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DENSITY OF AUTOMORPHIC POINTS IN DEFORMATION

RINGS OF POLARIZED GLOBAL GALOIS REPRESENTATIONS

EUGEN HELLMANN, CHRISTOPHE M. MARGERIN, BENJAMIN SCHRAEN

Abstract. Conjecturally, the Galois representations that are attached to essen-
tially selfdual regular algebraic cuspidal automorphic representations are Zariski-
dense in a polarized Galois deformation ring. We prove new results in this direc-
tion in the context of automorphic forms on definite unitary groups over totally
real fields. This generalizes the infinite fern argument of Gouvea-Mazur and
Chenevier, and relies on the construction of non-classical p-adic automorphic
forms, and the computation of the tangent space of the space of trianguline Ga-
lois representations. This boils down to a surprising statement about the linear
envelope of intersections of Borel subalgebras.
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1. Introduction

Let F be a number field, and fix a positive integer n > 1 and a prime number
p. The goal of this paper is to study some properties of deformation spaces of
continuous representations

ρ : Gal(F/F ) −→ GLn(F)

where F is a finite extension of Fp. Assume that ρ is absolutely irreducible and
unramified outside a finite set of places S containing places dividing p. Mazur
proved in [Maz89] that there exists a universal deformation of ρ unramified outside
of S, that is, for FS ⊂ F the maximal algebraic extension of F unramified outside
of S, a complete local noetherian ring Rρ,S and a continuous representation

ρuniv
S : Gal(FS/F ) −→ GLn(Rρ,S)

pro-representing the functor of deformations of ρ unramified outside S. The generic
fiber Xρ,S of the formal scheme Spf Rρ,S is a rigid analytic space over W (F)[ 1

p
]

whose closed points can be canonically identified with liftings of ρ to finite exten-
sions of the p-adic field W (F)[ 1

p
].

When F is a totally real field or a CM field, it is known that we can attached
to each regular algebraic cuspidal automorphic representation π of GLn(AF ) an
n-dimensional p-adic continuous representation

ρπ : Gal(F/F ) −→ GLn(Qp).

This representation is characterized by some local compatibility with π at almost
all finite places of F . As a consequence it is unramified outside a finite number of
places. A very natural problem with regard to the rigid analytic spaces Xρ,S con-
cerns the distribution of automorphic points in Xρ,S, that is points corresponding
to regular algebraic cuspidal automorphic representations π of GLn(AF ) such that
ρπ reduces to ρ modulo p.

Beyond the case n = 1 which is a consequence of class field theory, the case
n = 2, F = Q and ρ attached to a modular form has been completely solved by
works of Gouvea-Mazur ([GM98]) and Böckle ([Bö01]). It follows from their results
that the space Xρ,S is equidimensional of dimension 3 and that the automorphic
points are Zariski-dense inside Xρ,S.
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For general values of n, the case of polarized representations has been studied
by Chenevier in the paper [Che11]. Let ε : Gal(F/F ) → Z×

p be the cyclotomic
character. Assume moreover that F is a totally imaginary quadratic extension of
a totally real number field F+ and let c be the non trivial element of Gal(F/F+).
We recall that an n-dimensional p-adic representation ρ : Gal(F/F ) → GLn(Qp)
is polarized if there exists an isomorphism

ρ∨ ◦ c ≃ ρ⊗ εn−1.

When the regular algebraic cuspidal automorphic representation π of GLn(AF ) is
conjugate self dual, that is π∨,c ≃ π, the representation ρπ is polarized. Moreover
the representation ρπ is crystalline at p if and only if the representations πv are
unramified for v | p. In this situation, we have the following conjecture of Chenevier
([Che11, Conj. 1.15]) :

Conjecture 1.1. Assume that ρ is absolutely irreducible and that there exists
a regular conjugate self dual algebraic cuspidal automorphic representation π of
GLn(AE) such that ρπ ≃ ρ, then the set of points of the form ρπ′ for π′ a regular
conjugate self dual algebraic cuspidal automorphic representation unramified at p
is Zariski dense in Xρ,S.

When n = 3, Fv = Qp for v | p and the deformation functor of ρ is unobstructed,
this conjecture has been proven by Chenevier.

The main result of this paper is the following.

Theorem 1.2. Assume p > 2 and the following assumptions

• the extension F/F+ is unramified;
• 2 | [F+ : Q] if n ≡ 2 (mod. 4);
• S contains only places which are split in F ;
• the representation ρ is absolutely irreducible and the group ρ(Gal(F/F (ζp))

is adequate in the sense of [Tho12].

Assume moreover that there exists some regular conjugate self dual cuspidal au-
tomorphic representation π which is unramified outside of S \ Sp and such that
ρπ ≃ ρ. Then the Zariski closure of automorphic points in Xρ,S is a union of
irreducible components.

In the paper [All], Patrick Allen proved that, assuming standard automorphy
lifting conjectures, it is true that all irreducible components of the space Xρ,S con-
tain some regular conjugate self dual cuspidal automorphic point. As such points
are smooth by [All16], Theorem 1.2 reaches substantial new cases of Conjecture
1.1 under the standard automorphy lifting conjectures.

Let us also mention that David Guiraud proved in [Gui] that, when the weight
of π satisfies a strong condition of regularity, the set of places λ of F where the
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reduction of the λ-adic representation associated to ρπ is unobstructed has density
one.

Following [Che11], our strategy to prove Theorem 1.2 is to use base change
results to deduce this result from an analogous result concerning automorphic
forms on some definite unitary group G.

For this definite unitary group we can rely on a well developed theory of families
of p-adic automorphic forms, so called eigenvarieties: there exists a rigid analytic
space called the eigenvariety Y (Up, ρ) parametrizing overconvergent p-adic eigen-
forms on G. This space is a generalization of the eigencurve of Coleman and
Mazur, and was first introduced by Chenevier in the setting of definite unitary
groups. The existence of a family of Galois representations on Y (Up, ρ) gives rise
to a map Y (Up, ρ) → Xρ,S. The image of this map is the so called “infinite fern”.

The main idea is to consider the Zariski-closure X aut
ρ̄,S ⊂ Xρ,S of all automorphic

points and show that each of its irreducible components contains a smooth point
ρ such that there is an equality of tangent spaces

TρX
aut
ρ̄,S = TρXρ,S.

We are hence reduced to proving that the left hand side is large enough.

It is standard to prove that automorphic points form a Zariski dense subset of
the eigenvariety and hence the canonical map

(1.1)
⊕

x

TxY (Up, ρ) −→ TρXρ,S

factors through the tangent space TρX aut
ρ̄,S , where the direct sum is indexed by all

the preimages x ∈ Y (Up, ρ) of ρ. Hence it will essentially suffice to prove that
(1.1) is surjective.

One of the main results of [BHS] is the precise determination of this index set.
In [Che11] it is shown that the map in question is surjective, if the restriction of ρ
to the local Galois groups at places dividing p satisfies some genericity assumption:
roughly, the representations should be crystalline and the Hodge filtration in gen-
eral position with respect to all possible Frobenius stable flags. The main problem
is that in higher dimensions there is (for the time being) no way to guarantee that
Xρ,S contains any point satisfying this assumption. The point of our paper is the
proof of the surjectivity of (1.1) without this genericity assumption.

As in [Che11] we do so by proving a similar surjectivity result for local avatars
of the spaces Xρ,S and Y (Up, ρ): the global deformation ring is replaced by a
local deformation ring, and the eigenvariety is replaced by the so called space of
trianguline Galois representations. The key construction of [BHS] is a local model
for the space of trianguline representations. This local model allows us to reduce
the surjectivity of (1.1) to a problem in linear algebra.
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The problem is to determine the linear envelope of the intersection of a Borel
algebra b in the Lie-algebra gln with the Weyl group translates of a fixed Borel b0.
This statement seems to be a very nice and interesting statement in its own right:

Theorem 1.3. Let n be a positive integer, Sn the symmetric group of order n,
and gln the algebra of n × n matrices with entries in a fixed field k. Let GLn(k)
be the group of the non-singular elements in gln and b0 ⊂ gln the Borel subalgebra
of upper triangular matrices. For any element g ∈ GLn(k) let bg = g−1b0g denote
the Borel subalgebra conjugate to b0 by g−1.

Any Borel subalgebra b coincides with the linear envelope of its intersections with
the conjugate of b0 under Sn

b =
∑

w∈Sn

b ∩ bw.

The plan of the paper is the following. In a first section, we prove Theorem 1.3
and prove as an application a surjectivity result for a map between tangent spaces
of our local models. The second section is purely local and its purpose is to prove
our main local result concerning the sum of tangent spaces of quasi-trianguline
deformation spaces. Finally the last section is of global nature and contains the
proof of our main global theorem.

Notation : We fix a prime number p. Let K be a finite extension of Qp, K an

algebraic closure of K and K̂ its completion for the unique valuation extending
the p-adic valuation. We denote by vK the unique valuation of K taking the value
1 on uniformizers of K. We use the notation GK for the Galois group Gal(K/K).

We fix L a finite extension of Qp. Let Σ be the set of Qp-algebra homomorphisms
from K to L. We choose L big enough so that |Σ| = [K : Qp], or equivalently
L ⊗Qp K ≃ L[K:Qp], and we denote by OL the ring of integers of L, by mL the
unique maximal ideal of OL and by kL := OL/mL its residue field. Let | · |p be
the unique norm on L inducing the p-adic norm on Qp. Let εL be the character
NL/Qp |NL/Qp | from L× to Z×

p . Let recL : L× → W ab
L be the local reciprocity

isomorphism sending a uniformizer of L onto a geometric Frobenius element. We
have εL = χcyc ◦ recL.

If X is some algebraic variety defined over K, we will use the notation XK/Qp for
the Weil restriction of X from K to Qp. Moreover if Y is some algebraic variety
defined over Qp, we will use the notation YL for the base change of Y from Qp to
L, so that XK/Qp,L = (XK/Qp) ×Spec Qp SpecL. As we have L ⊗Qp K ≃ LΣ, we
have an isomorphism of algebraic varieties over L

(1.2) XK/Qp,L ≃
∏

τ∈Σ

Xτ
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where Xτ is the base change of X from K to L via the embedding τ . If x is some
L-point of XK/Qp we will denote (xτ ) ∈

∏
τ∈Σ Xτ its image by the isomorphism

(1.2).

If k ∈ (Zn)[K:Qp], we define the algebraic character δk : T (K) → L× by the
formula

(a1, . . . , an) 7→
n∏

i=1

∏

τ∈Σ

τ(ai)
ki,τ

If X is a scheme, or a rigid analytic space and x ∈ X is a point, we write TxX
for the tangent space of X at x. Similarly, if X is a deformation functor defined on
local Artin rings with fixed residue field (or a formal scheme pro-representing such
a functor), we write TX for the tangent space of X at the unique closed point.

2. On intersections of Borel algebras

2.1. Envelopes of intersections of Borel subalgebras. Let n be a positive
integer and k a field. We denote by gln the Lie algebra of n × n-matrices with
coefficients in k and by b0 ⊂ gln the Borel subalgebra of upper triangular matrices.
Given an element g ∈ GLn(k) we write bg = g−1b0g for the conjugate of b0 by
g. We denote by B the subgroup of upper triangular matrices in GLn(k) and
by W the Weyl group N/T , where N stands for the subgroup of matrices with
exactly one non-zero entry in each row and each column and T for the subgroup of
diagonal matrices, T = B ∩N ; the Weyl group W identifies with the subgroup of
GLn(k) of n× n permutation matrices, and as such is isomorphic to the group of
permutations over n elements, Sn. When speaking of elements of maximal length
in W we refer to the generating set S of W whose elements are (the permutation
matrices associated with) the transpositions (j, j + 1), j ∈ [[1, n − 1]], so that
the quadruple (GLn(k), B,N, S) forms a Tits system ([Bou68, IV, 2.2]). Hereafter
we freely identify an element w of W with its image in GLn(k), the associated
permutation matrix, and with its image in Sn, the underlying permutation. All
scalars to be considered will be taken in k.

By its very definition the linear envelope
∑
w∈W b ∩ bw of the intersection of any

Borel subalgebra b ⊂ gln with the conjugates of b0 under the Weyl group, is
contained in b; we discuss here the reverse inclusion and show the nice identity,

b =
∑

w∈W

b ∩ bw,

that states the envelope does coincide with b.

Since any Borel subalgebra of gln is a conjugate of the standard Borel subalgebra
b0, it will be enough to establish the identity for b = bg, for an arbitrary element
g ∈ GLn(k). By the Bruhat decomposition, every such element g splits as a
product g = u1su2 of two (invertible) upper triangular matrices, u1 and u2 and a
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permutation matrix s associated to a permutation s ∈ Sn, so that the identity to
discuss reads

bsu =
∑

w∈W

bsu ∩ bw,

which is to hold for an arbitrary n × n permutation matrix s and an arbitrary
upper triangular matrix u ∈ B = GLn(k) ∩ b0.

