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Abstract. In this paper, we locally construct a conservative flux for finite element solutions of8

elliptic interface problems with discontinuous coefficients. Since the Discontinuous Galerkin method9

has built-in conservative flux, we consider in this paper the conforming Finite Element Method and a10

special type of nonconforming method with arbitrary orders. We also perform our analysis based on11

Nitsche’s method, which imposes the Dirichlet boundary condition weakly. The construction method12

is derived based on a mixed problem with one solution coinciding with the finite element solution13

and with the other solution being naturally used to obtain a conservative flux. We then apply the14

recovered flux to the a posteriori error estimation and prove the robust reliability and efficiency for15

conforming elements. Numerical experiments are provided to verify the theoretical results.16

1. Introduction. Numerous studies have been conducted to explore the post-17

processing of conservative fluxes for various purposes, including a posteriori error18

estimation [1, 2], flux conservation in fluid dynamics [3], and super-convergence [4],19

among others [5, 6, 7, 8, 9, 10]. This paper focuses on designing a locally conservative20

flux in the H(div) conforming Raviart-Thomas space for finite element solutions of21

elliptic interface problems, including both conforming and nonconforming approxima-22

tions with arbitrary polynomial degree k ∈ N∗. The recovered flux is then applied23

and analyzed in a posteriori error estimation, which plays a crucial role in adaptive24

methods.25

Equilibrated a posteriori error estimators have attracted much interest due to the26

guaranteed reliability bound with the reliability constant equal to one. This property27

implies that they are perfect for discretization error control on both coarse and fine28

meshes. It is important to note that error control on coarse meshes is important but29

difficult for computationally challenging problems.30

For the conforming finite element approximation, a mathematical foundation of31

equilibrated estimators is the Prager-Synge identity [11]. Based on this identity,32

various equilibrated estimators have been studied by many researchers (see, e.g., [1,33

12, 13, 14, 2, 15, 16, 17, 18, 6, 19, 8, 10, 3, 20, 9]). The key ingredient for continuous34

finite elements is a recovered equilibrated (locally conservative) flux in the H(div; Ω)35

space based on the numerical flux which is typically neither in the H(div; Ω) space nor36

locally conservative. Using a partition of unity, Ladevèze and Leguillon [1] initiated37

a local procedure to reduce the construction of an equilibrated flux to vertex patch-38

based local calculations. For the continuous linear finite element approximation to the39

Poisson equation in two dimensions, an equilibrated flux in the lowest order Raviart-40

Thomas space was explicitly constructed in [18]. This explicit approach does not41
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lead to a robust equilibrated estimator with respect to the coefficient jump without42

introducing a constraint minimization (see [8]). The constraint minimization on each43

vertex-based patch may be solved by first computing an equilibrated flux and then44

calculating a divergence-free correction, see [20] and references therein. In [9], a45

unified method also based on the partition of unity was developed. This method46

requires solving local mixed problems on a vertex patch for each vertex. In [16, 3] a47

global problem is solved on the enriched piecewise constant DG space to obtain the48

conservative flux, which is relatively more computationally expensive.49

Partition of unity is a commonly used tool for localization. In principle, it can be50

uniformly applied to various finite element methods. However, it is studied mainly51

for the continuous Galerkin method since explicit recovery for its solution has been a52

challenging research topic due to the continuity of the finite element space. Existing53

methods using partition of unity are relatively complex since it requires solving star-54

patched local problems that are either constrained [8] or in a mixed form [9].55

For an exception apart from the partition of unity, we refer to [10] where two-56

dimensional Poisson problems are studied. This method is based on a unified mixed57

problem equivalent to conforming, nonconforming and discontinuous Galerkin meth-58

ods. The idea is to use the Lagrange multiplier, defined on the facets of the mesh, as59

a correction of the degrees of freedom of the flux. The choice of the multiplier’s space60

is fundamental since it should satisfy the uniform inf-sup condition and enable local61

construction. With this approach, one only needs to solve an explicit low-dimensional62

linear system for each vertex. It has recently been extended to unfitted methods [21].63

In this study, we adopt a similar approach for the diffusion problem where the64

diffusion coefficients may undergo large jumps along the interfaces. As a result, the65

auxiliary mixed formulation and the local construction of its Lagrange multiplier66

resemble those in [10]. Our main contribution is to achieve robustness concerning the67

discontinuous coefficients by properly designing the algorithm and analysis.68

Firstly, we consider the conforming finite element method, which is the most diffi-69

cult case for the flux reconstruction. We use triangular meshes and Nitsche’s method70

to treat the Dirichlet boundary conditions; note that in [10], the Dirichlet condition71

was treated strongly. We provide a well-posed equivalent mixed formulation, where72

the continuity of the solution and of the test-functions across the interior sides of the73

mesh is imposed weakly. We obtained the robust inf-sup constant in terms of the coef-74

ficients, and we establish a local bound for the multiplier (and hence, for the recovered75

flux) with a constant whose dependence on the coefficients is given explicitly. This76

type of result is new, at the best of our knowledge; for quasi-monotone coefficients,77

we retrieve the robustness already known in the literature for other reconstructions78

in this case.79

Secondly, we consider a nonconforming finite element approximation of arbitrary80

polynomial degree k ∈ N∗, based on the space introduced by Matthies and Tobiska81

[22]. The standard nonconforming space of odd degree rises with no particular dif-82

ficulty, and the reconstruction of conservative fluxes, in this case, is well-known in83

the literature. Meanwhile, this is no longer true for an even degree k, due to the84

loss of insolvency cf. [23]. The main advantages of the finite elements proposed in85

[22] are that they are uniformly defined for any k and are also inf-sup stable for the86

Stokes problem. Our contribution consists in extending the approach of [10] to these87

spaces in a completely robust way with respect to the diffusion coefficients. To our88

knowledge, flux reconstruction for this type of nonconforming finite element is new.89

An important use of flux recovery is in the estimation of a posteriori errors, where90
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the weighted L2-norm of the difference between the numerical flux and the recovered91

flux can be employed. This technique is particularly valuable in adaptive mesh refine-92

ment procedures, commonly employed for problems with singularities, discontinuities,93

or sharp derivatives. The study of a posteriori error estimation has been an active94

area of research for several decades, as demonstrated by the extensive literature on95

the topic (see, for example, [2, 24, 7]).96

In this paper, we carry out the a posteriori error analysis for the conforming case,97

tracking the dependence of the constants involved in the error bounds on the diffusion98

coefficients. We establish the sharp reliability of the a posteriori error indicator and its99

robust local efficiency in the case of quasi-monotone coefficients. Finally, we present100

several numerical experiments illustrating the theoretical results for a piecewise linear101

continuous method.102

The paper is organized as follows. In Section 2, we give the model problem and103

its weak formulation. We present in Section 3 the conforming and nonconforming104

finite element approximations and their equivalent mixed formulations, for which we105

establish the well-posedness. For both discretizations, the local computation and106

robust bound of the multipliers are detailed in Section 4, whereas the definition of the107

conservative fluxes is given in Section 5. Section 6 deals with the a posteriori error108

estimation for the conforming approximation by means of the recovered flux. Finally,109

Section 7 is devoted to the numerical tests, while in the Appendix we give the proof110

of the inf-sup condition for the conforming method.111

Data Availability. No data is available. Enquiries about the code should be112

directed to the authors.113

Ethics declaration. The authors declare that they have no conflict of interest.114

2. Model problem and notation. Let Ω be a bounded domain of R2 with115

polygonal boundary ∂Ω with exterior unit normal n. Let ∂Ω = ΓD ∪ ΓN , where116

ΓD and ΓN are disjoint and, for the sake of simplicity, |ΓD| > 0. We consider the117

following model problem: find u : Ω → R such that118

−div(K∇u) = f in Ω
u = gD on ΓD

K∇u · n = gN on ΓN .
(2.1)

Assume that f ∈ L2(Ω), gN ∈ L2(ΓN ), gD ∈ H1/2(ΓD) and that K is a symmetric
positive definite 2× 2 matrix, of coefficients in L∞(Ω). For the sake of simplicity, we
take in what follows K = kI2 with k ∈ L∞(Ω) and k(x) ≥ k0 > 0 a.e in Ω. For any
χ ∈ H1/2(ΓD), let

V χ =
{
v ∈ H1(Ω) : v = χ on ΓD

}
.

