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The rapid development of modern vehicle technology necessitates a robust and comprehensive evaluation framework for AI-powered systems in Autonomous Driving Systems (ADS). This paper introduces a generic simulation framework tailored to the evaluation process of AI-powered systems in ADS, with an emphasis on the visual perception system as a case study. The framework integrates different levels of evaluation that contain critical metrics, providing a comprehensive understanding of system performance and targeted evaluation and analysis of components, under challenging driving conditions. This information can be used to guide improvements to the system, such as selecting better AI algorithms, modifying the design of the system, or improving the environment in which it operates. For each component, the framework not only incorporates a unified definition and configuration but also establishes a communication mechanism, which contributes to effectively integrating different tools and platforms into the evaluation process.

The insights gleaned from the visual perception systems case study can be leveraged for adapting and applying the generic evaluation process to other AI-powered systems in ADS, aiming to promote the development of more reliable and safer systems.

I. INTRODUCTION

As the driving force of the current technological revolution, AI has been applied in many frontier fields. The modern automotive revolution has proven this claim. Over the last decade, vehicle information systems, embedded sensor technologies, and "smart" processing of data have been rapidly developed. Simultaneously, vehicles are increasingly equipped with AI-powered systems of automated mechanisms, which are designed to assist or replace human drivers and improve road user safety.

While AI-based systems have shown great promise in improving automated mobility, they also pose certain threats [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], [START_REF] Dwivedi | Artificial intelligence (ai): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy[END_REF]. Therefore, the evaluation and mitigation of potential threats in AI systems within ADS are critically important. While ADS testing involves both virtual and real approaches, relying solely on physical testing is impractical and timeconsuming due to the complexity of real-world scenarios.

Challenges arise due to factors such as complex traffic patterns, unpredictable pedestrian behavior, and diverse weather conditions, making it difficult to establish controlled experimental conditions for comprehensive evaluation. Consequently, the utilization of simulation tools and platforms has become indispensable.

Various simulators are available for virtual testing of ADS, including both proprietary tools and open-source alternatives. Proprietary simulators like CarCraft from Waymo [START_REF] Madrigal | Inside waymo's secret world for training self-driving cars[END_REF], developed by industry leaders, offer specialized features and capabilities that meet specific requirements. Conversely, open-source simulators such as CARLA [START_REF] Dosovitskiy | Carla: An open urban driving simulator[END_REF] and SVL simulator [START_REF] Rong | Lgsvl simulator: A high fidelity simulator for autonomous driving[END_REF], provide accessibility and facilitate collaboration within the community. Additionally, these simulators can be interconnected with ADS like AutoWare [START_REF] Kato | Autoware on board: Enabling autonomous vehicles with embedded systems[END_REF]. Other noteworthy simulators include SUMO [START_REF] Lopez | Microscopic Traffic Simulation using SUMO[END_REF] for traffic dynamics simulation, etc. For our case study, we utilized the Pro-SiVIC TM interconnecting with the ADS used in RTMaps TM [START_REF] Gruyer | Sivic and rtmaps, interconnected platforms for the conception and the evaluation of driving assistance systems[END_REF].

Researchers must develop specific procedures to target particular components and generate synthetic data when utilizing different simulation platforms. Consequently, there is a growing need for a generic design process, containing the generation of the test configuration, simulations execution, and also comprehensive evaluation of outcomes, to conduct thorough tests for evaluating AI-powered systems in ADS.

In this paper, we present a generic simulation framework for the evaluation process of AI-powered systems in ADS, as shown in Fig. 1. The main contributions can be summarized as follows:

• We conceptualized and implemented three integral components of the framework to demonstrate a generic evaluation process. • The framework contains different levels of evaluation and addresses corresponding metrics. • A case study is presented to illustrate the application of the framework to the visual perception system and provide experimental results containing different levels of evaluation.

