
HAL Id: hal-04455831
https://hal.science/hal-04455831v1

Preprint submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Comparing and Updating R Packages using MCMC
Algorithms for Linear Inverse Modeling of Metabolic

Networks
Valerie Girardin, Théo Grente, Nathalie Niquil, Philippe Regnault

To cite this version:
Valerie Girardin, Théo Grente, Nathalie Niquil, Philippe Regnault. Comparing and Updating R
Packages using MCMC Algorithms for Linear Inverse Modeling of Metabolic Networks. 2024. �hal-
04455831�

https://hal.science/hal-04455831v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Comparing and Updating R packages using

MCMC Algorithms for Linear Inverse Modeling of

Metabolic Networks

Valérie Girardin1*†, Théo Grente1,2†, Nathalie Niquil3†,
Philippe Regnault4†

1*Laboratoire de Mathématiques Nicolas Oresme, Université de Caen
Normandie, CNRS-6139, BP5186, Caen, 14032, France.

2France Énergies Marines, Avenue Alexis de Rochon, Plouzané, 29280,
France.

3Laboratoire Biologie des Organismes et Ecosystemes Aquatiques,
Université de Caen Normandie, CNRS-8067, Esplanade de la Paix,

Caen, 14000, France.
4Laboratoire de Mathématiques de Reims, Université de Reims

Champagne-Ardenne, CNRS-9008, BP1039, Reims, 51687, France.

*Corresponding author(s). E-mail(s): valerie.girardin@unicaen.fr;
Contributing authors: theo.grente@unicaen.fr;

nathalie.niquil@unicaen.fr; philippe.regnault@univ-reims.fr;
†These authors contributed equally to this work.

Abstract

Gathered under the name of metabolic networks, trophic, biochemical, and urban
networks are here handled as a single field. In the Linear Inverse Modeling frame-
work, these highly complex objects of research are all mathematically represented
by weighted oriented graphs whose vertices are compartments and edges the flows
(or flux) of matter or energy.
All the flows that satisfy realistic constraints belong to very anisotropic high
dimensional polytopes that cannot be analytically determined. Sampling the
polytope yields a set of possible scenarios for the metabolic network. Different
Monte Carlo Markov Chain (MCMC) algorithms together with their most recent
implementations are scrutinized, leading to design an updated R package called
{samplelim}. Comparison of the most recent implementations in terms of both
computation time and sampling performances follows a methodology involving

1



acknowledged and new statistical diagnostics and indexes. Application on real
data metabolic networks of the three types shows that {samplelim} gathers the
best properties of previous implementations of the MCMC algorithms.
Code Repositories: The source code of the package {samplelim} is publicly
available from its GitHub repository*.
The code to reproduce the computations in the manuscript has its own private
GitHub repository�. In case of publication, it will be made public and a DOI will
be attached to it.

Keywords: Metabolic, trophic, biochemical and urban networks; Linear inverse
modeling; High-dimensional polytope; Mirror and Billard walks; R package.

MSC Classification: 92-04 , 92-08 , 92-10 , 65C05 , 60J20

1 Introduction

According to Encyclopedia Britannica, metabolism is “the sum of the chemical reac-
tions that take place within each cell of a living organism and that provide energy
for vital processes and for synthesizing new organic material”. However, metabolic
systems cover many different concepts used in different domains.

The three main functions of metabolism in biology are: the conversion of energy in
food into energy available to run cellular processes; the conversion of food into building
blocks for proteins, lipids, nucleic acids, and some carbohydrates; the elimination of
metabolic wastes. The development of molecular biology during the 1990’s led to the
characterization of first partial and then complete genomes in microbes, that opened
a new area of research on microbial metabolic modeling; see [7]. The linear constraints
on the flows within microbial cells are physico-chemical constraints –e.g. diffusion
rates, topo-biological constraints –e.g. derived from the crowding of molecules inside
cells, environmental constraints –e.g. nutrient availability, and regulatory constraints
–e.g. enzyme regulation; see [30]. This type of model spread out of microbial biology
with the development of overall sequencing of metazoan species and in particular of
humans; see [8]. The networks of metabolic flows within cells are called either metabolic
networks in [1], metabolic reaction networks in [7] or biochemical networks in [28]; to
avoid any confusion, we will here refer to them as the latter.

The Encyclopedia of Earth Science enlarges the definition: “Metabolism refers to
the use of energy for the production and assimilation of food and for locomotion,
maintenance, growth, reproduction, and other processes that characterize life”. With
this definition, the concept extends from biology to ecology, and allows the definition
not only of cell or organism metabolism, but also of ecosystem metabolism. In ecosys-
tems, the main metabolic processes are production and respiration. Because most of
the production is ingested by consumers, the metabolic system can be represented as a
network of flows from preys to predators, including waste production and respiration,
that defines the food web.

*{samplelim} source code: https://github.com/pregnault/samplelim
�Manuscript code: https://github.com/TheoGrente/limcomp

2

https://github.com/pregnault/samplelim
https://github.com/TheoGrente/limcomp


The definition of metabolic networks also extends to economy, giving rise to
the concept of urban metabolism, for studying material and energy exchanges in
cities, with the metaphor of megapolis seen as bodies. The first discussions on urban
metabolism go a long way back, to Karl Marx in 1881; see [38]. The concept came
back in economic studies in the 1960’s in the context of the growing pollution of air
and water in USA cities. Since then, the literature on the subject developed and in
2008, a devoted congress highlighted urban metabolism as having a worldwide influ-
ence; see [18]. The study of urban metabolism facing strong environmental issues is
particularly relevant in China, in a context of rapidly growing megapolis; see [38] and
the references therein. A trend of studies merged economical approaches with concepts
and methods derived from ecology; see, e.g. [5]. Indeed, networks combining energy
and matter flow circulation present common features with trophic networks. The
other way round, ecological network analysis was strongly influenced by econometry
with the application of Leontief input-output analysis, first in [15]. These intertwined
approaches of network analysis led in particular to the recent project UNCNET;
see [14, 20].

In the three above types of metabolic networks, even if the goals may appear as
different, flows can be represented by interactions, and the issuing mathematical mod-
els for the networks are graphs whose vertices are the compartments and edges the
interactions. In order to specify the unknown flow values, a class of methods involv-
ing Linear Inverse Modeling (LIM) was developed; see [26] and the references therein.
It relies on the principle of steady state mass balance, i.e., the sum of the inflows
and outflows through the components of the system equals the rate of change in their
standing stocks, most often considered negligible; the nature of the ”mass” depends
on the type of system. This yields a set of linear equations known as the mass balance
equations (MBE). Through acquired knowledge, from dynamics field measurements,
laboratory experiments, bibliographical knowledge, or simulation, equality constraints
are added to the modeling. Moreover, bounds are imposed on the flows (biochemi-
cal networks) or linear combinations of flows are imposed to remain between bounds
(urban and trophic). The set of these linear equations and inequations defines a con-
vex bounded multidimensional polyhedron – a polytope, within which lie all realistic
solutions to the problem.

Quite recently, the so-called sampling methods were developed to describe this
kind of polytopes by calculating a representative sample of solutions through the
Monte Carlo approach, and more efficiently the Monte Carlo Markov Chain approach
(MCMC); see [23, 25], and [36]. Thus, LIM-MCMC methods involve mass balanced
models that consider the uncertainty in the data and link them pertinently to the vari-
ability of the living; see [12, 26, 36]. In all MCMC methods, an ergodic time-reversible
Markov chain is designed, with the desired asymptotic distribution, leading to a uni-
form sampling of the polytope. Further, two reflective MCMC algorithms particularly
suited to sampling highly complex LIM polytopes, the Mirror Walk (MiW) in [36]
and of the Billard Walk (BiW) in [29], were developed independently. The former
is designed in an R package called {limsolve} –including the function xsample()–

3



especially intended for trophic modeling. The latter is implemented in [3] for sam-
pling polytopes in order to estimate their volume, with an application to biochemical
networks in [4]. Both include parameters, called jump lengths, to be fitted.

Recently, both [19] and [9] have undertaken rigorous comparisons of several
sampling algorithms for biochemical networks, and concluded that the Coordinate
Hit-and-Run with Rounding (CHRR) algorithm is the most efficient in terms of both
computation time and multiple convergence diagnostics. Unfortunately, its only avail-
able implementation, the function chrrExpSampler() of the {COBRA}Matlab toolbox,
works only for bounds on the flows, and not for more intricate inequality constraints,
so cannot be applied to urban or trophic network models.

Regarding xsample(), [9] was only able to successfully apply it to the Escherichia
coli network, out of ten considered genome scale systems, and hence concluded that
an efficient reflective MCMC algorithm implementation allowing for the framework of
[36] to be applied at a large scale was lacking. One of the main goals of the present
paper is to fill this gap. In this aim, we will describe and compare sampling meth-
ods, theoretically and with respect to computation time and statistical diagnostics
of convergence. This will lead us to develop an updated version of the R package
{limsolve} and function xsample(), called {samplelim} and rlim(), that uses the
framework of the R package {volesti} designed in [3].

The paper is organized as follows. Section 2 is devoted to the construction of the
polytopes of solutions to metabolic networks constraints, whichever be their type,
with examples of real data trophic, urban and biochemical networks. Section 3 details
different MCMC methods for sampling polytopes, from the classical Hit and Run and
its variants, to the most recent reflective Hamiltonian MCMC methods, together with
available implementations. The updated implementation {samplelim} is proposed in
Section 3.4. For similar computation times, sampling performances of the functions
of the R packages {samplelim}, {limsolve}, {volesti}, plus chrrExpSampler(),
are thoroughly compared in Section 4, on the real data examples of Section 2. The
methodology inspired by both [9] and [19], that also involves a new numeric index
that we call range coverage, is presented in Section 4.1. In particular, Section 4.2 is
devoted to show that {samplelim} is much faster than {limsolve}, while retaining
its specific desirable features, which makes it a very competitive MCMC package for
sampling LIM polytopes, especially for trophic networks.