The primal weak formulation associated to the previous boundary problem reads:

u ∈ V gD , a(u, v) = (f, v)Ω + (gN , v)ΓN
∀v ∈ V 0,

where a(u, v) = (K∇u,∇v)Ω. Thanks to the Lax-Milgram lemma, there exists a119

unique solution to this problem.120

In the following, we introduce some notation. We denote by Th a regular mesh121

consisting of triangles, such that the domain’s boundary ∂Ω is covered by the Dirichlet122

and Neumann sides, FD
h and FN

h , respectively. We denote by F int
h the set of interior123

sides and we put Fh = F int
h ∪FD

h . We denote by N int
h and N ∂

h the set of nodes which124
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are interior to the domain Ω or situated on ∂Ω, respectively. We assume, for the sake125

of simplicity, that a cell T ∈ Th cannot have all three vertices on ΓN .126

For a interior side F , nF is a fixed, arbitrary, unit vector normal to F , oriented127

from T− towards T+, where T−, T+ are the two triangles sharing the side F . If the128

side F lies on ∂Ω, we set nF = n.129

We define the following spaces of piecewise polynomial functions of degree l ∈ N
on the cells and the sides, respectively :

Dl
h =

{
vh ∈ L2(Th) : vh|T ∈ P l(T ) ∀T ∈ Th

}
,

Cl
h = Dl

h ∩ C0(Ω̄),

Ml
h =

{
µh ∈ L2(F int

h ) : µh|F ∈ P l(F ) ∀F ∈ F int
h

}
.

For the sake of simplicity, we assume that K is piecewise constant. Let v ∈ Dl
h.

For a given F ∈ F int
h and x ∈ F , we define as usually:

v+F (x) = lim
ε→0+

v(x+ εnF ), v−F (x) = lim
ε→0+

v(x− εnF ),

as well as the jump and weighted means at x ∈ F , by

[v]F = v−F − v+F , {v}F = ω+v+F + ω−v−F , {v}∗F = ω−v+F + ω+v−F ,

where (cf. for instance [25]):130

ω+ =
k−

k+ + k−
, ω− =

k+

k+ + k−
, k± = k|T± . (2.2)

We also introduce the stabilisation parameter kF =
k+k−

k+ + k−
. For a boundary side131

F , we set [v]F = {v}F = v−F and kF = k−. It is useful to note that, for any F ∈ Fh,132

0 ≤ ω± ≤ 1, ω+ + ω− = 1, kF = k±ω± ≤ k±. (2.3)

In the sequel, we will omit the index F in the jump and the means whenever
possible. We will also use the following notation for the piecewise integration:∫

Th

=
∑
T∈Th

∫
T

,

∫
Fh

=
∑

F∈Fh

∫
F

.

We recall the well-known trace inequality, for T ∈ Th and F ⊂ ∂T :133

|F |−1/2∥v∥0,F ≲
1

dT
∥v∥0,T + |v|1,T , ∀v ∈ H1(T ). (2.4)

3. Discrete problem and equivalent mixed formulation. We consider suc-134

cessively conforming and nonconforming finite element discretizations.135

3.1. Conforming approximation. We first discretize problem (2.1) by means
of conforming finite elements. We use Nitsche’s method to treat the Dirichlet bound-
ary condition. For the simplicity of presentation, we consider in what follows the
piecewise linear case (l = 1) but the theory holds for arbitrary l ∈ N∗, cf. [10] for the
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Poisson equation. Let the bilinear and linear forms, for any uh, vh ∈ C1
h:

ah(uh, vh) =

∫
Th

K∇uh · ∇vh dx−
∫
FD

h

(K∇uh · nvh +K∇vh · nuh) ds

+ γ

∫
FD

h

kF
|F |

vhuh ds,

lh(vh) =

∫
Th

fvh dx+

∫
ΓN

gNvh ds−
∫
FD

h

K∇vh · ngD ds+ γ

∫
FD

h

kF
|F |

vhgD ds,

where γ > 0 is a stabilisation parameter independent of h and K.136

We consider the discrete problem:137

uh ∈ C1
h, ah(uh, vh) = lh(vh) ∀vh ∈ C1

h. (3.1)

We use the following semi-norm and norm on H1(Ω):

|v|1,K = ∥K1/2∇v∥0,Ω, |∥v∥| =
(
|v|21,K +

∫
FD

h

kF
|F |

v2 ds

)1/2

.

It is well-known that for γ large enough, ah(·, ·) is ∥| · |∥-coercive on C1
h×C1

h, uniformly138

with respect to both h and K. The existence and uniqueness of the solution of (3.1)139

follows from the Lax-Milgram lemma.140

Following [10], we introduce a hybrid mixed formulation with an additional un-141

known θh defined on the interior sides of the mesh. The continuity of uh across the142

interior sides is dualized by means of a multiplier. Note that in [10], the Dirichlet143

boundary condition was imposed strongly, leading to a multiplier defined on both the144

interior and the Dirichlet sides.145

The multiplier θh is then used in order to recover the numerical conservative flux.
It is important to note that we do not solve the global mixed formulation, but we
compute θh locally. For this purpose, let us first introduce the space

Mh =

{
µh ∈ M1

h;
∑

F∈FN

sN,F |F |µh|F (N) = 0 ∀N ∈ N int
h

}
,

where FN is the set of sides sharing the node N ∈ N int
h and sN,F is the sign function,146

which is equal to 1 or −1 depending upon the orientation of nF with respect to the147

clockwise rotation sense around N . The auxiliary mixed formulation is given by: find148

(ũh, θh) ∈ D1
h ×Mh such that149

ãh(ũh, vh)+bh(θh, vh) = lh(vh) ∀vh ∈ D1
h,

bh(µh, ũh) = 0 ∀µh ∈ Mh,
(3.2)

where

ãh(ũh, vh) = ah(ũh, vh)−
∫
Fint

h

{K∇ũh · nF }[vh] ds−
∫
Fint

h

{K∇vh · nF }[ũh] ds,

bh(µh, vh) =
∑

F∈Fint
h

kF |F |
2

∑
N∈NF

µh|F (N)[vh]F (N),
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with NF the set of vertices of F . Note that bh(µh, vh) is the approximation of150 ∫
Fint

h

kFµh[vh] ds by the trapeze formula (or, for an arbitrary degree l, by the Gauss-151

Lobatto integration formula with l + 1 points).152

We first show that the solution ũh of the mixed formulation (3.2) coincides with153

the solution uh of the original discrete problem (3.1).154

Lemma 3.1. The discrete kernel of bh(·) coincides with the space C1
h, i.e,

Ker bh =
{
vh ∈ D1

h; bh(µh, vh) = 0, ∀µh ∈ Mh

}
= C1

h.

Proof. Obviously, C1
h ⊂ Ker bh. Now let any vh ∈ Ker bh and consider the function

µh defined by µh|F = |F |−1[vh]F for any F ∈ F int
h . Clearly, µh belongs toMh because

∀N ∈ N int
h ,

∑
F∈FN

sN,F |F |µh|F (N) =
∑

F∈FN

sN,F [vh]F = 0.

From bh(µh, vh) = 0 we get [vh]F = 0 for any F ∈ F int
h , which yields vh ∈ C1

h.155

Thus, ũh satisfies (3.1) and the uniqueness of its solution yields ũh = uh.156

We next establish the well-posedness of the mixed formulation. For this purpose,
we introduce the following discrete norms:

∥|vh∥|h =

(∫
Th

K∇vh · ∇vhdx+

∫
Fh

|F |−1kF [vh]
2 ds

)1/2

, vh ∈ D1
h,

∥µh∥Mh
=

(∫
Fint

h

|F |kFµ2
h ds

)1/2

, µh ∈ M1
h

and we recall the following inequality (see for instance [7]), which holds uniformly157

with respect to h and K:158

∀vh ∈ D1
h,

∫
Fh

|F |k−1
F {K∇vh · nF }2 ds ≲

∫
Th

K∇vh · ∇vhdx. (3.3)

Thanks to (3.3) and to the Cauchy-Schwarz inequality, one immediately obtains the
uniform continuity of the bilinear forms: for any µh ∈ Mh and uh, vh ∈ D1

h,

ãh(uh, vh) ≲ ∥|uh|∥h ∥|vh|∥h, bh(µh, vh) ≲ ∥|vh|∥h ∥µh∥Mh
.

Lemma 3.1 yields the uniform ∥|·|∥h-coercivity of ãh(·, ·) on Ker bh for γ large enough.159

In order to apply the Babuska-Brezzi theorem to the mixed problem (3.2), we establish160

the inf-sup condition for bh(·, ·). The proof is similar to [10] for the Poisson problem161

and is given in the Appendix. The difference is that we track the robust dependence162

of the inf-sup constant on the diffusion coefficient K.163

Definition 3.2. K is quasi-monotone on ωN if there exists a clockwise or164

counter-clockwise complete path along which K is monotone. K is said to be quasi-165

monotone on Th if it is quasi-monotone for every ωN , N ∈ Nh.166

Lemma 3.3. Assume K is quasi-monotone. There exists a constant β > 0
independent of h, γ and K such that

inf
µh∈Mh

sup
vh∈D1

h

bh(µh, vh)

∥µh∥Mh
|∥vh∥|h

≥ β.

