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We propose 3-GWD, a new and innovative solution for the particle atmospheric disturbers' detection that can be used to weight the data in a fusion process and adjust the sensor reliability. The proposed approach, based on 3D Gray-Level Co-occurrence Matrices (3D-GLCMs), is generic and could be used for a significant number of sensors (LiDAR, IR camera, Neuromorphic camera...). We demonstrate that this method leads to the identification of very relevant patterns in the symbolic space that shallow Artificial Neural Network (ANN) can classify with a great accuracy. We also discuss the importance of all-environment dataset by creating a realityenriched simulated database with controlled disturbances and numerous environments. Using a single optic camera produces promising results with a high prediction score. We end our study with an attempt to compare our approach with previous works using the DAWN and the MCWCD datasets.

of degraded conditions management and assessment led to research on visibility under degraded weather conditions. Visibility problems induced by these conditions are often caused by the presence of clouds of particles with diverse physical and optical properties. Most of these phenomena deteriorate visibility with the presence of fog. As a result, many research works are focused on fog detection or removal [START_REF] Miclea | Visibility enhancement and fog detection: Solutions presented in recent scientific papers with potential for application to mobile systems[END_REF].

The theoretical works on the characterization of disturbers is exposed in papers such as [START_REF] Koschmieder | Theorie der horizontalen sichtweite[END_REF], [START_REF] Narasimhan | Vision and atmosphere[END_REF] and [START_REF] Garg | When does a camera see rain?[END_REF]. Other works focus on pattern recognition or image processing [START_REF] Vis | Analysis of rain and snow in frequency space[END_REF], [START_REF] Bossu | Rain or Snow Detection in Image Sequences through use of a Histogram of Orientation of Streaks[END_REF]. Finally, a third approach angle consists in removing or mitigating these phenomena on images [START_REF] Garg | When does a camera see rain?[END_REF], [START_REF] He | Single image haze removal using dark channel prior[END_REF], [START_REF] Sun | Icyclegan: Single image dehazing based on iterative dehazing model and cyclegan[END_REF].

Nevertheless, existing works do not yet allow a sufficiently reliable usage in the CAV, and algorithms still need to be developed to assess in real-time the best combination of embedded sensor technologies and the best topology of these sensors. The choice of specific technologies could enable the vehicle to optimize the selection of models and algorithms to use, both increasing reliability and security.

AI approaches on challenging weather have already been proposed, whether it be for image restoration, weather forecast, or labelling for search browser retrieval. All those approaches rely on structures on the image that are relevant of particular weather. [START_REF] Vis | Analysis of rain and snow in frequency space[END_REF] for example, tries to detect rain and snow using a Fourier decomposition, [START_REF] Allamano | Toward the camera rain gauge[END_REF] tries to count droplets and their apparent size to estimate current rainfall amount. Other methods, reviewed in [START_REF] Miclea | Visibility enhancement and fog detection: Solutions presented in recent scientific papers with potential for application to mobile systems[END_REF], use image processing to try and catch relevant clues of weather disturbances' presence: an overview of the methods used reveals a common usage of the Fourier decomposition. Other approaches exist : [START_REF] Asery | Fog detection using glcm based features and svm[END_REF], as an example, uses an approach based on the graylevel co-occurrence matrix (GLCM).

We can draw similarities with texture characterization : Fourier Decomposition is well-known for this purpose, and the GLCM was first described in [START_REF] Haralick | Textural features for image classification[END_REF] as a method of texture classification, alongside derived coefficients.

Our approach is based on the 3D-GLCM [START_REF] Philips | Directional invariance of cooccurrence matrices within the liver[END_REF] [17] algorithm. We found that, if used on an optic RGB camera, meaningful features in symbolic space can be found. We also prove that these features are both sensible and specific to the studied disturbances. Our algorithm is also lightweight, as we believe a security-assessment algorithm should not have a major impact on available resources for critical modules, e.g., detection algorithm or optimal path estimation. The proposed method could also be applied to a whole range of sensors, making further research in this field interesting.

