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Abstract

A quantum walk is the quantum analogue of a random walk. While it is relatively well
understood how quantum walks can speed up random walk hitting times, it is a long-standing
open question to what extent quantum walks can speed up the spreading or mixing rate of random
walks on graphs. In this expository paper, inspired by a blog post by Terence Tao, we describe
a particular perspective on this question that derives quantum walks from the discrete wave
equation on graphs. This yields a description of the quantum walk dynamics as simply applying
a Chebyshev polynomial to the random walk transition matrix. This perspective decouples the
problem from its quantum origin, and highlights connections to earlier (non-quantum) work and
the use of Chebyshev polynomials in random walk theory as in the Varopoulos-Carne bound.
We illustrate the approach by proving a weak limit of the quantum walk dynamics on the lattice.
This gives a different proof of the quadratically improved spreading behavior of quantum walks
on lattices.

*Université Paris Cité, CNRS, IRIF, Paris, France. Email: smgapers@gmail.com
fToulouse School of Economics, Institut de Mathématiques de Toulouse, CNRS and University of Toulouse. Email:
miclo.math.cnrs.fr@gmail.com



1 Introduction

Random walks (and Markov chains, more generally) show up in many areas of science. A particularly
relevant question is how fast random walks spread on graphs. This is related to topics such as the
thermodynamic equilibration of physical systems, the time complexity of Markov chain Monte Carlo
algorithms, or the diffusion speed of diseases and rumours in networks. It is typically quantified by
the random walk mizing time [LPW17], which captures the time that it takes for a random walk
to converge to its stationary distribution.

Quantum walks are the quantum mechanical analogues of random walks. They are a key tool in
the design of quantum algorithms [Amb03], and they have been a source of interesting mathematics.
Building on a long line of work, it was recently established [AGJK20, Pid19] that quantum walks
can quadratically speed up the random walk hitting time, i.e., the expected time to hit a subset of
vertices when starting from the stationary distribution. This can be thought of as a graph-theoretic
version of the quadratic speedup in Grover’s quantum search algorithm [Gro96]. The random walk
mixing time is somehow dual to the hitting time, requiring instead to converge to the stationary
distribution starting from a single state. A significantly smaller body of work has been devoted to
proving a quadratic quantum walk speedup in the mixing time, paralleling the quadratic speedup
in the hitting time. Such a speedup was proven in a number of relevant but very restricted settings,
including settings where the underlying graph is highly symmetric [AAKV01, Ric07a, Ric07b], very
poorly connected [A19], or when we have access to a simulated annealing schedule [WA08, HW20)].

Despite advances in these restricted settings, it seems that progress on a general quantum walk
speedup in the random walk spreading rate or mixing time has largely stalled. We revisit this
question using an alternative perspective on the quantum walk dynamics, based on Chebyshev
polynomials.! Rather than following the standard exposition that is usually found in the quantum
algorithms literature (see e.g. [Chil7]), we present an alternative perspective based on the discrete
wave equation on graphs. This approach is inspired and largely follows a blog post on the discrete
wave equation by Terence Tao [Taol4] (which, on its turn, was inspired by discussions with Yuval
Peres). It also connects to earlier work on the discrete wave equation on graphs by Friedman and
Tillich [FT04]. Surprisingly, the connection with quantum walks seems to not have been made
earlier, and formalizing this is one of the motivations for writing this paper. As the main technical
contribution and proof-of-concept, we use the analysis of Chebyshev polynomials to prove a weak
limit on the quantum walk spreading behavior. In particular, this implies that quantum walks have
a ballistic spreading rate on lattices, in correspondence with earlier findings [MBSS02, BBBP11]
that used very different techniques.

Throughout the manuscript, we put care in giving a self-contained exposition, with the hope
of rejuvenating interest in the problem and attracting a broader (and potentially non-quantum)
audience.

2 Random walks from the diffusion equation
As a warm-up, consider the random walk dynamics
VteZy, u(t+ 1) = Pu(t) (1)

where P is the random walk transition matrix on a graph. We will argue how these dynamics
correspond to a discrete diffusion equation on graphs.

The connection between quantum walks and Chebyshev polynomials has been used before (see e.g. [CKS17,
GSLW19]) but not in the context of quantum walk mixing.