The proof of the lemma is provided in the appendix.167
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3.2. Nonconforming approximation. We now consider a nonconforming ap-168

proximation based on the finite element space of arbitrary polynomial degree k ∈ N∗
169

introduced in [22]. We begin by recalling its definition. Let T ∈ Th and let170

Σk+1(T ) = span{bTφk−2−i
T,1 φi

T,2; i = 0, ..., k − 2} ⊂ P k+1(T ), (3.4)

where {φT,i; 1 ≤ i ≤ 3} denote the barycentric coordinates of the triangle T and

bT = (φT,1 − φT,2)(φT,2 − φT,3)(φT,3 − φT,1).

Consider the following enriched space

Vk(T ) = P k(T )⊕ Σk+1(T )

and define the nodal basis functions as follows:171

NT
F,i(v) =

1

|F |

∫
F

vLi ds, 0 ≤ i ≤ k − 1, F ∈ Fh ∩ ∂T

NT
j (v) =

1

|T |

∫
T

vMT
j dx, 1 ≤ j ≤ k(k − 1)

2
,

(3.5)

where {MT
j } is an arbitrary but fixed basis of P k−2(T ) and Lj is the j-th order172

Legendre polynomial. Let ϕF,i, for 0 ≤ i ≤ k− 1 and ϕj , for 1 ≤ j ≤ k(k − 1)

2
be the173

corresponding nodal basis functions.174

The discontinuous and nonconforming spaces DGk
h andNCk

h are defined as follows:

DGk
h =

{
vh ∈ L2(Ω); vh|T ∈ Vk(T ), ∀T ∈ Th

}
,

NCk
h =

{
vh ∈ DGk

h;

∫
F

[vh]p ds = 0, ∀F ∈ F int
h , ∀p ∈ P k−1(F )

}
.

We consider the following discrete version of (2.1): find u∗
h ∈ NCk

h such that175

ah(u
∗
h, vh) = lh(vh) ∀vh ∈ NCk

h, (3.6)

which is well-posed. We introduce the auxiliary mixed formulation: find (ũ∗
h, θ

∗
h) ∈176

DGk
h ×Mk−1

h such that177

ã∗h(ũ
∗
h, vh)+b∗h(θ

∗
h, vh) = lh(vh) ∀vh ∈ DGk

h,

b∗h(µh, ũ
∗
h) = 0 ∀µh ∈ Mk−1

h ,
(3.7)

where

ã∗h(ũ
∗
h, vh) =ah(ũ

∗
h, vh)−

∫
Fint

h

(
πk−1
F {K∇ũ∗

h · nF }[vh] + πk−1
F {K∇vh · nF }[ũ∗

h]

)
ds,

b∗h(µh, vh) =

∫
Fint

h

µh[vh] ds

and where πk−1
F stands for the L2(F )-orthogonal projection on P k−1(F ).178

Note that one is now able to get rid of the coefficient kF in the bilinear form
b∗h(·, ·) because there is no linear constraint in the space Mk−1

h . Since the multipliers
are P k−1- functions on each interior side, we immediately obtain that

Ker b∗h =
{
vh ∈ DGk

h : b∗h(µh, vh) = 0, ∀µh ∈ Mk−1
h

}
= NCk

h.
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So the primal and mixed formulations (3.6) and (3.7) are equivalent, i.e. ũ∗
h = u∗

h.179

We are next interested in the well-posedness of the mixed formulation (3.7). The
continuity of ã∗h(·, ·) is similar to the conforming case. The space Mk−1

h is now en-
dowed with the norm:

∥µh∥2NCh
=

∫
Fint

h

k−1
F |F |µ2

h ds, ∀µh ∈ Mk−1
h ,

which immediately yields b∗h(µh, vh) ≤ ∥µh∥NCh
∥|vh|∥h. So we only have to establish180

the inf-sup condition for b∗h(·, ·).181

Lemma 3.4. There exists a constant β∗ independent of h, γ and K such that

inf
µh∈Mk−1

h

sup
vh∈DGk

h

b∗h(µh, vh)

∥µh∥NCh
|∥vh∥|h

≥ β∗.

Proof. We construct a Fortin operator, which associates to any µh ∈ Mk−1
h a182

unique function vh ∈ DGk
h satisfying183

b∗h(µh, vh) ≳ ∥µh∥2NCh
, ∥|vh|∥h ≲ ∥µh∥NCh

. (3.8)

For any F ∈ F int
h , let ∆F = T+ ∪ T− the patch consisting of the triangles sharing184

the side F . The construction of vh is achieved patch-wise: vh =
∑

F∈Fint
h

vF with vF185

defined on ∆F . Since µh|F ∈ P k−1, we can write it in the Legendre basis of P k−1:186

∃!(α0, . . . , αk−1) ∈ Rk, µh|F =

k−1∑
j=0

αjLj .

Then we define vF as follows:187

(vF )|T+ =
|F |
k+

k−1∑
i=0

αiϕF,i, (vF )|T− =
|F |
k−

k−1∑
i=0

αiϕF,i. (3.9)

This choice directly yields that vF ∈ DGk
h and [vh]|F = k−1

F |F |
k−1∑
i=0

αiϕF,i. Hence,

∫
F

µh[vh] ds = k−1
F |F |

k−1∑
i,j=0

αiαj

∫
F

LjϕF,i ds = k−1
F |F |2

k−1∑
j=0

α2
j ,

thanks to the definition of the nodal basis functions ϕF,i. Noting that188 ∫
F

µ2
h ds =

∫
F

( k−1∑
j=0

αjLj

)2

ds =

k−1∑
j=0

α2
j∥Lj∥20,F ≈ |F |

k−1∑
j=0

α2
j , (3.10)

we deduce that189

b∗h(µh, vh) =
∑

F∈Fint
h

∫
F

µh[vh] ds ≈ ∥µh∥2NCh
. (3.11)
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We still have to establish the second bound of (3.8). For any F ∈ F int
h , we have that:

kF
|F |

∥[vh]∥20,F ≤ |F |
kF

( k−1∑
i=0

α2
i

)( k−1∑
i=0

∥ϕF,i∥20,F
)

≲
|F |2

kF

k−1∑
i=0

α2
i ≲

|F |
kF

∥µh∥20,F .

A similar bound is obtained on any Dirichlet side, which finally leads to190 ∫
Fh

kF |F |−1[vh]
2 ≲ ∥µh∥2NCh

. (3.12)

We next have, using first (vh)|T =
∑

F∈∂T∩Fint
h

vF and then (3.9), that

∫
Th

K∇vh · ∇vhdx =
∑
T∈Th

kT |vh|21,T ≲
∑

F∈Fint
h

∑
T∈∆F

kT |vF |21,T

≤
∑

F∈Fint
h

∑
T∈∆F

|F |2

kT

( k−1∑
i=0

|αi||ϕF,i|1,T
)2

.

Since |ϕF,i|1,T ≤ C and kF ≤ k±, it follows thanks to (3.10) that191 ∫
Th

K∇vh ·∇vhdx ≲
∑

F∈Fint
h

|F |2

kF

( k−1∑
i=0

α2
i

)
≲

∑
F∈Fint

h

|F |
kF

∥µh∥20,F = ∥µh∥2NCh
. (3.13)

We can now conclude thanks to (3.11), (3.12) and (3.13).192

4. Local computation of the multiplier. Again, we discuss successively the193

conforming and nonconforming cases.194

4.1. Conforming approximation. Let the functional

rh(·) = lh(·)− ãh(uh, ·).

Thanks to the mixed formulation, we have rh(vh) = 0 for any vh ∈ C1
h. Moreover, θh195

is uniquely defined in Mh by196

bh(θh, vh) = rh(vh) ∀vh ∈ D1
h. (4.1)

It is useful to introduce, for any interior side F of vertices N, M , the bilinear form

bF (θ, φ) =
|F |kF

2
(θ(N)φ(N) + θ(M)φ(M)) .