The remainder of this paper is structured as follows. In section 2, the AI-powered systems and testing environments are introduced respectively. From sections 3 to 5, a detailed definition and description of the different components in the framework are given. section 6 shows the configuration of the experiments and corresponding results. Finally, section 7 is about conclusions and perspectives on future works. 

A. Testing Environments

The environment within the framework typically includes digital models or simulations of real-world scenarios. It includes road networks, traffic conditions, weather conditions, pedestrians, vehicles, and other objects. These simulated environments aim to mimic the complexity and diversity of real-world driving situations, allowing researchers and developers to evaluate and test the performance of AIpowered systems in a controlled and repeatable manner. In our study case, we utilized a digital model derived from the digital twin constructed at the Satory test track, as depicted by Gruyer et al [START_REF] Gruyer | Development of full speed range acc with sivic, a virtual platform for adas prototyping, test and evaluation[END_REF].

B. AI-powered system

An AI-powered system in autonomous driving is a component that employs AI algorithms and techniques to carry out various functions critical for an automated vehicle in its operating environment. These functions include perception, localization, decision-making, path planning, control, and more. In the framework, a simulated sensor suite is needed to enable the vehicle to sense its surroundings, including cameras, LiDAR, radar, and others (as shown in Fig. 2). This comprehensive sensor setup aims to contribute to a more realistic and complex data source, allowing a more accurate and reliable evaluation of the AI-powered system. In the study case, our visual perception system is equipped with camera sensors built from Pro-SiVIC TM , which are already validated inside the digital twin of the Satory test track [START_REF] Gruyer | Modeling and validation of a new generic virtual optical sensor for adas prototyping[END_REF]. 

III. GENERATOR

The generator is crucial in building the framework, generating necessary configurations, and selecting algorithms for evaluation. As demonstrated in Algorithm 1, it is responsible for generating configurations of evaluation scenarios based on Operational Design Domain (ODD) and Object and Event Detection and Response (OEDR). It also selects candidates of AI algorithms for the framework according to specific objectives, then evaluates and validates them based on a representative real-world dataset. Moreover, the generator component generates the configuration of the ground truth for the executor based on the selected algorithms, ensuring the accuracy and reliability of the evaluation process.

A. Evaluation objectives

The evaluation objectives of an AI-powered system in ADS are derived from an analysis of the system and its operating environment. These objectives encompass multiple levels: 1) At the system level, the overall performance and quality of the AI system are evaluated in simulated environments; 2) The components/functionalities level focuses on evaluating specific functions and algorithms necessary to meet the expected functionalities of the system; 3) Additionally, the scenarios level evaluates the system's capabilities within a defined ODD, including safe driving in different scenarios under varying conditions like non-optimal weather, traffic, and lighting. Categorizing the evaluation objectives into these levels facilitates a comprehensive evaluation of the system's performance, safety, and areas for improvement, offering valuable insights into its capabilities and limitations.

B. Scenario Definition and Configuration

1) Scenario Definition: involves the conceptualization and specification of the fundamental elements:

• Scene contains the overall environment where the scene takes place, including return SC, GT C, Objs, As ▷ Return configurations, objectives, adverse conditions, and selected algorithms 8: end procedure weather or lighting, which can influence the behavior of dynamic elements.

• Event represents incidents or occurrences that unfold during the scenario. These events can be pre-defined or dynamically generated and contribute to the scenario's progression. They include stimuli, triggers, or changes in the environment or state change of other objects (outside ego), shaping the sequence of actions and reactions within the scenario. • Action pertains to the response or behavior exhibited by the ego object in the scenario. It demonstrates how the ego object in the scene reacts to events or encountered conditions. Actions may include acceleration, braking, or changes in the direction of the ego vehicle. • Criteria refers to the specific conditions or standards required for the simulation scenario to be deemed complete or successful. These criteria could include factors such as reaching a particular time limit, accomplishing predefined objectives, meeting specific performance metrics, satisfying safety requirements, or any other relevant measures that define the desired conclusion of the scenario.