To this end, consider the diffusion equation

1
= —A 2
u 5 AU (2)
over R? with A the Laplacian operator. A discrete space and time analogue of (2) is given by (1)
with P the random walk transition matrix on the lattice Z%. Indeed, one gets an approximation

of (2) by introducing a small parameter ¢ > 0 and replacing the time set Z by €Z and the lattice
7% by \/eZ?. Consider then the evolution

Vit €€Z+, UE(t+E) = P\/E[’U/E(t):l (3)

where P,/ is the random walk transition matrix on VZZ*. This evolution coincides with (1) for ¢ =
1. Now assume e.g. that the initial condition u(0) of (2) is continuous and has a compact support and
that the initial condition of (3) is just the restriction of u(0) to v/Z?. Then the following well-known
approximation result holds, as a consequence of Donsker’s invariance principle [Don52, MP10]: for
any given (t,z) € Ry x R?, we have

lim w(te,xz:) = wu(t,x)
e—04
where for any € > 0, t. € €Z, and z. € \EZd are such that lim. o, t- =t and lim. 0, z. = .
This motivates identifying a random walk on the lattice Z? with a discrete diffusion equation.
Now, through a small leap of faith, we can generalize this by letting P be the random walk transition
matrix on a general graph. We identify the corresponding dynamics in (1) with the discrete wave
equation on that graph.

3 Quantum walks from the wave equation

Now we consider the wave equation instead of the diffusion equation, given by

1
LN
i = LAu
over R%. Equivalently,
. . 1
U=, 0= ZdAu' (4)

We will consider a particular? discrete space and time approximation of the diffusion equation, given
by

VteZy, u(n +1) = Pu(n) +v(n)

5
v(n 4 1) = Po(n) — (I — P*)u(n) 5)

for u(n),v(n) € £o(Z%). The following exposition largely follows [Taol4].

2There are alternative options, such as u(n 4+ 1) = u(n) +v(n), v(n + 1) = v(n) — (I — P*)u(n).



Discrete approximation. We can again motivate this approximation by considering the case
with P the random walk transition matrix on Z% We introduce a small parameter ¢ > 0 and
replace the time set Z by €Z and the lattice Z? by Z®. Consider then the evolution

Vteely, ue(n + 1) = P.us(n) 4+ cve(n)

6
ve(n+1) = Pov(n) — é([ ~ P2yu.(n) ©)

where P. is the random walk transition matrix on eZ?. This evolution coincides with (5) for € = 1.
Now assume e.g. that the initial condition (u(0),v(0)) of (4) is continuous and has a compact
support and that the initial condition of (5) is just the restriction of (u(0),v(0)) to €Z¢. Then the
following again holds: for any given (t,z) € Ry x R?, we have

lm e (te, z:) = u(t, x), lim v (te, z:) = v(t, )
e—04 e—04

where for any ¢ > 0, t. € €Z, and x. € eZ% are such that lim. o, t- =t and lim. o, . = .

This argument motivates identifying the dynamics (5) on Z? with the discrete wave equation on
Z%. More generally, we identify (5) with P the random walk transition matrix on a general graph
with the discrete wave equation on that graph.

Unitary dynamics. It is easy to check that the following “energy” quantity

VI = P2un)|* + [o(n)||?

is conserved. Indeed, if we define w(n) = v I — P?u(n), then we can equivalently write (5) as

w(n+1) = Pw(n) + VI — P%v(n)
v(n+1) = Pv(n) — VI — P?w(n).

(
The corresponding propagator
P VI — P?

U= > P

(7)

is then unitary, and hence conserves the norm or energy ||w(n)||? + |[v(n)||?>. Such a unitary that
encodes an operator P as one of its blocks is called a “unitary dilation” in the mathematics literature.

The n-step propagator U™ can be neatly expressed as

T (P) VI—=P2U,_(P)

U= _r=pe Up_1(P) T,(P)

(8)

where (T,)nez, and (Up)nez, are respectively the families of Chebyshev polynomials of the first
and second kind.