2 From the constraints to the polytope of solutions

As highlighted above, from a mathematical point of view, a metabolic network is a
valued oriented graph. After its theoretical construction from the physical or biological
constraints, we will introduce realistic models for real data of the three different types
of metabolic networks.

Let us call the graph (V,E, f). Its vertices i ∈ V are the compartments, E ⊆ V ×V
is the set of oriented edges with n = |E|, and f = (fij)ij∈E is the vector of flow values
associated to edges. Precisely, ij = (i, j) ∈ E denotes the edge from compartment i
to compartment j and fij is the amounts of matter or energy transiting from i to j,
the so-called flow –or flux. In many situations, all masses Bi of the compartments can

4



be measured with accuracy, while the flows fij are much more difficult to evaluate.
Therefore, we will adopt here the standard viewpoint that masses are given and flows
are unknown.

The vector of flows f = (fij)ij∈E , has non negative components satisfying Kirchoff
law on all compartments, yielding the MBE∑

j∈N+(i)

fij −
∑

j∈N−(i)

fji = 0, i ∈ V,

where the successors and predecessors of compartment i are N+(i) = {j ∈ V : ij ∈ E}
and N−(i) = {j ∈ V : ji ∈ E}. Acquired knowledge on the network, coming from
field measurements, laboratory experiments or any other source, may yield additional
linear equations constraints on flows. All of them can be aggregated into

Af = b, (1)

where A is an m × n matrix and b an m-dimensional vector, with m the number of
linear equations. Note that we are only interested in the under-determined problem,
that is m < n: the knowledge on flows is not exhaustive, the solution is not unique.

Note that for all quantities to be well-defined, constraints for all the flows to be
positive have to be added, say, fij ≥ εij , for all i ∈ E, where the size of εij is to be
fitted to the range of fij . Other constraints imposed by acquired knowledge take the
form of bounds on linear combinations of the flows. In mathematical words, this sums
up to

Gf ≥ h, (2)

where G is a k × n matrix and h a k-dimensional vector, with k the number of
such inequations. Apart from the MBE involving several flows in each equation, most
constraints in trophic and urban networks involve only a small number of flows, and
matrices A andG are mainly composed of 0. This is all the more true in the biochemical
case where the inequality constraints are only bounds on the flows, so that G is of
dimension 2n × n, with only one 1 per row corresponding to a lower bound and one
−1 to an upper bound.

The set

S = {f = (fij)ij∈E ∈ Rn : fij ≥ εij , Af = b, Gf ≥ h}, (3)

of flows satisfying both constraints (1) and (2) is the intersection of hyperplanes and
half-spaces so is a convex polyhedron. In addition, (1) and (2) always induce bounds
on the flows, say

mij ≤ fij ≤Mij , ij ∈ E, (4)

where Rij = Mij −mij is called the range of the flow fij . Therefore S is a bounded
polyhedron – called a polytope.

The polytope S is a subset of Rn. Still, its dimension is n− ρ, where ρ is the rank
of A. In other words, S = f∗ + ÃS̃, where f∗ ∈ S is any admissible flow, Ã is the

5



n× (n− ρ)- matrix whose columns form a basis of the kernel of A, and

S̃ = {f̃ ∈ Rn−ρ : G̃f̃ ≥ h̃}, (5)

is the so-called reduced polytope, where G̃ = GÃ and h̃ = Gf∗ − h. Thus, up to an
affine transformation, the polytope S with empty interior in Rn is reduced to a full
dimensional polytope S̃ in Rn−ρ. This proves to be a corner stone of most sampling
methods.

We will conduct the comparison of packages on three different networks: a trophic
network in the English Channel and its aggregated version, an urban network for
nitrogen exchanges in Vienna and a biochemical network for Escherichia coli.
Example 1. A trophic network of a marine ecosystem at Courseulles-sur-mer, France,
in the English Channel, with 19 compartments and 144 flows from [27].

The ranges of the flows go from O(10−5) to O(102). The dimension of A is 25×144,
corresponding to the 19 MBE plus 6 equations, each involving only one flow –so the
values of these 6 flows are actually known. The dimension of G is 361× 144. Here 144
rows of this matrix ensure positivity –each consists in only 0 but for one 1, while the
other rows involve more than one flow and contain coefficients different from 1 or -1.
Once reduced, the polytope is of dimension 119 and its ranges goes from O(10−2) to
O(102).
Example 2. The trophic network of Example 1 aggregated according to a realistic
ecological point of view into a network of 6 compartments and 28 flows; see [2], where
all network constraints are detailed.

The ranges of the flows go from O(100) to O(102). The dimension of A is 6 × 28,
corresponding to 6 MBE, one for each compartment. The dimension of G is 72× 28,
of which 28 rows simply ensure positivity of the flows. The 44 other rows correspond
to more complex constraints each involving more than one flow. Once reduced, the
polytope is of dimension 22 with ranges going from O(100) to O(102).
Example 3. An urban model of nitrogen exchanges in Vienna megapolis with 13
compartments and 69 flows; see [14] and [20].

In[14], a LIM approach is considered to take into account the uncertainty on the
flows measurements. In this network, the ranges of the flows go from O(102) to O(108),
an artificial upper bound. The dimension of A is 16 × 69 with 13 MBE and 3 other
equations, each involving several flows. The dimension of G is 302 × 69. Indeed, 69
inequations ensure that the flows are bounded by 108, and 69 ensure that they are
positive –note that 138 actually appear because of duplicates due to the way the
model is declared. Then 91 inequations give more precise bounds on single flows, and
2 involve several flows. The reduced polytope is of dimension 53 with the ranges going
from O(106) to O(109).
Example 4. The core Escherichia coli metabolic model with 72 compartments
(metabolites) and 95 flows; see [28]. The biochemical reactions are based on biochem-
ical, genetic and genomic information, such as exact reaction stoichiometry, reaction
reversibility, or relationships between genes and proteins.

The ranges of the flows go from O(100) to O(103), an artificial upper bound. The
dimension of A is 72× 95 with 72 MBE. All rows of G, of dimension 190× 95, count

6



only one non null coefficient, corresponding to bounds on the flows: 95 rows contain
one −1 for upper bounds, while the other 95 contain one 1 for lower bounds. The
rank of the matrix A is 71, once equations hidden in inequations are added to the
constraints. These equations come from 8 flows with ranges 0. The reduced polytope
is of dimension 24 with all ranges of order O(102).

3 MCMC for sampling polytopes

Despite the simplicity of its implicit definition in (3), the polytope of admissible flows
is a complex, high dimensional, geometric object. Hence, its analytical description is
an unreachable goal. A commonly used alternative consists in exhibiting sets of points
taken at random in the polytope, obtained through the celebrated MCMC methods.

This section aims at presenting MCMC algorithms, together with some of their
implementations, that are of common use in the context of metabolic network studies.
An introductory discussion is proposed in Section 3.1 on the main points of attention
to take care of when using MCMC methods. Then we focus on the Hit and Run
algorithm and some of its variants in Section 3.2, and on two reflective Hamiltonian
MCMC algorithms, the Mirror walk (MiW) and the BillardWalk (BiW), in Section 3.3.
Section 3.4 will provide a unifying overview of three of these algorithms together
with their most recent available implementations, the R packages {limsolve} and
{volesti} and the Matlab toolbox {COBRA}, leading to the main innovation of this
paper, an updated implementation of MiW and BiW, that we call {samplelim}. Its
interface is in the R Statistical Software [31], but computation is handled in the C++
programming language as in {volesti}, which significantly reduces computation time.

Note that all MCMC methods discussed here generate points inside a set with
a non-empty interior. Hence, below, the ”polytope” is, unless explicitly stated, the
”reduced polytope” S̃ in (5) and not the original one of (3). For the sake of simplicity,
it will still be denoted by S, with dimension n (instead of n− ρ).

3.1 MCMC uniform sampling of polytopes

First, basic Monte Carlo approaches have been considered in the ecological literature;
see [22, 25]. Unfortunately, they fail to generate efficiently uniform samples in high
dimensional polytopes. Indeed, the ratio between the volume of S and the volume of
the smallest hyper-rectangle

∏
ij∈E [mij ,Mij ] that contains S generally decreases expo-

nentially fast with the number of dimensions, making the classical rejection method
inefficient.

As an alternative, numerous MCMC methods have been introduced for generating
samples drawn uniformly into a polytope. In all of them, an ergodic time-reversible
Markov chain is designed, with the desired asymptotic distribution –here, the uniform
distribution over the polytope. Thus a set of N0 candidate points in the polytope is
obtained by simulating the N0 first realizations –draws– of the chain, called the pilot
sample.

Such sets of points have two characteristics that are to be properly taken into
account in order to get adequate results. Obviously, the first coordinates of the Markov
chain generally do not follow its asymptotic distribution, so the first draws have to

7



be discarded. The number M of such draws, called the burn-in period, intuitively
represents the time to wait before convergence is quite achieved. Also, the successive
coordinates of a Markov chain are correlated, so a certain number of draws have to be
discarded after each drawn point before adding a next point to the returned sample.
This number T is called the thinning parameter. Thus, the actual number of retained
points from N0 iterations of an MCMC algorithm is

N1 ≃ (N0 −M)/T. (6)

In other words, from any pilot sample

f (1:N0) = (f (1), . . . , f (N0)), (7)

with elements for each flow f
(1:N0)
ij = (f

(1)
ij , . . . , f

(N0)
ij ), we obtain the actual burn-in

free and thinned N1-sample in the polytope

(f (M+1), f (M+T+1), . . . , f (M+(N1−1)T+1)). (8)

All MCMC methods require a starting point for the chain. This first point is
generally obtained by using a numerical solver. For instance, {limsolve} uses the LSEI
(Least Squares with Equalities and Inequalities) algorithm of [17] to find a particular
solution, whereas {volesti} computes the Chebyshev ball of the polytope and uses
its center as the starting point.

