇔ ⟨x, y⟩ ∈ v̂(∅)⇔ ⟨x, y⟩ ∈ v̂(G(⊥)). (Def. of v̂ and G)846
847

Case t = s · u:848

v̂(s · u) = v̂(s) · v̂(u) (Def. of v̂)849

= v̂(G(s)) · v̂(G(u)) (IH)850

=
⋃

G∈G(s)

⋃
H∈G(u)

v̂(G) · v̂(H) (· is distributive w.r.t. ∪)851

=
⋃

G∈G(s)

⋃
H∈G(u)

v̂(G ·H) (Equation (Prop. F.1·))852

= v̂(G(s · u)). (Def. of G)853
854

Case t = s ∩ u:855

v̂(s ∩ u) = v̂(s) ∩ v̂(u) (Def. of v̂)856

= v̂(G(s)) ∩ v̂(G(u)) (IH)857

=
⋃

G∈G(s)

⋃
H∈G(u)

(v̂(G) ∩ v̂(H)) (∩ is distributive w.r.t. ∪)858

=
⋃

G∈G(s)

⋃
H∈G(u)

v̂(G ∩H) (Equation (Prop. F.1∩))859

= v̂(G(s ∩ u)). (Def. of G)860
861

Case t = s ∪ u:862

v̂(s ∪ u) = v̂(s) ∪ v̂(u) (Def. of v̂)863

= v̂(G(s)) ∪ v̂(G(u)) (IH)864

= v̂(G(s) ∪ G(u)) = v̂(G(s ∪ u)). (Def. of G)865
866
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Case t = s∗:867

v̂(s∗) =
⋃
n∈N

v̂(sn) =
⋃
n∈N

v̂(s)n (Def. of v̂)868

=
⋃
n∈N

v̂(G(s))n (IH)869

=
⋃
n∈N

⋃
G1,...,Gn∈G(s)

v̂(G1) · . . . · v̂(Gn) (· is distributive w.r.t. ∪)870

=
⋃
n∈N

⋃
G1,...,Gn∈G(s)

v̂(G1 · . . . ·Gn) (Equation (Prop. F.1·))871

=
⋃
n∈N

v̂(G(sn) = v̂(G(s∗)). (Def. of G)872

873

◀874
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