3.1 Quantum walks and block encodings

Arguably, such unitary dynamics are a natural map between quantum states, in which case we pro-
pose to call the resulting dynamics a quantum walk on the underlying graph. In fact, the unitary
dilation in (7) is bread and butter in the quantum computing literature — there it is usually called
a block encoding [CGJ19] of the operator P. Such block encodings are central to our current un-
derstanding of quantum algorithms — see e.g. the recent “grand unification of quantum algorithms”



in the form of the quantum singular value transformation [GSLW19]. One of the first (if not the
first) demonstrations of such block encoding was in the seminal work on quantum walks by Szegedy
[Sze04]. Szegedy constructed a unitary quantum walk operator W, different from the propagator U
in (7), but resembling it in that

1. W is a unitary dilation of the random walk operator P, and
2. W™ is a unitary dilation of T,,(P).

Szegedy used some additional properties of their particular construction of W. However, we now
understand that any operator satisfying the properties 1. and 2. can be used as a quantum walk
operator, allowing one to reproduce the algorithmic results on quantum walks referenced earlier
[AGJ21]. This motivates our interpretation of the discrete wave dynamics as a quantum walk — in
fact, it is surprising that this connection seems to not have been made earlier.

We note that, while the u- and v-components (or w- and v components) could be interpreted as
position and momentum in the original wave equation, they lose that meaning in the quantum walk
interpretation. Rather, the two components should be interpreted as the components of a state
with two chiralities.

3.2 Varopoulos-Carne bound and quantum fast-forwarding

A nice demonstration of this connection is the use of a particular identity for Chebyshev polynomials
in random walk theory on the one hand (also discussed in [Taol4]), and in quantum algorithms
design on the other hand. The identity is the following: for any self-adjoint contraction P it holds
that
P = Z Qn(k)T\k\(P)’ (9)
kEZ
where ¢, (k) is the probability that a random walk on the line, starting from the origin, is at
position k after n steps.
In random walk theory, this identity is used to prove the Varopoulos-Carne bound (see [Var85,
Car85] and a nice discussion in [LP17]). The bound states that for any pair of vertices z,y it holds
that

PM(z,y) < 2exp(—d(z,y)*/(2n)),
where d(z,y) is the shortest path distance between vertices x and y. The main idea of the bound
is to apply Hoeffding’s bound to the coefficients ¢, (k), showing that

Pir S k)T (P). (10)
|k|<O(y/n)

Now notice that [T}y (P)](x,y) = 0 if d(x,y) > k, and so P"(z,y) ~ 0 when d(z,y) > O(y/n).

In quantum walk algorithms, the identities (9) and (10) were used recently in a technique called
quantum fast-forwarding [AS19]. Combining the expression (8) for the quantum walk propagator
with the approximation (10), we see that

Z an (k) Ul ~
[k|<O(v/n)

where the x represent non-relevant entries. Through an additional quantum algorithmic technique
called “linear combination of unitaries” [CW12], it is possible to algorithmically implement a unitary
dilation of (11) (and hence of P™) while effectively only implementing O(y/n) quantum walk steps.
This explains the terminology “quantum fast-forwarding”.

P" %

Lol (1)




4 Quantum walks on lattices

The preceding discussion shows that we can understand quantum walks through the lense of Cheby-
shev polynomials. We demonstrate this connection by studying such Chebyshev polynomials for
the particular case of lattices. Specifically, we are interested in the dynamics

Un €0 _ Tn(P>€0
0 —\/I—PQUn_l(P)eo ’

where eg is the indicator on some vertex of the lattice. This corresponds to the discrete wave
equation with initial conditions u(0) = eg and v(0) = 0. Equivalently, it corresponds to an n-step
quantum walk starting from eg. We will be interested in the spreading behavior of the quantum
walk, and will focus on the u-component of the resulting state, i.e., the vector T),(P)eg. This vector
induces a (subnormalized) measure v on the lattice by setting v, = |[T, n(P)]O,:E|27 and this measure
will be the object of our study. Operationally, it corresponds to the probability of measuring the
quantum walk in a certain chirality at vertex z (see discussion at the end of Section 3.1).

4.1 Quantum walk on the line

On the infinite line, the T, (P) component of the quantum walk takes a particularly simple form.
Specifically, consider the line with set of vertices Z and commuting operators ()1 and Ql_l defined
by Qie; = exy1 and Qflez = e,_1, where for any x € Z, e, is the function on Z taking the value
1 at « and 0 elsewhere. The random walk transition matrix is P = (Q1 + Ql_l) /2, and the random
walk distribution [P"]o. after n steps essentially corresponds to a binomial distribution around 0
with standard deviation O(y/n). In contrast, if we use the formula T, ((z +2~1)/2) = (2" +277)/2
we can rewrite the Chebyshev polynomial T, (P) as

Q1+Q7"\  Qr+Qp"
2 N 2 ’

T, (P) =T, ( (12)
This implies that [1},(P)lo. = en(z)/2 + e—p(x)/2, and so the quantum walk shows two peaks
precisely at a distance n from the origin. These dynamics represent the ballistic nature of the
quantum walk dynamics, as opposed to the diffusive nature of the random walk dynamics. The
hope is that this improved spreading rate persists in more general graphs as well.