3.2 Hit and Run and its variants

The symmetric mixing algorithm nowadays known as the Hit and Run algorithm (HR)
was introduced by [33]. The basic principle is to randomly choose both a direction
to move forward (or backward) from a point of the polytope and a segment length
to generate another one. The induced Markov chain formed by the iteration of this
process is proven to converge to the uniform distribution in the polytope.

Precisely, in the HR procedure, from an initial point f (1), points f (2), . . . , f (N),
are iteratively built by repeating the same successive actions, of which Algorithm 1
presents the pseudo-code:
1. Choose a random direction di in the n dimensional space.
2. Determine the two intersection points I(i)− and I(i)+ between the line passing

through f (i−1) and directed by di, and the borders of the polytope.
3. Sample uniformly a point in the segment [I(i)−, I(i)+].
Generating a random direction at Step 1 means simulating a realization of the

uniform distribution on the unit sphere of Rn. The main point here is that the distri-
bution of the direction has to be symmetric (i.e., directions d and −d have the same
probability), so that the transition kernel of the underlying Markov chain is symmetric.

When the polytope is very anisotropic, HR needs many iterations to achieve a
uniform distribution of points. Indeed the convergence time or mixing time is of the
order O(n2R2

max/R
2
min), where Rmax/Rmin, called the sandwiching ratio of the body,

8



is the largest range of flows over the smallest. Examples 1 to 4 show that this ratio
may be quite huge.

Sampling directions utterly randomly leads to going into thin directions, thus
inducing a long time to sample the large ones. Indeed, the algorithm spends a lot of
time bouncing on closed borders of the polytope. This is a strong drawback of the
method, somewhat addressed by variants.

The CHR, also called Gibbs Sampler, proposed in [34], is similar to HR, except for
Step 1 to be replaced by:
1. Choose uniformly a random direction along one of the n dimensions.
The overhead per step for CHR with respect to HR is reduced from O(n2) to

O(n), since the update follows only coordinate directions. On the contrary, this leads
to extremely correlated samples and induces a high thinning parameter.

Introduced in [16], CHRR begins by a pre-processing step of rounding of the poly-
tope followed by a CHR exploration of the rounded polytope, before mapping samples
back to the original polytope. The rounding step consists in computing the maxi-
mum volume ellipsoid inscribed in the polytope and applying the transformation that
maps this ellipsoid to the unit ball. Note that a remarkable property of CHRR is its
guaranteed distributional convergence to the uniform; see [24] for the mixing time.

More recent versions of HR are the artificially centered hit-and-run (ACHR), and
its improved version optimized general parallel (OPTGP); see [19]. Still, CHRR is
found to perform the best for sampling LIM polytopes; see [9] and [19] and the
references therein.

3.3 Reflective MCMC Algorithms

A well-documented pitfall of HR-like algorithms is the important auto-correlation
of the samples; see [29] and the reference therein. This is particularly true for
highly anisotropic LIM polytopes, with narrow angles inducing regions in which HR
algorithms get stuck.

Reflective Hamiltonian MCMC algorithms rely on a reflection mechanism on the
boundaries in order to avoid these traps and thus reduce auto-correlation; see [6] and
the references therein. We will focus on two of them, the MiW of [36] in ecology, and
the BiW in [29], independently designed but relying on a similar principle. The BiW

Algorithm 1 Hit and Run algorithm pseudo-code

Require: f (1), an initial point in S.
Ensure: f (1:N), a sequence of N points in S.
for i ∈ 2 : N do
di ← uniformly sampled in the unit sphere of Rn.
λ(i)+ ← min{λ > 0 : f (i−1) + λdi ∈ Fr(S)}, I(i)+ = f (i−1) + λ(i)+di.
λ(i)− ← min{λ > 0 : f (i−1) − λdi ∈ Fr(S)}, I(i)− = f (i−1) − λ(i)−di.

f (i) ← uniformly sampled in [I(i)+, I(i)−].
end for

9



Fig. 1: Reflection of the path in the MiW and BiW algorithms

algorithm has been implemented in [4] for sampling polytopes in order to estimate
their volumes.

As in HR, the general principle of MiW and BiW consists in drawing a direction
and a path length. However, if the trajectory reaches a border of the polytope before
the random path length is achieved, then it is reflected on this border, moving forward
this reflected direction for the remaining distance. This is repeated until the trajectory
finally reaches a point in the polytope; see Figure 1. Then, new direction and path
length are randomly chosen, and so on. One major difference between HR and reflective
algorithms is that the latter needs a parameter to be fitted, called the jump length of
the algorithm.

Algorithm 2 Reflective Hamiltonian algorithms MiW and BiW pseudo-code

Require: f (1), an initial point in S.
Ensure: f (1:N), a sequence of N points in S
for i ∈ 2 : N do
di ← sampled in unit sphere of Rn.
Li ← a random length for the trajectory.
d← di (initial direction to follow)
L← Li (total length of the trajectory inside the polytope)
f ← f (i−1)+dL

while f ̸∈ S do
λ∗ ← min{λ > 0 : f + dλ ∈ Fr(S)}
z ← the normal vector to the hyperplan that reflects the trajectory
f∗ ← f + dλ∗ (intersection point in the hyperplan)
d← (d− 2dT zz) (update direction to the reflected one)
L← (L− λ∗) (update the length of trajectory)
f ← f∗ + dL (update candidate)

end while
f (i) ← f

end for

10



The difference between MiW and BiW lies in the determination of both the
direction d and the length L, also different from HR; see Algorithm 2 for details.

In the MiW of [36], a vector v is drawn from a centered non correlated Gaussian
vector V = (V1, . . . , Vn) with VarVi = σ2

i . The vector σ2 = (σ2
1 , . . . , σ

2
n) is called the

jump length. Then d and L are obtained as the direction and norm of v. The distri-
bution of the sampled points is stated in [36] to converge to the uniform distribution
on the polytope.

It is worth noting for sound comparison with the BiW, that when σi = σ for all i,
then the squared norm ||V ||2 is σ2χ2(n) distributed, and hence its root L = ||V || has
a Nakagami distribution with expectation and variance

EL =
Γ((n+ 1)/2)

Γ(n/2)

√
2σ, VarL = σ2

[
n− 2

Γ((n+ 1)/2)2

Γ(n/2)2

]
.

Thanks to the law of large numbers, L ∼
√
nσ for large n, and VarL converges to zero.

In the BiW of [29], the direction is drawn from the uniform distribution on the
unit sphere of Rn and the path length is

L = τ log (1/U), (9)

where U is drawn from a uniform distribution on [0, 1], and the parameter τ > 0 is
called the jump length too. Note that L has an exponential distribution with parameter
1/τ , with expectation τ and variance τ2, whatever be the dimension n of the polytope.
The distribution of the sampled points is proven in [29] to converge to the uniform
distribution on the polytope.

In both procedures, a major issue may occur depending on the choice of the jump
length. Too small, a very large number of points would be needed to correctly sample
the whole polytope. Too large, it would result into an important number of reflections
and thus unnecessarily slow the process.

3.4 Implementation variants

According to the thorough studies [9] and [19], the CHRR is the best of HR variants for
sampling LIM polytopes. So we have chosen to compare only CHRR to the reflective
MiW and BiW. Available implementations of these algorithms, in various languages,
generally addressed to a specific community, differ in their performances or outputs.

The implementation of CHRR from the MatLab {COBRA} toolbox [16] is, up to
our knowledge, the only available one for sampling LIM polytopes. The function
chrrExpSampler() takes a COBRA model structure as input and outputs the desired
number of points. The number of iterations and the thinning parameter can be cho-
sen. Unfortunately, this only works for upper and lower bounds on the flows, that is
for biochemical models to which the implementation has been fitted. It does not work
for inequations combining flows, which prevents its use for the more complex trophic
or urban networks.

In contrast, [35] proposed, together with the MiW algorithm, an R package called
{limsolve}, directed to sample LIM polytopes for trophic ecosystems. The function

11



xsample() takes one point of the polytope as input, and yields a set of randomly
sampled points in the polytope as output. Among other parameters, the number of
iterations and the burn-in period can be chosen. Three different random walks are
implemented: HR, CHR and MiW. The latter, that was new, is also the most com-
monly used. An associated jump length vector can also be chosen, with default value
the vector with coordinates one tenth of each range of the reduced polytope, easily
computed through the function xranges(). This R package also provides annex func-
tions that are of special interest for researchers in ecology. In particular, the function
setup() takes as input a declaration file describing the LIM constraints and outputs
the matrix representation. The declaration files are written in a more natural language
than matrices and vectors, which makes the package easy to use for practitioners,
furthermore thanks to recent improvements in [11]. Unfortunately, {limsolve} is
extremely slow, mainly because it is entirely coded in R. Note also that, according to
our study, the function xranges() sometimes yields absurdly large ranges, that make
the default jump length vector unreliable and lead to even longer computation times.