In a first part we settle this identity for w0 the permutation of maximal length in
Sn, i.e. the involution w0 = (1, n)(2, n− 1)...(⌊n

2
⌋, n− ⌊n

2
⌋ + 1). Since conjugation

by any element g ∈ GLn(k), is a linear isomorphism of gln, the conjugate of a linear
envelope coincides with the envelope of the conjugates, and since intersection and
conjugation trivially commute, we find

∑

w∈W

bw0u ∩ bw =
∑

w∈W

(bw0 ∩ bwu−1)u.

Hence the envelope
∑
w∈W bw0u ∩ bw coincides with the Borel subalgebra bw0u if

and only if bw0 =
∑
w∈W bw0 ∩bwu−1 (the reader will note the Borel subalgebra bw0

coincides with the Borel algebra of lower triangular matrices).

The proof proceeds through an explicit “dévissage”, which the following lemma
will make clear; It does not rely on any induction on the dimension, nor does it
require any further assumption on the fixed base field k: anyone will do. The
elementary n×n matrix whose (l,m)-entry is given by δi,lδj,m for l,m ∈ [[1, n]] will
be denoted by ei,j and by xi,j , i, j ∈ [[1, n]], we will denote scalars in the base field
k.

Lemma 2.1. Let k be an arbitrary field. For any u ∈ B, and for any ordered
pair (i, j) in [[1, n]]2, i > j, there is some permutation si,j ∈ Sn, and i− j scalars
(xi,l)

i
l=j+1 in k, such that the matrix ai,j := ei,j +

∑i
l=j+1 xi,le

i,l lies in the Borel
subalgebra bsi,ju−1.

The matrices ai,j with (i, j) in [[1, n]]2, i > j, then form a basis of the Borel
subalgebra bw0 of lower triangular matrices in gln all elements of which lie in the
envelope

∑
w∈Sn

bw0 ∩ bwu−1.

The permutation si,j may be chosen to be the (i, j)-transposition.

Proof of Lemma 2.1. Let’s denote by ui,j the entries of the upper triangular matrix
u, so that ui,j ∈ k, ui,j = 0 if i > j, and

∏n
i=1 ui,i 6= 0. From the properties of the

inverse matrice u−1 of u we will only use it is some non-singular upper triangular
matrix, which we’ll denote by v.

Because of obvious support properties of the involved matrices, the general entry
of the product matrix p := vai,ju vanishes – i.e. pl,m=0 – for all l, l ∈ [[1, n]],
as soon as m ∈ [[1, j − 1]] and for all m,m ∈ [[1, n]], as soon as l ∈ [[i + 1, n]]:
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in words, the first j − 1 columns and last n − i rows of the product p vanish
identically. One may further observe all entries of the matrix q := ai,ju vanish
on the same ground, but for the entries qi,l, l ∈ [[j, n]], which are given by the

identities: qi,l = uj,l +
∑min(k,i)
m=j+1 um,lxi,m. From these identities we can then easily

deduce the following expression for the entries pa,b, a, b ∈ [[j, i]]:

(2.1) pa,b = va,i(uj,b + uj+1,bxi,j+1 + ...+ ub,bxi,b) = va,i(uj,b +
b∑

l=j+1

ul,bxi,l).

It can be further remarked that the matrix r := ps(i,j)
, obtained by swapping both

the i-th and j-th columns and rows, – so that ps(i,j)
coincides with the conjugate

of p by the permutation matrix s(i,j) associated with the (i, j)-transposition, con-
sistently with previously introduced notations –, shares with p the property that
all entries below the main diagonal and outside the block l ∈ [[j, i]], m ∈ [[j, i]] – a
(i − j + 1) × (i − j + 1)-submatrix –, vanish, to the effect that r will lie in b0, p
in bs(i,j)

and so ai,j in bs(i,j)u−1 as soon as all sub-diagonal entries of this block in
r cancel.

Identity (2.1) above gives precisely the following expressions for the entries ra,b in
the block: first, for all b ∈ [[j + 1, i− 1]] and all a ∈ [[j + 1, i− 1]],

rj,b = pi,b = vi,i (uj,b +
b∑

l=j+1

ul,bxi,l, )

ra,b = pa,b = va,i (uj,b +
b∑

l=j+1

ul,bxi,l), and

ri,b = pj,b = vj,i (uj,b +
b∑

l=j+1

ul,bxi,l);

As for the first column of the block, which is to extract from the j-th column of
r, itself coinciding with the i-th column of p – up to swapping the i-th and j-th
entries –, we get

rj,j = pi,i = vi,i (uj,i +
i∑

l=j+1

ul,ixi,l),

ra,j = pa,i = va,i (uj,i +
i∑

l=j+1

ul,ixi,l),

ri,j = pj,i = vj,i (uj,i +
i∑

l=j+1

ul,ixi,l).



DENSITY OF AUTOMORPHIC POINTS 9

At this point it should be clear the b-th column, b ∈ [[j+1, i−1]], vanishes identically
as soon as the following affine relation is satisfied by the scalars (xi,l)

i
l=j+1

(2.2) uj,b +
b∑

l=j+1

ul,bxi,l = 0.

From the second set of equations, it follows the j-th column will also cancel
provided the following affine relation is satisfied by the scalars (xi,l)

i
l=j+1

(2.3) uj,i +
i∑

l=j+1

ul,ixi,l = 0.

It remains to organize the system of equations (2.2) – for b ∈ [[j + 1, i− 1]] –, and
the equation (2.3) into some lower triangular linear system of size i− j as follows

(2.4)




uj+1,j+1 0 0 . . . 0
uj+1,j+2 uj+2,j+2 0 . . . 0
uj+1,j+3 uj+2,j+3 uj+3,j+3 . . . 0

...
...

...
. . .

...
uj+1,i uj+2,i uj+3,i . . . ui,i







xi,j+1

xi,j+2

xi,j+3
...
xi,i




= −




uj,j+1

uj,j+2

uj,j+3
...
uj,i



.

Since the matrix u is non-singular by assumption, the product
∏i
l=j+1 ul,l does not

vanish and the previous system admits a (unique) solution; for such a solution
x = (xil)

i
l=j+1 the matrix ai,j := ai,j(x), i, j ∈ [[1, n]], i > j, lies in bs(i,j)u−1 ∩ bw0 ,

where as above we denote by s(i,j) the permutation matrix in GLn(k) associated
with the (i, j)-transposition in Sn. This closes the proof of the first and main
claim in Lemma 2.1.

By construction one then passes from the matrices ei,j to the matrices ai,j ,
i, j ∈ [[1, n]], i > j, by some unipotent triangular matrix (with many zeros, since it
is n-block diagonal), provided the order we choose on the set {(i, j), i, j ∈ [[1, n]],
i > j} is compatible with the row order, i.e. such that for all i ∈ [[1, n]] (i, j) < (i, k)
if j < k (the lexicographic order clearly has the property); the matrices ai,j, i, j ∈
[[1, n]], i > j, then form a basis of the Borel subalgebra bw0, while each one lying
in exactly one of the generators bw0 ∩ bs(i,j)u−1 of the envelope

∑
w∈W bw0 ∩ bwu−1 ,

the second and last claim in Lemma 2.2. �

The reader may want to notice the above argument reaches the stronger state-
ment that for all u, u ∈ B, bw0u =

∑
t∈Tn

bw0u ∩ bt, where the sum is taken
over the subset Tn ⊂ W0 consisting of the identity and the i, j-transpositions,
n > i > j > 1, a small subset of Sn with only (n2 − n+ 2)/2 elements.
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We now discuss the details of the reduction of the general statement to Lemma
2.1, although it may look less surprizing to trained minds. Let’s proceed to the
reduction. The following lemma is a direct consequence of a refined version of the
Bruhat decomposition established in [BT65, Thm. 5.15].

Lemma 2.2. Let k be an arbitrary field. Any n × n-matrix in gln splits as the
product of an upper triangular matrix by a lower triangular matrix by a permutation
matrix: for all matrices m ∈ gln, there exist an upper triangular matrix u, a lower
triangular matrix l, and a permutation matrix p, such that m = ulp.

If useful, one may require the upper triangular u or the lower triangular l to be
unipotent (but not both simultaneously of course).

Let’s turn back to our main object, realizing a Borel subalgebra as the envelope
of its intersections with the conjugates of any fixed Borel subalgebra under the
Weyl group. From Lemmas 2.1 and 2.2 we can deduce the following statement.

Theorem 2.3. Let n be a positive integer, Sn the symmetric group of order n,
and gln the algebra of n × n matrices with entries in a fixed field k. Let GLn(k)
be the group of the non-singular elements in gln and b0 ⊂ gln the Borel subalgebra
of upper triangular matrices. For any element g ∈ GLn(k) let bg = g−1b0g denote
the Borel subalgebra conjugate to b0 by g−1.

Any Borel subalgebra b coincides with the linear envelope of its intersections with
the conjugate of b0 under Sn

b =
∑

w∈Sn

b ∩ bw.

Proof. All Borel subalgebras are known to be conjugate, and it is enough to prove
the identity in the theorem for b = bg = g−1b0g for all g ∈ GLn(k). By Lemma
2.2 the element g splits as a product of an upper triangular matrix, u, by a lower
triangular matrix, l, by a permutation matrix, p,i.e. we can write g = ulp. The
matrix l can be written as the conjugate l = w0u2w

−1
0 of an upper triangular matrix

u2 by the permutation matrix w0 associated with the permutation of maximal
length in Sn, that is

w0 = (1, n)(2, n− 1) . . . (⌊
n

2
⌋, n− ⌊

n

2
⌋ + 1).

Substituting for l in g = ulp accordingly, and introducing the permutation matrix
q := w−1

0 p we get g = uw0u2w
−1
0 p = uw0u2q, and for the Borel subalgebra bg =

bw0u2q.

Now, as observed above, conjugation trivially commutes with taking linear enve-
lope and intersection so that

∑
w∈Sn

bw0u2 ∩bw coincides with (
∑
w∈Sn

bw0 ∩bwu−1
2

)u2

and the identity bw0u2 =
∑
w∈Sn

bw0u2 ∩bw is equivalent to bw0 =
∑
w∈Sn

bw0 ∩bwu−1
2

,

which, in turn, is precisely the conclusion of Lemma 2.1.
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Again, conjugation commutes with taking linear envelope and intersection, to the
effect that the identity bw0u2 =

∑
w∈Sn

bw0u2 ∩ bw reads

bg = bw0u2q = (
∑

w∈Sn

bw0u2∩bw)q =
∑

w∈Sn

(bw0u2∩bw)q =
∑

w∈Sn

bw0u2q∩bwq =
∑

w∈Sn

bg∩bwq.

Since in any group (right-) translation by any element is a bijection, the latter
sum can be rewritten

∑
w∈Sn

bg ∩ bw, which reaches the claim that

bg =
∑

w∈Sn

bg ∩ bw.

and closes the proof of Aequatio Praeclara. �

One will note the remark closing the proof of Lemma 2.1 that conjugations under
only a small subset of Sn are needed to recover bw0u implies, when introduced in
the previous discussion, that in general it is enough to consider the envelope of
the intersections of the Borel subalgebra bg with the Borel subalgebras btq, t ∈ Tn,
where q = w−1

0 p, for p the permutation factor of the ulp decomposition of g: the
sum in the above decomposition can be taken on a prescribed translate of Tn, a
small subset (of cardinal (n2 − n+ 2)/2) of Sn.

2.2. A surjectivity result. Let k be a field and let G := GLn,k. Let B be a
Borel subgroup in G and let g := LieG and b := LieB. The quotient scheme G/B
is identified to the projective scheme classifying the complete flag in kn. As two
complete flags in kn are conjugate under G(k), we have a natural isomorphism of
sets (G/B)(k) ≃ G(k)/B(k), so that we will identify k-points of G/B with right
cosets gB(k), for g ∈ G(k). Let g̃ be the Grothendieck simultaneous resolution of
g: it coincides with the closed subscheme {(A, gB) | Ad(g−1)A ∈ b} of the product
g ×k G/B. Let π1 and π2 be the projections of g̃ ×g g̃ onto g̃ with respect to the
first and second factors.

Lemma 2.4. Let g ∈ G(k). The tangent space of g̃ at the point (0, gB(k)) of
g ×G/B is the k-linear subspace gbg−1 ⊕ TgB(k)G/B of g ⊕ TgB(k)G/B.