Let N ∈ Nh. We define θN ∈ Mh on FN ∩ F int
h such that, for any T ∈ ωN ,197

bh(θN , φNχT ) = rh(φNχT ), (4.2)

bh(θN , φMχT ) = 0, ∀M ∈ NT \ {N} (4.3)

with φN , φM the P 1- nodal basis functions and χT the characteristic function on T .198

We impose moreover θN = 0 on F int
h \ FN .199

The next result shows that the multiplier θh can be computed locally. We refer200

to [10] for the proof, which is based on (4.1).201
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Lemma 4.1. Let θh and θN be the solutions of (3.2) and (4.2)-(4.3), respectively.202

Then203

θh =
∑

N∈Nh

θN . (4.4)

In what follows, we study the linear system (4.2)-(4.3). Note that (4.3) immedi-204

ately yields (θN )|F (M) = 0 for all F ∈ FN , where M denotes the other vertex of F ;205

thus, θN obviously satisfies the constraint of the space Mh at all the interior nodes206

M different from N . Therefore, we only need to consider (4.2). As in [10], it can be207

shown that it has a unique solution in Mh.208

We next focus on the bound of θN . For this purpose, let nN denote the number209

of elements in ωN , ordered clockwise from T1 to TnN
, with T1 the element such that210

k|T1
= max

T⊂ωN

kT if N is a interior node and T1 containing a boundary side otherwise.211

We set Fi = ∂Ti ∩ ∂Ti+1, with TnN+1 = T1 and i ∈ {1, ..., nN} if N ∈ N int
h , and212

i ∈ {1, ..., nN−1} ifN ∈ N ∂
h . We recall that the sign coefficient si := sN,Fi

equals±1 if213

Ti = T∓ with respect to Fi. Let also xi := sikFi
|Fi|(θN )|Fi

(N) and bi := 2rh(φNχTi
).214

Fig. 4.1: Patch ωN around a node N

We now introduce the following constant, for any N ∈ Nh:215

CN := max
1≤j≤i≤nN

√
ki√
kj

where ki = k|Ti
. (4.5)

Clearly, CN = 1 if the coefficient K is quasi-monotone.216

For N ∈ N int
h , the local system (4.2) together with the condition θN ∈ Mh217

translates into the following matrix equation:218

xi − xi−1 = 2bi (1 ≤ i ≤ nN ),

nN∑
i=1

k−1
Fi

xi = 0, (4.6)

where x0 = xnN
. A simple calculation yields that the solution of (4.6) is given by:219

xi =

i∑
j=1

Λ̄j

Λ1
bj −

nN∑
j=i+1

Λj

Λ1
bj , 1 ≤ i < nN , xnN

=

nN∑
j=1

Λ̄j

Λ1
bj , (4.7)

where Λj =
∑nN

l=j k
−1
Fl

, Λ̄j = Λ1 − Λj for 1 ≤ j ≤ nN .220

For N ∈ N ∂
h , since θN is defined only on the interior sides and no constraint at221

the node N is imposed in the space Mh, system (4.2) translates into:222

xi − xi−1 = 2bi (1 ≤ i ≤ nN − 1) (4.8)
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where x0 = 0 here. Its solution is given by xi = 2

i∑
j=1

bj = −2

nN∑
j=i+1

bj for 1 ≤ i ≤ nN−1.223

Lemma 4.2. For any N ∈ Nh, we have that:224

k
−1/2
Fi

|xi| ≲ CN
nN∑
j=1

k
−1/2
j |bj |, 1 ≤ i ≤ nN . (4.9)

Proof. We detail the proof for N ∈ N int
h , the case of a boundary node being

similar. By using that 0 <
Λj

Λ1
≤ 1 for 2 ≤ j ≤ nN , we first get from (4.7) that

|x1| ≤
nN∑
j=2

|bj |, which gives that

k
−1/2
F1

|x1| ≤
nN∑
j=2

(k
−1/2
F1

k
1/2
j )k

−1/2
j |bj |.

Since k−1
F1

= k−1
1 +k−1

2 , we clearly have k
−1/2
F1

k
1/2
j ≤ 2CN , which yields (4.9) for i = 1.225

Using now the expression of xi for i ≥ 2 from (4.7) we obtain:226

k
−1/2
Fi

|xi| ≤
i∑

j=2

Λ̄j

Λ1
k
−1/2
Fi

|bj |+
nN∑

j=i+1

Λj

Λ1
k
−1/2
Fi

|bj |, 2 ≤ i ≤ nN − 1(4.10)

k
−1/2
FnN

|xnN
| ≤

nN∑
j=2

Λ̄j

Λ1
k
−1/2
Fi

|bj |. (4.11)

The second sum in (4.10) is bounded similarly to the case of x1. We use 0 <
Λj

Λ1
≤ 1227

and k−1
Fi

= k−1
i + k−1

i+1 and we thus get:228

nN∑
j=i+1

Λj

Λ1
k
−1/2
Fi

|bj | ≤
nN∑

j=i+1

(k
−1/2
Fi

k
1/2
j )k

−1/2
j |bj | ≤ 2CN

nN∑
j=i+1

k
−1/2
j |bj |. (4.12)

As regards the first sum in (4.10) and in (4.11), we first use that Λ1 ≥ k−1
Fi

+ k−1
Fl

for
any indices i, l in order to obtain, for any index j such that 2 ≤ j ≤ i,

Λ̄j

Λ1
k
−1/2
Fi

|bj | =
( j−1∑

l=1

k−1
Fl

)
k
−1/2
Fi

Λ1
|bj | =

j−1∑
l=1

k−1
Fl

k
−1/2
Fi

Λ1
|bj | ≤

j−1∑
l=1

k
−1/2
Fl

k
−1/2
Fl

k
−1/2
Fi

k−1
Fl

+ k−1
Fi

|bj |.

Thanks to the mean inequality, we further get

Λ̄j

Λ1
k
−1/2
Fi

|bj | ≤
1

2

j−1∑
l=1

k
−1/2
Fl

|bj | =
1

2

( j−1∑
l=1

k
−1/2
Fl

k
1/2
j

)
k
−1/2
j |bj |.

Since l + 1 ≤ j, the same argument as above, namely k
−1/2
Fl

k
1/2
j ≤ 2CN , yields that

Λ̄j

Λ1
k
−1/2
Fi

|bj | ≤ (j − 1)CNk
−1/2
j |bj |, 2 ≤ j ≤ i.
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Since nN is uniformly bounded, we next get:229

i∑
j=2

Λ̄j

Λ1
k
−1/2
Fi

|bj | ≲ CN
i∑

j=2

k
−1/2
j |bj |. (4.13)

Finally, using (4.12) and (4.13) in (4.10) yields the result for 2 ≤ i ≤ nN .230

We can now deduce the next bound for θN , with respect to the local norm

∥µh∥2FN
:=

∑
F∈FN∩Fint

h

∫
F

|F |k−1
F µ2

h ds, µh ∈ Mh.

231

Lemma 4.3. For any N ∈ Nh, one has that:232

∥θN∥FN
≲ CN

∑
T∈ωN

k
−1/2
T |rh(φNχT )|. (4.14)

Proof. The definition of θN yields that ∥θN∥2FN
= 1

3

∑mN

i=1 k
−1
Fi

x2
i , with mN := nN233

if N ∈ N int
h and mN := nN − 1 if N ∈ N ∂

h . The result follows from Lemma 4.2.234

We are now able to prove the main result of this section. For l ∈ N, we denote235

by πl
ω the L2(ω)-orthogonal projection on P l(ω).236

Theorem 4.4. For any N ∈ Nh, the local multiplier satisfies the bound:

∥θN∥FN
≲ CN

∑
T∈ωN

(
hT

k
1/2
T

∥π1
T f∥0,T +

∑
F∈∂T∩Fint

h

ω̄F,Th
1/2
F

k
1/2
T

∥[K∇uh · nF ]∥0,F∩FN

+
∑

F∈∂T∩ΓD

k
1/2
F

h
1/2
F

∥uh − π1
F gD∥0,F∩FN

+
∑

F∈∂T∩ΓN

h
1/2
F

k
1/2
F

∥K∇uh · n− π1
F gN∥0,F∩FN

)

where ω̄F,T = ω±
F if T = T∓ with respect to nF .237

Proof. Let any T ∈ ωN . Using that [uh]F = 0 for any F ∈ F int
h , we have that:

rh(φNχT ) =lh(φNχT )− ãh(uh, φNχT )

=

∫
T

fφN dx+

∫
∂T∩ΓN

gNφN ds−
∫
∂T∩ΓD

K∇φN · n(gD − uh) ds

+

∫
∂T∩ΓD

γkF
|F |

φN (gD − uh) ds−
∫
T

K∇uh · ∇φN dx

+

∫
∂T∩ΓD

K∇uh · nφN ds+

∫
∂T∩Fint

h

{K∇uh · nF }[φNχT ] ds.

