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Abstract

We systematically validate the static local mesh refinement capabilities of a re-
cently proposed IMEX-DG scheme implemented in the framework of the deal.II

library. Non-conforming meshes are employed in atmospheric flow simulations to in-
crease the resolution around complex orography. The proposed approach is fully mass
and energy conservative and allows local mesh refinement in the vertical and horizontal
direction without relaxation at the internal coarse/fine mesh boundaries. A number
of numerical experiments based on classical benchmarks with idealized as well as more
realistic orography profiles demonstrate that simulations with the locally refined mesh
are stable for long lead times and that no spurious effects arise at the interfaces of mesh
regions with different resolutions. Moreover, correct values of the momentum flux are
retrieved and the correct large-scale orographic response is reproduced. Hence, large-
scale orography-driven flow features can be simulated without loss of accuracy using a
much lower total amount of degrees of freedom.
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1 Introduction

Atmospheric flows display phenomena on a very wide range of spatial scales that
interact with each other. Many strongly localized features, such as complex orography
or hurricanes, can only be modelled correctly if a very high spatial resolution is em-
ployed, especially in the lower troposphere, while larger scale features such as high/low
pressure systems and stratospheric flows can be adequately resolved on much coarser
meshes. The impact of orography on the atmospheric circulation has been the focus
of a large number of studies, see e.g. the classical work [46], the more recent review
[61], and references therein. This impact is significant both on the short and on the
long time scales and even affects the oceanic circulation [44]. The minimal resolution
requirements for an accurate description of the atmospheric phenomena relevant for
numerical weather prediction (NWP) and climate models have been subject to strong
debate, see e.g. the classical paper [41], the more recent contribution [65], and the
references therein. Furthermore, for numerical reasons, orography data used by NWP
and climate models are often filtered, thus limiting the scales at which orography can
effectively be represented in numerical models. For example, the analysis in [13] showed
that orographic features must be resolved by a sufficiently large number of mesh points
(from 6 to 10) in finite difference models to avoid spurious numerical features.

The insufficient resolution of orographic features is compensated in NWP and cli-
mate models by subgrid-scale orographic drag parameterizations [49, 56], which are
essential for an accurate description of atmospheric flows with models using feasi-
ble resolutions, see again the discussion in [61]. The interplay between resolved and
parameterized orographic effects is critical, since many operational models currently
employ resolutions in the so-called ‘grey zone’, for which some orographic effects are
well resolved while others still require parameterization. Global simulations with the
ECMWF-IFS NWP model without drag parameterization showed that the increase in
forecast skill for increasing atmospheric resolution was chiefly due to the improved rep-
resentation of the orography [35]. When parameterizing the drag, the positive impact
of the parameterization decreased as long as the model resolution increased. Finally,
sharper orography representations also proved beneficial for simulations of mountain
wave-driven middle atmosphere processes [23].

Because of the multiscale nature of the underlying processes, NWP is an apparently
ideal application area for adaptive numerical approaches. However, mesh adaptation
strategies have only slowly found their way into the NWP literature, due to limita-
tions of earlier numerical methods, concerns about the accuracy of variable resolution
meshes for the correct representation of typical atmospheric wave phenomena, and the
greater complexity of an efficient parallel implementation for non-uniform or adaptive
meshes. The first approaches to variable local mesh refinement were based on the
nesting concept, see e.g. [29, 57, 77]. Early attempts to introduce adaptive meshes
in NWP were then presented in the seminal papers [62, 63], while a review of earlier
variable resolution approaches is presented in [11]. The impact of variable resolution
meshes on classical finite difference methods was analyzed in [42, 74]. More recently,
methods allowing mesh deformation strategies were proposed in [59] and techniques
to estimate the required resolution were presented in [75], while applications of block
structured meshes were discussed in [33]. In all these papers, finite difference or finite
volume methods were employed for the numerical approximation. High-order finite
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element methods have also been exploited as an ingredient of accurate adaptive meth-
ods. More specifically, hybrid continuous-discontinuous finite element techniques were
employed in [40]. Discontinuous Galerkin (DG) finite element h−adaptive approaches
were proposed in [38, 51, 76], while p−adaptive DG methods for NWP were introduced
in [73]. An hp− adaptive DG method for mesoscale atmospheric modelling has recently
been proposed in [15] and a fully unstructured 3D approach was presented in [72]. Fi-
nally, in [19], the impact of mesh refinement on large scale geostrophic equilibrium and
turbulent cascades influenced by the Earth’s rotation was investigated.

Operational or semi-operational NWP models exist that have local mesh refinement
[64] or nesting [66] capabilities. Almost all the published results, however, either require
some relaxation at the boundaries between coarse and fine regions [47, 71] or perform
vertical mesh refinement over the whole vertical span of the computational domain [12,
45, 50]. In [31], a full 3D nesting approach without boundary relaxation is presented,
which is only tested on cases either without orography or without stratification, with
additional restrictions on the lateral boundary conditions that can be applied in the
case of purely vertical nesting.