If instead of the simple random walk we consider the lazy random walk on the cycle, P; =
(I 4+ P)/2, there is no longer a simple expansion of T,,(Pr). Instead, we retrieve the fickle (but still
ballistic) behavior usually associated to the quantum walk on the line. The behaviors of P;' and
T, (Pr) are illustrated in Fig. 1.

4.2 Quantum walk on the lattice

As a more involved example, consider a random walk on the 2-dimensional lattice with vertices
V = {(x,y) € Z*} and commuting generators Ql,Ql_l,Qg,Qz_l defined by Qiezy = €y41, and
Q2es,y = €z y+1, and similarly for the inverses. If we set P = (Q1 —i—Qfl)/Q and Py = (Q2 +Q51)/2,
then the random walk transition matrix is given by

P+ P
—

In Fig. 2 we compare the measure induced by the random walk transition matrix P™ and that of
the Chebyshev polynomial 7;,(P).

P:
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Figure 1: (left) Probability measure induced by [P}']o,. for n = 50, corresponding to an n-step lazy
random walk on the line. (right) Probability measure induced by [T,,(Pp)]§ . for n = 50, associated
to an n-step quantum walk on the line. (left and right) Lines drawn continuously for clarity.

To get a handle on the operator T, (P), we will use the following expansion of a degree-n bivariate
Chebyshev polynomial into univariate degree-n Chebyshev polynomials:

X+Y
Tn< 5 >: > tnp T (X)T(Y), (13)
(pg)€[0.n]

for a set of real coefficients (anp.q)pqefon]- Since Tp,(P) = Tn((PL+ P2)/2) is a degree-n polynomial
in the commuting operators P; and P», we can use the same expansion to rewrite

P+ P
1 (P52) = X awmdne
(p,@)€[0,n]

- Z Qn,p,q <QZl7 +2Q1_p> (Qg 2Q5q> )

(p.a)€[0:n]

where we reused the fact (Eq. (12)) that T,,(P1) = (Q} + Q;”)/2. Now notice that

[T (P))0.0).(p.a) = P ol jal /2 PH1D),

where k(|p|, |q|) € {0, 1,2} denotes the number of nonzero entries among [p|, |¢|. We can hence lower
bound the probability for a quantum walk, starting from the origin (0,0), to reach a vertex (p, q)
by

2
(Ta(P) 0.0 | = @ ol /22D > a1 /16 (14)

(since k(p,q) < 2). These coefficients are fully determined by the Chebyshev expansion in (13),
and so the problem reduces to bounding these coefficients. More specifically, we will consider the
induced measure u, on [—1,1]? given by

2 pg ai,|p|,|q\5(p/"»Q/n)

2
a
2. % pl,lg]

P =

where 8,/ q/n) is the Dirac mass at (p/n,q/n) € [0,1]*>. As our main technical contribution, we
prove a weak limit theorem on .



1073

" L
20 - a 20 - a
2
of - 1o ]
1
—20 | 1 =20 .
| "
| | | | | | | | | | | | | | O
-30 =20 =10 O 10 20 30 -30 =20 =10 O 10 20 30

Figure 2: (left) Probability measure induced by [P"]o. for n = 50, corresponding to an n-step
random walk on the lattice. (right) Probability measure induced by [T,,(P)]§ . for n = 50, associated

to an n-step quantum walk on the lattice.

Theorem 1. There erists a continuous measure yu on [—1,1]% such that i, — p.

As the most importance consequence of this weak limit, it proves that the quantum walk spreads
ballistically on the lattice — after n steps, the expected distance from the origin is Q(n). Using very
different machinery, similar conclusions were found in earlier work [MBSS02, BBBP11].

5 Proof of weak convergence on the lattice

Our goal is to investigate the weak convergence for n large of i, toward a law x on [0, 1]2. To do
s0, it will be more convenient to consider the measure on [0, 1]? given by

o 2
Tno = Z U p,qO(p/m.a/m)
p,g€[0,n]
We will show there exists a probability measure v # 0 on [0, 1]? such that for large n, 7, weakly

converges toward . Since for any n € Z,

_n

([0, 1]%)

we deduce the weak convergence of y,, toward u = v/v([0,1]?) = 7.