To describe and justify our idea, and then to train our network, we simulated, using the PROSIVIC [START_REF] Gruyer | From virtual to real, how to prototype, test, evaluate and validate adas for the automated and connected vehicle?[END_REF] software, three scenarios : a countryside one, a forest road one, and an urban one. To record the data, we also simulated a vehicle with an embedded camera. Due to the simulation, we can precisely control the parameters of the disturbances. That allowed us to conduct a parametric study on an identical simulation with only the weather disturbance changing. We then added real data from [19] [20] [21] to confirm that the simulation emulates the reality, as well as enriching our neural network with new features.

In this paper, we will start by listing the already developed methods for texture characterization and weather detection. Then, we will present the database we generated and assembled. We will follow by the 3D-GLCM algorithm, and we will show that some patterns on the 3D-GLCM are present or missing depending on the current disturbers. Before assessing our method, we will describe the neuronal classifier used. Finally, we will describe and exploit the results and demonstrate the sensibility and specificity of our method on the studied disturbances.

II. RELATED WORK

A. Texture characterization

There are several ways to describe an image using texture features, which can be used for image segmentation and image classification. [START_REF] Cavalin | A review of texture classification methods and databases[END_REF] divides these approaches into 4 families : Statistical, Structural, Filter-based and Modelbased. For this paper, we will focus on the Statistical family because their methods can easily be abstracted to multidimensional space.

Statistical texture characterization approaches are made up of many algorithms. One of those is the Gray-Level Cooccurrence Matrix (GLCM). A GLCM is defined as a count of couples of pixels separated by a given step. Because of this, there are countless GLCMs for any image. Nevertheless, short steps are usually used, as longer ones do not ensure that we are still in the same image region. The principle was first described in [START_REF] Haralick | Textural features for image classification[END_REF]. This paper also shows an example of its use : the computation of derived coefficients for describing an image. Among the most common are entropy, dissimilarity, and correlation. Another commonly used algorithm is Local Binary Patterns (LBP) [START_REF] Ojala | Performance evaluation of texture measures with classification based on kullback discrimination of distributions[END_REF], based on binarization of the immediate neighborhood and the extraction of an integer coded by the succession of the resulting 1s and 0s.

As for our method, we considered the statistical texture characterization for their explainability and their fast adaptation to different types of data. More precisely, we chose the GLCM, as LBP was already studied, and we found derived methods expanding it to 3 dimensions.

B. Weather detection algorithms

Existing methods for detecting weather conditions can be divided into 2 groups.

The first group is composed of "data driven" algorithms. The principle of these algorithms is to learn the relevant features from the data using a Deep Neural Network (DNN) architecture, usually a CNN. However, this approach suffers from a lack of explainability, that often makes them qualified as "black-box" algorithms. [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] for example, uses already existing architecture, like SqueezeNet, ResNet-50 and EfficientNet CNN layers to extract features, then a single fully connected layer with Softmax activation function to classify the data. [START_REF] Samo | Deep learning with attention mechanisms for road weather detection[END_REF] uses CNNs layers from well-known architectures and transformers to achieve multi-label weather classification. The work presented in [START_REF] Dhananjaya | Weather and light level classification for autonomous driving: Dataset, baseline and active learning[END_REF] is another case of CNN-based weather detection algorithm using the Resnet18 framework. However, this method uses active learning and auto-labelling, which are other ways of training than the classic epoch and batch algorithm.

The second type of algorithm is composed of "model driven" algorithms. These methods rely on deterministic features search. Then, a machine learning classifier is trained and used to predict the label of the current weather situation. In [START_REF] Bossu | Rain or Snow Detection in Image Sequences through use of a Histogram of Orientation of Streaks[END_REF], the method consists in a background subtraction for moving pixels disclosure and a combination of photometric and size rules alongside a Histogram of Oriented Streaks to detect the rain. Another method is proposed in [START_REF] Chu | Camera as weather sensor: Estimating weather information from single images[END_REF] with 543 image characteristic and 2 metadata : month and hour. With a database of the average month by month temperatures on European cities, they achieved better results than with the image characteristics alone. Using a texture-based approach, [START_REF] Khan | Snow detection using in-vehicle video camera with texture-based image features utilizing k-nearest neighbor, support vector machine, and random forest[END_REF] uses contrast, correlation, energy, and homogeneity to extract key features from GLCMs. Features obtained by LBP are also used. The merged features are then fed into a nonneuronal classifier, either a Support Vector Machine (SVM), a k-Nearest Neighbors (k-NN) algorithm or a Random Forest (RF). Lastly, the previously discussed LBP algorithm is used in [START_REF] Khan | Real-time weather detection system with local binary pattern based features using artificial neural network and random forest: An unsupervised learning approach[END_REF] with various machine-learning algorithms to achieve rain detection.