In this work, we test a recently proposed adaptive IMEX-DG method [52, 53, 54]
on a number of benchmarks for atmospheric flow over idealized and real orography.
The proposed approach is fully mass and energy conservative and allows local refine-
ment in the vertical and horizontal direction without the need to apply relaxation
at the internal coarse/fine mesh boundaries. Through a quantitative assessment of
non-conforming h−adaptation, we aim to show that simulations with adaptive meshes
around orography can increase the accuracy of the local flow description without affect-
ing the larger scales, thereby significantly reducing the overall number of degrees of free-
dom compared to uniform mesh simulations. The employed numerical approach com-
bines accurate and flexible DG space discretization with an implicit-explicit (IMEX)
time discretization, whose properties and theoretical justifications are discussed in de-
tail in [52, 53, 54]. The adaptive discretization is implemented in the framework of
the open-source numerical library deal.II [1, 4], which provides the non-conforming
h−refinement capabilities exploited in the numerical simulation of flows over orogra-
phy. The numerical results show that simulations with the refined meshes provide
stable solutions with greater or comparable accuracy to those obtained with the uni-
form mesh. Importantly, no spurious reflections arise at internal boundaries separating
mesh regions with different resolution and correct values for the vertical flux of hori-
zontal momentum are retrieved. Both on idealised benchmarks and on test cases over
realistic orographic profiles, simulations using non-conforming local mesh refinement
correctly reproduce the larger scale, far-field orographic response, with meshes that are
relatively coarse over most of the domain. This supports the idea that locally refined,
non-conforming meshes can be an effective tool to reduce the dependence of NWP and
climate models on parametrizations of orographic effects [35, 61].

The paper is structured as follows. The model equations and a short introduction
to non-conforming meshes are presented in Section 2. The quantitative numerical
assessment of non-conforming mesh refinement over orography in a number of idealized
and real benchmarks is reported in Section 3. Some conclusions and considerations
about open issues and future work are presented in Section 4.
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2 The model equations

The fully compressible Euler equations of gas dynamics represent the most com-
prehensive mathematical model for atmosphere dynamics, see e.g. [14, 27, 70]. Let
Ω ⊂ Rd, 2 ≤ d ≤ 3 be a simulation domain and denote by x the spatial coordinates and
by t the temporal coordinate. We consider the unsteady compressible Euler equations,
written in conservation form as

∂ρ

∂t
+∇· (ρu) = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇ p = ρg (1)

∂ (ρE)

∂t
+∇· [(ρE + p)u] = ρg · u,

for x ∈ Ω, t ∈ (0, Tf ], supplied with suitable initial and boundary conditions. Here
Tf is the final time, ρ is the density, u is the fluid velocity, p is the pressure, and ⊗
denotes the tensor product. Moreover, g = −gk represents the acceleration of gravity,
with g = 9.81m s−2 and k denoting the upward pointing unit vector in the standard
Cartesian frame of reference. The total energy ρE can be rewritten as ρE = ρe+ ρk,
where e is the internal energy and k = 1

2∥u∥
2 is the kinetic energy. We also introduce

the specific enthalpy h = e+ p
ρ and we notice that one can rewrite the energy flux as

(ρE + p)u =

(
e+ k +

p

ρ

)
ρu = (h+ k) ρu.

Notice that the choice of the total energy density E as prognostic variable has been
shown, at least empirically, to yield model formulations that do not require special well
balancing techniques for flows under the action of gravity [3]. The above equations are
complemented by the equation of state (EOS) for ideal gases, given by p = ρRT , with
R being the specific gas constant. For later reference, we define the Exner pressure Π
as

Π =

(
p0
p

) γ−1
γ

, (2)

with p0 = 105 Pa being a reference a pressure and γ denoting the isentropic exponent.
We consider γ = 1.4 and the gas constant R = 287 J kg−1K−1 for all the test cases.

2.1 Non-conforming meshes

We solve system (1) numerically using the IMEX-DG solver proposed in [52, 53] and
validated in [54] for atmospheric applications (see also [55]). While on one the hand
no special well balancing property with respect to hydrostatic equilibrium has been
proven for the proposed discretization (see e.g. the proposal in [6]), no evidence of
numerical problems related to the representation of hydrostatic equilibrium was found
in the many numerical tests performed in the previously mentioned papers. This could
be related to the choice of the energy density as prognostic variable, as argued in [3],
based on numerical results obtained with a similar formulation.
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Atmospheric flows such as those considered in this work are characterized by low
Mach numbers, as motions of interest have characteristic speeds much lower than
that of sound. In the low Mach limit, terms related to pressure gradients yield stiff
components in the system of ordinary differential equations resulting from the spatial
discretization of system (1). Therefore, an implicit coupling between the momentum
balance and the energy balance is adequate, whereas the density can be treated in
a fully explicit fashion, see e.g. the discussion in [10, 20]. The time discretization is
based on a variant of the IMEX method proposed in [26], while the space discretization
adopts the DG scheme implemented in the deal.II library [1]. We refer to [52, 53,
54] for a complete analysis and discussion of the numerical methodology, and to [25]
for a comprehensive introduction to the DG method.

