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With the aim of producing realistic coarse grain models of homopolymers, we introduce a tabulated
anisotropic, backbone-oriented, potential. The parameters of the model are optimized using Statistical Tra-
jectory Matching. The impact of the grain anisotropy is evaluated at different coarse-graining levels using
cis-polybutadiene as a test case. We show that tuning the aspect ratio of the grains can lead at the same
time to a better density and structure and may reduce the unphysical bond crossings by up to 90%, with-
out increasing the computation time too much and thereby jeopardizing the main advantage of coarse grain
models.

I. INTRODUCTION

Coarse-grain (CG) models have been used for a long
time for the molecular simulation of polymers, in or-
der to reach longer time scales and bigger systems1–12.
The first CG models were quite rudimentary and used
to focus on generic properties of polymers, like scaling
laws10,11,13,14. Nowadays, the standards have raised and
while researches are still active on the generic proper-
ties of polymers, there is a growing demand for simula-
tions of specific polymers with quantitative predictions
of thermo-mechanical properties. The challenge is to de-
velop force fields at the coarse-graining level, that are at
the same time fast to simulate and as accurate as possible
in reproducing some experimental properties.15–17

The most realistic CG force fields (FF) distinguish be-
tween grain types and use tabulated effective interac-
tion potentials, because they form an expressive family
of functions. They also consider random forces and a
viscous friction to account for the contribution of the
omitted fast degrees of freedom at small scale18,19. The
shape of the grains is also a key factor. At order 0, grains
are point particles located at the center of mass of the
underlying atoms, and their isotropic interaction poten-
tial fixes their size. Most of the CG models use this level
of approximation. At order 1, grains are ellipsoids whose
shape corresponds to the gyration tensor of the underly-
ing atoms. The theoretical interest for such models has
existed for a long time, but until now in general, the gain
in realism has not justified the extra complexity Histor-
ically, anisotropic models have been widely used to sim-
ulate liquid crystals, where they are essential20–22, but a
few applications to polymers exist23–26. For even more
realism, it would be possible to develop more complicated
but more accurate grain shapes27 at the expense of more
computation time. One could argue, that by splitting
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the grain into smaller grains one obtains a more realistic
shape, which is generally true, but the computation time
would increase and the benefit of coarse graining would
disappear. Another option is to use machine learning to
build many-body anisotropic potentials28.
In this paper, we choose to use a very simple

anisotropic model, where each grain is an ellipsoid of
revolution (spheroid) of fixed shape, whose main axis is
oriented parallel to the polymer backbone29. This model
has the advantage of simplicity and efficiency. Of course,
this is still a crude approximation and more realistic el-
lipsoidal models are under development, including shape
fluctuations and general orientations30.
Bigger grains are interesting because they reduce more

the number of degrees of freedom. At the same time, the
effective interaction potentials become softer because big
grains are allowed to overlap without implying that the
underlying atoms overlap. This has major consequences:
1) The CG models are usually much more compressible
than the fine grain models. 2) More dramatically, the
polymer chains may cross each others, preventing effi-
cient entanglements to form, whose impact on the chain
dynamics are fundamental.
By using more realistic grain shapes, we expect that:

1) The resulting CG model accounts for the chemical
specificity of the polymer 2) Even with strong potential,
the grains can get close by taking suitable orientations.
Compressibility could therefore decrease by using ellip-
soidal grains. 3) The elongated grain shape would “fill
the gap” between consecutive grains along the polymer
backbone, hindering the nonphysical chain crossing. This
effect was demonstrated using a generic model in ref. 29.
The purpose of this work is to investigate to what ex-

tent these expectations are true. What is the impact of
grain anisotropy on the model realism at different coarse-
graining levels?
In the following, we studied the effect of non-spherical