Thanks to integration by parts and to the well-known formula [ab] = {a}[b] + [a]{b}∗,
we obtain, since K∇uh is constant on T , that

rh(φNχ
T
) =

∫
T

fφN dx+

∫
∂T∩ΓN

(gN −K∇uh · n)φN +

∫
∂T∩ΓD

γkF
|F |

φN (gD − uh)

−
∫
∂T∩ΓD

K∇φN · n(gD − uh) ds−
∫
∂T∩Fint

h

[K∇uh · nF ]{φNχT }∗ ds.
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Noting that φN vanishes on Fh \ FN , a standard scaling argument yields that:

|rh(φNχ
T
)| ≲ hT ∥π1

T f∥0,T +
∑

F∈∂T∩FN∩ΓN

h
1/2
F ∥K∇uh · n− π1

F gN∥0,F

+
∑

F∈∂T∩FN∩ΓD

γkF

h
1/2
F

∥uh − π1
F gD∥0,F +

∑
F∈∂T∩ΓD

kT

h
1/2
F

∥π0
F (uh − gD)∥0,F

+
∑

F∈∂T∩FN∩Fint
h

h
1/2
F ω̄F,T ∥[K∇uh · nF ]∥0,F .

We next multiply the previous inequality by k
−1/2
T and use that kF = kT on the238

Dirichlet sides, and that ∥π0
Fw∥0,F ≤ ∥π1

Fw∥0,F . Lemma 4.3 yields the result.239

4.2. Nonconforming approximation. The residual is now given by:

r∗h(·) = lh(·)− ã∗h(uh, ·).

Thanks to the mixed formulation, we have r∗h(vh) = 0 for any vh ∈ NCk
h and240

b∗h(θ
∗
h, vh) = r∗h(vh) ∀vh ∈ DGk

h. (4.15)

Let any F ∈ F int
h . We define θF ∈ Mk−1

h by imposing (θF )|F ′ = 0 for any241

F ′ ̸= F , whereas (θF )|F ∈ P k−1 is given by:242

b∗h(θF , ϕF,iχT ) = r∗h(ϕF,iχT ), ∀T ∈ ∆F , 0 ≤ i ≤ k − 1. (4.16)

The support of ϕF,i ∈ NCk
h is ∆F so we have that

0 = r∗h(ϕF,i) =
∑

T∈∆F

r∗h(ϕF,iχT ), 0 ≤ i ≤ k − 1.

Furthermore, by definition of the nonconforming space, we also have that∑
T∈∆F

b∗h(θF , ϕF,iχT ) =

∫
F

θF [ϕF,i]ds = 0, 0 ≤ i ≤ k − 1.

So the system (4.16) is compatible and is equivalent to:243 ∫
F

θFϕF,i ds = sF,T∗ r∗h(ϕF,iχT∗), 0 ≤ i ≤ k − 1 (4.17)

where T ∗ is the triangle of ∆F with the smallest coefficient k and sF,T∗ = nF · nT∗ .244

Writing θF ∈ P k−1(F ) in the Legendre basis as θF =
∑k−1

j=0 θF,jLj yields the unique245

solution of (4.17), with |F ||θF,j | = |r∗h(ϕF,jχT∗)| for 0 ≤ j ≤ k− 1. In addition, using246

that k−1
F ≤ 2k−1

T∗ we get a robust bound for θF , similar to the one of Lemma 4.3:247

∥θF ∥2NCh
≲ k−1

F |F |2|
k−1∑
j=0

θ2F,j ≤ 2k−1
T∗

k−1∑
j=0

r∗h(ϕF,jχT∗)2. (4.18)

Lemma 4.5. Let θ∗h and θF be the solutions of (4.15) and (4.16), respectively.248

Then θ∗h =
∑

F∈Fint
h

θF .249
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Proof. Let θ̄h :=
∑

F∈Fint
h

θF . We show that θ̄h satisfies (4.15), which yields that250

θ̄h = θ∗h thanks to the inf-sup condition.251

We first consider vh = ϕT
j χT , for any T ∈ Th and 0 ≤ j ≤ k(k−1)

2 . On the one

hand, since this test-function belongs to NCk
h, we have that r∗h(ϕ

T
j χT ) = 0. On the

other hand, we also have

b∗h(θ̄h, ϕ
T
j χT ) =

∑
F∈Fint

h

b∗h(θF , ϕ
T
j χT ) =

∑
F∈(∂T∩Fint

h )

sF,T

∫
F

θFϕ
T
j ds = 0,

by using the decomposition of θF in the Legendre basis of P k−1(F ) and the degrees252

of freedom (3.5) of the nodal basis function ϕT
j .253

Next, we take vh = ϕF,iχT , for any F ∈ Fh, T ⊂ ∆F and 0 ≤ i ≤ k − 1. If
F ∈ F int

h , then we have thanks to (4.16):

b∗h(θ̄h, ϕF,iχT ) =
∑

F ′∈Fint
h

b∗h(θF ′ , ϕF,iχT ) = b∗h(θF , ϕF,iχT ) = r∗h(ϕF,iχT ).

Here above, we have used the fact that

∫
F ′

θF ′ϕF,i ds = 0 for F ′ ̸= F , according to254

(3.5). Finally, if F ∈ F∂
h then vh ∈ NCk

h so r∗h(vh) = 0, and b∗h(θ̄h, vh) = 0 too.255

We have thus shown that b∗h(θ̄h, vh) = r∗h(vh) for any vh ∈ DGk
h, so θ̄h = θ∗h.256

5. Local flux reconstruction.257

5.1. Conforming approximation. Thanks to the definition of the multiplier258

θh, we are now able to reconstruct the local flux σh belonging to H(div,Ω). For this259

purpose, we use the Raviart-Thomas finite element space RTm
h , with m = 0 or 1. We260

impose the degrees of freedom of σh as follows.261

On the Neumann boundary, we simply set on any F ∈ FN
h :262

σh · nF = πm
h gN . (5.1)

On the Dirichlet boundary, we set on any F ∈ FD
h :263 ∫

F

σh · nFφds =

∫
F

(
K∇uh · nF − γkF

|F |
(uh − gD)

)
φds, ∀φ ∈ Pm(F ), (5.2)

which translates into σh · nF = K∇uh · nF − γkF
|F |

πm
F (uh − gD). On a interior side264

F ∈ F int
h we impose:265 ∫

F

σh · nFφds =

∫
F

{K∇uh · nF }φds− bF (θh, φ), ∀φ ∈ Pm(F ). (5.3)

The previous relations allow to uniquely define σh · nF in Pm(F ) for any F ∈ Fh.266

If m = 1, then we also define interior degrees of freedom on any T ∈ Th as follows:267 ∫
T

σh · r dx =

∫
T

K∇uh · r dx−
∫
∂T∩ΓD

(uh − gD)Kr · nds, ∀r ∈ (P 0(T ))2. (5.4)

Similarly to [10], we can then prove the following statement.268

Theorem 5.1. The flux σh satisfies the following conservation property:269

(divσh)|T = −πm
T f, ∀T ∈ Th. (5.5)
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5.2. Nonconforming approximation. We are now able to reconstruct the270

local flux σ∗
h in H(div,Ω), more precisely in the Raviart-Thomas finite element space271

RT k−1
h . On the sides, its degrees of freedom are given by:272

∀F ∈ FN
h , σ∗

h · nF = πk−1
F gN ,

∀F ∈ FD
h , σ∗

h · nF = πk−1
F

(
K∇u∗

h · nF − γkF
|F |

(u∗
h − gD)

)
,

∀F ∈ F int
h , σ∗

h · nF = πk−1
F {K∇u∗

h · nF } − θ∗h.

(5.6)

The interior degrees of freedom are defined as follows, for any T ∈ Th, r ∈ (P k−2(T ))2:273 ∫
T

σ∗
h · r dx =

∫
T

K∇u∗
h · r dx−

∫
∂T∩FD

h

(u∗
h− gD)Kr ·nds, ∀r ∈ (P k−2(T ))2. (5.7)

274

Theorem 5.2. The flux σ∗
h satisfies the following conservation property:

(divσ∗
h)|T = −πk−1

T f, ∀T ∈ Th.

Proof. Let T ∈ Th, p ∈ P k−1(T ) ⊂ Vk(T ) and let v := pχT ∈ DGk
h. We start from275

the integration by parts formula:276

−
∫
T

(divσ∗
h)p dx =

∫
T

σ∗
h · ∇v dx−

∫
∂T

σ∗
h · nT v ds. (5.8)

From (5.6) and (5.7) with r := ∇v, we get using v|FnT = [v]FnF that:∫
F

σ∗
h · nT v ds =

∫
F

{K∇uh · nF }[v] ds−
∫
F

θ∗h[v]ds, ∀F ∈ ∂T ∩ F int
h ,∫

F

σ∗
h · nT v ds =

∫
F

K∇u∗
h · nF v ds−

∫
F

γkF
|F |

(u∗
h − gD)v ds, ∀F ∈ ∂T ∩ FD

h ,∫
F

σ∗
h · nT v ds =

∫
F

gNv ds, ∀F ∈ ∂T ∩ FN
h ,∫

T

σ∗
h · ∇v dx =

∫
T

K∇u∗
h · ∇v dx−

∫
∂T∩FD

h

(u∗
h − gD)K∇v · nds.