The nodal DG method, as the one employed in deal.II [1], is characterized by in-
tegrals over faces belonging to two elements. Moreover, a weak imposition of boundary
conditions is typically adopted [2]. Hence, the method provides a natural framework
for formulations on multi-block meshes. Consider a generic non-linear conservation
law

∂Ψ

∂t
+∇·F(Ψ) = 0. (3)

We multiply the previous relation by a test function Λ and, after integration by parts,
we obtain the following local formulation on each elementK of the mesh with boundary
∂K: ∫

K

∂Ψ

∂t
ΛdΩ−

∫
K
F(Ψ) · ∇ΛdΩ+

∫
∂K

F̂(Ψ+,Ψ−)ΛdΣ = 0, (4)

where dΩ is the volume element and dΣ is the surface element. In the surface integral,
we replace the term F(Ψ) with a numerical flux F̂(Ψ+,Ψ−), which depends on the
solution on both sides Ψ+ and Ψ− of an interior face.

A non-conforming mesh is characterized by cells with different refinement levels, so
that the resolution between two neighbouring cells can be different (Figure 1). For faces
between cells of different refinement level, the integration is performed from the refined
side and a suitable interpolation is performed on the coarse side, so as to guarantee
the conservation property, see the discussion in [4]. Hence, no hanging nodes appear
in the implementation of the discrete weak form of the equations.

DG methods with non-conforming meshes have been developed for different appli-
cations, see e.g. [22, 30]. The main constraint posed by the deal.II library for the
use of non-conforming meshes is the requirement of not having neighbouring cells with
refinement levels differing by more than one. Thus, for each non-conforming face, flux
contributions have to be considered at most from two refined faces in two dimensions
and from four faces in three dimensions (Figure 1). The out-of-the-box availability in
deal.II provides an ideal testbed for evaluating the potential computational savings
using non-conforming meshes instead of uniform meshes in atmospheric flow simula-
tions.

3 Numerical results

We consider a number of benchmarks of atmospheric flows over orography for the
validation of NWP codes, see e.g. the seminal papers [36, 37] and results and discus-
sions in [7, 48, 58, 73]. The objective of these tests is twofold. First, we evaluate the
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Figure 1: Example of two neighbouring cells in a non-conforming mesh. The two
green nodes from cell J , the two red nodes from cell K and the two blue nodes from
cell L are involved in the computation of the flux in the boundary integral of (4) for
face e.

stability and accuracy of numerical solutions obtained using non-conforming meshes
compared to those obtained using uniform meshes. Second, we assess the computa-
tional cost carried by both setups and potential advantages at a given accuracy level.

Discrete parameter choices for the numerical simulations are associated with two
Courant numbers, the acoustic Courant number C, based on the speed of sound c, and
the advective Courant number Cu, based on the magnitude of the local flow velocity
u:

C = rc∆t/H Cu = ru∆t/H. (5)

Here r is the polynomial degree used for the DG spatial discretization, H is the min-
imum cell diameter of the computational mesh, and ∆t is the time-step adopted for
the time discretization. We consider polynomial degree r = 4, unless differently
stated. Wall boundary conditions are employed for the bottom boundary, whereas
non-reflecting boundary conditions are required by the top boundary and the lateral
boundaries. For this purpose, we introduce the following Rayleigh damping profile [48,
54]:

λ =

{
0, if z < zB

λ sin2
[
π
2

(
z−zB
z−zT

)]
if z ≥ zB,

(6)

where zB denotes the height at which the damping starts and zT is the top height of
the considered domain. Analogous definitions apply for the two lateral boundaries.
The classical Gal-Chen height-based terrain-following coordinate [24] is used to obtain
a terrain-following mesh in Cartesian coordinates.

A relevant diagnostic quantity to check that a correct orographic response is achieved
is represented by the vertical flux of horizontal momentum (henceforth “momentum
flux”), defined as [67]

m(z) =

∫ ∞

−∞
ρ(z)u′(x, z)w′(x, z)dx. (7)

Here, u′ and w′ denote the deviation from the background state of the horizontal
and vertical velocity, respectively. Table 1 reports the parameters employed for the
different test cases.
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Test case ∆t Tf Domain Damping Damping λ∆t C Cu

[s] [h] [km× km] layer (x) layer (z)

LHMW 2.5 15 240× 30 (0,80), (160,240) (15,30) 0.3 3.66 0.23

NLNHMW 1 5 40× 20 (0,10), (30,40) (9,20) 0.15 2.16 0.13

BWS 0.75 3 220× 25 (0,30), (190,220) (20,25) 0.15 0.79 0.23

T-REX 0.75 4 400× 26 (0,50), (350,400) (20,26) 0.15 1.34 0.29

Table 1: Model parameters for the two-dimensional test cases in this Section, see main
text for details. LHMW: linear hydrostatic mountain wave. NLNHMW: nonlinear
nonhydrostatic mountain wave. BWS: Boulder windstorm (inviscid configuration).
T-REX: Sierra profile, T-REX experiment. The intervals where the damping layers
are applied are in units of km.