For BiW, we use the R package {volesti} of [3], whose prime purpose is to sample
general polytopes in order to approximate their volume. Still it can be used for LIM
polytopes for all types of metabolic models; see [4]. The language R is here only
an easy-to-use interface, while the computation part is coded in C++. Since C++
is a low level programming language –a language whose functions are closer to the
processor’s instructions, this leads to way more efficient computation. The function
sample points() takes as input the inequations defining the reduced polytope and
the number of points to be sampled. Although polytopes may be defined through
several representations, we will stick to the definition (5), and hence to the function
Hpolytope(). While CHR, HR, and BiW can all be chosen, the latter is the default
when targeting a uniform distribution. The starting point of the chain, the thinning
parameter –there called walk length, the burn-in period, and the jump length τ in (9)
are to be chosen. By default, the thinning parameter is set to 1, the burn-in period
to 0, and the initial point f (0) is the center of the Chebyshev ball –the largest ball that
fits inside the polytope– with radius r, obtained through the function inner ball().
The default value for τ is

τ = 4
√
nr. (10)

Since it is of the order of the smallest range, this may lead to a poor exploration of
the largest ranges, especially when the sandwiching ratio is large.

When analyzing the source code of the CRAN version of {volesti}1, we uncovered
two sticking points. First, the path length is said to be sampled as L = τU , instead of
equation (9) as in [29]; this might be due to a typographical error since no justification
is given for the change. Second, if the bound on the number of reflections typical of the
BiW is reached, the point generated at the previous iteration is simply added to the
returned sample before computing a new direction and length, leading to duplicates
in the returned sample, thus clearly not uniform.

More recently, [4] proposed a multiphase Monte Carlo sampling algorithm
addressed to the metabolic biochemical community. Its backbone is an accelerated
variant of the BiW, performing both point and direction updates more efficiently by

1Version: 1.1.2-7, Date: 2023-09-18

12



Package Function Walk Language Community Input Ref.

{limsolve} xsample() MiW R
trophic
systems

polytope [35]

{COBRA} chrrExpSampler() CHRR MatLab
biochemical
systems

polytope [16]

{volesti} sample points() BiW
C++ with
R interface

generic
reduced
polytope

[3]

{samplelim} rlim()
MiW
BiW

C++ with
R interface

generic+t polytope

Table 1: The four considered implementations of MCMC algorithms

storing computations from the previous iteration, and including a preprocessing step
involving the normal vectors of the facets. A multiphase part is also added, that is a
sequence of sampling phases, each leading to a rounding of the original polytope. The
efficiency of BiW is thus improved from one phase to the next, and the convergence
to the uniform distribution accelerates. Unfortunately, this new algorithm is not yet
a part of the CRAN version of {volesti} and therefore we have not been able to
consider it for comparison.

We have taken into account all the qualities of the above implementations in order
to produce a more efficient one. Indeed the new package {samplelim} combines the
performance of {volesti} and the convenient features of {limsolve}. It keeps their
shared ability to handle all types of LIM polytopes, which the MatLab implementation
chrrExpSampler() of CHRR fails to do. Technically, {samplelim} is built from a
fork of {volesti} version 1.1.2-3, of which all functions non necessary for sampling
LIM polytopes have been removed. On the one hand, {samplelim} uses the same
C++ structure as {volesti} in order to perform efficient computations of the MiW
inside the polytope. Moreover, it allows one to choose between BiW and MiW. On
the other hand, it contains all the annex functions available in {limsolve} in order
to facilitate its practical use. Also {samplelim} uses the {Rglpk} package to solve the
linear systems leading to the computation of the theorical ranges of each flow; this
solves the issue of xranges() of {limsolve} using {lpSolve} that sometimes returns
absurd values. In the BiW version of {samplelim}, we have also rectified one of the
two sticking points noted above in the CRAN version of {volesti}: the path length
is sampled according to equation (9), with a logarithm as prescribed in [29].

For easy comparison, Table 1 summarizes for each of the four packages above:
� the random walk used for exploring the polytope;
� the programming language in which the package is developed;
� the addressed community, where Generic stands for all types of metabolic
networks, and generic+t indicates functions specific to the trophic systems
community on top of the generic framework;

� the polytope given as input to the sampling function, either the general polytope
defined in (3) or the reduced one in (5);

� the paper associated to the package.

13



4 Comparison of implementations on real data

This section aims at comparing through simulation some implementations of the
MCMC sampling algorithms described in Section 3. Precisely, we focus here on the
comparison between the updated implementation of MiW and BiW provided in the R
packages {limsolve} with the function xsample(), {samplelim} with rlim(), and
{volesti} with sample points(), and with the CHRR implementation of the library
{COBRA} of MatLab with the function chrrExpSampler().

Computation time and sampling performances are the two essential aspects of sam-
pling functions to take into account for a sound comparison. Clearly, they do not evolve
independently. Generically speaking, higher computation time yields better sampling
performances, but their relationships take various forms, depending, in particular, on
the polytope shape and on the parameters of the sampling functions –here the jump
lengths of MiW and BiW. Exploring exhaustively these relationships for the three
sampling functions would require a huge, prohibitive, number of simulations.

Instead, in Section 4.2, we first compare rlim() with xsample(). This comparison
aims at showing that both these MiW implementations lead to the same quality of
samples, but that rlim() is much faster. Since the very long computation time of
{limsolve} hinders its use on large real data, the comparison is performed only on
the aggregated trophic model of Example 2. The aim of Section 4.3 is to compare
more thoroughly the implementations of MiW in {samplelim}, BiW in {volesti},
and CHRR in {COBRA}. Precisely, rlim() and sample_points() will be compared to
chrrExpSampler() for sampling the polytope associated to the biochemical network
of Example 4. Inequlity contrainsts of Examples 1 and 3 involve combinations of
several flows, that are not supported by chrrExpSampler(). Hence, only rlim() and
sample_points() will be applied in both examples, and their performances compared.

In Sections 4.2 and 4.3, the sampling performances will be investigated through
a methodology inspired by [9] and [19] of convergence and uniformity statistical diag-
nostics, presented in Section 4.1: the Raftery-Lewis and Geweke diagnostics and the
Effective Sample Size, and a new numeric index that we call Range Coverage.

When comparing computation time performances, the CPU-time is used. All sam-
ples have been generated using a computer with an Intel Core i5 processor (i5-8600K,
3.60GHz× 6) and 15.5Go RAM. The R session used version 3.10.3 of both BLAS and
LAPACK.

4.1 Sampling performance diagnostics

The Raftery and Lewis (RL) and Geweke diagnostics, and the Effective Sample Size
(ESS) are all diagnostics of convergence. They are applied to the sequences of draws,
and performed separately for each flow, inducing some insight on the uniformity of
the distribution. They are completed by the new index Range Coverage (RC) based
on the ranges of the flows. Additional diagnostics can be found in [9] and [19], such
as the Hellinger distance or the Interval Based Scale Reduction Factor. Several visual
diagnostics are also used in [11], with comments on the ambiguity of their interpre-
tation. The diagnostics that we selected will prove sufficient for discriminating the
performances of the different implementations for the mere purpose of comparison.

14



4.1.1 The Raftery and Lewis diagnostics

The RL introduced in [32] computes estimates of the thinning parameter, the burn-in
period, and even the number of draws to be performed in an MCMC process. Its basis
is that a correct sample of the objective distribution should give precise estimates of
its quantiles.

For any pilot N0-sample f
(1:N0)
ij of a given flow fij in (7) and T ∈ N∗, the sequence

ST defined by

ST,l = 1]−∞,q̂]

(
f
(1+Tl)
ij

)
, l ≥ 0,

is a sequence of Bernoulli variables indicating whether each T -spaced sampled flow

f
(1+Tl)
ij is smaller than some quantile q̂ or not. The RL diagnostics processes as follows:
1. Compute the empirical estimator q̂ of the quantile q of fij of order α ∈ (0, 1),

where α is to be set by the user.
2. Let T be the smallest integer such that the amount of auto-correlation in ST is

small enough to be overlooked; precisely, such that the penalized likelihood ratio
between the order 2 and order 1 Markov models for (ST,l) is negative.

3. Set M = TM ′, where M ′ is the smallest integer such that the M ′-th power PM ′

of the (empirical) transition matrix P of ST is close enough to its limit, whose
both rows are (α, 1 − α). The closeness criteria is ∥eiPM ′ − (α, 1 − α)∥ < ϵ, for
i = 1, 2, where e1 = (1, 0), e2 = (0, 1), ∥ · ∥ is the euclidean norm on R2, and
ε > 0 is a parameter to be set by the user.

4. Set NRL
0 = M + TN ′, where N ′ is computed as follows. For any given N ′, the

central limit theorem for Markov chains applied to the vector (ST,l)l=0,...,N ′−1

yields that the empirical mean 1
N ′

∑N ′−1
l=0 1]−∞,q̂]

(
f
(1+Tl)
ij

)
belongs to an interval

[α−r, α+ r] with probability pN ′ that increases to 1 as N ′ goes to infinity, where
the value of r is to be set by the user. The value to be retained for N ′ is the
smallest integer such that pN ′ is greater than some prescribed value p close to 1.

The integers T and M returned by the RL diagnostics are estimates of the thinning
parameter and burn-in period to be applied to the pilot sample. The integer NRL

0

is an estimate of the size of a pilot sample to draw for ensuring a good precision in
estimating a prescribed quantile of the flows.

From a computational point of view, the parameters T , M , and NRL
0 are derived

for all flows at once thanks to the function raftery.diag() of the R package {coda}.
This requires five arguments: the pilot sample of points, the order α of the quantile to
be estimated at first step, the tolerance level ε, the tolerance r required on the order
of the quantile and the probability confidence level p. Note that the same function
determines an estimate Nmin

0 of what would be the size of an idealized pilot sample,
i.e., without correlation. It is determined as in Step 4 above, by assuming that (ST,l)
is an independent sequence instead of a Markov chain of order 1. We will not use this
feature below, since it is not pertinent for comparison purposes.