shapes of coarse-grained (CG) particles, on static and
dynamic properties of a 1,4-cis-polybutadiene (cPB) sys-
tem melt. Several CG models of cPB can be found in the
recent literature25,31–34. Most often, the CG potentials
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are obtained using Iterative Boltzmann Inversion (IBI)35,
which aims at reproducing the local structure of the un-
derlying atomistic systems. By using this method, the
local structure is therefore almost perfectly reproduced.
With IBI, obtaining the correct density requires to tune a
“pressure correction” and is not straightforward. On the
other hand, compressibility is not tuned explicitly. It is
widely recognized33,34,36 that CG models are too “soft”,
above all at high coarse-graining level, which leads to too
a high compressibility. A possible remedy would be to
use local-density-dependent potential37,38, but these are
hard to parameterize, especially in mixtures. Usually, the
compressibility issue is simply disregarded or simulations
are run in the NV T ensemble. Such an approach is not
satisfactory for studying mechanical properties and may
result in bad local density, especially with mixtures. Dy-
namical properties are generally obtained by artificially
scaling the time of CG simulations31,34,39. However, as
pointed in Ref 34, there is no guarantee that “a sin-
gle scaling would reproduce all dynamical properties”.
Ref 32 is more original. Here, the dynamical properties
are obtained using the method of Hijòn et al.19, based
on force fluctuations. The method is tested on small,
unentangled chains only (12 monomers), for which bond
crossing is not a dramatic issue. It requires to run con-
strained simulations at the atomistic level. This reference
(as well as Ref 40) points out that the grain anisotropy
should probably be considered for more consistency and
has motivated the work of Ref 25. The latter reference
introduces an anisotropic CG model of cPB. This model
is derived using a method similar to Ref 32 and requires
to run a constrained dynamics. It makes use of torques
and angular velocities. The chains are also small and not
entangled, so that potential bond crossings are not an
important issue. The model is validated based on struc-
ture only and does not consider pressure or density at
the CG level. Finally, several methods have been pro-
posed in the literature to deal with the unphysical bond
crossings that are observed at high CG level and for long
polymer chains29,34,41–45. These methods are most often
applied to generic systems, but sometimes a quantita-
tive agreement with a specific system is researched, using
multiscale approaches34.

In the present study, we use the backbone oriented
anisotropic model of Ref 29 to assess its potential in pro-
ducing realistic CG models of possibly entangled cPB.
The choice of this model is motivated by its simplicity
and numerical efficiency in line with the mesoscopic sim-
ulation method used here, and because we have at our
disposal a bottom-up method for parameterizing it opti-
mally, namely Statistical Trajectory Matching46.

In the first section, we introduce the model and ex-
plain how the force field parameters are obtained. In the
second section, we present the results and discuss the
effectiveness of the model.

II. METHODS

A. Coarse grain model

The anisotropic grain model used in this work is the
so-called backbone-oriented anisotropic model (BOA) de-
scribed in ref. 29. Here we briefly recall its principle.
Since cPB is a homopolymer, only one kind of grain

is defined. Each grain is represented by an ellipsoid of
revolution of fixed shape. The aspect ratio of the grain
is denoted by h. It is natural to ask if the value of h can
be obtained by directly analyzing the gyration tensor of
the grain in MD simulations. This is not so easy, because
the actual grain shape is not constant in time, especially
for multi-monomer grains, and does not actually have
a revolution symmetry40. In this study, we have tested
various values of h between 1 (isotropic grains) and 4.
The axis of grain i is u⃗i ∥ (r⃗i+1− r⃗i−1), where r⃗i is the

position of grain i and i− 1, i+1 are the neighbor grains
along the polymer chain.
Bond interactions are harmonic and isotropic. Angu-

lar interactions are also harmonic (see Supporting In-
formation). Non-bonded interactions are pairwise and
anisotropic: The pairwise potential is a tabulated func-
tion U(R) of the effective distance R between the grains.
This orientation-dependent effective distance is defined
for grains i and j by