3.1 Linear hydrostatic flow over a hill

First, we consider a linear hydrostatic configuration, see e.g. [27, 54]. The bottom
boundary is described by the function

h(x) =
hc

1 +
(
x−xc
ac

)2 , (8)

the so-called versiera of Agnesi, with hc being the height of the hill and ac being its
half-width. We take hc = 1m, xc = 120 km, and ac = 10 km. The initial state of
the atmosphere consists of a constant horizontal flow with u = 20m s−1 and of an
isothermal background profile with temperature T = 250K and Exner pressure:

Π = exp

(
− g

cpT
z

)
, (9)

with cp = R γ
γ−1 denoting the specific heat at constant pressure. In an isothermal

configuration the Brunt-Väisälä frequency is given by N = g√
cpT

. Hence, one can

easily verify that
Nac
u

≫ 1, (10)

meaning that we are in a hydrostatic regime [27, 58]. The computational mesh is
composed by Nel = 1116 elements with 4 different refinement levels (Figure 2). The
finest level corresponds to a resolution of 300m along x and of 62.5m along z, whereas
the coarsest level corresponds to a resolution of 2400m along x and of 500m along z.
From the linear theory, the analytical momentum flux is given by [67]

mH = −π

4
ρsusNh2c , (11)

with ρs and us denoting the surface background density and velocity, respectively. The
computed momentum flux normalized by mH approaches 1 as the simulation reaches
the steady state (Figure 3). The momentum is correctly transferred in the vertical
direction and no spurious oscillations arise at the interface between different mesh
levels.
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Figure 2: Linear hydrostatic flow over a hill, non-conforming mesh.

Figure 3: Linear hydrostatic flow over a hill, evolution of normalized momentum flux
for the simulation using a non-conforming mesh.

A reference solution is computed using a uniform mesh with the maximum reso-
lution of the non-conforming mesh, namely a mesh composed by 200 elements along
the horizontal direction and 120 elements along the vertical one. A comparison of
contour plots for the horizontal velocity deviation and for the vertical velocity shows
an excellent agreement in the lee waves simulation between the finest uniform mesh
and the non-conforming mesh (Figure 4).

In order to further emphasize the results obtained with the use of the non-conforming
mesh, we consider a uniform mesh with the same number of elements (62×18 = 1116) of
the non-conforming mesh. A three-way comparison of the normalized momentum com-
puted with the fine uniform mesh, the coarse uniform mesh, and the non-conforming
mesh shows a good agreement with the analytical solution mH 5). From a more quan-
titative point of view, we compute relative errors with respect to the reference solution
in the portion of the domain Ω = [80, 160] km × [0, 12] km (Table 2). Moreover, we
consider different configurations with non-conforming meshes and we compare them
with configurations employing a uniform mesh using the same number of elements.
Non-conforming mesh simulations significantly outperform uniform mesh simulations
in terms of accuracy at a given number of degrees of freedom. At the finest 300m
horizontal resolution and 62.5m vertical resolution, the use of the non-conforming
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Figure 4: Linear hydrostatic flow over a hill at t = Tf = 15h, numerical solutions
using a non-conforming mesh (solid black lines) and the finest uniform mesh (dashed
red lines). Top: horizontal velocity deviation, contours in [−2.5, 2.5]·10−2 ms−1 with a
5·10−3 ms−1 contour interval; Bottom: vertical velocity, contours in [−4, 4]·10−2 ms−1

with a 5 · 10−4 ms−1 contour interval.

mesh leads to a computational time saving of around 90% over the corresponding uni-
form mesh (bold numbers in Table 2). However, the present non-conforming mesh
implementation is instead less competitive considering the wall-clock time at a given
number of elements. This is due to the fact that, on non-conforming meshes, the con-
dition number of the linear systems resulting from the IMEX discretization increases
substantially, leading to a higher number of iterations for the GMRES solver [18, 34,
53]. While some effective geometric multigrid preconditioners are available for non-
symmetric systems arising from elliptic equations [9, 21], their extension to hyperbolic
problems and their implementation in the context of the matrix-free approach of the
deal.II library is not straightforward and will be the subject of future work.
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Nel
Uniform Non-conforming

∆x[m] ∆z[m] m(z)
error

WT[s] ∆xmin[m]∆zmin[m]m(z)
error

WT[s] Speed-up

402 895.52 1250 6.10e−2 3050 1200 250 4.34e−3 4210

504 952.38 937.5 1.96e−2 3180 600 125 2.34e−3 6510

1116 967.74 416.67 3.94e−3 4470 300 62.5 2.53e−3 14800 8.9

24000 300 62.5 - 131600 - - - -

Table 2: Linear hydrostatic flow over a hill: horizontal resolution ∆x, vertical resolu-
tion ∆z, l2 relative errors on the momentum flux, and wall-clock times (WT) for the
uniform meshes and the non-conforming meshes. Here, and in the following tables,
Nel denotes the number of elements. The speed-up is computed considering the same
maximum spatial resolution, i.e. comparing the wall-clock time of the finest uniform
mesh and the wall-clock time of the coarsest non-conforming mesh (bold WT, see also
main text for further details).

Figure 5: Linear hydrostatic flow over a hill, comparison of normalized momentum flux
at t = Tf = 15h obtained using a uniform mesh at fine resolution (solid black line), a
uniform mesh with the same number of elements as the non-conforming mesh (solid
blue line), and the non-conforming mesh (red dots). See text for mesh definitions.