Finally, the dependence factor

I =
NRL

0

Nmin
0

(11)

15



assesses the extent to which auto-correlation inflates the required sample size; values
larger than 5 indicate a strong auto-correlation.

In Sections 4.2 and 4.3 below, for the RL diagnostics, we have chosen the (default)
parameters α = 0.025, ε = 0.001, r = 0.005, p = 0.95. Note that the RL diagnostics
will here only be used to compare the quality of the different pilot samples through
the values of M , T , NRL

0 and I in (11) and not to perform further sampling of size N1.

4.1.2 The Geweke diagnostics

The Geweke diagnostics introduced in [13] is a classical statistical test of comparison
of means, applied to prescribed proportions of the first and last points generated by an
MCMC algorithm, say 0 < p1 < 1 and 0 < p2 < 1, with p1 + p2 < 1. If the difference
of means is too large, the null hypothesis of convergence is rejected.

For any pilot N0-sample f
(1:N0)
ij of a given flow fij generated by an MCMC

procedure,

Z =
f
(2)

ij − f
(1)

ij√
se

(1)
ij + se

(2)
ij

is the standardized difference between the two empirical means, say f
(k)

ij =
1

npk

∑Npk

l=1 f
(l)
ij for k = 1, 2, of the first and last parts of the sample, where se

(1)
ij and

se
(2)
ij are the standard errors. Under the null hypothesis, Z is asymptotically normal.

Thus, the convergence of the algorithm is rejected if |Z| exceeds a prescribed quantile
of the normal distribution, usually 1.28 corresponding to a significance level of 0.2. In
practice, several independent pilot samples are drawn and the number of times the
null hypothesis that the draws are stationary is rejected is computed. The number of
rejections over the number of pilot samples is theoretically close to 0.2, corresponding
to the significance level of the test.

In Sections 4.2 and 4.3 below, parameters for the Geweke diagnostics have been
set to p1 = 0.1 and p2 = 0.5, with quantile 1.28. A number of rejections of 2 out of 10
at most is expected for good sampling.

4.1.3 The Effective Sample Size

The effective sample size (ESS) of a correlated sample obtained through any procedure
is the theoretical number of independent draws that would yield the same variance;
for the MCMC procedure, see, e.g., [10]. In mathematical words, for any N -sample

f
(1:N)
ij of the flows,

ESS(f
(1:N)
ij ) =

N

1 + 2
∑N−1

k=1 ρk(f
(1:N)
ij )

,

where ρk(f
(1:N)
ij ) = corr(f

(1:(N−k))
ij , f

((1+k):N)
ij ) is the auto-correlation of order k of

f
(1:N)
ij .

16



n rlim() xsample()

50 0.217 0.271
100 0.219 0.367
500 0.256 1.117
1 000 0.297 2.079
5 000 0.615 9.818
10 000 1.011 19.396
50 000 4.163 96.101

Fig. 2: Computation time of xsample() (dotted line) and rlim() (continuous line)
in Example 2 (time in seconds).

This score reflects the amount of auto-correlation of the MCMC draws: the closer
the ESS is to N , the less the MCMC draws are auto-correlated. Up to our knowledge,
no numeric bound is available in the literature to assess the quality of the score.

4.1.4 The Range Coverage

The bounds mij and Mij on the flows in (4) can be accurately computed from the
matrices A et G by using a linear programming solver. This yields theoretical ranges
Rij = Mij −mij for all the flows.

Here we propose to compute empirical estimates of these ranges from a sample

f
(1:N)
ij , and to compare them to the theoretical ones. Precisely, let us define the range
coverages as

RCij =
M̂ij − m̂ij

Mij −mij
, (12)

where m̂ij = minl∈1:N f
(l)
ij and M̂ij = maxl∈1:N f

(l)
ij , for ij ∈ E.

This produces a new index RC for assessing sampling performance. Quite obviously,
the closer these rates are to 1, the wider is the percentage of area explored in the
polytope.

4.2 Comparison of the functions rlim() and xsample()

We will show here that rlim() leads to the same quality of samples as xsample(),
but much faster. Due to the very long computation time of xsample(), this compar-
ison can only be conducted on relatively small models, here the aggregated trophic
model of Example 2. The comparison is divided in two distinct parts, one to compare
computation time and one to compare the quality of samples.

The first part consists in comparing the computation time2 needed to obtain pilot
samples of size N0 varying from 50 to 50 000, when using the default jump length, that
is the same for both implementations. For each sample size, 10 replicates are computed.
Figure 2 presents the mean computation time, expressed in seconds, associated to

2By computation time, we mean CPU-time, i.e., the amount of time the CPU cores of the computer
specifically spend on the computations.

17



RL diagnostic #G

Flow Algorithm M T NRL
0 Nmin

0 I rej.
rlim() 9.3 2.7 11 900 3 750 3.170 3

1
xsample() 10.2 3.0 13 900 3 750 3.710 3

rlim() 1.9 1.0 3810 3750 1.020 0
2

xsample() 1.9 1.0 3 760 3 750 1.000 1

rlim() 1.9 1.0 3 690 3 750 0.984 2
3

xsample() 1.9 1.0 3 680 3 750 0.981 3

rlim() 2.0 1.0 3 750 3 750 1.000 3
4

xsample() 1.9 1.0 3 720 3 750 0.992 3

rlim() 10.1 2.9 13 200 3 750 3.520 3
5

xsample() 11.3 3.1 14 600 3 750 3.890 3

rlim() 6.9 2.3 10200 3750 2.720 2
6

xsample() 7.8 2.6 11 400 3 750 3.030 4

rlim() 10.3 2.8 12 700 3 750 3.380 3
7

xsample() 10.7 2.9 13 400 3 750 3.570 3

rlim() 2.0 1.0 3 650 3 750 0.975 2
8

xsample() 2.0 1.0 3 680 3 750 0.982 3

rlim() 2.0 1.0 3 730 3 750 0.996 5
9

xsample() 1.9 1.0 3 730 3 750 0.995 3

rlim() 1.9 1.0 3 790 3 750 1.010 3
10

xsample() 1.7 1.0 3 790 3 750 1.010 2

rlim() 1.9 1.0 3 780 3 750 1.010 4
11

xsample() 1.9 1.0 3 790 3 750 1.010 1

rlim() 6.3 2.1 8 860 3 750 2.370 2
12

xsample() 6.9 2.3 9 740 3 750 2.600 4

rlim() 7.6 2.4 10 200 3 750 2.730 2
13

xsample() 7.4 2.5 10 700 3 750 2.870 4

rlim() 8.0 2.6 11 500 3 750 3.080 4
14

xsample() 9.0 2.8 12 500 3 750 3.320 2

RL diagnostic #G

Flow Algorithm M T NRL
0 Nmin

0 I rej.
rlim() 1.9 1.0 3 760 3 750 1.000 2

15
xsample() 1.9 1.0 3 740 3 750 0.997 1

rlim() 1.9 1.0 3 740 3 750 0.998 3
16

xsample() 2.0 1.0 3 750 3 750 1.000 3

rlim() 1.9 1.0 3790 3750 1.010 1
17

xsample() 1.7 1.0 3 740 3 750 0.998 0

rlim() 1.9 1.0 3 730 3 750 0.994 2
18

xsample() 2.0 1.0 3 730 3 750 0.996 0

rlim() 1.9 1.0 3 730 3 750 0.996 1
19

xsample() 1.9 1.0 3 730 3 750 0.998 2

rlim() 1.9 1.0 3 750 3 750 1.000 3
20

xsample() 1.9 1.0 3 730 3 750 0.994 3

rlim() 2.0 1.0 3 680 3 750 0.982 2
21

xsample() 1.9 1.0 3 680 3 750 0.982 5

rlim() 1.9 1.0 3 700 3 750 0.987 2
22

xsample() 1.9 1.0 3 700 3 750 0.988 3

rlim() 1.7 1.0 3 780 3 750 1.010 1
23

xsample() 1.8 1.0 3 720 3 750 0.992 2

rlim() 1.9 1.0 3 770 3 750 1.000 2
24

xsample() 2.0 1.0 3 780 3 750 1.010 0

rlim() 1.6 1.0 3 770 3 750 1.000 1
25

xsample() 2.0 1.0 3 760 3 750 1.000 2

rlim() 1.8 1.0 3 780 3 750 1.010 3
26

xsample() 1.9 1.0 3 750 3 750 1.000 2

rlim() 1.9 1.0 3 770 3 750 1.010 3
27

xsample() 2.0 1.0 3 720 3 750 0.994 0

rlim() 2.0 1.0 3 720 3 750 0.992 3
28

xsample() 1.8 1.0 3 730 3 750 0.995 2

Table 2: Aggregated results of the RL diagnostics and Geweke number of rejec-
tions of xsample() and rlim() for 10 replicates of 20 000 points in the polytope
of Example 2.

the 10 replicates for each sample size. Clearly, rlim() outperforms xsample() by a
factor close to 10 for sample sizes greater than 1 000. This is essentially explained
by the low-level optimized implementation of rlim() in C++ compared to the high-
level implementation of xsample() in direct R programming. The performance gap
between C or C++ and R is a widely discussed topic on developers blogs, especially
in the MCMC community; see, e.g. [21, 37], where examples are detailed for which
the outperformance factor goes from 50 to 300. Hybrid approaches using seamless
C++ integration tools for R, as used in {samplelim}, offer substantial performance
improvements while preserving the easy-to-use interface of R.