Replacing in (5.8) we obtain:

−
∫
T

(divσ∗
h)p dx =

∫
T

K∇u∗
h · ∇v dx−

∫
∂T∩FD

h

(K∇v · nu∗
h +K∇u∗

h · nv) ds

+

∫
∂T∩FD

h

γkF
|F |

(u∗
h − gD)v ds−

∫
∂T∩Fint

h

πk−1
F {K∇u∗

h · nF }[v] ds

+
∑

F∈∂T∩Fint
h

∫
F

θ∗h[v]ds+

∫
∂T∩FD

h

gDK∇v · nds−
∫
∂T∩FN

h

gNv ds.

Noting that

∫
∂T∩Fint

h

πk−1
F {K∇v · nF }[u∗

h] ds = 0 because u∗
h ∈ NCk

h, we further get

−
∫
T

(divσ∗
h)p dx = ã∗h(u

∗
h, v) + b∗h(θ

∗
h, v)− lh(v) +

∫
T

fv dx =

∫
T

fp dx,

since (u∗
h, θ

∗
h) is solution of the mixed formulation (3.2). This ends the proof.277



16

6. Application to a posteriori error analysis. We only consider here the
P 1-continuous approximation. For the sake of simplicity, we set fh = πm

T f and
gh = πm

F gN , and we also assume that gD is a piecewise P 1-continuous function. Let
τh = K−1/2(σh −K∇uh). We introduce the local error estimators:

ηT = ∥K−1/2(σh −K∇uh)∥0,T = ∥τh∥0,T , ∀T ∈ Th,

ηF =

(∫
F

kF
|F |

(uh − gD)2 ds

)1/2

, ∀F ∈ FD
h ,

and the corresponding global error estimators

η =

( ∑
T∈Th

η2T

)1/2

= ∥τh∥0,Ω, ηD =

( ∑
F∈FD

h

η2F

)1/2

.

Let also the following higher order term, representing the data approximation:

ϵ(Ω)2 =
∑
T∈Th

h2
T

kT
∥f − fh∥20,T +

∑
F∈FN

h

hF

kF
∥gN − gh∥20,F .

6.1. Reliability. Lemma 6.1. Let σh be given by the equations (5.1)-(5.4)278

and let uh the solution of the weak formulation (3.1). Then we have the following279

estimate:280

|u− uh|1,K ≤ η + CDηD + Cϵ(Ω) (6.1)

where CD ≃ max
N∈ND

h

{CN} and CN is defined in (4.5).281

Proof. Let φ ∈ V gD the unique solution of282 ∫
Ω

K∇φ · ∇v dx =

∫
Ω

K∇uh · ∇v dx, ∀v ∈ V 0. (6.2)

By the triangle inequality, we have283

|u− uh|1,K ≤ |u− φ|1,K + |φ− uh|1,K , (6.3)

where

|u− φ|21,K =

∫
Ω

K1/2∇(u− φ) · (K1/2∇u−K−1/2σh) dx

+

∫
Ω

K1/2∇(u− φ) · τh dx+

∫
Ω

K1/2∇(u− φ) ·K1/2∇(uh − φ) dx

≤ |u− φ|1,K∥τh∥Ω +

∫
Ω

∇(u− φ) · (K∇u− σh) dx,

by testing (6.2) with v := u−φ ∈ V 0. SinceK∇u−σh ∈ H(div,Ω) and u−φ ∈ H1(Ω),
integration by parts in the last term yields, thanks to Lemma 5.1, that:∫

Ω

∇(u− φ) · (K∇u− σh) dx =

∫
Ω

(f − fh)(u− φ) dx+

∫
ΓN

(gN − gh)(u− φ) ds.
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The right-hand side term is classically bounded by C|u − φ|1,Kϵ(Ω). Thus, we have
so far proved that

|u− φ|1,K ≤ η + Cϵ(Ω).

We next bound the remaining term in (6.3), |uh − φ|1,K . From (6.2), we have

|φ− uh|1,K = inf
v∈V gD

|v − uh|1,K

so it is sufficient to build v ∈ V gD such that |v−uh|1,K is bounded by ηD. We choose
v ∈ C1

h defined by

v(N) = uh(N), ∀N ∈ N int
h ∪NN

h , v(N) = gD(N) ∀N ∈ ND
h .

For simplicity of notation, we set D = {T ∈ Th : T ∩ Γ̄D ̸= ∅}. Then we have

|v − uh|21,K =
∑
T∈D

∫
T

K∇(v − uh) · ∇(v − uh) dx ≲
∑
T∈D

∑
N∈NT

kT (v − uh)
2(N).

For a triangle T ∈ D which has a side F ∈ FD
h , one has that kF = kT and∑

N∈NT

kT (v − uh)(N)2 =
∑

N∈NF

kF (gD − uh)
2(N) ≃ η2F .

Meanwhile, for T ∈ D which has only a node N ∈ ND
h , one can bound kT by C2

NkF ,
where F ∈ FD

h ∩ FN . Hence, we finally get that

|v − uh|1,K ≤ CDηD

and the announced bound follows from (6.3).284

Remark 1. For m = 1, the definition of σh on a Dirichlet side F ⊂ ∂T together285

with the Cauchy-Schwarz inequality yield that ηF ≤ h
1/2
F γ−1∥τh ·n∥0,F ≲ γ−1∥τh∥0,T ,286

so one can bound ηD by η.287

6.2. Efficiency. Lemma 6.2. Let T ∈ Th. We have the following estimate:

ηT ≲ CT
∑

T ′∈∆T

(
hT ′

k
1/2
T ′

∥fh∥0,T ′ +
∑

F∈∂T ′∩ΓD

k
1/2
F

h
1/2
F

∥uh − gD∥0,F

+
∑

F∈∂T ′\∂∆T

ω̄F,T ′h
1/2
F

k
1/2
T ′

∥[K∇uh · nF ]∥0,F
)
+

∑
F∈∂T∩ΓN

h
1/2
F

k
1/2
T

∥K∇uh · n− gh∥0,F

where CT = max
N∈NT

CN and ∆T = {T ′ ∈ Th; ∂T ′ ∩ ∂T ̸= ∅}.288

Proof. Using the degrees of freedom of the Raviart-Thomas space RTm(T ), we289

have the following well-known inequality for τh = K−1/2(σh −K∇uh):290

∥τh∥0,T ≲
1

k
1/2
T

∥πm−1
T (σh−KT∇uh)∥0,T +

∑
F∈∂T

h
1/2
F

k
1/2
T

∥(σh−KT∇uh) ·nF ∥0,F . (6.4)

We next bound the right-hand-side term using the definition of the flux, that is291

relations (5.1)-(5.4). For F ∈ ∂T ∩ ΓN , we immediately have that:292

h
1/2
F k

−1/2
T ∥(σh −KT∇uh) · nF ∥0,F = h

1/2
F k

−1/2
T ∥KT∇uh · n− gh∥0,F , (6.5)
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whereas for F ∈ ∂T ∩ ΓD we have with kF = kT :293

h
1/2
F k

−1/2
T ∥(σh −KT∇uh) · nF ∥0,F = γh

−1/2
F k

1/2
F ∥πm

F (uh − gD)∥0,F . (6.6)

For F ∈ ∂T ∩ F int
h , we use that {a} − a− = −ω+[a] and {a} − a+ = ω−[a] and we

get, for any φ ∈ Pm(F ):∫
F

(σh −KT∇uh) · nFφds = −(nF · nT )ω̄F,T

∫
F

[K∇uh · nF ]φds− bF (θh, φ).

Taking φ = (σh −KT∇uh) · nF as test-function and using that kF ≤ kT , we get

h
1/2
F k

−1/2
T ∥(σh −KT∇uh) · nF ∥0,F ≲h

1/2
F k

−1/2
T ω̄F,T ∥[K∇uh · nF ]∥0,F

+

( ∑
N∈NF

|F |k−1
F (θN )2|F (N)

)1/2

.

Let DF =
⋃

N∈NF
ωN = {T ′ ∈ Th; ∂T ′ ∩ F̄ ̸= ∅} and CF = max

N∈NF

CN . Thanks to294

Theorem 4.4, we deduce that:295

h
1/2
F k

−1/2
T ∥(σh −K∇uh) · nF ∥0,F

≲ CF
∑

T ′∈DF

(
hT ′

k
1/2
T ′

∥fh∥0,T ′ +
∑

F ′∈∂T ′\∂DF

ω̄F ′,T ′h
1/2
F ′

k
1/2
T ′

∥[K∇uh · nF ′ ]∥0,F ′

+
∑

F ′∈∂T ′∩ΓN

h
1/2
F ′

k
1/2
T ′

∥KT ′∇uh · n− gh∥0,F ′ +
∑

F ′∈∂T ′∩ΓD

k
1/2
F ′

h
1/2
F ′

∥uh − gD∥0,F ′

)
.