3.2 Nonlinear non-hydrostatic flow over a hill

Next, we consider a non-hydrostatic regime for which

Nac
u

≈ 1. (12)

More specifically, we focus on a nonlinear non-hydrostatic case [54, 60, 73]. The bottom
boundary is described again by (8), with hc = 450m, xc = 20 km, and ac = 1km.
The initial state of the atmosphere is described by a constant horizontal flow with
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u = 13.28m s−1 and by the following potential temperature and Exner pressure:

θ = θref exp

(
N2

g
z

)
(13)

Π = 1 +
g2

cpθrefN2

[
exp

(
−N2

g
z

)
− 1

]
, (14)

with θref = 273K and N = 0.02 s−1. The mesh is composed by Nel = 282 elements
with 3 different resolution levels (Figure 6). The finest level corresponds to a resolution
of 208.33m along x and of 104.17m along z, whereas the coarsest level corresponds to
a resolution of around 833.33m along x and of 416.67m along z.

Figure 6: Nonlinear non-hydrostatic flow over a hill, non-conforming mesh.

A reference solution is computed using a uniform mesh with 48 × 48 = 2304 el-
ements, which corresponds to the finest resolution of the non-conforming mesh. A
comparison of contour plots for the horizontal velocity deviation and for the vertical ve-
locity shows good agreement between the finest uniform mesh and the non-conforming
mesh in the development of lee waves (Figure 7). The use of the non-conforming mesh
yields a computational time saving of around 60% (bold numbers in Table 3). In
addition, we consider a mesh with uniform resolution and with the same number of
elements 47×6 = 282 of the non-conforming mesh. We compare the computed normal-
ized momentum flux at t = Tf in the reference configuration, in the non-conforming
mesh configuration, and in the configuration with a uniform mesh with the same num-
ber of elements of the non-conforming mesh (Figure 8). In terms of relative error with
respect to the reference solution, the locally refined non-conforming mesh outperforms
the uniform mesh by about an order of magnitude using the same number of elements
(Table 3). Analogous considerations to those reported in Section 3.1 are valid for the
computational time.
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Nel ∆x[m] ∆z[m] m(z) error WT[s] Speed-up

282 (uniform) 212.77 833.33 2.31e−1 4520

282 (non-conforming) 208.33 104.17 1.92e−2 9680 2.3

2304 (uniform) 208.33 104.17 - 22500

Table 3: Nonlinear non-hydrostatic flow over a hill: horizontal resolution ∆x, vertical
resolution ∆z, l2 relative errors on the momentum flux, and wall-clock times (WT)
for the uniform meshes and the non-conforming mesh. The speed-up is computed
comparing the wall-clock time of the finest uniform mesh and the wall-clock time
of the non-conforming mesh, which have the same resolution (see also main text for
further details).

Figure 7: Nonlinear non-hydrostatic flow over a hill at t = Tf = 5h, computed
on a uniform mesh at finer resolution (solid black lines) and on a non-conforming
mesh (dashed red lines). Top: horizontal velocity deviation, contours in the interval
[−7.2, 9.0]m s−1 with a 1.16m s−1 interval. Bottom: vertical velocity, contours in the
interval [−4.2, 4.0]m s−1 with a 0.586m s−1 interval.
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Figure 8: Nonlinear non-hydrostatic flow over a hill, comparison of normalized mo-
mentum flux at t = Tf = 5h obtained using a uniform mesh at fine resolution (black
solid line), a uniform mesh with the same number of elements of the non-conforming
mesh (blue solid line), and the non-conforming mesh (red dots).

3.3 11 January 1972 Boulder Windstorm

Next, we consider the more realistic condition of the 11 January 1972 Boulder (Col-
orado) windstorm benchmark [17]. This test case is particularly challenging because
a complex wave-breaking response is established aloft in the lee of the mountain. The
initial conditions are horizontally homogeneous and based upon the upstream mea-
surements at 1200 UTC 11 January 1972 Grand Junction, Colorado, as shown in [17].
The initial conditions contain a critical level near z = 21 km (Figure 9), which more
realistically simulates the stratospheric gravity wave breaking [17]. The pressure is
computed from the hydrostatic balance, namely

p(z) = p0 exp

(
− g

R

∫ z

0

1

T (s)
ds

)
, (15)

with p0 = 105 Pa. Linear interpolation is employed to evaluate both temperature and
horizontal velocity.

The bottom boundary is described by (8), with hc = 2km, xc = 100 km, and ac =
10 km. We consider two different computational meshes: a uniform mesh composed by
120 × 60 = 7200 elements, i.e. a resolution of 458.33m along the horizontal direction
and of 104.17m along the vertical one, and a non-conforming mesh with 3 different
levels, composed by Nel = 1524 (Figure 10), with the finest level corresponding to the
resolution of the uniform mesh.

The horizontal velocity and the potential temperature computed at t = Tf by the
IMEX-DGmethod using a uniform mesh are in reasonable agreement with the reference
results [17], in particular for what concerns the potential temperature (Figure 11).
Numerous regions of small-scale motion and larger high-frequency spatial structures
arise with respect to the other tests using the uniform mesh, because of the lack of a
subgrid eddy viscosity. The qualitative behaviour of the simulation with the uniform
mesh and the one with the non-conforming mesh is in good agreement, even though
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Figure 9: Boulder windstorm test case, initial conditions. Top: horizontal velocity.
Bottom: temperature (black line) and pressure (blue line).

visible differences arise in the deep regions of wave breaking in the stratosphere (Figure
11). In terms of wall-clock time, the configuration with the non-conforming mesh is
about 65% computationally cheaper than the configuration with the uniform mesh
(3.75× 104 s vs. 1.37× 104 s).