Proof. Let B− be the Borel subgroup of G, opposite to B and let U− be the
unipotent radical of B−. There is an open embedding of U− into G/B sending
u ∈ U− to guB (see for example [Jan87, II.1.10]). This open embedding induces an
isomorphism TgB(k)G/B ≃ TIdU

−. This implies that the tangent space T(0,gB(k))g̃

can be identified with the set of pairs (A,C) in g × LieU− such that (εA, g(Id +
εC)) ∈ g̃(L[ε]), which means

(2.5) (g(Id + εB))−1εAg(Id + εC) ∈ k[ε] ⊗k b.

Using the fact that ε2 = 0, (2.5) is equivalent to g−1Ag ∈ b. �

The same kind of computation shows the following result.
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Lemma 2.5. The tangent space of g̃×g g̃ at the point (gB(k), 0, hB(k)) ∈ G/B×
g ×G/B is the subspace

TgB(k)G/B ⊕ (gbg−1 ∩ hbh−1) ⊕ ThB(k)G/B

of TgB(k)G/B ⊕ g ⊕ ThB(k)G/B.

Let T be a maximal split torus in G and let t be its Lie algebra. The following
result will prove essential later. Let us write (G/B)T for the set of k-points of
G/B which are fixed by the group T (k). Note that this set is in bijection with the
Weyl group W of (G, T ).

Theorem 2.6. Let hB(k) ∈ (G/B)(k). We have
∑

gB(k)∈(G/B)T

dπ2(T(gB(k),0,hB(k))(g̃ ×g g̃)) = T(0,hB(k))g̃

Proof. Let us remark that gB(k) ∈ (G/B)T if and only if T ⊂ gB(k)g−1 which is
equivalent to t ⊂ gbg−1. Let B be the set of Borel sub-algebras of g containing t.
Using Lemmas 2.4 and 2.5, we see that the statement is equivalent to the following
identity :

(2.6)
∑

b′∈B

(b′ ∩ hbh−1) = hbh−1.

This, in turn, is a consequence of Theorem 2.3. �

3. Local deformation rings

Let C be the category of finite local L-algebras A with residue field isomorphic
to L. If A is an object of C we denote by mA its unique maximal ideal.

3.1. (ϕ,ΓK)-modules. Let K ′ be the maximal unramified extension of Qp con-
tained in K(µp∞), it is a finite extension of Qp. Let R be the Robba ring of K
defined as lim−→r<1

R]r,1[ where R]r,1[ is the ring of rigid analytic functions on the

open annulus {r < |X| < 1} over K ′. This ring is a Bezout domain. If A is a finite
dimensional Qp-algebra let RA := A⊗Qp R. The ring R is endowed with a Frobe-
nius endomorphism φ and a continuous action of the group ΓK := Gal(K(ζp∞)/K)
commuting with φ (see [KPX14, Def. 2.2.2]). The ring R contains an element
t which is the image in R of the rigid analytic function x 7→ log(1 + x) defined
over the open unit disc over Qp. This element has the properties φ(t) = pt and
[recK(a)] · t = χcyc(recK(a))t = at, for a ∈ K×.

When A is an object of C, we define a (ϕ,ΓK)-module over RA as a pair (DA, ϕ)
where DA is a finite free RA-module, ϕ is a φ-semilinear endomorphism of DA

inducing an isomorphism RA ⊗RA,φ DA
∼
−→ DA, and DA is equipped with a contin-

uous semilinear action of ΓK commuting with ϕ (here DA is a R-module of finite
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type and has the canonical topology coming from the topology of R). As A is a
finite local Qp-algebra, this definition coincides with [KPX14, Def. 2.2.12].

If D1 and D2 are two (ϕ,ΓK)-modules over RA. There is a (ϕ,ΓK)-module
Hom(D1,D2) defined over RA whose underlying RA-module is the space of RA-
linear maps from D1 to D2. Namely, R is a flat R-module via φ, so that the
canonical map R ⊗R,φ HomR(M1,M2) → HomR(R ⊗R,φ M1,R ⊗R,φ M2) is an
isomorphism, which isomorphism is used to define ϕ on HomR(M1,M2).

For i > 0, the i-th cohomology group H i
(ϕ,ΓK)(D) of a (ϕ,ΓK)-module D is

defined in [Liu07, 3.1]. If DA is a (ϕ,ΓK)-module over RA, it follows from [Liu07,
Thm. 5.3] that H i

(ϕ,Γ)(DA) is of finite type over A and zero for i > 2.

For any continuous group homomorphism δ : K× → L×, we recall that we can
construct a rank one (ϕ,ΓK)-module RL(δ) over RL such that the map δ 7→ RL(δ)
induces a bijection between the set of continuous group homomorphisms K× → L×

and the set of isomorphism classes of rank one (ϕ,ΓK)-modules over RL (see
[KPX14, §6.1] for the precise construction of RL(δ)).

By definition a (ϕ,ΓK)-module over R[ 1
t
] is a finite free R[ 1

t
]-module M with

a φ-semilinear endomorphism ϕ and a semilinear action of ΓK such that there
exists a sub-R-module D of M which is stable by ϕ and ΓK , generates M as a
R[ 1

t
]-module and is a (ϕ,ΓK)-module over R.

Lemma 3.1. Let M be (ϕ,ΓK)-module over R[ 1
t
] and let N a sub-R[ 1

t
]-module

of M which a direct factor as R[ 1
t
]-module and stable under ϕ and ΓK. Then N

is a (ϕ,ΓK)-module over R[ 1
t
].

Proof. Let D be a sub-R-module of M, which is a (ϕ,ΓK)-module and generates
M as a R[ 1

t
]-module. It is sufficient to prove that D′ := D∩N is a (ϕ,ΓK)-module

over R. It follows from [Ber02, Lemme 4.13] that D′ is a finite free R-module.
Consequently we have to prove that the R-linear map R ⊗R,φ D′ → D′ given by
the restriction of ϕ is an isomorphism. The snake lemma applied to the following
morphism of short exact sequences

0 R ⊗R,φ D′ R ⊗R,φ D R ⊗R,φ (D/D′) 0

0 D′ D D/D′ 0

ϕD′ ϕD ϕD/D′ ,

where ϕD is bijective by the very definition of a (ϕ,ΓK)-module, shows that the
map ϕD/D′ is surjective and that it is enough to check it is also injective to get
that ϕD′ is an isomorphism. Since D/D′ is R-torsion free, its kernel is torsion free
and a comparison of the ranks then shows that ϕD/D′ is injective as the ring R is
Bezout. �
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If A is an object of RA, we define a (ϕ,ΓK)-module over RA[ 1
t
] as being a

(ϕ,ΓK)-module M over R[ 1
t
] together with a morphism of Qp-algebras from A

into Endϕ,ΓK
M such that M is a finite free RA[ 1

t
]-module.

3.2. Filtered deformation functors. Let A be an object of C and let DA be a
(ϕ,ΓK)-module over RA. We define a filtration F of DA as a sequence

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = DA

of sub-(ϕ,ΓK)-modules of DA such that each Fi is a direct factor of DA as an
RA-module. When m = rkRA

DA and each quotient Fi/Fi−1 is of rank 1 over RA,
we say that F is a triangulation of DA.

Let F be a triangulation of a (ϕ,ΓK)-module D over RL. For 1 6 i 6 d, let
δi the unique continuous morphism K× → L× such that Fi/Fi−1 ≃ RL(δi). The
character δ1 ⊗ · · · ⊗ δd from (K×)d to L× depends only on D and F and is called
the parameter of the triangulation F .

If k = (kτ )τ∈Σ ∈ ZΣ, we note zk the character z 7→
∏
τ∈Σ τ(z)kτ from K× into

L×. A character δ1 ⊗ · · · ⊗ δd of (K×)d is called regular if, for all i 6= j, we have

(3.1) δiδ
−1
j /∈ {zk, zkεK ; k ∈ Z[K:Qp]}.

From now we fix D a (ϕ,ΓK)-module over RL and F a filtration of D. If A
is an object of C, we define XD,F(A) as the set of isomorphism classes of triples
(DA, π,FA) where DA is a (ϕ,ΓK)-module over RA, π is an RA-linear map from
DA to D commuting to ϕ and ΓK , inducing an isomorphism DA ⊗A L

∼
−→ D, and

FA = (FA,i)06i6m is a filtration of DA such that π(FA,i) = Fi for all 0 6 i 6 m.
This construction can be promoted naturally into a functor from C to the category
of sets. In the case K = Qp, the functor XD,F was defined by Chenevier in
[Che11]. Below we will make reference to the statements [Che11, Prop. 3.4] and
[Che11, Prop. 3.6 (i) and (iii)] which concern only the case K = Qp. However
their statement and proof extend verbatim to the general case where K is a finite
extension of Qp so that we will apply them without more explanation to our
situation. It follows from [Che11, Prop. 3.4] that the functor XD,F admits a versal
deformation L-algebra, i.e. a complete noetherian local L-algebra R such that

Hompro−C(R,−) ≃ XD,F .

When F = (0 ⊂ D), we simply write XD for the functor XD,F , which then coincides
with the deformation functor of D. There is a natural map of functors XD,F →
XD which is defined by (DA, π,FA) 7→ (DA, π). If we assume in addition that
Hom(ϕ,ΓK)(gri(D),D/Fi) = 0 for all i, then [Che11, Prop. 3.6.(i)] shows that the
map of functors XD,F → XD is injective and therefore we can identify XD,F with
a subfunctor of XD. In the particular case that F is a triangulation, the functor
XD,F was introduced in [BC09, Def. 2.3.2]; then the map of functors XD,F → XD

is relatively representable if we assume Hom(ϕ,ΓK)(gri(D),D/Fi) = 0 for all i (see
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[BC09, Prop. 2.3.9]), an assumption that is satisfied if F is a triangulation of
D with regular parameter as it follows from [Liu07, Prop. 3.10.(1)]. If F is a
filtration of D, let EndF D be the sub-RL-module of End D whose elements are
RL-linear maps respecting F . It is a sub-(ϕ,ΓK)-module of End D. It follows from
[Che11, Prop. 3.6.(iii)] that if H2

(ϕ,ΓK)(EndF D) = 0, the functor XD,F is formally

smooth. In particular if H2
(ϕ,ΓK)(End D) = 0, the functor XD is formally smooth,

which implies that a versal deformation ring for XD is a formally smooth complete
noetherian local L-algebra with residual field isomorphic to L, i.e. of the form
L[[X1, . . . , Xd]] for some non-negative integer d.

For the purpose of this paper we need an other kind of deformation problem.
Let A be an object of C and DA a (ϕ,ΓK)-module over RA. The properties of
the element t ∈ R show that the endomorphism φ and the action of ΓK extends
canonically to the ring RA[ 1

t
] and, if D is a (ϕ,ΓK)-module over RA, there are

canonical semilinear extensions of ϕ and of the action of ΓK to D[ 1
t
]. A filtration

of DA[ 1
t
] is a sequence

M =
(
0 ⊂ M1 ⊂ · · · Mm = DA

[
1
t

])

by sub-RA[ 1
t
]-modules which are direct factors and are stable under ϕ and ΓK .

Remark 3.2. If F = (Fi)06i6m is a filtration of DA, the family F [ 1
t
] := (Fi[

1
t
]) is

a filtration of DA[ 1
t
]. However, if (Mi)06i6m is a filtration of DA[ 1

t
], the family

(Mi ∩ DA)06i6m need not be a filtration of DA since the RA-modules Mi ∩ DA

may fail to be projective.

A family of the form (Mi∩DA)06i6m , for a given filtration Mi of DA[ 1
t
], is what

we call loosely an unsaturated filtration of DA. When A = L, the fact that R is a
Bezout domain implies that the family M ∩ DA := (Mi ∩ DA)06i6m is actually a
filtration of DA and the map M 7→ M∩DA is a bijection from the set of filtrations
of DA[ 1

t
] onto the set of filtrations of DA whose inverse is F 7→ F [ 1

t
].

Let D be a (ϕ,ΓK)-module over RL and let M be a filtration of D[ 1
t
]. If A

is an object of C, we define XD,M(A) as the set of isomorphism classes of triples
(DA, π,MA) where DA is a (ϕ,ΓK)-module over RA, πA is a (ϕ,ΓK)-module mor-
phism DA → D inducing an isomorphism L ⊗A DA

∼
−→ D and MA is a filtration

of DA[ 1
t
] such that π(MA,i) = Mi. The construction A 7→ XD,M(A) can be pro-

moted into a functor from C to the category of sets. When F := M ∩ D we
can check that the map (DA, πA,FA) 7→ (DA, πA,FA[ 1

t
]) induces an injection of

functors XD,F →֒ XD,M and we use it to identify XD,F with a subfunctor of XD,M.

Remark 3.3. When M is a triangulation of D, the functor XD,M coincides with the
functor of isomorphism classes of the groupoid XD,M introduced in [BHS, § 3.5].