R⃗ij = h
1
6

(
I3 + (h− 1)

u⃗i ⊗ u⃗i + u⃗j ⊗ u⃗j

2

)− 1
2 · r⃗ij (1)

where I3 is the identity matrix. When h = 1, R⃗ij ≡ r⃗ij
is the true distance between the grain centers. Other-
wise, when the two grains are parallel side by side, their
effective distance is greater (R > r), while when they
are parallel in single file, their effective distance is lower
(R < r). For the computation of forces, the grain ori-
entations are assumed to be fixed so that no torque is
considered. During such computations, the force is in-
terpolated using cubic splines through 10 points at fixed
distances within the selected cutoff radius (see Support-
ing Information).
Thermalization and the effect of fast degrees of free-

dom on the dynamics are obtained thanks to a Dissipa-
tive Particle Dynamics (DPD) thermostat. The parame-
ters of the tabulated non-bonded force, of the bonded
interactions and the friction are obtained using the
bottom-up method called Statistical Trajectory Match-
ing (STM)40,46–48. This is the first time this method is
applied to the BOA model.

B. Atomistic simulations

The bottom-up method requires high resolution tra-
jectories obtained at the atomistic level. Here we give
the simulation details of these atomistic simulations.
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The generated cPB system is a cubic simulation box,
and it consists of one periodic amorphous cell. Specif-
ically for the atomistic trajectories necessary for the
STM process, such system contains 90 all-atom (AA)
cPB chains with 60 monomers of 1,4−cis−butadiene per
chain. Each chain is successively generated in the initial
configuration using a homemade Python code, by impos-
ing the bond and the angles parameters. The result-
ing amorphous system is finally accepted if its density is
equal to the imposed value, and the averaged end-to-end
distance is close to the experimental one49. Molecular
Dynamics (MD) simulations are performed through the
LAMMPS software50, and the generalized Amber force
field51 (GAFF) is exploited to model the polymer. The
parameters of this force field (FF) are given in the Sup-
porting Information. The simulation protocol is elab-
orated by first making an equilibration phase of 10 ns.
Secondly, a short production phase of 1 ns is performed
to record configurations of the atomistic trajectory ev-
ery 25 time steps, by using a time step of 2 fs. During
these phases, the resolution of the fundamental equations
of motions is carried out by using the standard veloc-
ity Verlet algorithm52. The oscillations of all the C−H
bonds are constraint in the polymer system, by using the
SHAKE algorithm53. MD simulations are performed in
the constant NpT ensemble, where N , p, and T are the
number of atoms, the pressure and the temperature, re-
spectively. The atmospheric conditions (p = 0.1MPa,
and T = 300K) are then maintained thanks to the Nosé-
Hoover barostat and thermostat algorithm54,55, where
the barostat and thermostat relaxation times are set at
2000 and 200 fs, respectively. The cutoff radius of the
Lennard-Jones (LJ) and Coulombic (at long-range) in-
teractions is set at 12 Å, and the (1–2), (1–3), and (1–4)
weighting factors are set at 0.0, 0.0 and 0.5, respectively.
For the LJ interactions, the crossing terms of different
atoms i and j are computed using the Lorentz-Berthelot
mixing rules as follow

ϵij =
√
ϵiϵj and σij =

1

2
(σi + σj), (2)

where ϵij and σij represent the energy parameter and
the diameter of i and j atom types, respectively. At a
long-range, the Coulombic interactions are handled by
using the particle−particle−particle−mesh (PPPM) 3D
method56. Finally, the periodic boundary conditions are
applied in all the three directions of the system.

Configurations of the obtained atomistic trajectory are
recorded every 50 fs during a short MD production phase,
and such time is chosen as the time step of the next CG
simulations. In order to get different high resolution tra-
jectories, each polymer chain of the atomistic configura-
tions is mapped into 5 different coarse-graining levels λ
(where λ varies from 1 to 5, in steps of 1). The value
of λ represents the number of repeat units, which are
mapped into one spherical CG bead located at the cen-
ter of mass of all the constitutive atoms. The figure 1
illustrates the mapping of one cPB chain in three differ-

FIG. 1. Mapping of one cPB chain, which contains 60
monomers of 1,4-cis-butadiene. From top to bottom, 1, 3
and 5 monomers are mapped into a spherical CG bead. The
terminal beads are similar to the others, except that their mo-
lar mass is increased by 1 gmol−1 due to the extra hydrogen
atom.

ent coarse-graining levels.