The method will consist in showing the convergence of the (bivariate) even moments of ,, toward
those of v. More precisely, for any K, L € Z,, consider the polynomial function

Hn =

er.L 0,123 (z,y) = 22y*E

We are to find a measure v # 0 on [0, 1]? such that for any K, L € Z,
lim lerr] = 7ler.Ll
n—,oo

Taking into account the Stone-Weierstrass theorem (applied on the compact set [0,1]? with
respect to the algebra generated by the ¢k 1, for K,L € 7Z.), this convergence is sufficient to
deduce the weak convergence of ~, toward ~.

The proof is split in three main parts corresponding to the following subsections.



5.1 Second moment as an integral

We start by approximating the second moments of p, by some simpler integral. Consider the

function
cos(x) 4 cos(y)

h(z,y) =T, < :

>_ Z n,p,q cOs(pz) cos(qy), (15)

p,q€[0,n]

where the last equality follows from Eq. (13) and the definition of the Chebyshev polynomials. We
show the following approximation.

Proposition 1. We have

A |\ lerr] = 5ty [07%}2( 2 Oy (:v,y)) zdy| = 0.
The proof consist of the two following results.
Lemma 1. We have
! KoL 2 1 2 9K 2L
7['277,2(K+L)/(8x 8y h(%?/)) dxdy = m Z A pgP™ 4 wK(p)wL(q)

p,q€[0,n]
= lek Lwi(n) ® wr(n-)]

where

2 ,ifkiseven andr =0
VkeZi,Vrely, wi(r) = 0 ,ifkisoddandr =0
1 , otherwise

Proof. We rewrite

Ofajh(aﬁ,y) = Z an,p,quqLﬁK(p‘T)fL(qy) (16)
p,q€[0,n]

where &.(z) denotes the r-th derivative cos(”)(z). Now recall the orthogonality relations:

| g2 1 ,if p=9p' =0 and r = 0[2]
Vep €y, o | &Gpe)(e)de = ¢ 12 L ifp=p'=1
0 0 , otherwise

Taking the square of (16) and integrating, we get
1

(2m)? / (af oy h(x,y))Qda;dy

- Z n,p g™ " an g (0" (¢)"
p,q:p',q'€[0,n]

= D) upgny g )" (d)" (;ﬂ / €k (pz)éx (p'z) dw) (;ﬂ / FACHISACEN dy)

p,q,0’,q'€[0,n]

= Y &, 275 <217T / € (p) dw) <217T / £1(ay) dy)

p,q€[0,n]

(271T)2 / Ex (p2)En(qy)éx (P'2)EL(q'y) dady



2 2K 2L

1
Z Upp,gP 4 wK(p)wL(q):ZnQ(KJrL)
p,q€[0,n]

Yol Lwi (n) ® wr(n-)].

| =

We deduce:
Corollary 1. We have for any n € Z,,
> Gnpg S 4
p,q€[0,n]

Proof. Considering the case K = L = 0 in Lemma 1, we get

1 cos(z) + cos(y)
o m (e ddy = Y wopunlg)ad,g
[0,2] p.a€fo.n]
2
=RED D
p,q€[0,n]

To conclude to the announced bound, note that the L.h.s. is bounded above by 4, since T),(z) takes
its values in [—1, 1] for any z € [—1,1].
[

The next step enables to end the proof of Proposition 1.

Lemma 2. We have

lim |y, ok Lwk(n) @ wp(n-)] —wlekLll = 0

n—oo

Proof. To prove the above convergence, observe that for any given K, L € Z,, the quantity

p 2k q 2L
il () o ws)] < vlonall = | ¥ a2y (2) () kst -1

n n
DP,qEL+

converges to zero for large n € N.
Let us consider the term

p** ¢ (wi (p)wr(g) — 1)

It vanishes if either p > 1and ¢ > 1orp=0and K > 1or ¢ =0 and L > 1. Thus it can be non
zero only in the two following (non-disjoint) alternatives:

e If p=0 and K = 0, then its value is

¢t ifg>1
Puwr(q)—1) = 0 ,ifg=0and L>1
3 ,ifg=0and L =0
e If g =0 and L = 0, then its value is
prifp>1
K Quk(p)—1) = 0 ,ifp=0and K >1
3 yifp=0and K =0