Following our choice of the GLCM for texture characterization, we will follow the model-driven approach family. As such, we will maintain a satisfying level of explainability, however special care must be taken regarding performances.

III. DATASET GENERATION

Regardless of the aimed application: classification, detection, or tracking; all machine learning algorithms require a significant amount of data. It is then essential for obtaining the expected results that this database is of high quality. Therefore, we built a hybrid dataset (simulated and realworld data) with three requirements for the detection of different meteorological disturbances:

1) The characteristics of weather disturbers in the dataset must be configurable according to physical models.

2) The generated data must represent a wide range of values covering the field of application of each type of disturber (different densities of rain drops and fog visibility).

3) The data must present real features to ensure the reliability in reality execution. To meet the first and the second requirements, we have generated a dataset using the PROSIVIC software ( [START_REF] Gruyer | From virtual to real, how to prototype, test, evaluate and validate adas for the automated and connected vehicle?[END_REF]), a road scene and sensor simulator. This simulator enables us to modify both the weather conditions and its parameters, such as particle size or density [START_REF] Gruyer | Modeling and validation of a new generic virtual optical sensor for adas prototyping[END_REF]. This allows us to generate the same scenes with different weather conditions.

The majority of datasets involve urban environment, as the quantity of information to process is a real challenge. However, as stated by the Society of Automotive Engineers, level 4 and 5 AVs will need an all-weather, all environment operation range. So, in accordance with point 2, an emphasis was placed on the diversity of generated environments:

• An urban environment with average distances of view and an occluded horizon line. • A forest road, with close to medium distances of view and an occluded horizon line. Unlike buildings of the city, trees are more scattered with far more contrast. • The last scenes are country roads with long-distance views and a visible horizon line.

Fig. 1 illustrates some data we can generate using PRO-SIVIC. Koschmieder's model [START_REF] Koschmieder | Theorie der horizontalen sichtweite[END_REF] is used for fog rendering, and rain is emulated droplet by droplet. For the latter, the parameters are the number of droplets n in the volume, the dimensions of the box where rain droplets are generated, and the opacity and diameter d of said droplets. These disturbers' model are perfectly fitted to answer point 1. of our requirements. Finally, to fulfil the third requirement, we included in the dataset real data from BeDDE [START_REF] Zhao | Dehazing evaluation: Real-world benchmark datasets, criteria, and baselines[END_REF], O-HAZE [START_REF] Ancuti | Ohaze: A dehazing benchmark with real hazy and haze-free outdoor images[END_REF] and RainCityScape [START_REF] Hu | Depth-attentional features for single-image rain removal[END_REF]. These datasets are well-known and used as reference point for the detection of targets under challenging weather. The weather information included in these datasets are shown in Tab. I.

TABLE I: Weather disturbances given by real datasets

Name

Clear Weather Fog Rain BeDDE [START_REF] Zhao | Dehazing evaluation: Real-world benchmark datasets, criteria, and baselines[END_REF] Yes Yes No O-HAZE [START_REF] Ancuti | Ohaze: A dehazing benchmark with real hazy and haze-free outdoor images[END_REF] Yes Yes No RainCityScape [START_REF] Hu | Depth-attentional features for single-image rain removal[END_REF] Yes No Yes

The new hybrid database then considers 2 types of data:

• The simulated data (the vast majority of the dataset) with 3 weather conditions (Clear, Fog, Rain). These 3 weather conditions take place in 3 environments: City, countryside, and forest. • The real-world data with 3 weather conditions (Clear, Fog, and rain). The clear weather condition is obtained from the 3 following datasets: BeDDE [START_REF] Zhao | Dehazing evaluation: Real-world benchmark datasets, criteria, and baselines[END_REF], O-HAZE [START_REF] Ancuti | Ohaze: A dehazing benchmark with real hazy and haze-free outdoor images[END_REF], RainCityScape [START_REF] Hu | Depth-attentional features for single-image rain removal[END_REF]. The real fog conditions are taken in 2 datasets: BeDDE and O-HAZE. About the rain condition, the RainCityScape one is used. Each simulated weather class is given a parametric set for quality assessment and feature characterization.