2) Scenario Configuration: involves the implementation and customization of a scenario based on the definition. This process focuses on the detailed setup and arrangement of specific elements, conditions, and variables within the scenario. An effective scenario configuration should be done within the defined boundaries of ODD and OEDR.

ODD contains the specific operating conditions and environments within which ADS is intended to function safely and effectively. By considering the ODD in the scenario configuration, the scenarios accurately reflect the real-world conditions that the system is designed to encounter. This involves defining geographic boundaries, traffic conditions, and factors that influence the system's operational limits, thus ensuring the scenario's relevance and accuracy.

OEDR focuses on the system's ability to detect and respond to specific objects and events within its operational environment. When configuring scenarios, it is imperative to define the types of objects the system should detect. Furthermore, the scenario should include events that the system should recognize and respond to, such as sudden lane changes, emergency braking, or any other relevant mapping. By incorporating these elements, the scenario enables the evaluation and improvement of the system's perception and response capabilities.

By aligning scenario configuration with the ODD and OEDR, the resulting simulations accurately represent the operating boundary and allow for a comprehensive evaluation of ADS.

C. Algorithms selection

To select algorithm candidates for an AI-powered system, it is essential to establish the domain of AI first. In the case of a visual perception system, deep learning methods like Convolutional Neural Networks (CNNs) have demonstrated promising results and are commonly used for image detection and segmentation tasks.

Once the domain is determined, specific tasks should be extracted based on the system's objectives. After an extensive investigation of algorithms suitable for these tasks within the chosen AI domain, potential candidates can be identified. These candidates will undergo training using relevant datasets, and if possible, the models will be fine-tuned. Subsequently, the performance of the trained models will be validated to ensure they meet the necessary criteria for further consideration.

D. Ground truth selection

In real-world environments, ground truth can be generated through manual annotation or by using calibrated and accurate sensors or devices to capture the actual values of the variables being measured. For example, the BDD100k dataset [START_REF] Yu | Bdd100k: A diverse driving dataset for heterogeneous multitask learning[END_REF] has been widely used in visual perception research [START_REF] Wu | Yolop: You only look once for panoptic driving perception[END_REF], [START_REF] Pang | Quasi-dense similarity learning for multiple object tracking[END_REF] and provides ground truth labels for various tasks as shown in Fig. 3a. In the proposed framework, this type of ground truth is used for training and preliminary validation of the selected algorithm. In the simulation framework, the selection and configuration of the ground truth are based on the chosen algorithms and the characteristics of the environment. Ground truth data can be generated by using a physics engine to model the behavior of the vehicle and its interaction with the environment, Fig. 3b shows the different ground truth for visual perception tasks in Pro-SiVIC TM . The ground truth generated by the simulator will be collected by the executor and used for the final evaluation process.

IV. EXECUTOR A. Execution process

The executor is responsible for executing the different test cases on the integrated platform and tools, which are built by the output from the generator component of the framework, and also generating different types of results. The module must ensure that the system is executing properly and that the intermediate results are being generated correctly, and then passed back to the generator component as feedback. This process aims to refine the parameters inside the configuration of scenarios and adjust ODD or OEDR if needed.

If there are any issues or errors in the execution, it needs to be resolved before passing on the final results to the evaluator component. Once the execution is complete, the final results are passed to the evaluator component for assessment against the different types of evaluation metrics.

The process of executor is expressed by the Algorithm 2.

B. Integration with tools and platforms

Integrating the evaluation framework with appropriate tools and platforms is crucial for the executor component to effectively perform its tasks. Fig. 4 illustrates a case of integration of two interconnected software, RTMaps TM and Pro-SiVIC TM in our framework. By utilizing the capabilities of Pro-SiVIC TM to design realistic and complex virtual environments, developers can simulate various road, traffic, and weather conditions that their systems might encounter. Meanwhile, RTMaps TM provides a module-based environment to design different sub-systems for ADS, and also has real-time multisensor processing and data fusion capabilities to enable the effective management of sensor data. Besides, it also has the capability to record and replay the data from the observer, also providing an efficient means for the evaluation process.