Additional simulation, not included here, suggests that the speed difference
between rlim() and xsample() increases with the size of the jump length and also
with the complexity, dimension, and shape, of the polytope. They confirm com-
ments in [9], where the authors failed to use xsample() on most real-size metabolic
biochemical systems, due to unreasonable computation time.

The second part of the comparison between xsample() and rlim() concerns sam-
pling performances, based the diagnostics and indexes presented above in Section 4.1.

18



rlim()

xsample()

(a) Mean ESS ratios of the 28 flows

rlim()

xsample()

(b) Mean RC of the 28 flows

Fig. 3: Means of the 10 replicates of rlim() in blue and xsample() in green.
The categories of compartments (on the left) for Example 2 are described in [2]

First 10 replicates of a pilot sample of size N0 = 20 000 are simulated with each
function. For the RL diagnostics, M , T , NRL

0 and Nmin
0 are aggregated by taking the

maximum value of the 10 samples, while the RL autocorrelation factor I is computed
as their mean. The results of the Geweke diagnostic are the number of pilot samples
among the 10 that failed the Geweke test (|Z| > 1.28). These scores are presented in
Table 2, while the ESS and RC given in Figure 3 are the means of these indexes on
the 10 samples.

These diagnostic outputs attest that both xsample() and rlim() yield MCMC
samples of the polytope of Example 2 with similarly good convergence and auto-
correlation properties. Small values for both the thinning parameter T and index I of
RL diagnostics and the high values of ESS ratios for a large majority of flows indicate
moderate auto-correlations. Small values of the burn-in period M , and the number
of Geweke rejections close to the expected 2, that is 2.29 for xsample() and 2.39
for rlim(), indicate that convergence to the limit distribution is a statistically sound
assumption even without discarding the first points of the pilot sample. The mean
range coverages, with no RC lower than half the theorical range, indicate that an
important part of the polytope has been explored. Further, these diagnostics highlight
the very close behavior of xsample() and rlim(), since both lead to very similar
performance results on all flows. The small residual differences may simply originate
from the difference of the used pseudo-random number generating processes.

4.3 Comparison of the functions rlim(), sample points() and
chrrExpSampler()

This section aims to compare the sampling performances of rlim() (MiW in
{samplelim}) with the functions sample points() (BiW in {volesti}) and
chrrExpSampler() (CHRR in {COBRA}). We will consider comparison on the basis of
similar computation times: the parameters of the algorithms for the studied examples

19



will be tuned in order for the simulation of a fixed number of points of the polytope
to take the same time for the three functions. Then the quality of the samples will be
compared. Since the CHRR implementation only allows for lower and upper bounds
on the flows, its comparison will be possible only on the biochemical model of Exam-
ple 4. First, the two others will be compared on the trophic model of Example 1 and
the urban model of Example 3.

Both MiW and BiW depend on jump lengths, that have an important impact on
the computation time and the quality of the sample. In sample points(), the default
value of the jump length τ is given by (10), while for rlim() the default jump length σ
is one tenth of the vector of the reduced polytope ranges. Comparing results obtained
for a vector parameter with respect to a scalar one turns out to be difficult to handle.
Fortunately, for all σ = (σ1, . . . , σn) we have been able to determine numerically a
scalar value σ such that (σ, . . . , σ) leads to a similar computation time for rlim(),
with similar sampling performances; for the sake of shortness, these comparison results
are not given here. This replacement questions the choice of a vector jump length in
MiW with respect to a scalar one in BiW. Yet, since it is an open question to find a
closed-form expression for σ as a function of σ, the easy-to-compute vector value is to
be favored by practitioners. For the purpose of comparison, σ will below be replaced
by the corresponding computed σ. In other words, we will consider dual values τ and
σ leading to similar computation times for rlim() and sample points(), meaning
that only the quality of the output samples will remain to be compared.

Further, MiW and BiW algorithms then differ mainly in the choice of the dis-
tribution of the path length L: Nakagami for MiW, and exponential for BiW; see
Section 3.3. The path length value directly impacts the number of reflections of the
trajectories, while the computation time is roughly a linear function of the number of
reflections. Thus, we expected that, for a similar computation time, the path length
mean would be essentially similar, and hence the samples produced by rlim() and
sample points() would present similar qualities. Still, the sampling performances of
the latter appear to be highly penalized by the included bound on the maximal num-
ber of reflections. Practically, for large values of τ , the probability that a trajectory
exceeds the maximal number of reflections increases and may get close to 1; for these
trajectories, the returned sample point is then the previous point. This often happens
in the simulated sample, resulting in very poor sampling performances with respect
to all statistical indexes.

The following three-step procedure will be applied for the comparison to highlight
above comments:
Preparation step. For each pertinent example and sampling function, we simulate 10
replicates of samples of moderate size 1 000, for 30 different values of τ and σ and
record the corresponding computation times. This allows us to empirically identify
values of τ and σ with similar computing times, that we will call dual values. Under the
reasonable assumption that the computation time grows linearly with the number of
points to sample, sampling larger sized samples for dual values will take similar times.
Selection step. We compute three values σ dual to the following values of τ :

� the default value (10) for the reduced polytope;
� the value with the highest global sampling performances in the preparation step;

20



Algorithm Jump Comp. M NRL
0 T I # Geweke ESS Range Cov.

functions lengths times (s) (max) (max) (mean) (mean) rej. (mean) (mean) (mean)
sample points() τ = 7.8× 10−4 (default) 1.46 13 803 1 115 920 14 78 7.98 139 0.06

rlim() σ = 5× 10−5 1.74 1 045 939 525 15 80 8.06 194 0.06
sample points() τ = 0.7 190 929 1 060 313 15 45 6.41 1 140 0.41

rlim() σ = 0.03 180 866 641 974 17 47 5.90 1 588 0.45
sample points() τ = 100 1 120 15 178 3 396 166 1 433 7.10 4 0.08

rlim() σ = 0.2 1 190 1 329 567 356 14 27 5.64 4 151 0.58
rlim() σ = 1.5 9 166 811 609 165 12 8 3.79 9 961 0.72

Table 3: Comparison of sample points() and rlim() on the trophic network of
Example 1

� a value large enough to get a high proportion of trajectories whose number of
reflections exceeds the upper bound. This value is selected empirically during the
preparation step.

Simulation step. For each of the couple dual values, we simulate by using each sampling
functions 10 samples of size 20 000. For each replicate, the convergence and uniformity
diagnostics of Section 4.1 are performed. The results are aggregated first by a mean
of the 10 replicates, then either by mean or a maximum of the flows, according to the
index. This results into a single score value for each index and each sampling function.

Table 3 and 4 and the four first rows of Table 5 show the aggregated diagnostics
results for rlim() and sample points() for Examples 1, 3 and 4. The three first
rows correspond to the three choices of dual values. The fourth one corresponds to
large values of σ leading to better diagnostic results than the three dual values. The
last row of Table 5 shows the comparison with chrrExpSampler() for Example 4, for
which the jump lengths τ and σ of rlim() and sample points() are chosen to lead
to similar computation times for the three functions.

4.3.1 Comparison of rlim() and sample points() on the trophic
model of Example 1

This model is the more complex considered in this paper, with linear inequations
involving several flows.

The very small default value τ of sample points(), close to 7.8 × 10−4, leads to
a poor sampling of the polytope, see Table 3. The default value σ of rlim() leads to
very satisfactory samples but takes way too long to be computed, about 20 hours for
20 000 solutions.

Above a jump length treshold, precisely τ = 1 here according to the preparation
step, the samples returned by sample points() show a drop in quality, a behavior
that rlim() does not share.

Table 3 shows the default value τ = 7.8× 10−4, the optimal value according to the
statistical indexes τ = 0.7, and a value above the critical threshold, precisely τ = 100
for an easily noticeable effect. The dual jump lengths for rlim() chosen to yield the
same computing times are respectively σ = 5× 10−5, σ = 0.03 and σ = 0.2.

The sampling performances of sample points() for τ = 7.8×10−4 and rlim() for
σ = 5× 10−5 are not significantly different. Only the burn-in period M and the pilot
sample size NRL

0 recommanded by the RL diagnostics really differ, both to the benefit
of rlim(). The same is true for τ = 0.7 and σ = 0.03. In all cases, the results of the

21



Algorithm Jump Comp. M NRL
0 T I # Geweke ESS Range Cov.

functions lengths times (s) (max) (max) (mean) (mean) rej. (mean) (mean) (mean)
sample points() τ = 2 600 (default) 0.37 558 751 242 12 75 6.96 509 0.30

rlim() σ = 200 0.42 755 1 014 509 12 83 6.68 697 0.30
sample points() τ = 106 78 549 479 050 15 16 7.12 2 825 0.81

rlim() σ = 6× 104 70 495 579 383 12 16 4.06 7 035 0.80
sample points() τ = 107 220 777 1 228 831 2 132 7.87 4 0.10

rlim() σ = 2× 105 228 472 433 045 15 14 3.54 10 590 0.85
rlim() σ ≈ 3× 106 (default) 3 703 25 31 601 6 2 2.20 16 182 0.98

Table 4: Comparison of sample points() and rlim() on the urban network of Exam-
ple 3

tests are way under what is required for good samples, with in particular, a number
of Geweke rejections of 6.

For τ = 100, the sampling performances of sample points() drop significantly,
with much lower quality than rlim() with the dual σ = 0.2. The recommended
thinning parameter T returned by the RL diagnostic of 1 for all flows is hard to
interpret; it may result from a very large number of duplicates in the sample. Note
that rlim() with the dual σ = 0.2 leads to way better sampling performances.