Following [16], we then compute the momentum flux (7) using the mean value of
u and w to compute u′ and w′. A comparison at final time of the vertical flux of
horizontal momentum (7) normalized by its values at the surface obtained with the
uniform mesh displays a reasonable agreement between the two simulations, especially
for z above 12 km (Figure 12). The discrepancy in the vertical region between z = 7km
and z = 12 km is probably due to the development of small-scale features and to the
lack of subgrid eddy viscosity parametrization, as already discussed for the contour
plots.
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Figure 10: Boulder windstorm test case, non-conforming mesh.

Figure 11: Boulder windstorm test case numerical results at t = Tf = 3h. Top:
uniform mesh. Bottom: non-conforming mesh. Horizontal velocity (colors), contours
in the range [−40, 80]m s−1 with a 8m s−1 interval. Potential temperature (dashed
lines), contours in the range [273, 650]K with an 8K interval.

Next, we repeat the simulations for this test case including a simplified model for
turbulent vertical diffusion for NWP applications, originally proposed in [43] and also
discussed in [5, 8, 28]. As commonly done in numerical models for atmospheric physics,
we resort to an operator splitting approach. The diffusion model is treated with the
implicit part of the IMEX method, which corresponds to the TR-BDF2 scheme [32,
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Figure 12: Boulder windstorm test case, comparison of normalized momentum flux
at t = Tf = 3h computed using the uniform mesh (solid black line) and the non-
conforming mesh (red dots).

53]. The non-linear diffusivity κ has the form

κ

(
∂u

∂z
,
∂θ

∂z

)
= l2

∣∣∣∣∂u∂z
∣∣∣∣F (Ri) . (16)

Here, l is a mixing length and Ri is the Richardson number given by

Ri =
g

θ0

∂θ
∂z∣∣∂u
∂z

∣∣2 , (17)

with θ0 denoting a reference temperature. Finally, the function F (Ri) is defined as

F (Ri) = (1 + b |Ri|)β , (18)

where {
β = −2, b = 5 if Ri > 0

β = 1
2 , b = 20 if Ri < 0.

(19)

We consider the uniform mesh with 120 × 60 = 7200 elements and a coarse non-
conforming mesh with Nel = 1524 elements already employed for the inviscid case.
In addition, we consider a fine non-conforming mesh with three different refinement
levels andNel = 6324 elements. The fine resolution around the orography is of 229.17m
along the horizontal direction and of 52.08m along the vertical one. We use a time
step ∆t = 0.375 s, corresponding to a maximum acoustic Courant number C ≈ 0.79
and a maximum advective Courant number Cu ≈ 0.23. Finally, we take l = 100m and
θ0 = 273K in (16).
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At t = Tf , numerical solutions computed using the uniform mesh and the non-
conforming mesh are in good agreement for both the horizontal velocity and the po-
tential temperature, in particular for the finest non-conforming mesh (Figure 14). In
terms of wall-clock time, a computational time saving of around 50% is achieved with
the coarse non-conforming mesh (bold numbers in Table 4), while performance is less
optimal for the fine non-conforming mesh (see the discussion above in Section 3.1).
Finally, a comparison at t = Tf of the computed momentum flux (7) normalized by its
values at the surface obtained with the uniform mesh suggests that the results of the
uniform mesh are approached as long as the resolution of the non-conforming mesh
increases (Figure 13).

Nel ∆x[m] ∆z[m] WT[s] Speed-up

7200 (uniform) 458.33 104.17 119000

1524 (non-conforming) 229.17 104.17 51900 2.3

6324 (non-conforming) 229.17 52.08 160000

Table 4: Boulder windstorm test case with turbulent vertical diffusion: horizontal
resolution ∆x, vertical resolution ∆z, and wall-clock times (WT) for the uniform
mesh and the non-conforming meshes. The speed-up is computed considering the
same maximum spatial resolution, i.e. comparing the wall-clock time of the finest
uniform mesh and the wall-clock time of the non-conforming mesh (bold WT, see also
main text for further details).

Figure 13: Boulder windstorm test case, comparison of normalized momentum flux
at t = Tf = 3h between the uniform mesh (solid black line), the fine (blue solid line),
and the coarse (red dots) non-conforming meshes.

18



Figure 14: Boulder windstorm test case with turbulent vertical diffusion. Top: uni-
form mesh. Middle: coarse non-conforming mesh. Bottom: fine non-conforming mesh.
Horizontal velocity (colors), contours in the range [−40, 80]m s−1 with a 8m s−1 in-
terval. Potential temperature (dashed lines), contours in the range [273, 650]K with
an 8K interval.
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3.4 T-REX Mountain-Wave