The following statement is a direct consequence of the definitions; we state it
for the sake of completeness and comfort of reading.
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Scholium 3.4. Let π : X → Y be a relatively representable morphism between
functors from C to the category of sets. If Y admits a versal deformation L-algebra,
then X admits a versal deformation L-algebra. More precisely if Spf R → Y is a
hull for Y then the functor Spf R ×Y X is pro-representable by a local complete
noetherian L-algebra S and Spf S → X is a hull for X.

We will also need the following fact which is a direct consequence of [BHS,
Prop. 3.4.6].

Proposition 3.5. Let D be a (ϕ,ΓK)-module and let F be a triangulation of D
whose parameter is regular in the sense of (3.1). Let M := F [ 1

t
]. Then the forgetful

map XD,M → XD is injective and relatively representable. This implies that XD,M

admits a versal deformation L-algebra.

This means that the map XD,M → XD is injective and that for all objects A in
C and all x ∈ XD(A), there is a unique quotient Ax of A such that for any map
A → B in C, the image of x in XD(B) is in XD,M(B) if and only if the map A → B
factors through Ax.

3.3. Crystalline (ϕ,ΓK)-modules. LetK0 = W (kK)[ 1
p
], let σ the absolute Frobe-

nius automorphism of K0 and f = [kK : Fp] = [K0 : Qp]. If A is an object of
C, an isocrystal over kK with coefficients in A is a pair (V, ϕ) where V is a finite
projective A ⊗Qp K0-module and ϕ is an IdA ⊗ σ-semilinear automorphism of V .
Actually these conditions automatically imply that V is a finite free A ⊗Qp K0-
module. Its rank is by definition its rank as a A ⊗Qp K0-module. If (V, ϕ) is an
isocrystal over kK with coefficients in A, we define χ(V, ϕ) as the characteristic
polynomial of the A⊗QpK0-linear endomorphism ϕf . This polynomial is invariant
under IdA ⊗ σ, to the effect that χ(V, ϕ) lies in A[X]. Assume now that A = L. If
χ(V, ϕ) = PQ where P and Q are coprime elements in L[X], then there exists a
unique ϕ-stable L⊗Qp K0-submodule W ⊂ V such that χ(W,ϕ|W ) = P . Actually
we have explicitely W = kerP (ϕf).

Recall that there exists a left exact functor Dcris from the category of (ϕ,ΓK)-
modules over RL to the category of isocrystals over kK with coefficients in L. It is
defined by Dcris(D) := D[ 1

t
]ΓK (see [BC09, 2.2.7.] for the case where K = Qp). We

say that a (ϕ,ΓK)-module D over RL is crystalline if rkK0 Dcris(D) = rkR D. Let
D be a crystalline (ϕ,ΓK)-module over RL. Arguing as in [BC09, 2.4.2.], there
exists a bijection between sub-(ϕ,ΓK)-modules of D which are direct summands
as RL-module and ϕ-stable sub-L⊗Qp K0-modules of Dcris(D).

A refinement of a rank d isocrystal (D,ϕ) over k is a filtration F = (Fi)06i6d of
D

F0 = 0 ( F1 ( · · · ( Fd = D
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such that each Fi is a L ⊗Qp K0-submodule stable under ϕ. Note that each Fi is
necessarily free over L⊗Qp K0 and consequently of rank i.

If D is a crystalline (ϕ,ΓK)-module over RL, there is consequently a bijection
F = (Fi)06i6d 7→ Dcris(F) := (Dcris(Fi))06i6d between the set of triangulations of
D and the set of refinements of Dcris(D). A refinement F of a k-isocrystal (D,ϕ)
gives rise to a decomposition of χ(V, ϕ) as a product of polynomials of degree one

χ(D,ϕ) =
n∏

i=1

χ(Fi/Fi−1, ϕ).

In particular χ(D,ϕ) is split over L and the triangulation defines an ordering
(φ1, . . . , φd) of the roots of χ(D,ϕ) such that χ(Fi, ϕ) =

∏i
j=1(X − φj). We define

δF to be the unramified character T (K) → L× given by the formula

(a1, . . . , ad) 7−→
d∏

i=1

φ
vK(ai)
i .

If (D,ϕ) = Dcris(D) for a crystalline (ϕ,ΓK)-module D over RL and if F is a
triangulation of D, we define δF := δDcris(F). It follows from the classification
of sub-(ϕ,ΓK)-modules of rank one (ϕ,ΓK)-modules ([KPX14, Prop. 6.2.8.(1)])
that the parameter of the triangulation F is the product of δF with an algebraic
character of (K×)d.

Conversely if the polynomial χ(D,ϕ) is separable and split in L[X], each order-
ing (φ1, . . . , φd) of its roots comes from a unique refinement of D. In this case, the
character δF completely determines the refinement F .

We say that a crystalline (ϕ,ΓK)-module D over RL is ϕ-generic if the polyno-
mial χ(Dcris(D)) is separable split over L with pairwise distinct roots (φ1, . . . , φd)
such that φiφ

−1
j 6= pf for i 6= j. This property in particular implies that for each

triangulation F of D, the parameter of F is regular so that the assumption on
the triangulation F in Proposition 3.5 is satisfied. As a consequence we have the
following relatively representable inclusions

XD,F ⊂ XD,F [ 1
t

] ⊂ XD,

where both XD and XD,F are formally smooth, unlike the functor XD,F [ 1
t

] which

does not share the property in full generality.

Let D be a crystalline (ϕ,ΓK)-module over RL. For an object A of C, let Xcris
D (A)

the subset of XD(A) of isomorphism classes of pairs (DA, πA) with DA a crystalline
(ϕ,ΓK)-module. The subfunctor A 7→ Xcris

D (A) of XD is simply denoted Xcris
D . If

DA is crystalline, the A ⊗Qp K0-module Dcris(DA) is finite free of rank rkRL
D.

Assume moreover that D is ϕ-generic crystalline. Let F be a triangulation of D
with associated refinement F = Dcris(F) and set M = F [ 1

t
].
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Lemma 3.6. Let A be an object of C and let (DA, πA) ∈ Xcris
D (A). There exists

a unique complete flag FA of A ⊗Qp K0-submodules of Dcris(DA) which is stable
under ϕ and reduces to F modulo mA.

Proof. By assumption, the polynomial χ(Dcris(D)) is separable split in L[X] so
that we can write

χ(Dcris(D)) =
n∏

i=1

(X − xi)

and assume that the filtration F is given by Fi = ker
∏i
j=1(ϕ

f − xj).

Let χA(Dcris(DA)) ∈ A[X] be the characteristic polynomial of the A ⊗Qp K0-
linear endomorphism ϕf of Dcris(DA). The reduction modulo mA of χA(Dcris(DA))
is the polynomial χ(Dcris(D)) ∈ L[X] which is separable split in L[X]. Thus there
exists a unique (x̃1, . . . , x̃n) ∈ An such that χA(Dcris(DA)) =

∏n
i=1(X − x̃i) and,

for 1 6 i 6 n, x̃i ≡ xi mod mA. Considering the characteristic polynomials of the
ϕf |FA,i

we can check that FA,i = ker
∏i
j=1(ϕ

f − x̃j) defines the desired filtration.
On the other hand any complete flag with the desired properties must fulfill this
condition. �

Let

MA :=
(
RA

[
1
t

]
⊗K0⊗QpA

FA,1 ( · · · ( RA

[
1
t

]
⊗K0⊗QpA

FA,n = DA

[
1
t

])

where we used the canonical isomorphism ([Ber02, Thm. 0.2])

RA

[
1
t

]
⊗K0⊗QpA

Dcris(DA) ≃ DA

[
1
t

]

and FA is the filtration whose existence is proved in Lemma 3.6. Then (DA, πA,MA)
is an element of XD,M(A). This implies that we have a sequence of inclusions

Xcris
D ⊂ XD,F [ 1

t
] ⊂ XD.

Remark 3.7. We point out that in general Xcris
D does not embed into XD,F . This is

only true if we impose some conditions on the relative position of F with respect
to the Hodge filtration (see below).

3.4. B+
dR-representations. If D is a (ϕ,ΓK)-module over R, we note W+

dR(D)
the B+

dR-representation of GK constructed in [Ber08, Prop. 2.2.6.]. The rank of
the B+

dR-module W+
dR(D) is equal to the rank of the R-module D. We obtain an

exact functor W+
dR from the category of (ϕ,ΓK)-modules over R to the category

of B+
dR-representations of GK .

If A is an object of C, an A⊗Qp B+
dR-representation of GK is a finite free A⊗Qp

B+
dR-module with a continuous semilinear action of GK . If DA is a (ϕ,ΓK)-module

over RA, the L⊗Qp B+
dR-representation W+

dR(DA) is actually an A⊗Qp B+
dR-module

with a continuous semilinear action of GK . It follows from [BHS, Lemma 3.3.5.(i)]



DENSITY OF AUTOMORPHIC POINTS 19

that W+
dR(DA) is a finite free A⊗Qp B+

dR-module and consequently an A⊗Qp B+
dR-

representation of GK . If W is an L⊗Qp B+
dR-representation of GK we define XW the

functor from C to the category of sets such that XW (A) is the set of equivalence
classes of pairs (WA, πA) where WA is a A ⊗Qp B+

dR-representation of GK and πA
is an A⊗Qp B+

dR-linear and GK-equivariant morphism from WA to W inducing an

isomorphism L⊗AWA
∼
−→ W . If D is a (ϕ,ΓK)-module over RL, the functor W+

dR

induces a map from XD to XW+
dR

(D).

Let D be a (ϕ,ΓK)-module over R. Let DdR(D) := (W+
dR(D) ⊗B+

dR
BdR)GK . The

de Rham filtration on DdR(F) is defined by

FilidR(DdR(D)) := (tiW+
dR(D))GK ⊂ DdR(D)

We say that D is de Rham if dimK DdR(D) = rkR D. If A is an object of C and if
DA is a (ϕ,ΓK)-module over RA, then DdR(DA) is a A⊗QpK-module. If we assume

that DA is de Rham, then it is finite free over A⊗Qp K, and each FilidR DdR(D) is
a sub-A⊗Qp K-module.

A filtered L ⊗Qp K-module is a finite free L ⊗Qp K-module with a separated
and exhaustive filtration by sub-L ⊗Qp K-modules. The functor DdR is a left
exact functor from the category of (ϕ,ΓK)-modules over L to the category of
filtered L⊗Qp K-modules. The restriction of the functor DdR to the subcategory
of de Rham (ϕ,ΓK)-modules is exact and a crystalline (ϕ,ΓK)-module over RL

is de Rham. Moreover there is a canonical isomorphism of L ⊗Qp K-modules
Dcris(D) ⊗K0 K ≃ DdR(D) (see for example [Ber08, Prop. 2.3.3]).

Let D be a crystalline (ϕ,ΓK)-module over RL. For all τ ∈ Σ, we define

DdR,τ (D) := L⊗K⊗QpL,τ
DdR(D)

It is a direct factor of DdR(D) and we define a separated and exhaustive filtration
on DdR,τ (D) by

FilidR,τ DdR,τ (D) := L⊗K⊗QpL,τ
(FilidR DdR(D))

A Hodge-Tate type is an element k = (kτ )τ∈Σ ∈ (Zn)[K:Qp] where each kτ is an
increasing sequence of integers. We say that the Hodge-Tate type is regular if
all these sequences of integers are strictly increasing. If D is a de Rham (ϕ,ΓK)-
module, its Hodge-Tate type is by definition (k1,τ 6 · · · 6 kn,τ )τ∈Σ where the ki,τ
are the integers m such that gr−mDdR,τ (D) 6= 0, counted with multiplicity, where
the multiplicity of m is defined as the dimension dimL gr−mDdR,τ(D).

Let D be a crystalline (ϕ,ΓK)-module over RL and let F be a triangulation of
D. We say that F is non critical, if for all 1 6 i 6 rkRL

D and for all τ ∈ Σ, there
exists some m ∈ Z such that

(L⊗K0⊗QpL,τ |K0
Dcris(Fi)) ⊕ FilmdR,τ = DdR,τ (D).
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In this case we obviously have m+ i = rk D. With the help of the functor W+
dR, we

can easily construct an exact functor WdR from the category of (ϕ,ΓK)-modules
over R[ 1

t
] to the category of BdR-representations of GK such that, for D a (ϕ,ΓK)-

module over R, we have

WdR

(
D

[
1
t

])
= W+

dR(D) ⊗B
+
dR

BdR.

If A is an object of C, the image by WdR of a (ϕ,ΓK)-module over RA[ 1
t
] is a

finite free as A⊗Qp BdR-module and consequently an A⊗Qp BdR-representation of
GK (see [BHS, Lemma 3.3.5.(ii)]).

If A is an object of C and WA is an A⊗Qp BdR-representation of GK of rank n,
we define a complete flag of W to be a filtration (Fi)06i6n of W by sub-A⊗Qp BdR-
modules stable under GK such that Fi is a free A⊗Qp BdR-module of rank i.