IV. THE TEXTURAL APPROACH

We decide to tackle the problem of weather conditions detection by adapting the 3D approach proposed in [START_REF] Philips | Directional invariance of cooccurrence matrices within the liver[END_REF] to RGB images. The initial method was proposed to process Computed Tomography (CT) scans from a voxel map. The new method starts from the following hypothesis: if the interesting patterns were in a 2D space, it could also be possible to find them in a 3D space that includes this 2D space. Moreover, for a given sensor C, if the data can be mapped into a 3D discrete-finite array, then this approach could be used in the same way. As a result, this approach can be applied not only to RGB images but also to data coming from a large set of sensors with different technologies.

Let M be an RGB image considered as a 3D discrete matrix. Let N be the cardinal of the set of values M , i.e, 256 for optic images. The size of M is (n×m×3). We define our reference frame ρ as (line, column, channel) where :

     0 <= line < n 0 <= column < m 0 <= channel < 3 (1)
(0,0,0) represents the top-left pixel of the shallowest channel.

Let us define the neighborhood Q p of the pixel of interest p (POI). Q p will have to respect 3 rules:

1) ∀q ∈ Q p , L2(p, q) = i (p i -q i ) 2 < t. Let's say that t = 2. This creates our raw neighborhood.

2) The coordinates of any q ∈ Q p must satisfy constraints in Eq. 1. This rule ensure that we don't access out of bound data. 3) Let Q ′ p be the set obtained by mirroring Q p indexes to p, then Q p ∩ Q ′ p = ∅ This equation removes the symmetry from the neighborhood, as described in [START_REF] Haralick | Textural features for image classification[END_REF]. The set we kept, answering those requirements, is shown in the Fig. 2. There are 4 neighboring pixels in the same channel and 9 others in the channels G and R respectively. If p is in the channel R, it only has 4 neighboring pixels in the same channel since others does not satisfy Eq. 1. We did not have represented borders and corners neighborhood, but in these particular cases, rule 2 will reduce Q p 's cardinal.

Let s ∈ Z 3 be the direction vector from p to q ∈ Q p ; the set of all steps S is therefore of size 13. Let M(x) be the value of pixel x. GLCM s are computed following the procedure described in [START_REF] Haralick | Textural features for image classification[END_REF] below: for all pixel P as POI of M: do for all q s ∈ Q p : do GLCM s (M (p), M (q)) ← GLCM s (M (p), M (q))+ 1 GLCM s (M (q), M (p)) ← GLCM s (M (q), M (p))+ 1 end for end for The result of this algorithm is a set of 13 256 × 256-integer GLCMs. Using our parametric dataset, we generated for each image its corresponding 3D-GLCMs, then summed them all together [START_REF] Kovalev | Threedimensional texture analysis of mri brain datasets[END_REF]. The results in Figs. 345shows for each class of weather (Clear, Rain, Fog) specific patterns :

• Clear : The clear weather characterizes itself by the presence of numerous distinct areas of high cardinalities, inside the 3D-GLCM. These little areas, e.g., near (192, 68) in Fig. 3, are due to contrast. • Fog : The foggy weather characterizes itself by the super dominance of the diagonal. This is a due to contrast loss, resulting in the matrix shrinking towards its diagonal. If the depth allows it, we also see dense areas in zones corresponding to the different veils used for our datasets. • Rain : The rainy weather characterizes itself by a dominance of its 3D-GLCM diagonal, with a larger spread than fog. That corresponds to the diffusion caused by the raindrop marks on the image : on these regions, a blur is done, caused by all the optic phenomena a changing of medium implies. We also observe a peak activity in the area where the droplet's light intensity is.