As shown in Fig. 4, it is worth mentioning that the Data Distribution Service (DDS) as the communication mechanism is integrated within the evaluation framework, which offers an effective and interoperable Application Programming Interface (API) for seamless data sharing and communication among the various components. It contributes to enhancing the framework's overall performance, scalability, and effectiveness in the evaluation process.

V. EVALUATOR

The evaluator is responsible for evaluating the performance of the AI-powered systems. It applied the selected evaluation metrics to the output from the executor, and then hereby evaluate the results combining corresponding ground truth. The overall process can be abstracted as shown in Algorithm 3.

The metrics used in the framework are chosen based on the different levels inside the evaluation objectives of the system, such as component level, system level, and scenario level. 

A. System evaluation

In order to evaluate the high-level quality of AI-powered system in ADS, such as a visual perception system, it is necessary to implement a full mobility service and propose relevant and representative scenarios involving an exhaustive set of conditions/configurations/situations allowing for quantification of the performances and the quality of the service. The metrics (a case of visual perception system) can refer to a set of specific Key Performance Indicators (KPIs):

• Risk specific: Longitudinal and lateral distance, Time to collision (TTC), Time Exposed Time-to-Collision (TET), Deceleration Rate to Avoid a Crash (DRAC), etc. • Task (detection/tracking) specific: Success rate, Loss, Distance, etc. • Time specific: Frequency, Time to detect/track, False alarm frequency.

B. Component evaluation

This level of evaluation focuses on the performance of individual algorithms or functions within the AI-powered system. The metrics are typically related to the functionalities of the system, as the metrics of the visual perception system shown in Table I.

C. Evaluation under complex scenarios

This level of evaluation involves testing the performance of an AI-powered system under various challenging conditions, such as adverse weather, low lighting, and unexpected obstacles. These complex scenarios can be difficult to replicate in real-world testing, which makes simulation tools and virtual environments more essential. The use of simulation allows for the creation of complex scenarios that can be repeatedly tested, analyzed, and modified to evaluate, analyze, and improve the performance of the system. One example we used in the experiment is Pro-SiVIC TM , which offers a range of adverse scenarios, as shown in Fig. 5.

The related metrics can vary depending on the specific application and system requirements. However, some common metrics for this level of evaluation include: • Robustness: This metric evaluates the ability of the system to perform consistently and accurately in various challenging and unforeseen situations, and is usually reflected in various performance metrics, such as accuracy, precision, recall, and F1-score, etc. Robustness can be measured by analyzing these performances in different scenarios and under different conditions, and also by assessing their ability to maintain performance levels over time.

• Reliability: This metric evaluates the system's ability to make reliable decisions in emergency situations or other adverse situations.

VI. EXPERIMENTS AND RESULT

A. System and Environment

In our experimental setup, we use a visual perception system based on a monocular camera. This system is implemented as a module within the RTMaps TM framework and is an extension of the driving system developed in the H2020 Trustonomy project [START_REF] Xu | Safe vehicle trajectory planning in an autonomous decision support framework for emergency situations[END_REF]. The camera-based perception system is specifically designed to provide essential functionalities such as object identification, localization, and tracking.

For the purpose of our simulations, the module-based ADS operates within the Pro-SiVIC TM rendering environment. To replicate real-world scenarios, we utilize the digital twin of the Satory test track within Pro-SiVIC TM . This virtual representation of the test track has undergone validation using an existing perception system equipped with a set of various sensor types and technologies.

B. Scenarios generation

To evaluate our framework's genericity, we developed a full bus stop service in RTMaps and the full environment with vehicles, sensors, infrastructures, and building in Pro-SiVIC TM . This set of models and modules is used for the evaluation of a visual perception system equipped with different AI models.