(6.7)

Concerning the interior degrees of freedom (for m = 1), taking r = π0
T (σh −KT∇uh)296

in (5.4) yields that297

k
−1/2
T ∥π0

T (σh −K∇uh)∥0,T ≲
∑

F∈∂T∩ΓD

h
−1/2
F k

1/2
F ∥π0

F (uh − gD)∥0,F . (6.8)

Gathering together (6.5), (6.6), (6.7) and (6.8) in (6.4) and putting

CT := max
F∈∂T

CF = max
N∈NT

CN , ∆T :=
⋃

F∈∂T∩Fint
h

DF = {T ′ ∈ Th; ∂T ′ ∩ ∂T ̸= ∅},

we obtain the desired bound.298

For any T ∈ Th and F ∈ ∂T ∩ FN
h , we have thanks to Verfurth’s argument [24]:299

hT

k
1/2
T

∥fh∥0,T ≲ |u− uh|1,T,K +
hT

k
1/2
T

∥f − fh∥0,T ,

h
1/2
F

k
1/2
F

∥K∇uh · n− gh∥0,F ≲ |u− uh|1,T,K +
hT

k
1/2
T

∥f − fh∥0,T +
h
1/2
F

k
1/2
F

∥gN − gh∥0,F .

(6.9)

Lemma 6.3. Let T ∈ Th and F ∈ ∂T ∩ F int
h . Then we have:

h
1/2
F ω̄F,T

k
1/2
T

∥[K∇uh · nF ]∥0,F ≲ |u− uh|1,∆F ,K +
∑

T ′⊂∆F

hT ′

k
1/2
T ′

∥f − fh∥0,T ′ .
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Proof. We start from the next estimate, obtained again by means of Verfurth’s
argument:

h
1/2
F ∥[K∇uh · nF ]∥0,F ≲

∑
T ′⊂∆F

∥K∇(u− uh)∥0,T ′ +
∑

T ′⊂∆F

hT ′∥f − fh∥0,T ′ .

We multiply the inequality by ω̄F,T k
−1/2
T and we note that for T ′ = T , we obviously

have (ω̄F,T k
1/2
T ′ )k

−1/2
T = ω̄F,T ≤ 1, whereas for T ′ ̸= T we get, thanks to the definition

of ω̄F,T and to the mean inequality,

ω̄F,T k
1/2
T ′

k
1/2
T

=
k
1/2
T k

1/2
T ′

kT + kT ′
≤ 1

2
.

This finally yields the announced estimate.300

Combining Lemmas 6.2 and 6.3 and estimates (6.9), we have the following result.301

Theorem 6.4 (Efficiency). We have the following local efficiency bound:

ηT ≲ CT (|∥u− uh∥|∆T
+ ϵ(∆T )),

with CT = 1 if the coefficient K is quasi-monotone.302

Note that by definition of the energy norm, one also has that ηF ≤ |∥u− uh∥|∆F
303

for any Dirichlet side F .304

7. Numerical tests. We present some numerical experiments carried out for the305

P 1-continuous approximation. For the stabilisation parameter in Nitsche’s method,306

we set γ = 50. As regards the refinement strategy, we use the Dörfler marking strategy307

and the refinement rate is set to be 10%. In the adaptive mesh refinement (AMR)308

procedure, the marking percent is set to be 20%.309

Example 7.1 (The Ellipse Example). Let Ω = [−1, 1]2 and let the ellipse
centered at the origin, with width 2a and height 2b, of equation ρ = 1, where ρ =√

x2

a2
+

y2

b2
. Here, we take a =

π

6.18
and b = 1.5a. The exact solution is given by

u(x, y) =

{ 1
k1
ρp if ρ ≤ 1

1
k2
ρp + 1

k1
− 1

k2
if ρ > 1

,

where p = 5 and the diffusion coefficients in the two sub-domains are k1 = 1.0 and310

k2 = 10k1, respectively.311

The stopping criteria in the AMR procedure is that the total number N of degrees312

of freedom is less than 15000. The initial and final mesh generated by ηK are provided313

in Figure 7.1.314
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(a) Initial mesh (b) Final mesh

Fig. 7.1: (Example 7.1) Initial and final meshes

In Figure 7.2, we show the process of boundary snapping. When an element is315

refined, we use the longest edge refinement method, i.e., we add the mid-point of the316

longest edge to the vertices and form two sub-triangles. If the longest edge has two317

endpoints lying on the interface, we will adjust the newly added vertex to the interface318

after the refinement if such a movement does not deteriorate the mesh regularity.319

(a) Initial mesh (b) Snapped initial mesh (c) Snapped final mesh

Fig. 7.2: (Example 7.1) A zoomed interface snapping from Figure 7.1

In Figure 7.3, we observe optimal convergence rates for the error, the residual-320

based and the recovered flux-based estimators. However, the efficiency index (i.e. the321

ratio between the estimator and the error) of η is more accurate than that of ηres.322
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Fig. 7.3: (Example 7.1) Error convergence

Example 7.2 (The L-shaped domain). We now consider the L-shaped domain
test, see for instance [26]. The domain is Ω = [−5, 5] × [−5, 5]\[0, 5] × [−5, 0] and it
presents again an interface, the circle centered at origin and of radius ρ0 = 2

√
2. The

exact solution is given in polar coordinates (ρ, θ) by:

u(ρ, θ) =

{
ρ2/3 sin 2θ

3 , if ρ ≤ ρ0

ρ
2/3
0 sin 2θ

3 + 2
3µρ

−1/3
0 sin 2θ

3 (ρ− ρ0) otherwise
,

whereas the diffusion coefficient k is defined as follows:

k(ρ) =

{
1 if ρ ≤ ρ0
µ otherwise

.

As stopping criteria in the AMR procedure, we now impose that the total number323

of degrees of freedom is less than 45000. The curved interface is treated as in the324

previous example, by snapping the mesh. Figure 7.4 shows a sequence of adapted325

meshes, while in Figure 7.5 one can see the convergence rates obtained for different326

values of µ, from 5 to 10000. As expected from the theoretical results, we numerically327

retrieve the robustness with respect to the jump of the diffusion coefficient.328

Example 7.3 (The Kellogg test). We now consider the well-known checker-
board example, originally proposed by Kellogg [27]. Here, the line discontinuity of the
diffusion coefficients meets the singularity of the solution. In addition, the coefficients
are not quasi-monotone around the origin. The domain is Ω = [−1, 1]2, with two
intersecting interfaces given by the lines y = 0 and x = 0. The diffusion coefficient is
piecewise constant in each of the four sub-domains and is defined as follows:

k(x, y) =

{
κ, if xy ≥ 0
1, otherwise

.

The exact solution is given by u(r, θ) = rδµ(θ), with (r, θ) the polar coordinates cen-
tered at the origin and

µ(θ) =


cos((π2 − σ)δ) cos((θ − π

2 + ρ)δ), 0 ≤ θ ≤ π
2

cos(ρδ) cos((θ − π + σ)δ), π
2 ≤ θ ≤ π

cos(σδ) cos((θ − π − ρ)δ) π ≤ θ ≤ 3π
2

cos((π2 − ρ)δ) cos((θ − 3
2π − σ)δ) 3π

2 ≤ θ ≤ 2π

.