Let W be a L ⊗Qp B+
dR-representation of GK and let F be a complete flag of

W ⊗B+
dR

BdR stable under the action of GK . Let A be an object of the category C.

A deformation of the pair (W,F ) over A is an element (WA, πA, FA) where WA is a
A⊗Qp B+

dR-representation of GK , πA a GK-equivariant isomorphism from WA ⊗AL
to W and FA a complete flag of WA ⊗B

+
dR

BdR such that F = (πA ⊗ IdBdR
)(FA).

We denote by XW,F the functor from the category C to the category of sets, that
maps an object A of C to the isomorphism class of deformations of (W,F ).

Let DA be a (ϕ,ΓK)-module over RA and MA a triangulation of DA[ 1
t
]. It

follows from Lemma 3.1 that each MA,i is a (ϕ,ΓK)-module over RA[ 1
t
]. Thus

WdR(MA) :=
(
WdR(MA,0) ⊂ · · · ⊂ WdR(MA,n) = WdR

(
D

[
1
t

]))

is a complete flag of W+
dR(DA) ⊗B

+
dR

BdR. For D a (ϕ,ΓK)-module over RL and F

a triangulation of D, we deduce from this fact that the functor W+
dR extends to a

map of functors

(3.2) XD,F [ 1
t

] −→ XW+
dR

(D),WdR(F [ 1
t
])

The following proposition is essentially [BHS, Cor. 3.5.6.].

Proposition 3.8. If D is a ϕ-generic crystalline (ϕ,ΓK)-module over RL with
regular Hodge-Tate type and F is a triangulation of D, then the map (3.2) is
formally smooth.

Proposition 3.9. Let D be a ϕ-generic crystalline (ϕ,ΓK)-module over RL of
regular Hodge-Tate type. Then, for all objects A of C, the preimage of the trivial
A ⊗Qp B+

dR-representation of GK under the map W+
dR : XD(A) → XW+

dR
(D)(A)

identifies with Xcris
D (A). Consequently the following sequence of L-vector spaces is

exact

0 → TXcris
D → TXD → TXW+

dR
(D).
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Proof. An object (DA, πA) has a trivial image by W+
dR if and only if DA is a de

Rham (ϕ,ΓK)-module. We can conclude as in the proof of [HS16, Cor. 2.7.(i)].
Namely it follows from the p-adic monodromy theorem ([Ber08, Thm. 2.3.5.(1)])
that DA is a potentially semistable (ϕ,ΓK)-module. Being an extension of finitely
many cristalline representations, it is actually semistable. It follows from the ϕ-
genericity assumption on D that no quotient of eigenvalues of ϕf on Dst(DA) can
be equal to pf , so that the monodromy operator of Dst(DA) is trivial. Hence DA

is crystalline. �

Corollary 3.10. Let D be a ϕ-generic crystalline (ϕ,ΓK)-module over RL of
regular Hodge-Tate type and F a triangulation of D. Then, for all objects A of C,
the preimage of the trivial A ⊗Qp B+

dR-representation of GK under the map (3.2)
identifies with Xcris

D (A). Moreover the following sequence is exact

0 −→ TXcris
D −→ TXD,F [ 1

t
] −→ TXW+

dR(D),WdR(F [ 1
t

]) −→ 0

Proof. The first assertion is a direct consequence of Proposition 3.9. The second
assertion follows after evaluation at L[ε]. The exactness on the right is a conse-
quence of Proposition 3.8. �

3.5. Main theorem: the local version. Let D be a ϕ-generic crystalline (ϕ,ΓK)-
module over RL. We write Tri(D) for the set of triangulations of D, which is in
bijection with the set of refinements of Dcris(D). The local theorem states as
follows

Theorem 3.11. Let D be a ϕ-generic crystalline (ϕ,ΓK)-module over RL of reg-
ular Hodge-Tate type. Let Tri(D) be the set of triangulations of D. Then the
L-linear map ⊕

F∈Tri(D)

TXD,F [ 1
t
] −→ TXD

is surjective.

Remark 3.12. The special case of the result where all refinements of D are assumed
non critical is a theorem due to G. Chenevier for K = Qp ([Che11, Thm. 3.19])
and to K. Nakamura for an arbitrary extension K of Qp ([Nak13, Thm. 2.62.]).

Before giving the proof of Theorem 3.11, let us recall some constructions and
results from [BHS], to which we refer the reader for relevent definitions if needed.

Let W be an almost de Rham L⊗Qp B+
dR-representation of GK (see [BHS, 3.1]).

Let i be a L⊗Qp K-linear isomorphism (L⊗Qp K)n
∼
−→ DpdR(W ). Let X�

W be the
functor from C to the category of sets such that X�

W (W ) is the set of isomorphism
classes of triples (WA, πA, iA) where WA is some A⊗Qp B+

dR-representation of GK ,
πA is map from WA to W inducing an isomorphism from L ⊗A WA to W and
iA is an isomorphism between (A ⊗Qp K)n and DpdR(WA) compatible with πA
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and i. Let g be the Lie algebra of the algebraic group GLn,K and let g̃ → g

be Grothendieck’s simultaneous resolution of singularities. As in section 2.2 we
consider the scheme X := g̃ ×g g̃. It follows from [BHS, Lem. 3.2.2] that the
forgetful map X�

W → XW is formally smooth, and [BHS, Thm. 3.2.5] states that
the functor X�

W is pro-representable by the completion of g̃K/Qp,L at the point
x = (0, i−1(FildR)).

Let F be a complete flag of W ⊗B+
dR

BdR stable under GK . We can define XW,F

as in section 3.4 and X�
W,F by adding a framing of DpdR(WA) for (WA, πA, FA) ∈

XW,F (A). The forgetful map X�
W,F → XW,F is then formally smooth and the

functor X�
W,F is pro-representable by the completion of XK/Qp,L at the point xF =

(F1, 0, F2) where F1 = i−1(DpdR(F )) and F2 = i−1(FildR) ([BHS, Cor. 3.5.8.(i)]).
Moreover, the following diagram is commutative

(3.3)

X�
W,F X�

W

X̂K/Qp,LxF
˜̂gK/Qp,Lx

forget

∼ ∼

π2

where the upper horizontal map is the forgetful map and the lower horizontal map
is induced by the second projection of X on g̃. When W = W+

dR(D) for a (ϕ,ΓK)-
module D and F = WdR(M) for M a triangulation of D[ 1

t
] we will use the shorter

notation xM in place of xWdR(M).

Proof of Theorem 3.11. Let W := W+
dR(D). In a first step we prove that the L-

linear map ⊕

F∈Tri(D)

TXW,WdR(F [ 1
t
]) −→ TXW

is surjective. Let’s consider the commutative diagram

⊕
F∈Tri(D) TX

�

W,WdR(F [ 1
t

])
TX�

W

⊕
F∈Tri(D) TXW,WdR(F [ 1

t
]) TXW

As the forgetful map X�
W → XW is formally smooth, it induces a surjection on the

tangent spaces. Consequently it is sufficient to prove that the upper horizontal
map is surjective.

Because of the commutative diagram (3.3) this is equivalent to the surjectivity
of the map

π2 :
∑

F∈Tri(D)

Tx
F[ 1

t ]
XK/Qp,L −→ Txg̃K/Qp,L
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induced by the second projection. Let α be the morphism of K-schemes X =
g̃ ×g g̃ → g̃ given by the second projection. Let αK/Qp its image by the Weil
restriction functor from K to Qp and let αK/Qp,L be the base change of αK/Qp to
L. For each τ ∈ Σ we write ατ for the base change of α by τ : K → L. Then we
have the following decompositions

XK/Qp ×Qp L ≃
∏

τ∈Σ

Xτ ,

g̃K/Qp,L ≃
∏

τ∈Σ

g̃τ ,

αK/Qp,L = (ατ )τ∈Σ.

Therefore it only remains to prove that for each τ ∈ Σ, the L-linear map

(3.4) dατ :
⊕

F∈Tri(D)

Tx
F[ 1

t ],τ
Xτ −→ Txτ g̃τ

is surjective.

The L ⊗Qp K0-linear endomorphism Φ := ϕf of Dcris(D) induces an L-linear
endomorphism Φτ of DdR,τ (D) = Dcris,τ |K0

(D) for all τ ∈ Σ. This endomorphism is

killed by the polynomial χ(Dcris(D), ϕ) ∈ L[X] which, by assumption, is separable
and split. This implies that Φτ is contained in a unique maximal split torus Tτ
of GL(DdR,τ (D)) or equivalently that the Zariski closure in GL(DdR,τ (D)) of the
group ΦZ

τ is a maximal split torus Tτ . If F is a triangulation of D, the complete
flag Dcris(F) of Dcris(D) is stable under ϕ, as is the complete flag DdR,τ(F [ 1

t
])

under Φτ , and thus also Tτ . However the maximal split torus Tτ fixes exactly n!
complete flags of DdR,τ (D). As D has exactly n! triangulations we conclude that
the set

{xF [ 1
t
],τ , F ∈ Tri(D)}

is exactly the set of points (F, 0, i−1(FildR,τ )) ∈ Xτ (L) such that F is fixed by the
maximal split torus Tτ .

The surjectivity of the map (3.4) is thus a direct consequence of Theorem 2.6.
This concludes the first step of the proof.
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Now consider the commutative diagram with exact lines and columns

0 0

⊕
F∈Tri(D) TX

cris
D TXcris

D 0

⊕
F∈Tri(D) TXD,F [ 1

t
] TXD

⊕
F∈Tri(D) TXW+

dR
(D),W+

dR
(F [ 1

t
]) TXW+

dR
(D) 0

0

∑

β

W+
dR

The exactness of the vertical lines are a consequences of Proposition 3.9 and Corol-
lary 3.10. The surjectivity of

∑
is trivial and the surjectivity of the lower horizon-

tal map is what we proved as a first step. We can deduce from this that the map
W+

dR ◦ β is surjective and call upon the “five” Lemma to conclude that the map β
itself is surjective, which closes the proof of Theorem 3.11. �

3.6. The case of Galois representations. If (ρ, V ) is a continuous representa-
tion of the group GK on some finite dimensional L-vector space V , let X(ρ,V ) be
the deformation functor over C of (ρ, V ). According to [Ber02] there exists a func-
tor Drig from the category of continuous representation of the group GK on finite
dimensional L-vector spaces to the category of (ϕ,ΓK)-modules over RL, which
is proved fully faithful by [Col08, Cor. 1.5]. Then, [BC09, Lem. 2.2.7] shows that
if A is an object of C and (ρ, V ) is a continuous representation of GK with some
L-algebras morphism A → EndGK

V , then V is a finite free A-module if and only
if Drig(V ) is a finite free RA-module. The essential image of the functor Drig is
moreover stable under extensions. From these facts we conclude that if (ρ, V ) is a
continuous representation of GK on some finite dimensional L-vector space, then
the functor Drig induces an isomorphism of functors

(3.5) X(ρ,V )
Drig
−−→ XDrig(V ).

If moreover F is a triangulation of Drig(V ) we define X(ρ,V ),F [ 1
t

] as the functor

from C to the category of sets sending an object A to the set of isomorphism classes
of tuples (ρA, VA, πA,MA) where (ρA, VA) is a continuous representation of GK on
some finite free A-module VA, πA is GK equivariant A-linear map VA → V inducing
an isomorphism L⊗A VA

∼
−→ V and MA is a triangulation of Drig(VA)[ 1

t
] such that

Drig(πA)(MA) = F [ 1
t
].
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Introducing the commutative diagram that, with the help of the functor Drig,
relates the isomorphism β of Theorem 3.11 to the linear map

⊕

F∈Tri(Drig(V ))

TX(ρ,V ),F [ 1
t

] −→ TX(ρ,V )

induced by the forgetful functors, we derive the following rephrasing of Theorem
3.11

Corollary 3.13. Let (ρ, V ) be a L-linear ϕ-generic crystalline representation of
the group GK with regular Hodge-Tate type. The forgetful functors induce a sur-
jective L-linear map

⊕

F∈Tri(Drig(V ))

TX(ρ,V ),F [ 1
t
] −→ TX(ρ,V ).

3.7. Components of the non saturated deformation ring. This section con-
tains some complements about the geometry of the formal scheme X(ρ,V ),F [ 1

t
] that

will be useful in the next chapter.

Let (ρ, V ) be some n-dimensional L-linear ϕ-generic crystalline representation
of GK with regular Hodge-Tate type. Let D = Drig(V ) and let F be a triangulation
of D. We note M := F [ 1

t
]. Let WdR(D) := BdR ⊗B+

dR
W+

dR(D).