At the cost of a longer computation time, a greater jump length for rlim() always
yields better sampling performances according to all indexes. See Table 3, where σ =
1.5 leads to the best results, but at the cost of a computation time of about 2.5 hours.

4.3.2 Comparison of rlim() and sample points() on the urban
model of Example 3

Again, we will compare the sampling performances for jump lengths leading to similar
computation times on this network of middle complexity. For sample points(), the
default τ = 2 600, the optimal value of the preparation step according to all indexes
τ = 106, and a larger value leading to duplicates in the returned samples, say τ = 107,
lead to choose for rlim() respectively σ = 200, σ = 6 × 104 and σ = 2 × 105. The
comparison is summarized in Table 4, where the default jump length σ ≈ 3 × 106 of
rlim() is also presented.

For the default jump length τ = 2 600 and the dual σ = 200, close values are
obtained. Both samplings are of very poor quality with a high autocorrelation, I ≈ 80,
a number of Geweke rejections of 7, low ESS and RC.

For τ = 106, the autocorrelation drops to I = 16, and both ESS and RC are higher,
with especially RC≈ 0.8. The results of the Geweke test are no better than with the
default τ . On the other hand, for the dual σ = 6× 104, rlim() leads to a better mean
ESS of 7 035 compared to 2 825 for sample points(), and a better number of Geweke
rejections of 4 instead of 7.12, the value of the other indexes being similar.

For τ = 107 and σ = 2× 105, the value of all indexes are clearly better for rlim().
Again, note the hard to interpret low value of the thinning parameter T returned
by the RL diagnostic on samples obtained with sample points(). According to all
indexes, the sampling performances of sample points() are really bad: absurdly high
I = 132, number of Geweke rejections close to 8, and very low ESS and RC. In contrast,
rlim() ouputs samples of way better quality even if still not what is to be required.

Finally, for rlim() with the default jump length σ , the sampling performances are
really good, and the computation time not unreasonable, about one hour for a sample

22



Algorithm Jump Comp. M NRL
0 T I # Geweke ESS Range Cov.

functions lengths times (s) (max) (max) (mean) (mean) rej. (mean) (mean) (mean)
sample points() τ = 57.8 (default) 1.38 265 289 862 11 6.59 3.11 1909 0.53

rlim() σ = 6 1.43 255 267 457 12 7.4 3.19 1821 0.53
sample points() τ = 500 7.08 29 35079 6 1.3 1.97 12 457 0.55

rlim() σ ≈ 50 (default) 7.68 24 28 172 5 1.2 1.57 15 281 0.56
sample points() τ = 50000 53.1 41 430 3 054 460 1 321.1 7.51 3

rlim() σ = 400 53.3 3 4675 1 1.0 2.17 17 829 0.56
rlim() σ = 1000 132 2.00 3870 1 1.0 2.23 18 302 0.56

sample points() τ = 1000 13.6 15 19 655 4 1.2 1.60 14 614 0.56
rlim() σ = 100 13.8 16 19 941 4 1.1 1.77 17 202 0.56

chrrExpSampler() 13.5 1101 1 257 021 8 80.8 5.08 103 0.17

Table 5: Comparison of sample points(), rlim() and chrrExpSampler() on the
biochemical network of Example 4

of size 20 000. The RL index I is under the threshold of 5, the number of Geweke
rejections close to the expected 2, and both ESS and RC values are satisfying.

4.3.3 Comparison of rlim(), sample points(), chrrExpSampler() on
the biochemical model of Example 4

No parameter alike a jump length is to be fitted for the CHRR random walk of
chrrExpSampler(). Thus, in order to compare the sampling performance of the three
implementations, we have chosen the jump lengths τ = 1 000 for sample points() and
σ = 100 for rlim() leading to computation times similar to chrrExpSampler(). Both
rlim() and sample points() clearly outperform chrrExpSampler(). The samples
returned by the latter are much more auto-correlated with I = 80.8 versus I ≈ 1,
show the highest number of Geweke rejections and very low ESS and RC. This may
be due to the CHR exploration method where two following points in the chain only
differ by one coordinate.

Aside comparison with chrrExpSampler(), we have also compared rlim() and
sample points(). Fitted for the same computation time, the two functions return
samples of the same order of quality according to all indexes, as shown on rows 1 and
2 of Table 5, until the jump length of sample points() is higher than a threshold
and leads to duplicates in the returned sample. Flow values out of their theoretical
ranges even happen, and hence the RC for sample points() with τ = 50 000 does not
appear on row 3 of Table 5; we fail to figure out a reason for this phenomena. Finally,
as shown on row 4, rlim() with a large σ = 1 000 leads to a computation time close
to three times longer than σ = 400, with only a negligible improvement in the quality
of the returned samples : the jump length σ = 400 seems to be large enough to get
the best possible results on this model.

5 Conclusion

In this paper, we designed a new R package called {samplelim}, and compared it with
other existing computing packages for sampling polytopes in linear inverse modeling.

Its sampling function rlim() was compared with the functions xsample() of
the R package {limsolve}, sample points() of the R package {volesti}, and
chrrExpSampler() of the Matlab toolbox {COBRA}. The comparison was made both

23



in terms of computation time and sample quality. To sum up the comparison results,
rlim():

� leads to the same quality of samples as xsample() but much faster;
� is more reliable than sample points() which has a threshold on the jump length
leading to a drop in the quality of samples;

� is more efficient than chrrExpSampler() in terms of computation time, quality
of the returned sample and, last but not least, of complexity of the concerned
models.

Besides the high qualities of its sampling function, the new package {samplelim} keeps
the easy to use features of {limsolve}, as well as its annex functions that are
important to practitioners.

Most of the time, when information is gathered on the simple elements of a trophic,
biochemical or urban metabolic networks, the elements to be considered are very
numerous. Then, when building the model network, this number has to be reduced,
by aggregating some elements within the same compartment or edge of the network.
This is mainly due to the very long computation time associated to the needed number
of iterations for stabilizing the results. With the new R package {samplelim}, the
very high gain of time and quality will allow the development of these models at a
level of aggregation that will be closer to the study scale of the biological processes.
Furthermore, coupling networks together may become possible for studying them in
a spatial framework.

References

[1] Bonarius HP, Schmid G, Tramper J (1997) Flux analysis of underdetermined
metabolic networks: the quest for the missing constraints. Trends in Biotechnology
15(8):308-314. https://doi.org/10.1016/S0167-7799(97)01067-6

[2] Caputo JG, Girardin V, Knippel A, Nguyen H, Niquil N, Noguès Q (2021) Anal-
ysis of trophic networks: an optimisation approach, Journal of Mathematical
Biology 83:53. https://doi.org/10.1007/s00285-021-01682-3

[3] Chalkis A, Fisikopoulos V (2021) {volesti}: Volume Approximation and Sam-
pling for Convex Polytopes in R. The R Journal 13:642-660. https://doi.org/10.
32614/RJ-2021-077

[4] Chalkis A, Fisikopoulos V, Tsigaridas E, Zafeiropoulos H (2021) Geometric algo-
rithms for sampling the flux space of metabolic networks. The 37th International
Symposium on Computational Geometry. Buffalo, USA. https://doi.org/10.4230/
LIPIcs.SoCG.2021.21

[5] Chen S, Fath BD, Chen B (2010) Information indices from ecological network
analysis for urban metabolic system. Procedia Environmental Sciences 2:720-724.
https://doi.org/10.1016/j.proenv.2010.10.082

24

https://doi.org/10.1016/S0167-7799(97)01067-6
https://doi.org/10.1007/s00285-021-01682-3
https://doi.org/10.32614/RJ-2021-077
https://doi.org/10.32614/RJ-2021-077
https://doi.org/10.4230/LIPIcs.SoCG.2021.21
https://doi.org/10.4230/LIPIcs.SoCG.2021.21
https://doi.org/10.1016/j.proenv.2010.10.082


[6] Chevallier A, Pion S, Cazals F (2018) Hamiltonian Monte Carlo with boundary
reflections, and application to polytope volume calculations, Research Report RR-
9222. INRIA Sophia Antipolis, France. https://hal.science/hal-01919855

[7] Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson
BO (2001) Metabolic modeling of microbial strains in silico. Trends in biochemical
sciences 26(3):179-186. https://doi.org/10.1016/S0968-0004(00)01754-0

[8] Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Pals-
son BO (2007) Global reconstruction of the human metabolic network based on
genomic and bibliomic data. Proceedings of the National Academy of Sciences
104(6):1777-1782. https://doi.org/10.1073/pnas.0610772104

[9] Fallahi S, Skaug HJ, Alendal G (2020) A comparison of Monte Carlo sampling
methods for metabolic network models. PLoS One 15(7). https://doi.org/10.
1371/journal.pone.0235393

[10] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013)
Bayesian Data Analysis. CRC Texts in Statistical Science, 3rd Edition Chapman
& Hall. https://doi.org/10.1201/b16018

[11] Gerber G, Brooker B, Scharler UM (2023) Automated workflow for incorpora-
tion and evaluation of data uncertainty in ecological networks with autoLIMR.
Ecological Informatics 102375. https://doi.org/10.1016/j.ecoinf.2023.102375

[12] Grami B, Rasconi S, Niquil N, Marlène J, Saint-Béat B, Sime-Ngando T (2011)
Functional Effects of Parasites on Food Web Properties during the Spring Diatom
Bloom in Lake Pavin: A Linear Inverse Modeling Analysis. PLoS One 6. https:
//doi.org/10.1371/journal.pone.0023273