Next, we consider simulations of a flow over a steep real orography [16, 39], as shown
in Figure 15. The initial state is horizontally homogeneous and it is based on conditions
during Intensive Observation Period (IOP) 6 of the Terrain-Induced Rotor Experiment
(T-REX) [16], as reported in Figure 16. We consider a DG spatial discretization
using degree r = 2 polynomials and three computational meshes: a uniform mesh
composed by 400× 60 = 24000 elements, corresponding to a resolution of 500m along
the horizontal direction and of 216.66m along the vertical direction, and two non-
conforming meshes. The coarsest non-conforming mesh consists of three different levels
and Nel = 5298 elements, whereas the finest non-conforming mesh is obtained with
a global refinement of the coarsest non-conforming mesh, with Nel = 21792 elements
(Figure 17). The finest level of the coarsest non-conforming mesh corresponds to the
resolution of the uniform mesh. Hence, the fine resolution around the orography for
the finest non-conforming mesh is 250m along the horizontal direction and 108.33m
along the vertical direction. We take l = 100m and θ0 = 273K in (16). The vertical
turbulent diffusion model is necessary to obtain a stable numerical solution.

Figure 15: T-REX mountain-wave test, Sierra profile.

Both in the horizontal velocity and in the potential temperature variables, the
IMEX-DG numerical solutions at t = Tf display reasonable agreement between results
obtained using the uniform mesh and the non-conforming meshes, showing the robust-
ness of the proposed approach based on non-conforming meshes also in the case of a
realistic, steep orography (Figure 19). Some differences arise in the structures of the
horizontal velocity, but, unlike the previous test case, in this benchmark [16] there is
low predictability of key characteristics such as the strength of downslope winds or the
stratospheric wave breaking. Moreover, the change in the resolution of the topography
has been shown to modify the representation of mountain wave-driven middle atmo-
sphere processes [35]. The contour plots show overall a reasonable agreement with
those reported in [16]. While we have employed the same range values adopted in [16],
one can easily notice that a lower minimum value of the velocity around x ≈ 220 km
and z ≈ 11 km is achieved for the finest non-conforming mesh. This is likely due to
the use of a high-order method with low numerical dissipation and to the increased
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Figure 16: T-REX mountain-wave test case, initial conditions. Top: horizontal ve-
locity. Bottom: density (black line) and pressure (blue line).

Figure 17: T-REX mountain wave, non-conforming mesh.

resolution. For the sake of completeness, we have also run a simulation up to t = 5h
and no numerical instability arises.

A far-field comparison of the momentum flux (7) confirms the low predictability of
large-scale orographic features for this test case (Figure 18). On the other hand, one
can easily notice that the momentum flux profiles shown in Figure 18 yield values of the
same order of magnitude as those obtained with the models compared in [16]. More
specifically, the BLASIUS model employed in [16] predicts the lowest values, while
the ASAM model predicts the highest ones. The values obtained in our framework,
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especially those established with the finest non-conforming mesh, are close to the mean
values of all the models compared in [16]. Similarly to Section 3.3, a computational
time saving of around 25% is achieved with the coarse non-conforming mesh (bold
numbers in Table 5), while performance is less optimal for the fine non-conforming
mesh.

Nel ∆x[m] ∆z[m] WT[s] Speed-up

24000 (uniform) 500 216.66 10900

5298 (non-conforming) 500 216.66 8390 1.3

21792 (non-conforming) 250 108.33 16500

Table 5: T-REX mountain wave test case: horizontal resolution ∆x, vertical resolution
∆z, and wall-clock times (WT) for the uniform mesh and the non-conforming meshes.
The speed-up is computed considering the same maximum spatial resolution, i.e.
comparing the wall-clock time of the uniform mesh and the wall-clock time of the
coarsest non-conforming mesh (bold WT, see also main text for further details).

Figure 18: T-REX mountain wave test case, comparison of momentum flux at t =
Tf = 4h between the uniform mesh (solid black line), the finest non-conforming
mesh (solid blue line), and the coarsest non-conforming mesh (solid red line). Results
obtained in [16] are also reported. BLASIUS model (magenta dots), ASAM model
(yellow dots), mean of all the models (green dots).
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Figure 19: T-REX mountain wave test case at Tf = 4h. Top: uniform mesh. Middle:
coarsest non-conforming mesh. Bottom: finest non-conforming mesh. Horizontal
velocity perturbation (colors), contours in the range[−50, 50]m s−1 with a 2.5m s−1

interval. Potential temperature (dashed lines), contours in the range [273, 650]K with
a 10K interval.
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3.5 3D medium-steep bell-shaped hill

Finally, we consider a three-dimensional configuration, focusing on the flow over a bell-
shaped hill discussed e.g. in [48, 54], which we briefly recall here for the convenience
of the reader. The computational domain is Ω = (0, 60) × (0, 40) × (0, 16) km. The
mountain profile is a 3D extension of the versiera of Agnesi and can be defined as:

h(x, y) =
hc[

1 +
(
x−xc
ac

)2
+
(
y−yc
ac

)2
] 3

2

, (20)

with hc = 400m, ac = 1km, xc = 30 km, and yc = 20 km. The buoyancy frequency is
N = 0.01 s−1, whereas the background velocity is u = 10m s−1. Hence, since Nac