We fix a basis of V , i.e. an L-linear isomorphism ι : Ln ≃ V so that ρ can be
identified with a group homomorphism ρ : GK → GLn(L). Let Xρ be the defor-
mation functor of the pair (ρ, ι). Using the identification (3.5) we can define the
deformation functors Xρ,F , Xρ,M, Xcris

ρ . These are the obvious variants of the above
functors in the context of (ϕ,ΓK)-modules with the corresponding decorations.

Let F := Dcris(F) the complete flag ofDcris(D) associated to the triangulation F .
For each τ ∈ Σ, let Fτ be the complete flag of DdR,τ (D) image of F under the func-
tor (−)⊗L⊗QpK0,τL. The stabilizer BF,τ of Fτ is a Borel subgroup of GL(DdR,τ(D))

and there exists a unique wF,τ ∈ Sn such that FildR,τ ∈ BF,τwF,τ (Fτ ). We define
wF := (wF,τ)τ∈Σ ∈ W = (Sn)

[K:Qp].

It follows from [BHS, Thm. 3.6.2.(ii)] and [BHS, Prop. 3.6.4.] that the deforma-
tion functor Xρ,M is pro-represented by some complete noetherian L-algebra Rρ,M

which is reduced, Cohen-Macaulay and equidimensional of dimension

n2 + [K : Qp]
n(n+ 1)

2
.

Its minimal primes are indexed by the set {w ∈ W, w > wF} where the ordering
on W is the Bruhat ordering.

Let Rw
ρ,M be the quotient of Rρ,M by the minimal prime with index w. By [BHS,

Thm. 3.6.2.(ii)], it is Cohen-Macaulay and normal. Let Xw
(ρ,V ),M be the subfunctor



26 E. HELLMANN, C.M. MARGERIN, B. SCHRAEN

of X(ρ,V ),M defined as the image of

(3.6) Spf Rw
ρ,M ⊂ Spf Rρ,M −→ Xρ,M.

It can be easily checked that the inclusion Xw
(ρ,V ),M ⊂ X(ρ,V ),M is relatively repre-

sentable. Note that the definition of Xw
ρ,M does not depend on the choice of the

basis of the L-vector space V .

Let t be the diagonal torus of g = gln,K . We recall that there is a canonical
map g̃ → t mapping (A, gB) ∈ g̃ to the class of Ad(g−1)A in b/u. Here u ⊂ b is
the sub-Lie-algebra of nilpotent upper triangular matrices, and the quotient b/u
is canonically identified with t.

This projection induces a canonical map Θ from X(ρ,V ),M to the completion at
(0, 0) of the L-scheme tK/Qp,L ×tK/Qp,L/W tK/Qp,L. The irreducible components of

this scheme are in bijection with the group W . Let tw be the component defined by
{(t,Ad(w−1)t), t ∈ tK/Qp,L} and t̂w its completion at (0, 0). We recall the ensuing
characterization of Xw

(ρ,V ),M which follows the precise definition of Θ, as discussed

in [BHS, Cor. 3.5.12].

Proposition 3.14. Let w1 and w2 two elements of {w ∈ W, w > wF}. We have
Θ(Xw1

(ρ,F),M) ⊂ t̂w2 if and only if w1 = w2.

Finally we recall that the functor Xcris
ρ is pro-representable by a formally smooth

L-algebra of dimension n2 + [K : Qp]
n(n−1)

2
([Kis08]). It follow from the proof of

[BHS, Theorem 4.2.3] that we have

Xcris
(ρ,V ) ⊂ Xw0

(ρ,V ),M

as subfunctors of X(ρ,V ) where, consistently with a well established notation intro-
duced in Chapter 2 above, w0 stands for the longest element of W .

4. Global deformation rings

Let F be a totally real field and E a totally imaginary quadratic extension that
we assume to be unramified over F and such that all places v dividing p are split
in E. Let G be a unitary group in n variables defined over F such that G ×F E
is an inner form of GLn,E. We assume moreover that G(F ⊗Q R) is compact and
that the group G is quasi-split over all finite places of F . This implies that n is
odd or that 4|n[F : Q]. If v is a place of F which splits in E, the group G splits
at v. We fix a place ṽ of E dividing v and an isomorphism G ×F Eṽ ∼= GLn,Eṽ

which induces an isomorphism G×FFv ≃ GLn,Fv . Let Bv ⊂ G(Fv) be the subgroup
corresponding to the Borel subgroup of upper triangular matrices of GLn(Fv) under
this isomorphism and Tv ⊂ Bv the subgroup corresponding to the subgroup of
diagonal matrices in GLn(Fv). We write T =

∏
v|p Tv and Bp =

∏
v|pBv. Moreover
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we define Uv ⊂ G(Fv) the maximal compact subgroup of G(Fv) corresponding to
GLn(OFv) under this isomorphism.

Let Up be a compact open subgroup of G(Ap,∞) of the form
∏
v∤p Uv with Uv

a compact open subgroup of G(Fv) which is assumed to be hyperspecial when v
is a place of F which is inert in E. Let Sp denote the set of places of F that
divide p and let S be a finite set of places of F containing Sp and the finite set of
places of F for which Uv is not hyperspecial. Finally we write U = Up ×Up, where
Up =

∏
v|p Uv is a maximal compact subgroup of G(F ⊗Q Qp).

We write ES for the maximal extension of E that is unramified outside all places
of E above the places in S and denote by GE,S = Gal(ES/E) the corresponding
Galois group. Let A be a Zp-algebra and ρA a representation of GE,S on some finite
free A-module VA of rank n. We write ρcA for the representation g 7→ ρA(cgc),
where c ∈ Gal(F/F ) is a complex conjugation. The representation (ρA, VA) is
called polarizable, if there exists an isomorphism

(ρ∨,c, V ∨
A ) ∼= (ρ⊗ εn−1, VA),

where ε is the cyclotomic character. Such an isomorphism is called polarization.

We fix L a finite extension of Qp and (ρ, V ) a continuous polarized representation
GE,S → GLn(kL) which is absolutely irreducible so that it has a unique polarization
up to scalar multiplication. We denote by Rρ,S the universal polarized deformation
OL-algebra of ρ. That is, the complete local OL-algebra pro-representing the
functor of isomorphism classes of triples (ρA, VA, ιA), with VA a finite free A-module
with a continuous polarized action ρA of GE,S and an isomorphism ιA : VA/mAVA ∼=
V of GE,S-representations, on the category of local Artinian OL-algebras A with
residue field kL. The existence of the OL-algebra Rρ,S follows from [Che11, §1.1].

Let Xρ,S = (Spf Rρ,S)rig be the rigid analytic generic fiber of the formal scheme
Spf Rρ,S. As (ρ, V ) is absolutely irreducible, the L-points of Xρ,S are in bijection
with the set of isomorphism classes of continuous representations (ρ, V ) of GE,S on
L-vector spaces such that ρ∨,c ≃ ρ⊗ εn−1 and such that there exists a GE,S-stable
OL-lattice V ◦ ⊂ V and a GE,S-equivariant isomorphism V ◦/̟LV

◦ ≃ V . Given a
point x ∈ Xρ, we denote by (ρx, Vx) the associated representation of GE,S.

Fix an isomorphism ι : Qp ≃ C. Recall that, if π is a (cuspidal) automorphic rep-
resentation of G, there exists a unique polarized n-dimensional Qp-representation
(ρπ, Vπ) of Gal(E/E) associated to π. If (πp,∞)U

p
6= 0 then this representation fac-

tors through GE,S. The existence of this Galois representation is a consequence of
base change ([Lab11, Cor. 5.3]) and of the construction of Galois representations as-
sociated to some automorphic representation of GLn,E (see [CH13]). We say that a
point x ∈ Xρ,S(L) is (G,Up)-automorphic (resp. (G,U)-automorphic) if there exists
a (cuspidal) automorphic representation π of G such that (πp,∞)U

p
6= 0 (resp. such

that (π∞)U 6= 0) and such that there is an isomorphism (ρx, Vx ⊗L Qp) ≃ (ρπ, Vπ).
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Moreover we say that (ρ, V ) is (G,U)-automorphic over L if there exists a (G,U)-
automorphic point x ∈ Xρ,S(L). Let X aut

ρ,S be the Zariski closure of the set of
(G,U)-automorphic points in X aut

ρ,S . The aim of this section is to prove the follow-
ing theorem:

Theorem 4.1. Assume that p > 2, that all places of S are split in E and that the
group ρ(GE(ζp)) is adequate in the sense of [Tho12, Definition 2.3]. Then the in-
clusion X aut

ρ,S ⊂ Xρ,S is the inclusion of a union of irreducible components (possibly

empty if (ρ, V ) is not (G,U)-automorphic).

From now on we assume p > 2, the places of S split in E, ρ(GE(ζp)) adequate

and that (ρ, V ) is (G,U)-automorphic.

Recall that, for a place v ∈ S, we fix a place ṽ of E dividing v. We write GEṽ

for the choice of a decomposition group at ṽ. Given a representation ρ of GE,S we
write ρṽ for the restriction of ρ to GEṽ .

Finally we assume that Up is sufficiently small so that the compact open sub
group U :=

∏
v Uv is such that

(4.1) ∀g ∈ G(A∞
F ), G(F ) ∩ gUg−1 = {1}.

4.1. Recollections about eigenvarieties and patching. Attached to the data
G,Up and ρ there is a so-called eigenvariety. For a place v dividing p let us write
T̂v for the rigid analytic space of continuous characters of Tv and similarly T̂ 0

v for
the space of continuous characters of the maximal compact subgroup T 0

v ⊂ Tv.
Further let

T̂ =
∏

v|p

T̂v and T̂ 0 =
∏

v|p

T̂ 0
v .

The eigenvariety associated to G,Up and ρ is by definition the Zariski-closed rigid
analytic subspace Y (Up, ρ) ⊂ Xρ,S × T̂L that is the (scheme-theoretic) support of

the locally analytic Jacquet-module JBp(Ŝ(Up, L)an
m ) of the locally analytic repre-

sentation underlying the G(F ⊗Q Qp)-representation on the space Ŝ(Up, L)m of
p-adic automorphic forms of tame level Up. Here m is a certain maximal ideal of a
Hecke-algebra corresponding to the residual Galois representation ρ. We refer to
[BHS17a, 3.1] for details of this construction.

We recall the notion of a classical point on Y (Up, ρ): We write X∗(T ) for the
space of algebraic characters of the product of the diagonal tori in

(4.2) (ResF/Q G)C
∼=

∏

τ :F →֒C

GLn,C .

This space comes equipped with an action of the Weyl group W of (ResF/QG)C.
As usual we write w ·λ for the shifted dot-action of W on X∗(T ). We write w0 for
the longest element of W .
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The isomorphism Qp
∼= C identifies λ ∈ X∗(T ) with a character Tp → Qp

×
that

we denote by zλ. If L is a finite extension of Qp such that ResF/Q G splits over L,

then zλ takes values in L and we may view it as an L-valued point of T̂ .

Given a representation π∞ of G(F ⊗Q R) we say that π∞ is of weight λ ∈ X∗(T )
if it is the restriction to G(F ⊗Q R) of the irreducible algebraic representation of
(ResF/Q G)C of highest weight λ.

Let π = π∞ ⊗C πp,∞ ⊗C πp be an automorphic representation of G such that
(πp,∞)U

p
6= 0 and such that π∞ is of weight λ. Moreover we assume that, for all

v ∈ Sp, the representation πv is an unramified quotient of the smooth induced

representation (IndGv
Bv
δsm,vδv)

sm for some unramified character δsm,v of Tv with
values in L× and where δv is the smooth character

δv = (1 ⊗ | · |v ⊗ · · · ⊗ | · |n−1
v ).

Let δsm :=
⊗
v∈Sp

δsm,v. The associated Galois-representation ρπ is (G,U)-automorphic
by definition and we have

(ρπ, δsmz
λ) ∈ Y (Up, ρ)(L) ⊂ Xρ,S(L) × T̂ (L),

see [BHS17a, Proposition 3.4] for example. The point x = (ρπ, δsmz
λ) is called the

classical point associated with (π, δsm).

It follows from [CH13] that, for v ∈ Sp, the representation ρṽ is crystalline and
that the character δsm,v is of the form δFṽ for Fṽ a triangulation of ρṽ (see §3.3
for the definition of δFṽ ). We say that ρ is crystalline ϕ-generic if ρṽ is crystalline
ϕ-generic for all places v dividing p.

Assuming that ρ is crystalline ϕ-generic, it follows from the classification of
intwertinning operators between principal series that

Fv 7−→ δFv

induces a bijection between the set of smooth characters δsm such that πv ∼=
(Ind

G(Fv)
Bv

δsmδv)
sm and the triangulations of ρṽ.