22

(a) Initial mesh (b) Iteration 18 (c) Final mesh at iteration 31

Fig. 7.4: (Example 7.2) Adaptive meshes

The solution has an infinite derivative at the origin and belongs to H1+s(Ω) for any329

s < δ. The numbers δ, σ, ρ and κ are related by some nonlinear relations. As330

in [28], we take δ = 0.1, which yields σ = −14.92256510455152, ρ = π
4 and κ =331

161.4476387975881.332

As regards the AMR procedure, the stopping criteria is now that the relative error333

is less than 1%, which leads to 131 iterations. We present in Figure 7.6 a sequence of334

adapted meshes, starting from an initial mesh consisting of 8 triangles. One can see335

that the refinement takes place near the origin, as expected. The optimal convergence336

rates for the error and the estimators η and ηres are shown in Figure 7.7. Again, the337

efficiency index of η is asymptotically more accurate than that of ηres.338

Example 7.4 (The Battery Problem). Finally, we consider a problem attributed339

to I. Babuska, which can be found in [29], [30]; it models heat conduction in a battery340

with non-homogeneous materials. The domain is the rectangle Ω = [0, 8.4] × [0, 24]341

shown in Figure 7.8. The numbered regions show the areas of different materials; the342

location of the line segments that separate the regions can be found in [30].343

The problem features a piecewise constant diffusion tensor K =

(
k1 0
0 k2

)
and344

mixed boundary conditions of Fourier-Robin type, K∇u ·n+cu = g on ∂Ω. Therefore,345

we have modified accordingly the discrete weak formulation and defined the boundary346

degrees of freedom σh · n as πm
h (g − cuh). The definitions of the parameters ω± and347

kF in the tensor case is the same as in [25, 5]. The constants k1, k2 and f for each348

region are given in Table 7.1. The boundary coefficients c and g are taken as follows:349

c = g = 0 on the left, c = 1 and g = 3 on the top, c = g = 2 on the right, and finally,350

c = 3 and g = 1 on the bottom.351

k k1 k2 f
1 25 25 0
2 7 0.8 1
3 5 0.0001 1
4 0.2 0.2 0
5 0.05 0.05 0

Table 7.1: (Example 7.4) The piecewise constant coefficient function K
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(a) µ = 5 (b) µ = 500

(c) µ = 1000 (d) µ = 10000

Fig. 7.5: (Example 7.2) Error converhence for different values of µ

(a) Iteration 50 (b) Iteration 115 (c) Final mesh at iteration 131

Fig. 7.6: (Example 7.3) Adaptive meshes

The exact solution is not known and has singularities at the points where three352

or more materials meet. For any ε > 0, there exists coefficients such that the solution353

is in H1+ε(Ω); for the given set of coefficients, ε is about 1/2.354

We show in Figure 7.8 a sequence of adapted meshes. Figure 7.9 illustrates the355

interest of adaptive versus uniform mesh refinement. Besides the gain in the number356



24

Fig. 7.7: (Example 7.3) Error convergence

of degrees of freedom and in computational time, the AMR procedure yields optimal357

convergence rate O(h) whereas the uniform refinement only yields O(h1/2).358

(a) Domain (b) Initial mesh (c) Iteration 10 (d) Final mesh

Fig. 7.8: (Example 7.4) sub-domains and adapted meshes

8. Appendix: Proof of Lemma 3.3. Proof. The proof follows the ideas of [10]359

for the Poisson equation. Let µh ∈ Mh. The idea is to construct vh ∈ D1
h associated360

to µh and satisfying361

bh(µh, vh) ≳ ∥µh∥2Mh
, ∥|vh|∥h ≲ CK∥µh∥Mh

. (8.1)

The construction of vh is done patch-wise. We look for vh =
∑

N∈N int
h

vN with362

vN defined on ωN . Let N ∈ N int
h and let us define vN , piecewise P 1 and discontinuous363

on ωN , by imposing its values at the nodes of each triangle T ∈ ωN as follows.364
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Fig. 7.9: (Example 7.4) Error convergence for adaptive and uniform refinements

At a node M ̸= N belonging to a side F ∈ FN with {F} = ∂T+ ∩ ∂T−, we set

(vN )|T±(M) = 0 if M ∈ N int
h .

If M ∈ N ∂
h , then we set365

(vN )|T−(M) = δF |F |µh|F (M), (vN )|T+(M) = (δF − 1)|F |µh|F (M), (8.2)

where δF = 1 if kT− ≤ kT+ and δF = 0 otherwise. This ensures that the definition of
vN is local and that

[vN ]F (M) = 0 if M ∈ N int
h , [vN ]F (M) = |F |µh|F (M) if M ∈ N ∂

h .

Furthermore, one has that366

kT−δ2F ≤ 2kF , kT+(δF − 1)2 ≤ 2kF . (8.3)

At the node N , we impose:367

[vN ]F (N) = |F |µh|F (N), ∀F ∈ FN . (8.4)

Thanks to the constraint imposed in the space Mh, the linear system (8.4) is com-
patible, because we have:

∀N ∈ N int
h ,

∑
F∈FN

sN,F [vN ]F =
∑

F∈FN

sN,F |F |µh|F (N) = 0.

The construction of vh yields that for any F ∈ F int
h of vertices N and M , one has

[vh]F = [vN ]F + [vM ]F = |F |µh|F ,

which yields

bh(µh, vh) =
∑

F∈Fint
h

|F |2kF
2

∑
N∈NF

µh|F (N)2 ≃
∫
Fint

h

|F |kFµ2
h = ∥µh∥2Mh

,
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as well as ∑
F∈Fint

h

∫
F

kF |F |−1[vh]
2 ds ≲ ∥µh∥2Mh

.

Meanwhile, for a boundary side F ∈ F∂
h such that F ∈ ∂ωN ∩ ∂T , one has that

vh|F = vN |F so one gets using (8.2) and (8.3) that∫
F

|F |−1kF v
2
h ds ≲ kT

∑
M∈NF

(vN )2|T (M) ≲
∑

F ′∈∂T\{F}

∫
F ′

|F ′|kF ′µ2
h ds.

By summing upon the Dirichlet sides, it follows that∑
F∈FD

h

∫
F

kF |F |−1v2h ds ≲ ∥µh∥2Mh
.

In order to obtain (8.1), we still have to establish368 ∫
Th

K∇vh · ∇vhdx ≲ C2
K∥µh∥2Mh

. (8.5)

For this purpose, we need to specify the construction of vN at the node N , that369

is to solve the system (8.4), which has a one-dimensional kernel (see [10, 21]). We fix370

one of the values of vN in order to obtain (8.5) with the best constant CK . We recall371

that nN denotes the number of elements in ωN and that the cells are numbered from372

T1 to TnN
, with T1 the element such that k|T1

= maxT⊂ωN
k|T . We suppose (without373

loss of generality) that the triangles are ordered clockwise. For each i ∈ {1, ..., nN},374

we set Fi = ∂Ti ∩ ∂Ti+1 with TnN+1 = T1 and we recall that the sign coefficient375

si := sN,Fi
equals 1 if Ti = T− with respect to Fi, and −1 otherwise. For the376

simplicity of notation, let us put vi := (vN )|Ti
(N) and µ∗

i = si|Fi|µh|Fi
(N). Noting377

that [vN ]Fi
= si(vi−vi+1) and that s2i = 1, the system (8.4) can be written as follows:378

vi − vi+1 = µ∗
i , 1 ≤ i ≤ nN − 1. (8.6)

We choose v1 = 0. Then (8.6) yields v2i ≲
i−1∑
j=1

(µ∗
j )

2, for 2 ≤ i ≤ nN . By using that

1

kFj

=
1

kj
+

1

kj+1
, we next obtain that

kiv
2
i ≲

i−1∑
j=1

ki
kFj

kFj (µ
∗
j )

2 =

i−1∑
j=1

(
ki
kj

+
ki

kj+1
)kFj (µ

∗
j )

2, 2 ≤ i ≤ nN .

Recalling that CN = max
1≤j≤i≤nN

√
ki√
kj

on ωN , we have thus obtained:379

kiv
2
i ≲ C2

N

nN−1∑
j=1

kFj
(µj

∗)2, 1 ≤ i ≤ nN . (8.7)
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One then has∫
Th

K∇vh · ∇vhdx ≲
∑
T∈Th

∑
N∈NT

kT (vh)
2
|T (N)

=
∑
T∈Th

∑
N∈NT∩N int

h

kT (vh)
2
|T (N) +

∑
T∈Th

∑
N∈NT∩N∂

h

kT (vh)
2
|T (N)

≲
∑

N∈N int
h

∑
T∈ωN

kT (vN )2|T (N) +
∑

N∈N∂
h

∑
T∈ωN

kT (vh)
2
|T (N).

Using (8.7) for the first right-hand-side term and (8.2), (8.3) for the second one, as
well as the fact that CN ≥ 1, we finally get∫

Th

K∇vh · ∇vhdx ≲
∑

N∈Nh

C2
N

∑
F∈FN

kF |F |2µh
2
|F (N)

≲ C2
Ω

∑
F∈Fh

kF |F |2
∑

N∈NF

µh
2
|F (N) ≃ C2

Ω∥µh∥2Mh

with CΩ = max
N∈N int

h

CN . For K quasi-monotone, one has CN = 1 for any node N and380

hence, CΩ = 1. This ends the proof with β ≃ C−1
Ω .381
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[7] A. Ern, A. F. Stephansen, and M. Vohraĺık. Guaranteed and robust discontinuous Galerkin396

a posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl.397

Math., 234(1):114–130, 2010.398

[8] Z. Cai and S. Zhang. Robust equilibrated residual error estimator for diffusion problems:399

Conforming elements. SIAM J. Numer. Anal., 50(1):151–170, 2012.400
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