C. Parameterization of the mesoscopic interactions

The parameters of the CG model are obtained us-
ing the STM method40,46–48. The purpose of the arti-
cle is not to promote this method with respect to al-
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FIG. 2. Average values of the negative logarithm of the probability P, computed during the STM process. For each coarse-
graining level λ ≤ 3 such parameters are evaluated at different anisotropy factors h, and at different cutoff radius rc for
conservative interactions. The minimum in the curve indicates the most likely value of h, ie. the anisotropy factor with which
the probability to generate the reference trajectories is the highest. Plot c also shows that the most likely cutoff at λ = 3 is
rc = 20 Å. The corresponding parameters for λ > 3 are given in the Supporting Information.

ternative older methods (iterative Boltzmann inversion,
force matching,...). We note however that applying this
method to anisotropic interactions is straightforward.
Here we briefly recall how STM works.

Any set of parameters gives a CG model, using which
CG trajectories can be generated. Because of the ran-
dom forces of the DPD model, a whole set of trajectories
could be generated starting from any initial configura-
tion. Among all these trajectories are the reference tra-
jectories obtained from high resolution simulations. By
assuming Gaussian random forces, the probability for a
given model to generate exactly the reference trajecto-
ries can be computed analytically. The STM method
gives the model parameters, using which this probability
is the highest.

In practice, instead of maximizing the probability P,
we minimize

L = ⟨− lnPt⟩t (3)

where the notation ⟨⟩t means the average over time steps
in the reference trajectory and Pt is the probability to
generate the next configuration exactly as in the reference
trajectory.

The range of the non-bonded interaction is a non-linear
parameter which is not optimized by the STM method.
We have tested several values of the cutoff distance rc
between 20 and 40 Å and finally retained rc = 20 Å. On
Figure 2.c, we show that this choice is effectively the best
for λ = 3. We also note that the most realistic value of
h in the sense of a better likelihood is typically between
1 and 2.

D. Coarse grain simulations

The STMmethod is applied to find the optimal param-
eters of the CG FF. Then, 65 CG models are obtained

separately by varying 13 values of h (ranging from 1 to 4
in steps of 0.25), and 5 values of λ (ranging from 1 to 5 in
steps of 1). The procedure of the previous section is used
to generate one AA cPB system, which contains 20 chains
with 900 monomers per chain. In accordance to the value
of λ, such cubic and amorphous system undergoes a map-
ping process to get initial configurations at the mesoscale.
DPD simulations57 are carried out at this scale, using the
LAMMPS software. The simulation protocol begins by
an equilibration stage of 10 ns, it is followed by a short
production stage of 1 ns (performed to record configura-
tions of CG trajectories every 1 time step), and it ends by
a long production stage of 1000 ns (in this stage, configu-
rations are recorded every 2000 time steps). A time step
of 50 fs is used during these simulations, and they are per-
formed in the constant NpT ensemble. The atmospheric
conditions (p = 0.1MPa, and T = 300K) are then main-
tained by using both the Berendsen barostat algorithm58

(where the bulk modulus and the damping parameter are
set at 100MPa and 50 ps, respectively), and the DPD
thermostat. For conservative interactions, the cutoff ra-
dius is set at 20 Å, whatever the coarse-graining level λ.
Moreover, the weighting factors for pairwise conservative
energies and forces between bond and angle patterns are
set at 0.0 and 0.5, respectively . For non-conservative
interactions, the cutoff radius is also set at 20 Å, except
for λ = 1 which is defined at 10 Å. Consequently, DPD
forces act on each CG bead of any system, and they are
integrated by using a standard velocity Verlet algorithm.

III. RESULTS AND DISCUSSIONS

A. Coarse-grained potentials

The CG effective potential was optimized for each
coarse-graining level λ and anisotropy factor h. The re-
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FIG. 3. Pairwise interaction potentials at different coarse-graining levels and different anisotropy factors. For the coarse-
graining levels λ > 3, the corresponding potentials are shown in the Supporting Information. Note that the abscissa is the
orientation-dependent effective distance R, not r.

sult is shown in Figure 3. Note that in these figures, the
energy is plotted as a function of the effective distance
R, not r.