As shown in Fig. 6, the service and the situations that could be encountered are modeled with a set of 6 scenes. The continuous assembly of these scenes along a 3.4 km trajectory on the Satory's test track allows for the construction of a tree of possible scenarios. The vehicle trajectory includes 4 or 5 types of bus stations. The simulated environment comprises different types of bends and straight lanes. The ego vehicle is restricted to driving on its ego-lane, while other traffic objects can perform cut-in and cut-out maneuvers on different lanes.

The ODD is the following: Ego vehicle travels on the right lane of the predefined road at a maximum speed of 20 km/h, while maintaining a safe following distance and performing car-following maneuvers when a front vehicle is detected. The vehicle's primary objective is to ensure the safety of passengers and road users by avoiding collisions and adapting its speed to traffic conditions, visibility caused by different weather conditions, and the environment. Additionally, the vehicle stops at the bus station to allow passengers to board and alight. After the stop, the vehicle utilizes dedicated longitudinal and lateral profiles to return to the center of the right lane and resume driving.

C. Algorithms and models

To achieve the system functionalities, we have selected two renowned visual perception algorithms: YOLOv5 [START_REF] Jocher | YOLOv5 by Ultralytics[END_REF] and YOLOv8 [START_REF] Jocher | YOLO by Ultralytics[END_REF], along with their respective models: v5s and v8s. In addition to the object detection models, we have also incorporated two corresponding instance segmentation models (v5s-seg and v8s-seg), aiming to provide more detailed information about object boundaries within an image.

To further enhance the system's capabilities for large-scale diverse driving, we retrained and fine-tuned the models using the BDD100K dataset based on the previous COCO dataset [START_REF] Lin | Microsoft coco: Common objects in context[END_REF], the training phase is equipped with a 16-core Intel i9-12950HX 2.30 GHz CPU and NVIDIA-GTX A4500 GPU core graphics card.

D. Deployment and execution

After the training phase, we deployed the trained model into the software platform RTMaps TM (C++ support), in order to perform the model as a functioning part of the perception system and interconnect with the simulator. During the deployment, we used TensorRT C++ API to optimize the model for inference (with precision FP16), which is based on NVIDIA's Compute Unified Device Architecture (CUDA). The setup environment and tools contain CUDA 10.2, Py-Torch 1.10.1, cuDNN v8.2.1 corresponding to CUDA, Ten-sorRT 8.2, and Visual Studio 2017 (v141).

E. Evaluation and result

We proposed 3 levels of evaluation for this visual perception system equipped with different YOLO models.

1) Scenarios level: We have defined seven weather filters on the camera as shown in Fig. 7. The first scenario representing a clear sky is the reference. The remaining scenarios focus on simulating various weather conditions. We have categorized homogeneous fog into three levels using the Koschmieder law, ensuring an accurate representation. For rain, we have incorporated two filters. The first filter replicates a waterfall effect, while the second mimics raindrops on a camera lens or windshield. Similarly, we have created three different levels of intensity to simulate varying degrees of rain.

2) Component level: We curated seven distinct groups of datasets, each consisting of approximately 10,000 images for detection and instance segmentation, organized based on predefined weather conditions. For tracking, the datasets are 7 groups of real-time videos. These datasets included various types of simulated vehicles, such as cars and trucks, navigating the Satory test track. Different camera perspectives were incorporated, including front and rear views of the ego vehicle, as well as close and distant perspectives. The performed results were evaluated using a set of metrics. The evaluation values are presented in Fig. 7.

The results clearly demonstrate the influence of different weather conditions on the metrics. Adverse rain weather significantly impacts mAP, indicating difficulties in accurately detecting and localizing objects under heavy rain conditions. In contrast to the impact of adverse rain weather, varying levels of fog have a relatively lesser effect on the metrics. While there is still a decrease in the mAP with increasing fog levels, it is not as pronounced as the impact of rain. However, it is worth noting that there is a consistent increase in precision as the degree of fog increases. This suggests that fog has a discernible influence on improving precision by reducing background interference and minimizing the impact of distant objects.