10



It follows that for any n € N,

IVnlek,Lwr(n) @ wr(n-)] = yaler L]

2L 2K
q p

= 3ap 0oL (K, L)+ Y _apo, <n) Loy (K) + ) an o <n> Ty (L)

qeN peEN

p 2K p 2L

= 3ap o0l (K, L)+ Y ap 0 <<n> Ty (L) + <n> Ty (K )>

qeN
< 3a700+2) a0

qgeN

< 3 Z ai,pﬂ

PELy

where the the symmetry in (p, q) of a, ,, was taken in account in the second equality).
here the the sy try i fanpgq taken i t in th d lity
Thus it is sufficient to show that

i Y =0 )
PEL

From the definition of the coefficients (an p¢)nez. pgefo,n] We get for any given n € Z, and
z € [0, 7],

1 cos(x) + cos 1
5 T, <()2(y)> dy = Z Qn.pg cos(px)Q/ cos(qy) dy
. [07271-} p,qE[[O,nﬂ " [0’271-]
1
= 5 Z Qn,p,0 COS(px)
pE[[O,TL]]

Taking the square and integrating, we get

2
1 1 cos(x) + cos(y) a2 1 9
o — T, ———~ ) d de = it il

o (271' /[072,,} ( 2 v e § Ty 2 o

so that (17) amounts to

2
lim — / L / T, (COS(IHCOS(Q)) dy| dz = 0
n=00 27 Jio,2x] \ 27 Jj0,27] 2

or, by symmetry, to

2
lim / T, <Cos(x)—|—cos(y)> dy| dz2 = 0 (18)
=% S0, \J10.71 2

Fix z € [0,7]. To investigate the integral f[o ] T, (M) dy we consider the change of

variable y — 0, (y) where 6,(y) is the unique solution belonging to [0, 7] of the equation

cos(x) 4 cos(y)

cos(Br(y) =

11



To simplify notations, from now on we remove the index z. The mapping 6 is a bijection from

[0, 7] to
I = [arccos <Cos(x2)+1> , ATCCOS <COS($2>_1>]

1
2

and we have

Vye(Om), [0y

sin(y) ‘
sin(6(y))

The change of variable formula implies that for any measurable function f € L!(¢;) (where £;
is the restriction of the Lebesgue measure on I),

1
5| sewwia = [ e (19)
[0,7]
Taking into account that for y € [0, 7], we have
sin(y)] = /1 —cos?(y)
— V1= Ceos(8()) — cos(@))?

we can write (19) as

1 \/1— 2cos(f(y)) — cos(z))? B N de
2 Jom T (o) W= [

Define the function g on I via

\/1 — (2cos(z) — cos(x))?

| Sm(Z)!

Vzel, 9(z) f(2)

to obtain

1 B | sin(z)] 3
2/[0’ﬂg(0(y))dy B / (2) V1= (2cos(z —cos(:z:))Qd

equality which is valid as soon as go 6 € L (410,7)-
In particular, taking g = T,,, which satisfies this condition, we get

_ sin2) ]
/[0,7r] Twhdy = 2/ \/1 — (2cos(z) — cos(z))? I

namely

/[oﬂ i <W> W= 2/COS i 2!(211( )—‘COS(m))Q o

Considering this identity with n = 0, we get that the mapping

|sin(z)]
V1 — (2cos(z) — cos(x))?

12

I>z —




belongs to IL!(¢;). Thus we can apply Riemann-Lebesgue theorem to deduce

dz = 0

| [sin(2)
lim cos(nz
o ( )\/1 — (2cos(z) — cos(z))?

and by consequence

lim T, (COS(:C) +C°S(y)> dy = 0
n—oo [O,ﬂ'] 2

It follows that (18) is a consequence of the dominated convergence theorem.