u = 1,
we are in a non-hydrostatic regime. The background potential temperature and Exner
pressure profiles are those reported in Section 3.2 with θref = 293.15K. The final
time is Tf = 10h. The damping layer is applied in the topmost 6 km of the domain
and in the first and last 20 km along the lateral boundaries with λ∆t = 1.2. We
take polynomial degree r = 4 and we consider three different computational meshes: a
coarse uniform mesh composed by 30×20×8 = 4800 elements, i.e. a resolution of 500m
along all the directions, a fine uniform mesh composed by 60× 40× 16 elements, i.e. a
resolution of 250m, and a non-conforming mesh with 3 different levels, composed by
Nel = 1958, with the finest level corresponding to the resolution of the finest uniform
mesh (Figure 20). The time step is ∆t = 2 s, yielding a maximum acoustic Courant
number C ≈ 2.75 and a maximum advective Courant number Cu ≈ 0.13 for the finest
uniform mesh. The contours plots of the vertical velocity on a x − y slice placed at
z = 800m and on a x−z slice placed at y = 20 km show once more the accuracy and the
robustness of simulations employing non-conforming meshes (Figure 21). No spurious
wave reflections arise at the internal boundaries that separate regions with different
resolutions. Moreover, one can easily notice that the change of resolution affects the
development of lee waves. However, it is sufficient to employ a higher resolution only
around the orography, whereas larger scales along all the directions can be resolved
at a much coarser resolution. Thanks to its significantly lower number of degrees of
freedom, the use of non-conforming mesh yields a computational time saving of around
15% with respect to the coarse uniform mesh and of around 93% with respect to the
fine uniform mesh (Table 6).

Nel ∆[m] WT[s] Speed-up

4800 (uniform) 500.0 3020

38400 (uniform) 250.0 36500

1958 (non-conforming) 250.0 2560 14

Table 6: 3D medium-steep bell-shaped hill test case: resolution ∆ and wall-clock
times (WT) for the uniform meshes and the non-conforming mesh. The speed-up is
computed considering the same maximum spatial resolution, i.e. comparing the wall-
clock time of the finest uniform mesh and the wall-clock time of the non-conforming
mesh (bold WT, see also main text for further details).
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Figure 20: 3D medium-steep bell-shaped hill test case, non conforming mesh. Left:
x− y slice at z = 800m. Right: x− z slice at y = 20 km.

4 Conclusions

We have presented a systematic assessment of non-conforming meshes for the simu-
lation of flows over orography using an IMEX-DG numerical model for the compressible
Euler equations. For this purpose, we have exploited the adaptation framework pro-
vided by the open-source numerical library deal.II [1, 4]. The proposed approach
allows local mesh refinement both in the horizontal and vertical direction, without the
need to apply relaxation procedures along the interfaces between the coarse and fine
meshes. At a given accuracy level, the use of non-conforming meshes enables a sig-
nificant reduction in the number of computational degrees of freedom with respect to
uniform resolution meshes. The numerical results show that stable simulations are pro-
duced with no spurious reflections at internal boundaries separating mesh regions with
different resolutions. In addition, accurate values for the momentum flux are retrieved
in robust non-conforming simulations for increasingly realistic orography profiles.

Numerical simulations with non-conforming meshes can use substantially higher
resolution only near the orographic features, correctly reproducing the larger scale,
far-field orographic response, while using meshes that are relatively coarse over most
of the domain. In a context of spatial resolutions approaching the hectometric scale in
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a) b)

c) d)

Figure 21: 3D medium-steep bell-shaped hill test case at Tf = 10h, vertical velocity
contours. Top: x− y slice at z = 800m in the range[−1.5, 1.3]m s−1 with a 0.1m s−1

interval, a) comparison between the fine uniform mesh (black lines) and the coarse
uniform mesh (blue lines), b) comparison between the fine uniform mesh (black lines)
and the non-conforming mesh (red lines). Bottom: x − z slice at y = 20 km in the
range[−2.25, 2]m s−1 with a 0.2m s−1 interval, c) comparison between the fine uniform
mesh (black lines) and the coarse uniform mesh (blue lines), d) comparison between
the fine uniform mesh (black lines) and the non-conforming mesh (red lines).

numerical weather prediction models, these results support the use of locally refined,
non-conforming meshes as a reliable and effective tool to greatly reduce the dependence
of atmospheric models on orographic wave drag parametrizations. Indeed, the results
obtained in our framework envisage the use of locally refined, non-conforming meshes
as a reliable, effective tool to push NWP and climate models out of the ‘grey zone’
with respect to the resolution of orographic effects [35, 61].

In future developments, we will implement specific multilevel preconditioners in
the matrix-free approach of the deal.II library, in order to get the full benefit from
the significant reduction in number of degrees of freedom allowed by the use of non-
conforming meshes for more realistic configurations. We also plan to consider the
inclusion of more complex physical phenomena, such as more sophisticated turbulence
models, water vapour transport, and adiabatic heating, as well as exploring physics-
dynamics coupling, in order to demonstrate that all the typical features of a high res-
olution numerical weather prediction model can be included in the proposed adaptive
framework without loss of accuracy. Moreover, the proper thermodynamic descrip-
tion of atmosphere dynamics is becoming a matter of deep investigation [68]. The
assumption of ideal gas for dry air and water vapour [69] is not always a proper one,
especially if phase changes occur. Recent work by two of the authors [53] can handle
more general equations of state for real gases, thus paving the way to the inclusion of
effects due to water vapour and moist species in a more realistic framework.
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