Comparing the performance of v8s and v5s, it is observed that v8s generally achieves slightly higher metric values. However, when it comes to object tracking, v5s demonstrates a lower MOTP than v8s. This indicates that v5s exhibits higher precision in tracking object locations. The disparity in tracking performances may be attributed to the frequency, as v5s benefits from a higher update rate and more frequent predictions, leading to improved tracking precision.

3) System level: In comparison to the instance segmentation model, both v5s and v8s models demonstrate higher accuracy in providing boundary information, as reflected by mIOU. Hence, we have incorporated these two models into our system and evaluated their performance under bus stop scenarios. Specific KPIs were calculated based on the realtime results obtained from the system, as in Tab. II.

While v8s demonstrates higher detection and tracking capabilities than v5s, it also exhibits an increase in tracking time under adverse rain weather. This suggests that more objects may be detected due to the presence of raindrops Fig. 6. 6 scenes for the docking at a bus station on the lens, and YOLOv8 proves to be more sensitive in this scenario. On the other hand, under foggy conditions, both system frequencies are reduced, indicating that fewer remote objects are detected due to the degree of fog.

Tab. II also presents the evaluation results obtained using collision probability and risk of collision based on TTC [START_REF] Glaser | Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction[END_REF]. We calculated the mean value specifically for critical scenarios. Notably, the risk across all groups was found to be low primarily because our scenarios involve low speeds, resulting in a low likelihood of injury. However, the risk can still indicate heightened safety concerns in moderate and heavy rain weather conditions, similar to the collision probability.

VII. CONCLUSION

This paper presents a simulation framework designed to evaluate AI-powered systems in ADS. The framework is generic in nature, allowing for the utilization of various software and tools. In the case study presented, we used RTMaps TM and Pro-SiVIC TM , but these components can be substituted within the framework. The key strength of the framework lies in its ability to establish a unified evaluation process, and offer an effective and interoperable API for interconnecting between each component, as a result in facilitating the seamless integration of test case configuration, simulation execution, and evaluation library (different levels). This modular approach ensures the independence and collaboration of different components, enhancing the framework's flexibility and applicability.

Future work in this area could focus on two main aspects: 1) Firstly, the validation process could be integrated into the existing framework to assess AI-powered systems from different levels, including components, tools/modules, and the overall system. This would enhance the robustness and reliability of the evaluation process; 2) Secondly, expanding the scope of specific case studies would be valuable in approaching real-world scenarios. For instance, additional adverse conditions (non-homogeneous fog, cloud of dust, cloud of smoke, sun glare, optical blur) and specific physical effects (reflection on road surfaces and other objects) could be incorporated, as well as the use of intrinsic cameras parameters generated different adverse conditions (e.g., noise, DoF, Optical distortion, Auto exposure, glow). This would provide a more comprehensive evaluation of the system's performance under challenging and realistic conditions. 
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  (TNR), True Detection Rate (TDR), Accuracy, Precision, Recall, F-Measure, Receiver Operating Characteristic (ROC Curve), Detection Error Trade-off Curve (DET Curve), Precision-Recall Curve (PR Curve), Average-Precision (AP), mean Average Precision (mAP), etc. Segmentation Partitioning an image or video frame into regions and assigning semantic labels to each pixel or region Pixel Accuracy (PA), Class Pixel Accuracy (CPA), mean Pixel Accuracy (mPA), IoU, mean Intersection over Union (mIoU), etc. Tracking Following the movement and preserving the identity of an object or multiple objects over time in a video sequence Object Tracking Time delay, Identification switch(IDSW), Multiple ObjectTracking Accuracy (MOTA)[START_REF] Bernardin | Evaluating multiple object tracking performance: the clear mot metrics[END_REF], Multiple Object Tracking Precision (MOTP)[START_REF] Bernardin | Evaluating multiple object tracking performance: the clear mot metrics[END_REF], Higher Order Tracking Accuracy (HOTA)[START_REF] Luiten | Hota: A higher order metric for evaluating multi-object tracking[END_REF], etc.
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 5 Fig. 5. Adverse scenarios from Pro-SiVIC TM
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 7 Fig. 7. Result on different weather conditions at component level