V. OUR NEURONAL CLASSIFIER

An advantage of the GLCM in general is that we can predict its size. For example, for a RBG optic image, the matrix will always be 256×256, since there are 256 distinct values for each pixel. We've also shown that 3D-GLCM behave a certain way depending on the weather studied. Detecting these patterns was done using a single logistical Fig. 3: Original image on clear weather and its associated 3D-GLCM. The threshold allows us to highlight patterns that have medium values, contrasting with some huge diagonal cells. We can notice the presence of little islands of cardinalities, signs of highly contrasted areas in the image. The curves on the bottom right are due to the progressive RGB shift in the sky. Fig. 4: Same frame as in Fig. 3 with rain added and its associated 3D-GLCM. The threshold allows us to notice the loss of the islands that were highlighted in Fig. 3. We can notice the loss of the bottom-right curves, since the sky changed. The droplets streak, bright but translucent, explain the surge of the bottom right activity. Fig. 5: Same frame as in Fig. 3 with heavy fog added and its associated 3D-GLCM. The threshold allows us to notice the loss of the islands that were highlighted in Fig. 3. We also notice a threshold in the 3D-GLCM range due to the dim light of the situation. Due to the contrast loss induced by the weather condition, we notice a compression of the matrix towards its diagonal. perceptron for each class. Let c be the number of classes we want to classify, i.e., the weather situations including the clear weather. Then Fig. 6 is the schematics of our classifier. The fact to use a single stack of perceptron (or 1 layer of fully connected neurons) was already used in [START_REF] Khan | Real-time weather detection system with local binary pattern based features using artificial neural network and random forest: An unsupervised learning approach[END_REF] alongside Softmax activation function. Fig. 6: Schematic of the classifier network. 3D-GLCM is first flattened, then put into a dense layer. Finally, the classifier classifies the presence probability of each weather disturbance using the logistic function. The result is a vector of probability presence.

We do not need CNNs before our classifier, since the feature extraction of those layer is already done in a deterministic and comprehensible way by the 3D-GLCM. A simple perceptron is used, as we need to characterize the relevant areas, and a single weighting should work, given that we demonstrated that there exist areas that looked sensible or specific. The logistical function then follows our perceptron.

By reshaping the weights vector into the original 3D-GLCM matrix shape, we can visualize the relation between these weights and the 3D-GLCM components and thus how the inputs will activate the neurons. We think that this visualization allows a deep understanding of the classifier and this is due to the simple architecture of the classifier. This is a crucial key that deeper network loses in benefit for better space segmentation.

VI. EXPERIMENTS

We trained our model, 3D-GLCMs Weather Detector (3-GWD), on a Dell Precision 7540 equipped with an Intel Core i9-9980HK CPU, 32 GB of RAM and an NVIDIA Quadro T1000.

The training phase was carried out using a L2-regularized Binary-Cross Entropy (BCE). Let y and ŷ be the target (c values in 0; 1) and the prediction (c values in [0; 1]), then BCE is defined as :

BCE(y, ŷ) = - 1 n c i=1 y i •log( ŷi )+(1-y i )•log(1-ŷi ) (2)
The L2 Loss is defined by :

L2(y, ŷ) = c i=1 (y i -ŷi ) 2 (3) 
Combining ( 2) and ( 3) we obtain our loss function :

Loss(y, ŷ) = BCE(y, ŷ) + λ • L2(y, ŷ) (4) 
Where λ is the regularization hyperparameter. Alongside the L2-regularised BCE Loss, we use a learning rate (lr) scheduler. More specially, we use the "reduce lr on plateau" strategy, which states that lr is multiplied by a learning rate multiplier (0 < lrm < 1) when the training metric has stopped improving.

For our validation, we will use the F 1 -Score, an indicator that measures the quality of the model using its precision and recall.