Similarly, given a tuple F = (Fv)v∈Sp of refinements we write δF = (δFv)v for
the corresponding unramified character of Tp. In this case xF := (ρ, zλδF) is a
classical point of Y (Up, ρ) by construction, associated to the pair (π, δF).

Fix an embedding τ : Fv →֒ Q̄p. Via the identification Qp
∼= C this embedding

defines an embedding Q →֒ C and we write Wτ for the factor of the Weyl group
W corresponding to this embedding via the decomposition (4.2).

The relative position of the τ -part of the Hodge Filtration

FildR,τ := FildR ⊗Fv⊗QpL,τ⊗IdQ̄p ⊂ DdR(ρv) ⊗Fv⊗QpL,τ⊗Id Q̄p

= Dcris(ρv) ⊗Fv,0⊗QpL,τ |Fv,0
⊗Id Q̄p
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with respect to Fv ⊗Fv,0⊗QpL,τ⊗Id Q̄p defines an element of the Weyl group wFτ ∈
Wτ . We write wF ∈ W for the Weyl group element defined by the tuple F .

The following proposition summarizes the properties of the eigenvariety needed
for the proof of the main theorem:

Proposition 4.2. (i) The eigenvariety Y (Up, ρ) is reduced and equi-dimensional
of dimension

dim Y (Up, ρ) = dim T̂ 0 = n[F : Q].

(ii) The set of classical points as defined above is Zariski-dense and has the accu-
mulation property, i.e. for every classical point x and every open connected
neighborhood U of x the classical, crystalline ϕ-generic points are Zariski-
dense in U .

(iii) Let x = xF be a classical, crystalline ϕ-generic point associated to (π, δF) as
above. For a weight µ ∈ X∗(T ), one has

(ρ, zµ δF ) ∈ Y (Up, ρ) ⇐⇒ µ = ww0 · λ with w ∈ W, wF � w.

For wF � w, we define

xF ,w := (ρ, zww0·λδF).

(iv) Let x be as in (iii). Then the projection ω : Y (Up, ρ) → T̂ 0 is flat at the
points xF ,w.

(v) The projection Y (Up, ρ) → Xρ,S is locally on the source and the target a finite
morphism.

Proof. Points (i) and (ii) are contained in [Che05, 3.8]. The statements can be ob-
tained as well along the lines of Corollaire 3.12, Théorème 3.19 and Corollaire 3.20
of [BHS17b]. See Definition 3.2 and Proposition 3.4 of [BHS17a] for a comparison
of the (a priori different) notions of classical points.
(iii) This is a direct consequence of [BHS, Theorem 5.3.3].
(iv) This is contained in [BHS, Theorem 5.4.2].
(v) The map Y (Up, ρ) → Xρ,S is the composite of the closed embedding Y (Up, ρ) ⊂

Xρ,S × T̂ with the projection Xρ,S × T̂ → Xρ,S. These two maps are locally of finite
type so that the map Y (Up, ρ) → Xρ is locally of finite type. We claim that the
fibers are discrete and hence the morphism is locally quasi-finite. The Proposition
then follows from [Hub96, Prop. 1.5.4.(c)].

Indeed, consider the morphism Xρ,S → An[F :Q]/W given by mapping ρ to the
set of Hodge-Tate weights of the ρv, for v|p. Fix a point ρ and write HT(ρ) for its
image in An[F :Q]/W for the moment. The composition

q : T̂ 0 −→ An[F :Q] −→ An[F :Q]/W



DENSITY OF AUTOMORPHIC POINTS 31

of the logarithm with the projection map is obviously quasi-finite and hence
q−1(HT(ρ)) is a discrete set. Finally the weight map Y (Up, ρ) → T̂ 0 is quasi-
finite by the usual argument using special coverings of Fredholm hypersurfaces
(see e.g. [BHS17b, Proposition 3.11]). And hence the preimage of q−1(HT(ρ))
under the weight map is still a discrete set. As this set contains the fiber of
Y (Up, ρ) → Xρ,S over ρ the claim follows. �

We further recall the patched eigenvariety Xp(ρ) and its relation to the global
object Y (Up, ρ). In [BHS17b, 3] we have carried out the following construction:
Let us write

Rρp
=

⊗̂
v∈Sp

Rρṽ
and Rρp =

⊗̂
v∈S\Sp

Rρṽ

for the completed tensor products of the maximal reduced and Zp-flat quotients
Rρv

of the universal framed deformation rings R′
ρṽ

of ρṽ. Let

Rρ,S := Rρ,S ⊗(⊗̂
v∈S

R′
ρṽ

)
(⊗̂

v∈S
Rρṽ

)
.

There exists an integer g > 1 and a commutative diagram with maps of local
OL-algebras

(4.3)

S∞ := OL[[Zq
p]] R∞ :=

(
Rρp

⊗̂OL
Rρp

)
[[y1, . . . , yg]]

R∞ ⊗S∞ OL Rρ,S

where the left vertical map is induced by the augmentation map S∞ → OL and
where q = g + [F : Q]n(n−1)

2
+ n2|S|.

We write X∞ and Xρp
for the rigid analytic generic fibers of Spf R∞ and Spf Rρp

.

Moreover we denote by Xp(ρ) ⊂ X∞ × T̂ the patched eigenvariety constructed in
[BHS17b]. Then there is a canonical embedding

(4.4) Y (Up, ρ) →֒ Xp(ρ) ×(Spf S∞)rig SpL ⊂ X∞ × T̂ ,

see [BHS17b, 4.1] or [BHS, (5.34)]. Let us abbreviate Xp(ρ) ×(Spf S∞)rig SpL by
Yp(ρ) for the moment. The precise relation of the local geometry of the patched
eigenvariety and the (global) eigenvariety is given by the following proposition:

Proposition 4.3. Assume that x = xF is a classical, crystalline ϕ-generic point.
For each w ∈ W such that xF ,w ∈ Y (Up, ρ) the morphism (4.4) induces an iso-
morphism of complete local rings

ÔYp(ρ),xF,w
∼= ÔY (Up,ρ),xF,w

.

Proof. This is [BHS, Proposition 5.4.1]. �
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Finally we recall the relation of the patched eigenvariety with the space of tri-
anguline representations, see [BHS17b]. Let Xtri(ρ) =

∏
v∈Sp

Xtri(ρv) ⊂ Xρp
× T̂ .

Then there is a commutative diagram

(4.5)

Xp(ρ) Xtri(ρ) × Xρp × Ug

T̂ 0 T̂ 0,

ι

∼=

where ι is a closed embedding that identifies Xp(ρ) with a union of irreducible com-
ponents of the target. Here Ug = (Spf OL[[y1, . . . , yg]])

rig, see [BHS17b, Theorem
3.21].

4.2. A characterization of the tangent space. We fix a (G,U)-automorphic
representation ρ ∈ Xρ,S ⊂ X∞ that is crystalline ϕ-generic. For the reminder of
this subsection we introduce the following notations:

Let R be the complete local ring of X∞ at ρ so that (X∞)ˆρ = Spf R and, for a
given refinement F = (Fv)v∈Sp of ρ and w ∈ W such that wF � w let RF ,w be the
complete local ring of Xp(ρ) at the point xF ,w, so that Xp(ρ)ˆxF,w

= Spf RF ,w. By

[BHS, Lemma 4.3.3], the canonical map R → RF ,w is a surjection. Similarly we
define S as the complete local ring of Xρ,S at ρ and SF ,w the complete local ring
of Yp(ρ) at xF ,w. Then we have a canonical surjection R ։ S and, by Proposition
4.3 an identification SF ,w = S ⊗R RF ,w = RF ,w ⊗S∞ OL.

Obviously the ring RF ,w decomposes as a tensor product

RF ,w =
⊗̂

v|p
RFv ,wv⊗̂ÔXρp×Ug ,ρp,

where RFv ,wv is the complete local ring of Xtri(ρv) at xFv ,wv = (ρv, z
wvw0·λvδFv);

and where ρp is the image of ρ in Xρp × Ug.

By [BHS, Cor. 3.7.8] and [BHS, Thm. 3.6.2.(ii)] the quotient RFv,wv of Rρṽ

coincides with the quotient Rwv
ρṽ,Fv

of Rρṽ,Fv defined in section 3.7. We conclude
that the map R∞ → RF ,w induces an isomorphism

(4.6) R∞ ⊗(⊗̂
v|p
Rρṽ

)
(⊗̂

v|p
Rwv
ρṽ,Fv

)
∼
−→ RF ,w.

Let us write SpecRF for the scheme theoretic image of the canonical morphism
∐

wF �w

SpecRF ,w −→ SpecR

and SpecSF for the scheme theoretic image of the canonical morphism
∐

wF �w

SpecSF ,w −→ SpecS.
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Lemma 4.4. (i) The scheme SpecRF is reduced and Cohen-Macaulay of di-
mension

g + [F : Q]
n(n+ 1)

2
+ n2|S| = q + n[F : Q].

(ii) The scheme SpecSF ,w is reduced and equi-dimensional of dimension n[F : Q].
The same holds true for SpecSF

(iii) Let η ∈ SpecSF ,w be a generic point, then η /∈ SpecRF ,w′ for w′ 6= w.

Proof. (i) As ρ is automorphic the space Xρp is smooth of dimension n2|S\Sp| at
(the image of) ρ, by [Car12, Theorem 1.2] and [BLGGT14, Lemma 1.3.2 (1)]. The
claim now follows from diagram (4.5), isomorphism (4.6) and the fact that Rwv

ρṽ ,Fv

is reduced, normal and Cohen-Macaulay of dimension n2 + [Fv : Qp]
n(n+1)

2
(see

section 3.7).
(ii) As SF ,w is the complete local ring at some point of the eigenvariety Y (Up, ρ),
the claims follow from the corresponding statements on Y (Up, ρ) in Proposition
4.2. The claim on SpecSF then is a direct consequence.

(iii) Let us write Spf A for the formal completion of T̂ 0 at ω(ι(x)). Thus A is just
the completed tensor-product of power series rings of dimension n[Fv : Qp] indexed
by v ∈ Sp. We identify Spf A with the formal completion of tK/Qp,L at the origin
via κ 7→ κ− ω(ι(x)).

Taking products over all v ∈ Sp and the product with the formally smooth
contribution from Xρp × Ug we obtain a commutative diagram as in [BHS, 2.5]:

Spf SF ,w Spf RF ,w Spf RF

Spf A
∏
v|p(tFv/Qp,L ×tFv/Qp,L/Wv tFv/Qp,L)ˆ0,

Θ

ψ

where Θ is the product of all the maps Θ for all v|p, as defined before Proposition
3.14.

Recall that tFv/Qp,L ×tFv/Qp,L/Wv tFv/Qp,L decomposes as a product
∏
w′

v∈Wv
tw′

v
.

It follows from [BHS, Cor. 3.5.12] that the morphism ψ identifies Spf A with the
product t̂w =

∏
v|p t̂wv,0. Let us write Spf B for the formal scheme in the lower left

corner of the diagram, and Spf Bw′ = t̂w′ =
∏
v|p t̂w′

v,0.

Passing to rings and applying Spec(−) the above diagram becomes:

SpecSF ,w SpecRF ,w SpecRF

SpecA SpecBw SpecB,

ω
Θ

∼=
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where we use the same latters for the maps by abuse of notation. Now, by Proposi-
tion 4.2, the map ω is flat and hence dominant when restricted to each irreducible
component of SpecSF ,w. On the other hand (Θ)(SpecRF ,w′) = SpecBw′ by [BHS,
Cor. 3.5.12] (compare also Proposition 3.14), and SpecBw′ does not contain the
generic point of SpecBw for w 6= w′. The claim follows from this. �

Lemma 4.5. The canonical maps RF ⊗S∞ OL → RF ⊗R S and RF ⊗R S → SF

are isomorphisms, i.e.

(4.7) SpecSF = SpecRF ∩ SpecS = SpecRF ×SpecR SpecS

as subschemes of SpecR. In particular SpecSF ⊂ SpecRF is a closed subscheme
that is cut out by q equations.

Proof. From (4.3), we deduce a sequence of surjective maps

RF ⊗S∞ OL ։ RF ⊗R S ։ SF .

First note that SpecRF ×Spec S∞ Spec OL is cut out by q equations in SpecRF .

By definition SpecRF =
⋃
w>wF

SpecRF ,w and SpecSF =
⋃
w>wF

SpecSF ,w as

topological spaces. Consequently we have an equality of sets

SpecRF ×SpecS∞ Spec OL =
⋃

w>wF

(SpecRF ,w ×SpecS∞ Spec OL)

=
⋃

w>wF

(SpecRF ,w ×SpecR SpecS)

= SpecS

Indeed SpecSF ,w = SpecRF ,w ×SpecR SpecS by Proposition 4.3. Hence (4.7) is
true on the level of topological spaces. As SpecSF is reduced it remains to show
that SpecRF ×Spec S∞ Spec OL is reduced as well.