  

  INSTANTIATE(S withAi in T i , E with SC , P ) ▷ Instantiate the system SI with algorithm Ai in test case T i and environment EI with scenario configuration SC on the integrated platform P

	Algorithm 2 EXECUTOR	
	1: procedure EXECUTE( SC, As, GT C, ACs )	▷ Outputs from generator as inputs of executor
	2:	T s ← BUILD(As , ACs)	▷ Build the test cases with different algorithms As and adverse conditions ACs
	3:	for T i ∈ T s do	
	4: SI , EI ← 5: T a T i ← T.GENERATE(S T i , ACi in T i) ▷ Generate the test action T a T i based on the environment state S T i and the adverse condition ACi in the test case T i
	6: 7: 8:	Sa T i ← S.GENERATE(Obs T i ) S T i , Obs T i ← E.UPDATE(T a T i , Sa T i ) end for	▷ Generate system action Sa T i based on the observation Obs T i ▷ Environment updates based on system actions Sa T i and test actions T a T i
	9:	GT s , Rs ← P.GENRATE(Obs , GT C) ▷ P records final results Rs and ground truth GT s (based on ground truth configuration GT C) from
		the observer Obs	
	10:	return Rs, GT s	▷ Return final results and the ground truth
	11: end procedure	
	Algorithm 3 EVALUATOR	
	1: procedure EVALUATE ( Rs, GT s, Objs )	▷ Evaluates the final results with ground truth
	2:	LEs ← LEVEL(Objs)	▷ Define different levels of Evaluation LEs
	3:	M etrics ← Select(LEs)	▷ Select metrics for different evaluations
	4:	R metrics ← P rocess(Rs , GT s , M etrics)	▷ Calculate the result of metrics R metrics
	5:	return V isualize(R metrics ), Analyze(R metrics )	▷ Visualize and analyze the result of metrics R metrics
	6: end procedure	

TABLE II EVALUATION

 II VALUE OF SYSTEM METRICS

			Clear Sky	Light Fog	Moderate Fog	Dense Fog	Light Rain	Moderate Rain	Heavy Rain
			v5s	v8s	v5s	v8s	v5s	v8s	v5s	v8s	v5s	v8s	v5s	v8s	v5s	v8s
	Perception	Success Rate (%)	62.7	64.4	55.1	65.0	48.5	51.9	45.3	36.9	49.7	62.8	37.7	53.5	12.6	31.9
	Specific KPIs	Mean Tracking Error (m)	2.30	1.91	2.25	1.72	1.67	1.48	1.31	1.44	2.49	2.33	2.14	2.43	3.51	2.68
		Detection time (ms)	20	36	21	37	19	36	19	36	19	36	19	36	20	37
	Time Specific KPIs	Tracking time (ms)	72	104	67	90	59	76	55	68	67	110	60	152	58	174
		System frequency (Hz)	16	11	17	13	17	14	18	16	16	11	17	8	18	8
		minimal TTC (s)	1.27	1.82	1.52	1.83	2.02	1.83	1.93	2.02	1.79	1.70	-	-	-	-
	Risk	Mean Collision Probability (%)	31.7	26.7	30.1	28.5	26.1	27.4	24.0	23.8	27.6	28.5	45.8	37.4	47.2	36.4
	Specific KPIs	Mean Risk (%)	3.77	2.75	3.23	2.76	3.03	2.75	2.85	2.78	2.90	2.78	8.51	4.84	8.93	5.04
		Crash	✘	✘	✘	✘	✘	✘	✘	✘	✘	✘	✔	✔	✔	✔

*This work was supported by the PRISSMA project and Horizon Europe AUGMENTED-CCAM project.