Precision is the measure of relevance in the positive prediction. Using True Positives (TP), i.e., the correct positive predictions, and False Positives (FP), i.e., incorrect positive predictions, Precision is defined as :

P recision = T P T P + F P (5) 
On the other hand, Recall is the measure of retrieval of positive prediction. Using TP and False Negatives (FN), i.e., incorrect negative predictions, Recall is defined as :

Recall = T P T P + F N (6) 
Using ( 5) and ( 6), the F 1 -Score is defined as :

F 1 = 2 Recall -1 + P recision -1 (7) 

A. Test on our dataset

To test our model, we first trained and validated on our previously described dataset. The architecture was trained using the following hyperparameters : lr = 0.1, lrm = 0.24, batch size = 256, epochs = 6, λ = 0.4. Figs. 789represent the confusion matrices for the different part of the validation set. We can see that real data are more subject to confusion between clear (expected) and rain (true value) while PROSIVIC data are more prone to the opposite. The F 1 score, Precision and Recall measures, are computed for each part of the dataset and summarized in Tab. II. We also pointed out in Sec. V that explainability was a key point of our method. To demonstrate this, we will use the following visualization tool, hereby called "RGB stacking". First, let W be the reshaped weight matrix. Then, we apply a threshold to W between -t and t. t = 3 * std as statistically, value outside this interval can be considered extreme. Then, we will apply Eq. 8 to W , resulting in W G ∈ [0; 1] 256×256 . The G in W G means that the matrix values are in [0; 1], and as such can be considered Gray-scaled. 

W G = W + t 2 × t (8) 
Let C G , F G and R G be the processed matrix with "Clear weather", "Fog", and "Rain" neuron weights. Let I be a

(3 × 256 × 256)matrix such that I[0] = C G , I[1] = F G and I[2] = R G .
I is then a matrix which values are in [0; 1] and, as such, is alike an RGB image, with R channel related to "Clear Weather" neuron weights, G channel to "Fog" and B channel to "Rain". As such, if we plot I as an image, we can set visual explanation of different areas in the 3D-GLCM.

• Red : Red areas represent areas where only the "Clear Fig. 9: Confusion matrix on real data from validation set Weather" neuron have high positive weights. These are then statically sensible to clear weather.

• Green: Same explanation as Red but for sensibility to Fog • Blue : Same explanation as Red but for sensibility to Rain • Yellow (Red + Green) : Yellow areas represent area where "Clear weather" and "Fog" neurons gives credit.

On the opposite, that means the Blue channel is close to 0. As such, "Rain" neuron is the only one that refuse a positive classification. As such, these are statically specific to "Rain". • Magenta (Red + Blue) : Same explanation as Yellow but for specificity to Fog • Cyan (Green+Blue) : Same explanation as Yellow but specificity to Clear weather Fig. 10 is the RGB staking of our obtained model. We immediately notice the presence of Red, Green, and Blue areas : our architecture is then statistically sensible to each condition alone. We also can see small areas of Yellow near (60,60), Magenta areas in bottom right and dim cyan area away from the diagonal. Therefore, we can then conclude that our architecture is statistically specific, but we have to nuance, since those areas are dim or small.

B. Tests on DAWN+MCWCD datasets

To validate the study about the proposed classifier, 3-GWD, and in order to quantify its performances relatively to existing classifiers, a comparison process has been carried out by using two annotated datasets DAWN [START_REF] Kenk | Dawn: Vehicle detection in adverse weather nature dataset[END_REF] and MCWCD [START_REF] Oluwafemi | Multi-class weather classification from still image using said ensemble method[END_REF]. In these datasets, the authors of [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] applied data augmentation process to extend the base by using cropping, rotation, translation, resizing among others.

Unfortunately, after obtaining the results of the comparison shown in Table III, it appeared that these datasets were TABLE III: Accuracy comparison on the dataset as given by [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] Name Accuracy Technology SqueezeNet [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] 96.05% CNN (4,8M+ param.) ResNet-50 [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] 98.50% CNN+DNN (25M+ param.) EfficientNet-b0 [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] 97.78% CNN+DNN (5,6M+ param.) [START_REF] Oluwafemi | Multi-class weather classification from still image using said ensemble method[END_REF] 86.50% LBP, HSV, Grad. + Rand. Forest 3-GWD 83.32% GLCM + Percept. (196K param.) Fig. 11: Sample of images from MCWCD that have no relevance for our use unsuitable and inappropriate to our domain of application (Road scenes seen from an embedded camera). Indeed, a detailed analysis of the datasets show important defects in the type of images and annotations provided in these datasets.