We have

dim(SpecRF ×SpecS∞ Spec OL) = dim SpecSF = dim SpecRF − q

and consequently SpecRF ×SpecS∞ Spec OL is Cohen-Macaulay as SpecRF is (see
e.g. [Gro64, Cor. 16.5.6]).
By [Gro65, Proposition 5.8.5], it remains to prove that SpecRF ×SpecS∞ Spec OL

is generically reduced. Let η ∈ SpecRF ×SpecS∞ Spec OL be the generic point of
some irreducible component and write q for the corresponding prime ideal of R.
Then η is the generic point of an irreducible component in SpecSF ,w for some w
and it follows that

(OL ⊗S∞ RF )q = OL ⊗S∞ (RF)q = OL ⊗S∞ (RF ,w)q = (SF ,w)q,

where the second equality is a consequence of Lemma 4.4 (iii) and the last equality
is Proposition 4.3. As (SF ,w)q is reduced so is (OL⊗S∞ RF)q and the claim follows.

�
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Let us write Rcris for the quotient of R such that for all v ∈ Sp and any morphism
R → A (for some finite dimensional L-algebra A) the GEṽ representation on An

induced by Rρv
→ R → A is crystalline. This quotient exists by the main result

of [Kis08].

If A is a complete noetherian local ring, we write tA for the tangent space of the
functor Spf A, ie tA := T Spf A.

Lemma 4.6. (i) The local ring Rcris is formally smooth of dimension q.
(ii) The tangent spaces of Rcris and S intersect trivially inside tR, i.e.

tRcris ∩ tS = 0.

(iii) There is an inclusion tRcris ⊂ tRF
.

Proof. (i) This follows from the smoothness of Xρp at the image of ρ (see above)
and the fact that the generic fiber of a crystalline deformation rings is smooth of
dimension n2 + [Fv : Qp]

n(n−1)
2

by [Kis08] and the definition of q.
(ii) With the notation introduced here this is the statement of [All16, Theorem
A.1].
(iii) This is a direct consequence of SpecRcris ⊂ SpecRF ,w0 ⊂ SpecRF , which
follows from section 3.7. �

Corollary 4.7. There is a direct sum decomposition

tRcris ⊕ tSF
= tRF

of subspaces of tR.

Proof. As SpecSF ⊂ SpecS we have tSF
⊂ tS and hence tSF

∩ tRcris = 0 by Lemma

4.6 (ii). Moreover tRcris ⊂ tRF
and tRcris has dimension q. The claim now follows

from the fact that SpecSF ⊂ SpecRF is cut out by q equations by Lemma 4.5
and hence

codim(tSF
, tRF

) 6 q.

�

Corollary 4.8. The canonical map of tangent spaces

⊕

F

tSF
−→ tS

is a surjection. Here the sum is taken over all tuples F = (Fv)v∈Sp of Frobenius
stable flags Fv of Dcris(ρv).
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Proof. Consider the commutative diagram
⊕

F tRF
tR

⊕
F tRF

/tRcris tR/tRcris

⊕
F tSF

tS.
γ

α β

It follows from Corollary 4.7 that α is an isomorphism, and from Lemma 4.6 (ii)
that β is injective. Moreover the upper horizontal arrow is surjective by Corollary
3.13. It follows from an obvious diagram chaise that γ is a surjection. �

Remark 4.9. We point out that it is a direct consequence of the proof of Corollary
4.8 that the map

tS −→ tR/tRcris

is an isomorphism.

4.3. Proof of Theorem 4.1. We now prove the main result, Theorem 4.1. With
the above preparation, the final argument just follows the original method of
Gouvea-Mazur [Maz97] and Chenevier [Che11] in the case of modular forms (i.e. in
the case n = 2), resp. in the case n = 3.

Let us write X aut,sm
ρ,S ⊂ X aut

ρ,S for the smooth locus which is Zariski-open and
dense in X aut

ρ,S . Let us fix an irreducible component C of X aut
ρ,S . We need to show

that C is an irreducible component of Xρ,S. By slight abuse of notations we write
Csm = C ∩ X aut,sm

ρ,S .

As by definition X aut
ρ,S is the Zariski-closure of the (G,U)-automorphic points

in Xρ,S, it follows that Csm contains a (G,U)-automorphic point ρ. By the con-
struction preceding Proposition 4.2 there is a point y = (ρ, δ) ∈ Y (ρ, Up) and by
Proposition 4.2 (ii) the classical, crystalline ϕ-generic points accumulate at y. It
follows that there is a classical, crystalline ϕ-generic point y′ = (ρ′, δ′) ∈ Y (Up, ρ)
such that ρ′ ∈ Csm. We may replace ρ by ρ′ (and y by y′) and hence assume that
ρ is (G,U)-automorphic and crystalline ϕ-generic.

Proposition 4.10. There is an equality of tangent spaces

TρX
aut
ρ,S = TρXρ,S.

Proof. The inclusion TρX aut
ρ,S ⊂ TρXρ,S is obvious and we need to prove the converse

inclusion.

After enlarging L if necessary, we may assume that the point ρ is an L-valued
point of Xρ,S and that L contains all eigenvalues of the crystalline Frobenius on the
Weil-Deligne representation WD(Dcris(ρv)) associated to Dcris(ρv) for all v ∈ Sp.
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For each choice of a tuple F of complete Frobenius stable flags Fv in Dcris(ρv)
and each Weyl group element w � wF we have constructed points xF ,w ∈ Y (Up, ρ)
that map to ρ under the canonical projection f : Y (Up, ρ) → Xρ,S. As f is locally
on the source and the target a finite morphism by Proposition 4.2 (v), and as the
induced map

ÔXρ,S ,ρ −→ ÔY (Up,ρ),xF,w

is a surjection (as a consequence of [BHS, Lemma 4.3.3] for example) we find
an open neighborhood U of ρ in Xρ and for all wF � w open neighborhoods
VF ,w ⊂ Y (Up, ρ) of xF ,w such that the restriction of f is a closed immersion
VF ,w →֒ U . As the classical points are Zariski-dense in VF ,w by Proposition 4.2
(ii), we find that

⋃
w VF ,w ⊂ U ∩ X aut

ρ,S .

The formation of scheme-theoretic images commutes with flat base change, hence
in particular with passing to the complete local ring at ρ. It follows (using the
notation from subsection 4.2) that

SpecSF ⊂ Spec ÔX aut
ρ,S

,ρ ⊂ Spec ÔXρ,S ,ρ = SpecS.

We deduce that
tSF

⊂ tÔXρ,S,ρ
= TρX

aut
ρ .

As this conclusion holds true for each choice of F , Corollary 4.8 implies the claimed
inclusion TρXρ = tS ⊂ TρX aut

ρ . �

We can conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. Given a rigid analytic space Z and a point z ∈ Z we write
dimz Z for the dimension of Z at the point z, i.e. for the dimension of the local
ring OZ,z of Z at z.

Assume in the first place that the group Up is sufficiently small to satisfy (4.1).
We then have a chain of inequalities

dimρ X aut
ρ,S = dimρC 6 dimρ Xρ,S 6 dimTρXρ,S = dimTρX

aut
ρ,S = dimρ X aut

ρ,S ,

as ρ is (by assumption) a smooth point of X aut
ρ,S . Here the equality dim TρXρ,S =

dim TρX aut
ρ,S is Proposition 4.10. It follows that equality holds and hence the (nec-

essarily unique) irreducible component C of X aut
ρ,S containing ρ is an irreducible

component of Xρ,S.

Now assume that Up does not necessary satisfy (4.1). Then we can find a place
v1 /∈ S of F such that v1 is split in E. Let Vv1 ⊂ G(Fv1) sufficiently small so that the
group V p := Vv1 ×

∏
v∤p,v 6=v1

Uv satisfies (4.1) and let S ′ = S∪{v1}. We have a closed
immersion Xρ,S ⊂ Xρ,S′ and it follows from local-global compatibility theorems that
a point of Xρ,S is (G, V )-automorphic if and only if it is (G,U)-automorphic. Let
x be a (G,U)-automorphic point and let Z be an irreducible component of Xρ,S

containing x. Let Z ′ be some irreducible component of Xρ,S′ containing Z ′. As x is
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a (G, V )-automorphic point, it is a smooth point of Z ′ and dimZ ′ = [F : Q]n(n+1)
2

(see [All16, Thm. C]). On the other hand, we have dimZ > [F : Q]n(n+1)
2

so that
we have Z = Z ′. We have proved that (G, V )-automorphic points are Zariski-
dense in Z ′ = Z. As these points are also (G,U)-automorphic we can conclude
that (G,U)-automorphic points are Zariski-dense in Z. �

4.4. Proof of Theorem 1.2. We finally turn to the proof of the main theorem
as stated in the introduction. Thie result follows from Theorem 4.1 using base
change results for unitary groups.

Proof of Theorem 1.2. Let G be a unitary group over F+ which is an outer form
of GLn,F , which is quasisplit at every finite place and such that G(F+ ⊗Q R) is
compact. the existence of such a unitary group follows for example from the results
of [Clo91, §2]. By assumption there exists some regular cohomological cuspidal
automorphic representation π such that ρ ⊗F Fp ≃ ρπ. It follows from [Lab11,
Thm. 5.4] that the representation π is the weak base change of some automorphic,
automatically cuspidal, representation σ of G. So that ρ ⊗F Fp ≃ ρσ. Let Up be
some compact open subgroup of G(Ap,∞) such that σU

p
6= 0. The representation

π is unramified at finite places v /∈ S. Consequently it follows from [Lab11,
Thm. 5.9] that we can choose the group Up spherical at places not in S and
that Uv is spherical for all v|p. Then the representation ρ is (G,U)-automorphic.
Consequently we can apply Theorem 4.1 to conclude that the Zariski closure of the
(G,U)-automorphic points in Xρ,S is a union of irreducible components. However
it follows from Cor. 5.3, Thm. 5.4 and Thm. 5.9 in [Lab11] that a point of Xρ,S is
automorphic if and only if it is (G,Up)-automorphic for some Up as above. This
concludes the proof. �

4.5. Remarks on the existence of enough automorphic points. We end by
discussing that the main theorem conjecturally should imply density of automor-
phic points in Xρ,S. Let us write Xρ,S =

⋃
Ci for the decomposition into irreducible

components. Then, obviously Theorem 4.1 implies that the (G,U)-automorphic
points are Zariski-dense in Xρ,S, if Ci\

⋃
j 6=iCj contains a (G,U)-automorphic point

for each i.

A result like this is the main result of Allen [All]. As loc. cit. is formulated for
Galois representations associated to automorphic representations of GLn rather
than for forms on a unitary group, we repeat the argument for the convenience of
the reader. The argument however is taken from [All].

Given a set of Hodge-Tate weights kv we write Rkv−cris
ρv

for the quotient of
Rρv

parametrizing crystalline deformations with Hodge-Tate weights kv. For

k = (kv)v∈Sp we write Rk−cris
ρp

for the completed tensor product of the local rings

Rkv−cris
ρv

.
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Theorem 4.11. Assume that

(a) the representation ρ is adequate
(b) the group H0(GEv , ad0(ρ)) vanishes for each v ∈ Sp
(c) there exists a lift ρ of ρ that is crystalline of Hodge-Tate weight k and

for each irreducible component X p of Xρp all irreducible components of
(Spf Rk−cris

ρp
)rig are X p-automorphic (compare [BHS17b, Conjecture 3.25]).

Then each irreducible component of Xρ contains a (G,U)-automorphic point in its
interior.

Remark 4.12. The assumption (c) is true for example, if ρ has a potentially diag-
onalizable lift.

Proof. Note that the points of Xρ are in bijection to those of SpecRρ[1/p] and the
the irreducible components of Xρ are in bijection to those of SpecRρ[1/p].

The assumption H0(GEv , ad(ρ)) = 0 implies that the local deformation rings Rρv

are formally smooth.
We consider the patching set-up as above. Then it follows from [All, Lemma 1.1.2]
that the fiber product

(4.8)
(

Spec
⊗̂

v∈Sp
Rkv−cris
ρv

)
×Rρp

SpecRρ[1/p]

meets each irreducible component of SpecRρ[1/p]. By the automorphy lifting con-
jecture, assumption (c), all points in the intersection (4.8) are (G,U)-automorphic.

It is left to show that such a point ρ lies on a unique irreducible component.
The subspace Xρ ⊂ X∞ is cut out by q equations and X∞ is formally smooth at ρ.
It follows that each irreducible component Ci of Xρ has dimension larger or equal
to dim X∞ − q. On the other hand, as in the proof of Corollary 4.7, we deduce
from Lemma 4.6 (ii) that

codim(tρXρ, tρX∞) > q.

It follows that ρ is a formally smooth point of Xρ. �
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