It can be seen that the usual potential shape is ob-
tained in all cases, with repulsive interactions at short
distance and a single smooth attractive well at longer
distance. The global trend is that the more h increases,
the more the potential depth decreases and the more the
potential well shifts to smaller R. The potential depth
decreases by more than a factor 2, which is really signif-
icant. It means that attraction need not be as high at
long distance as in isotropic models in order to keep the
system density at constant pressure.

The excessive softness of the coarse grain model is more
related to the repulsive interaction at short distance. The
comparison is difficult because R depends on the grain
orientations. Note that the softness of the interaction is
not trivially related to position of the well. In fact it can
be observed in Figure 4 that the nearest neighbors are
around r = 6 Å to 7 Å, namely in the repulsive range, not
close to the minimum of the potential. We believe, that
this is a many-body effect: the weak attraction at long-
range pushes the nearest neighbors close to each other,
at a distance where they (softly) repel.

The hardness of the interaction may be defined as the
stiffness, ie the second derivative of the potential, at the
average distance of the closest neighbors (first peak of
the radial distribution function). This hardness is not
directly related to the width of the well. This definition
may be effective for isotropic potentials, but here not
only R depends on the grain orientations, but so do the
derivatives of U with respect to r. As a consequence we
are not going to establish here the effect of anisotropy
on the softness or hardness of the potential. Instead we
delay this discussion to the section about compressibility.

B. Structures

The impact of the anisotropy factor h on the struc-
ture at different λ is shown on Figure 4 by means of
the (isotropic) radial distribution function (RDF). As ex-
pected, the distance of the nearest neighbors increases
with λ due to the bigger size of the grains. The structure
also becomes less sharp and the peak of nearest neigh-
bors is less high. This is also expected and related to the
increasing “softness” of the interactions.

It can be observed, that the quality of the structure
reproduction does depend on h. At λ = 1, the RDF is
very well matched using h ≈ 1.5. At greater λ, the RDF
is still well reproduced, but the agreement is less good.
For a quantitative measure of the structure matching, we
computed the discrepancy defined by

err =

∫ 20

0

|g(r)− gref(r)|dr (4)

This is shown in Figure 5. Following this criterion the
optimum is h = 1.75 (resp. h = 3.25, and h = 4) at
λ = 1 (resp. λ = 2 and λ = 3).

We emphasize that the STM method is not based on
matching radial distribution functions. The agreement is
just used to estimate the quality of the CG force field in
reproducing the structure a posteriori.

Although the bonded interactions remains isotropic in
this model, h may also impact the distribution of bonds,
angles. . . The distributions of bond distances and angles
between consecutive segments is given in the Supporting
Information. From the corresponding errors, it is found
that the higher h, the better the bond distribution, but
the worse the angle distribution, except at λ = 1, where
the optimal is consistently between h = 1 and h = 1.5.



6

FIG. 4. Radial distribution functions. The structure is better matched using a given h > 1 at each coarse-graining level λ. See
Figure 5 for a quantitative measure of the match.

FIG. 5. Discrepancy between the (isotropic) radial distribu-
tion function g(r) obtained for different anisotropy factors h,
and the reference one gref(r). This error is computed at dif-
ferent coarse-graining levels λ ≤ 3.

C. Densities

By using NpT reference simulations and by comput-
ing the probability to generate not only the exact grain
positions, but also the exact box dimensions, the STM
method provides force field parameters that could lead to
a good mass density. However it was observed in ref. 40,
that the STM method fails to reproduce density at λ > 1.
The interpretation is that the STM method has to com-
promise between reproducing the grain motion and the
box size evolution and the force field model is not able
to produce both quantities accurately at the same time.
By using a more realistic, anisotropic model, we could
expect that the reproduction of both quantities could be
improved. The result is shown in Figure 6.

It is obtained, that at λ = 1, density is accurately re-
produced whatever h. The coarse-grain density remains
within 2% of the MD target with a slight increase of the
discrepancy at intermediate h.