• In the MCWCD [START_REF] Oluwafemi | Multi-class weather classification from still image using said ensemble method[END_REF] dataset, the data includes very poor quality images and some include watermarks and no road scenes. Many scenes represent the beach or the sea. The data augmentation procedure proposed by [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] brings eventually more confusion especially when the generated data have the identical label to the original image. For instance, some cropped and resize images from an image of beach with sun represent only water, but they are annotated as "clear weather". These images should not be generated for the weather classification. These examples of training set used in [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF] were not in the training set of the 3-GWD because they are not road scenes or urban scenes. • In the DAWN [START_REF] Kenk | Dawn: Vehicle detection in adverse weather nature dataset[END_REF] dataset, the annotations provided are clearly ambiguous and sometimes wrong relatively to the classical definitions of rain, fog, snow, dust and sand. Indeed, many examples of the dataset represent highway scenes with wet ground, traffic vehicles raising water drops. For this type of data, we labelled these images with "rain". On the other hand, in the used datasets, the labels of these are mostly "fog". We think this limitation is due to the specificity of this kind of weather that induces behaviors that can be both classified as "rain" and "fog", whereas the dataset is a single-label one.

VII. CONCLUSION

With the acceleration on the development of AI-based target detection architecture, the need for external and internal validation algorithms is vital for real-time and after-crash risk assessment. Fig. 12: Sample of images from DAWN that are symptomatic of the label problem. In the dataset, they are labelled "Fog" while we would classify them as "Rain"

To address this issue, research on visibility under degraded weather conditions has led to the development of several intelligent weather detection systems, including the proposed 3-GWD. This system is a GLCM-based (Grey Level Cooccurrence Matrix) weather detection system designed to support AVs. It has been trained and evaluated on a custom hybrid dataset involving both simulated and real data, and tested on three different road situations under three controlled weather disturbances.

The GLCM space has proven to be useful for feature extraction for weather detection, and a set of rules for generating the hybrid dataset has been proposed. The proposed method has been evaluated using various metrics, including precision, recall and F1-score, all of which have shown promising results.

To ensure explainability, a visualization tool called RGBstacking has been developed, which allows users to understand how the classifier segments the symbolic space of the GLCMs. This visualization tool helps to ensure that the results of the 3-GWD system are easily interpretable.

Future studies will aim to extend the 3-GWD system to new sensor technologies, such as LiDAR, IR, and eventbased cameras. These studies will confirm the presence of significant patterns inside the 3D-GLCM and help to identify the best sensors for detecting weather disturbances in different situations.

Another important study is the comparison of the 3-GWD system with existing works, such as [START_REF] Al-Haija | Detection in adverse weather conditions for autonomous vehicles via deep learning[END_REF], which provides a comprehensive survey and evaluation of many methods over the DAWN [START_REF] Kenk | Dawn: Vehicle detection in adverse weather nature dataset[END_REF] and MCWCD [START_REF] Oluwafemi | Multi-class weather classification from still image using said ensemble method[END_REF] datasets. However, our work is not conclusive due to the problems mentioned in the section VI-B but underlined the importance of the quality of the data and their annotation in Machine Learning approach. As such, a new comparison on the relabelled dataset have to be conducted.

In conclusion, the development of intelligent weather detection systems such as the 3-GWD system is a crucial step in the development of AVs that can operate safely and efficiently in all weather conditions. The 3-GWD system, with its innovative approach to feature extraction, hybrid dataset generation, and visualization tools, shows great potential in this regard and will undoubtedly inspire further research in this exciting field.
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 1 Fig. 1: Sample of the simulated dataset on the 3 different scenes : the city, the countryside, and forest.

Fig. 2 :

 2 Fig. 2: Valid neighbors for each channel of an RGB image, depending on the channel. Gray pixel is the Pixel of Interest (POI) called p, lighter pixels around represents valid neighborhood Q and darker pixels are incorrect neighbors
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 78 Fig. 7: Confusion matrix on all validation set
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  Fig. RGB stacking of the trained classifier

TABLE II :

 II Precision, Recall and F1-score on the different dataset parts

	Part	Precision	Recall	F 1 -Score
	Whole dataset	0.9800	0.9801	0.9800
	Simulated images	0.9930	0.9931	0.9930
	Real images	0.9670	0.9670	0.9670
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