[13] Geweke J (1991) Evaluating the accuracy of sampling-based approaches to cal-
culating posterior moments. In: Bernado JM, Berger JO, Dawid AP, Smith AF
(ed) Bayesian Statistics 4. Clarendon Press, Oxford, UK, pp 169-194. https:
//doi.org/10.1093/oso/9780198522669.003.0010

[14] Guéret S, Winiwarter W (2022). Deliverable D2/3 of the UNCNET project: Using
probability approaches to inform, revise, and improve contributions on the respec-
tive nitrogen flows. Funded under the JPI Urban Europe / China pilot call. https:
//www.uncnet.org/wp-content/uploads/sites/17/2022/02/UNCNET D2.3.pdf

[15] Hannon B (1973) The structure of ecosystems. Journal of theoretical biology
41(3):535-546. https://doi.org/10.1016/0022-5193(73)90060-X

[16] Haraldsdóttir HS, Cousins B, Thiele I, Fleming RM, Vempala S (2017)
CHRR: coordinate hit-and-run with rounding for uniform sampling of
constraint-based models. Bioinformatics 33(11):1741-1743. https://doi.org/10.
1093/bioinformatics/btx052

25

https://hal.science/hal-01919855
https://doi.org/10.1016/S0968-0004(00)01754-0
https://doi.org/10.1073/pnas.0610772104
https://doi.org/10.1371/journal.pone.0235393
https://doi.org/10.1371/journal.pone.0235393
https://doi.org/10.1201/b16018
https://doi.org/10.1016/j.ecoinf.2023.102375
https://doi.org/10.1371/journal.pone.0023273
https://doi.org/10.1371/journal.pone.0023273
https://doi.org/10.1093/oso/9780198522669.003.0010
https://doi.org/10.1093/oso/9780198522669.003.0010
https://www.uncnet.org/wp-content/uploads/sites/17/2022/02/UNCNET_D2.3.pdf
https://www.uncnet.org/wp-content/uploads/sites/17/2022/02/UNCNET_D2.3.pdf
https://doi.org/10.1016/0022-5193(73)90060-X
https://doi.org/10.1093/bioinformatics/btx052
https://doi.org/10.1093/bioinformatics/btx052


[17] Haskell KH, Hanson RJ (1981) An algorithm for linear least squares problems
with equality and nonnegativity constraints. Mathematical Programming 21:98-
118. https://doi.org/10.1007/BF01584232

[18] Havránek M (2009) ConAccount 2008: Urban Metabolism, Measuring the Ecolog-
ical City. Charles University Environment Center. Prague, Czechia.

[19] Herrmann HA, Dyson BC, Vass L, Johnson GN, Schwartz JM (2019) Flux
sampling is a powerful tool to study metabolism under changing environmen-
tal conditions. NPJ systems biology and applications 5(1):32. https://doi.org/10.
1038/s41540-019-0109-0

[20] Kaltenegger K, Bai Z, Dragosits U, Fan X, Greinert A, Guéret S, Suchowska-
Kisielewicz M, Winiwarter W, Zhang L, Zhou F (2023) Urban nitrogen budgets:
Evaluating and comparing the path of nitrogen through cities for improved man-
agement. Science of the Total Environment 904:166827. https://doi.org/10.1016/
j.scitotenv.2023.166827

[21] Kinlay J (2018) A comparison of Programming Languages. Quan-
titative Research and Trading. http://jonathankinlay.com/2018/10/
comparison-programming-languages/. Accessed 24 January 2024.

[22] Kones JK, Soetaert K, van Oevelen D, Owino JO, Mavuti K (2006) Gaining
insight into food webs reconstructed by the inverse method. Journal of Marine
Systems 60:153–166. https://doi.org/10.1016/j.jmarsys.2005.12.002

[23] Kones JK, Soetaert K, van Oevelen D, Owino JO (2009) Are network indices
robust indicators of food web functioning? A Monte Carlo approach. Ecological
Modelling 220:370–382. https://doi.org/10.1016/j.ecolmodel.2008.10.012

[24] Laddha A, Vempala SS (2023) Convergence of Gibbs sampling: coordinate Hit-
and-Run mixes fast. Discrete & Computational Geometry 70:406-425. https://
doi.org/10.1007/s00454-023-00497-x

[25] Leguerrier D (2005) Construction et étude d’un modèle de réseau trophique de la
vasière de Brouage (bassin de Marennes Oléron, France). PhD Thesis, Université
de La Rochelle, France. https://archimer.ifremer.fr/doc/00000/2260

[26] Niquil N, Saint-Béat B, Johnsin GA, Soetaert K, van Oevelen D, Bacher C, Vézina
AF (2011) Inverse Modeling, in Modern Ecology and Application to Coastal
Ecosystems. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-374711-2.
00906-2

[27] Noguès Q, Raoux A, Araignous E, Hattab T, Leroy B, Ben Rais Lasram F,
Le Loc’h F, Dauvin J, Niquil N (2020) Cumulative effects of marine renew-
able energy and climate change on ecosystem properties: Sensitivity of ecological
network analysis. Ecological Indicators 121:107128. https://doi.org/10.1016/j.

26

https://doi.org/10.1007/BF01584232
https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1016/j.scitotenv.2023.166827
https://doi.org/10.1016/j.scitotenv.2023.166827
http://jonathankinlay.com/2018/10/comparison-programming-languages/
http://jonathankinlay.com/2018/10/comparison-programming-languages/
https://doi.org/10.1016/j.jmarsys.2005.12.002
https://doi.org/10.1016/j.ecolmodel.2008.10.012
https://doi.org/10.1007/s00454-023-00497-x
https://doi.org/10.1007/s00454-023-00497-x
https://archimer.ifremer.fr/doc/00000/2260
https://doi.org/10.1016/B978-0-12-374711-2.00906-2
https://doi.org/10.1016/B978-0-12-374711-2.00906-2
https://doi.org/10.1016/j.ecolind.2020.107128
https://doi.org/10.1016/j.ecolind.2020.107128


ecolind.2020.107128

[28] Orth JD, Fleming RM, Palsson BO (2010) Reconstruction and use of microbial
metabolic networks: the core Escherichia coli metabolic model as an educational
guide. EcoSal plus 4(1):10-1128.

[29] Polyak BT, Gryazina EN (2014) Billiard walk - a new sampling algorithm for
control and optimization. IFAC Proceedings Volumes 47(3):6123-6128. https://
doi.org/10.3182/20140824-6-ZA-1003.02312

[30] Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial
cells: evaluating the consequences of constraints. Nature Reviews Microbiology
2(11):886-897. https://doi.org/10.1038/nrmicro1023

[31] R Core Team (2024) R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing. Vienna, Austria. https://www.
R-project.org/

[32] Raftery AE, Lewis SM (1995) The number of iterations, convergence diagnos-
tics and generic Metropolis algorithms. Practical Markov Chain Monte Carlo
7(98):763-773.

[33] Smith RL (1984) Efficient Monte-Carlo procedures for generating points uni-
formly distributed over bounded regions. Operations Research 32:1296–1308.
https://doi.org/10.1287/opre.32.6.1296

[34] Turchin V (1971) On the computation of multidimensional integrals by the Monte-
Carlo method. Theory of Probability & Its Applications 16(4):720–724. https:
//doi.org/10.1137/111608

[35] Van den Meersche K, Soetaert K, Van Oevelen D (2009) xsample(): An R Function
for Sampling Linear Inverse Problems. Journal of Statistical Software 30:1-15.
https://doi.org/10.18637/jss.v030.c01

[36] van Oevelen D, Van den Meersche K, Meysman FJR, Soetaert K, Middelburg
JJ, Vézina AF (2010) Quantifying Food Web Flows Using Linear Inverse Models.
Ecosystems 13:32-45. https://doi.org/10.1007/s10021-009-9297-6

[37] Wilkinson D (2011) Gibbs sampler in various languages. Dar-
ren Wilkinson’s blog. https://darrenjw.wordpress.com/2011/07/16/
gibbs-sampler-in-various-languages-revisited/. Accessed 24 January 2024.

[38] Zhang Y (2013) Urban metabolism: A review of research methodologies. Envi-
ronmental pollution 178:463-473. https://doi.org/10.1016/j.envpol.2013.03.052

27

https://doi.org/10.1016/j.ecolind.2020.107128
https://doi.org/10.1016/j.ecolind.2020.107128
https://doi.org/10.3182/20140824-6-ZA-1003.02312
https://doi.org/10.3182/20140824-6-ZA-1003.02312
https://doi.org/10.1038/nrmicro1023
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1287/opre.32.6.1296
https://doi.org/10.1137/111608
https://doi.org/10.1137/111608
https://doi.org/10.18637/jss.v030.c01
https://doi.org/10.1007/s10021-009-9297-6
https://darrenjw.wordpress.com/2011/07/16/gibbs-sampler-in-various-languages-revisited/
https://darrenjw.wordpress.com/2011/07/16/gibbs-sampler-in-various-languages-revisited/
https://doi.org/10.1016/j.envpol.2013.03.052

	Introduction
	From the constraints to the polytope of solutions
	MCMC for sampling polytopes
	MCMC uniform sampling of polytopes
	Hit and Run and its variants
	Reflective MCMC Algorithms
	Implementation variants

	Comparison of implementations on real data
	Sampling performance diagnostics
	The Raftery and Lewis diagnostics
	The Geweke diagnostics
	The Effective Sample Size
	The Range Coverage

	Comparison of the functions rlim() and xsample()
	Comparison of the functions rlim(), sample_points() and chrrExpSampler()
	Comparison of rlim() and sample_points() on the trophic model of Example 1
	Comparison of rlim() and sample_points() on the urban model of Example 3
	Comparison of rlim(), sample_points(), chrrExpSampler() on the biochemical model of Example 4


	Conclusion