At λ = 2, the density is quite sensitive to h and in-

FIG. 6. Equilibrium density at T = 300K and p = 1.0 bar.
The agreement with the MD target is excellent at all h for
λ = 1, within 3% of the target for h ≤ 2.5 (optimal at h = 2)
at λ = 2 and for h ≥ 3.25 (optimal at h = 4) at λ = 3.

creases from h = 1.25 on. It remains within 3% of the
MD target up to h = 2.5 and crosses the target close to
h = 2. From this h-value on, the deviation from the MD
target value is increasing with h.

At λ = 3, the evolution of the curve is completely
different and the density is always underestimated by the
coarse grain model. The agreement steadily improves
with increasing values of h. Optimum values of h for
reproducing the density within 3% start from h = 3.25.

To complete this density-dependence on h, it should be
noted that this property is also sensitive to the range of
interactions and as a result on the cutoff of pair interac-
tions. But, this effect is not presented in this work since
the choice of the cutoff value was based on the probability
P.
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FIG. 7. Fitting in straight line of the data points, obtained
by the evolution of ln⟨ρ⟩ in terms of the pressure p.

D. Compressibility

In order to compute the compressibility χT , each
model was used to produce trajectories at different pres-
sures (p = 0.1, 0.5, 1.0, 5.0, 10.0 bar) and the equilibrium
density ⟨ρ⟩ was obtained in each case. Compressibility
was then obtained by fitting a straight line to the ln⟨ρ⟩
vs. p data points. Indeed,

χT =

(
∂ ln⟨ρ⟩
∂p

)
T

(5)

Example of such fits are shown in Figure 7 at λ = 3. The
confidence interval is computed using Student’s law with
a confidence level of 95%.

The compressibility as a function of h at different λ is
shown in Figure 9. As expected, compressibility increases
with the degree of coarse graining λ. Unfortunately,
overall, introducing anisotropy does not resolve the com-
pressibility issue, i.e. an excessive density-dependence on
pressure. The curves are quite noisy, but the trend shows
that anisotropy only slightly improves compressibility at
small h. This means that overall the interactions are not
significantly less soft by using an anisotropic model. In-
terestingly, the slight improvement at small h correlates
with the improvement of the model likelihood (see Fig-
ure 2).

The reason why the improvement in compressibility is
not as great as expected may be due to the simplifying
assumptions of the BOA model. Although realism is in-
deed improved by using anisotropic grains, as evidenced
by Figure 2, the model could be even more realistic (at
the expense of more computation time) by considering
torques (see Figure 8), by using triaxial ellipsoids (or
even dynamic shapes) and by letting the main axis of
the grain depart from the strict backbone orientation.

We also note that despite the significant deviation with
the MD reference by a factor 3, the CG model at λ = 1
remains fairly incompressible at all h because χT is still

FIG. 8. Following the BOA model, the anisotropic grains
exert non-central forces on each other (black arrows), but
there is no direct torque tending to reorient the grains (white
arrows).

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Anisotropy factor h

10 3

10 2

T [
M

Pa
1 ]

MD =1 =2 =3

FIG. 9. Isothermal compressibility χT at T = 300K versus
the anisotropy factor h. The red dotted line represents the
reference value (6.1 × 10−4MPa−1) obtained in MD simula-
tions.

very small.

E. Bond crossings at the mesoscale

Real polymer chains are not able to pass through each
other due to the excluded volume. This leads to the for-
mation of entanglements, chain confinement inside tubes,
etc. In atomistic simulations, the chemical bonds are
small and the pairwise repulsion is hard at short dis-
tance. This prevents bond crossing from occurring. In
order to detect possible bond crossings during the CG
simulations, each pair of bonds was tracked between each
consecutive time step and the algorithm from ref. 59 was
used. At λ = 1, the interactions are still hard enough
and the bonds short enough to prevent any crossing. At
least in the equilibrium simulations that we have run, no
bond crossings were observed. At λ = 2, the interaction
becomes softer and chain crossings are detected. How-
ever, by increasing h, the number of crossings drops by
more than 90% (see Figure 10). At h > 2, anisotropy
also reduces chain crossing, but the effect is less spectac-
ular. The reduction is by about 50% at λ = 3, 30% at
λ = 4 and 15% at λ = 5.
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FIG. 10. The relative number of bond crossings in terms of
the anisotropy factor h, and at different coarse-graining levels
λ. For isotropic grains (h = 1), the average number of bond
crossings per bond and per nanosecond are 0, 0.069, 1.461,
3.213 and 3.818, for λ = 1, 2, 3, 4 and 5, respectively. Note
that no bond crossings are detected at λ = 1, whatever h.

F. Diffusion

The STM method analyzes the short-time dynamics of
the full system to optimize the CG force field. Now we
focus on the long-time dynamics of the chains. In order
to characterize the long-time dynamics, we computed the
mean square displacement (MSD) as a function of time.
To do so, we simulated a system of 20 long entangled
chains of 900 monomers each. As is often the case, we
found that the MSDs of the monomers and of the whole
chains were too fast at the DPD scale compared to their
values at the MD scale. See Figure 11. This is partly
explained by the possibility of unphysical bond crossing
and tube escaping. But other causes must contribute,
since the same effect is observed at λ = 1 but less pro-
nounced than at higher levels of coarse-graining, where
no bond crossings occur.

When h increases, the MSD slows down at all level of
coarse-graining. At λ = 1, the MSD eventually becomes
too slow beyond h = 2, while at λ = 3, the MSD always
remains too fast. At λ = 2, where the reduction of bond
crossings is the most significant, the agreement between
DPD and MDMSDs is quite satisfactory at h = 4. Please
note, that

• we have simulated a system, where each chain is en-
tangled with its own periodic image, which is not
ideal. We are however confident, that similar re-
sults would have been obtained if we had been able
to simulate much bigger systems.

• the DPD friction used is optimized independently
for each anisotropy following the STM method and
results in friction values equal within a few per-
cent. Although MSD is very sensitive to this value,
the important differences observed here in the MSD
cannot be caused by such small differences in the
friction.

• the optimal anisotropy for reproducing the short-
term dynamics (ie. 1 time step, 50 fs) is actually
given by the likelihood shown in Figure 2. We ob-
serve that the optimal anisotropy is not the same
when considering short-term or long-term dynam-
ics.

IV. CONCLUSION

The development of coarse-grained models is a research
activity in full development because it is difficult to de-
sign lower resolution models capable of rendering the
chemical nature of the polymer.
We have shown that anisotropy can improve signifi-

cantly the model realism. Depending on which property
is the most important, different choices could be made.
The optimal values of h are summarized in Figure 12. It
appears that the optimal anisotropy is not unique for all
criteria. For example, at λ = 2, the optimal dynamics
(likelihood) is obtained with h = 1.5 while the optimal
local structure (RDF) is obtained with h = 3.25. As a
consequence, it is not possible to recommend a globally
“best” anisotropy. Instead, the practical choice of the
anisotropy should result from a trade-off between several
criteria.
Of course, computation time is also a criterion of pri-

mary importance. Figure 13 shows how it increases with
the anisotropy factor. The reason why it increases is
that the number of neighbor particles interacting with
anisotropic particles is greater because the distance r be-
tween particles may be greater than the effective distance
R.
All things considered, in the particular case of cPB, we

may recommend to use 1 ≤ h ≤ 1.75 at λ = 1, 2 ≤ h ≤
2.5 at λ = 2 and h = 4 at λ = 3. The greatest benefit of
using anisotropic grains would then be a better match of
structure at λ = 1, much fewer bond crossings at λ = 2
and a much better density at λ = 3.
For going beyond the BOA model, we think that the

compressibility issue may be solved in all systems by
using the density-dependent potentials37,38. The STM
method could be used to obtain the interaction param-
eters in this case. At λ = 1, the model is already quite
good. Perhaps using non-spheroid ellipsoids could im-
prove it even further. At high coarse-graining level, using
deformable grains is probably the way to go. The bond
crossing issue remains a serious problem beyond λ = 2.
The STM method could also be used to parameterize
segmental repulsions as in Refs 42,44.

V. SUPPLEMENTARY MATERIAL

1) Force field parameters at the MD scale. 2) STM
likelihood at λ = 4, 5. 3) Functional form of the interac-
tions at the CG scale. 4) Potentials at λ = 4, 5. 5) Bond
and angle distributions with their corresponding errors.
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FIG. 11. Mean Square Displacement (MSD) as a function of time for different anisotropy h and CG level λ. The system
consists of 20 chains of 900 chemical monomers, simulated in the NpT ensemble at 300K and 0.1MPa. The bottom curves
are the MSD of the whole chain, while the top curves are the MSD of individual monomers. Compared to MD values, MSD is
always too fast at λ = 1 and slows down when h increases.
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FIG. 12. Optimal value of the anisotropy factor h depending
on the level of coarse-graining λ and the chosen criterion. A
single optimum value for all criteria cannot be given. Please
note that the ranges may be subjective.

FIG. 13. Real DPD simulation times per nanosecond in terms
of the anisotropy factor h, and at different coarse-graining lev-
els λ. Each simulation (represented by a label of the graph)
is performed during 200 000 time steps in the constant NpT
ensemble, and by using 32 central processing units (CPU).
The used polymer systems contain 18 000 chemical monomers
(18 000, 9000 and 6000 CG particles for λ = 1, 2 and 3, re-
spectively).

ACKNOWLEDGMENTS

This work was performed in SimatLab, a joint public-
private laboratory dedicated to the modeling of the poly-
mer materials. This laboratory is supported by Michelin,
Clermont Auvergne University (UCA), CHU Clermont
and CNRS. Computer simulations were performed using
the facilities of the supercomputer Mésocentre Clermont
Auvergne.

1N. Kacker, J. D. Weinhold, and S. K. Kumar, J. Chem. Soc.
Faraday Trans. 91, 2457 (1995).

2K. S. Schweizer, EF. David, C. Singh, JG. Curro, and JJ. Ra-
jasekaran, Macromolecules 28, 1528 (1995).

3K. Binder and W. Paul, J. Polym. Sci. B Polym. Phys. 35, 1
(1997).

4K. Kremer, in Computer Simulation in Chemical Physics, Vol.
397, edited by M. P. Allen and D. J. Tildesley (Springer,
Dortrecht, 1993) pp. 397–459.

5R. L. Akkermans and W. J. Briels, J. Chem. Phys. 113, 6409
(2000).

6F. Müller-Plathe, ChemPhysChem 3, 754 (2002).
7V. A. Harmandaris, D. Reith, N. F. Van der Vegt, and K. Kre-
mer, Macromol. Chem. Phys. 208, 2109 (2007).

8G. Milano and F. Müller-Plathe, J. Phys. Chem. B 109, 18609
(2005).

9T. Vettorel, G. Besold, and K. Kremer, Soft Matter 6, 2282
(2010).

10F. Goujon, P. Malfreyt, and D. J. Tildesley, Soft Matter 6, 3472
(2010).

11C. Ibergay, P. Malfreyt, and D. J. Tildesley, J. Phys. Chem. B
114, 7274 (2010).

12J. T. Padding and W. J. Briels, J. Phys. Cond. Matter 23, 233101
(2011).

13M. Bishop, M. H. Kalos, and H. L. Frisch, J. Chem. Phys. 70,
1299 (1979).

14D. Rapaport, The Art of Molecular Dynamics Simulation, 2nd
ed. (Cambridge University Press, Cambridge, 2004).

15P. Gkeka, G. Stoltz, A. Barati Farimani, Z. Belkacemi, M. Ceri-
otti, J. D. Chodera, A. R. Dinner, A. L. Ferguson, J.-B. Maillet,
H. Minoux, C. Peter, F. Pietrucci, A. Silveira, A. Tkatchenko,
Z. Trstanova, R. Wiewiora, and T. Lelièvre, J. Chem. Theory
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