In addition, we have

VneZ,Vaellmn], < 7

5.2 Negligible boundary region

For technical reasons that appear later, we wish to limit the integral in Proposition 1 to a subdomain
A C [0,27]?, which for any € € (0,1) is defined by
A= {@ ey s [T <)

This is justified since we have

lim lim = 0.

e—=04 n—oo

’Yn[W{,L} -

1 K qL 2
T ARTD) /A (0K 0yn(e,y))" drdy

This is a consequence of the following lemma, which shows that the contribution of the boundary
region [0, 27]%\ A is negligible.
Lemma 3. Fore € (0,1), denote B. = [0,27)?\ A.. We have

2

. 1 K L _
EEI&E};%)TLQ(KW/E pqez[[on]]an,p,qp q €k (pr)ér(qy) | dxdy = 0

Proof. Note that B. C BZ U B with

BZ = {(z,y) €[0,27)* : cos(z) < —1 4 2¢, cos(y) < —1 + 2¢}
B = {(z,y) €[0,27)* : cos(z) > 1 — 2¢, cos(y) > 1 — 2¢}
We will prove the statement for the BX region, since the proof for B is analogous.

Define n as the unique solution in (0, 7) of cos(n) = 1 — 2¢, we have that 1 goes to 04 when ¢
goes to 04, and we can rewrite

2

D anpap ¢ x(pr)ér(qy) | dudy

+
B \p.gelon]
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2

B /[ 12 Z a"’pﬂquLgK(p:E)fL(qy) dxdy
—nm

p,q€[0,n]

n n
= > npglngy P d" (@) ()" / Ex(pr)éx (p'x) d / &nlqy))én(d'y) dy
-n -n

p,4,p",q'€[0,n]

Let us compute the integrals of the r.h.s. When K is even, we have
n n
/ Ex(pr)éx(p'z)de = 2 / cos(px) cos(p'x) dx
_y 0

= /077 cos((p + p')z) + cos((p — p')z) dx

_sin((p+p)n)  sin((p —p')n)
p+p p—p

with the usual convention that % = n when p —p’ = 0. When K is odd, a similar

computation shows that

/WSK@wKK@%ﬁm _ sin((p+p)n) _ sin((p —p)n)
-n

p+p p—p

It follows that the main integral is a sum of terms of the form

3 i%pwmmm@ﬁ@quLwﬂpiﬂMHm«mtwm
e pEyp q+q
p.a.p' ¢ €[0,n]
for different choices of the signs. We consider the case with all minus signs, as the other cases follow
by essentially the same argument. By a triangle inequality and the Cauchy-Schwarz inequality we
can bound the sum by

E, Qn,p,q Gnp q

g, ,q’

ﬁM@p%ﬂmﬂqJMW
p—7 q—dq

IN

> a2 <wﬁ@p%ﬂﬁqumﬂ)
“« n,p,q p — pl q — q/
p,q;p ,q

§ja%w«gm@—mmmmw—wm)2

p—p q—q

p,¢,p",q’

_ Y a2 <$M@—ﬂMHm«m—wm>2

[4)
n,p,q p— p/ q— q/

4,0 ,q’
9 sin(rn) sin(sn) 2
Dtpa D\

p,q r,SEL

IA

- X, (X (MY)

rez
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2

. 2
sin(rn)
Sy |23 ()
P.q

reN
. 2 2
<oy ()
reN r

where we used Corollary 1.
Dominated convergence now implies that

sin(rn) 2
lim < ) = 0,
r

—0
U reN

which proves the claimed convergence.

5.3 Simplifying the integral
2
We will now approximate the integral [ AL (85 (‘3£h(m, y)) dzdy by a (arguably) simpler integral.

5.3.1 First simplification
We use Faa di Bruno’s formula to rewrite 0% h(z,y) = 0K T, ((cos(x) + cos(y))/2) as

K! cos(x) 4 cos(y) Ee(z)\™
(3omy) ((Z2PAE) T EOSLT)
Z mllmgl-'-mK!Tn < 2 > H ( 2k! > 7

mi1+2ma+-+Kmg=K ke[K]

where the sum is over all nonnegative integers (mi, ..., mg) satisfying the constraint m; + 2msg +
-+ Kmyg = K. Applying Faa di Bruno’s formula again we can rewrite Gfath(:c, y) as

K! L!
Z mllmzl--'mK!nllng!---nL!

mq+2mo+--+Kmp=K
ny+2ng+---+Lny=L

T(Smersn) <COS<$)2+“>S(?J)> I <§';§j)>mk 11 <&2<;{)>m (20)

ke[K] le[L]

How terrible this expression may seem, as n — oo the final integral will be dominated by a single
term in the summand. To see this, we use the following bound.

Lemma 4. For any € € (0,1) and r € N, there exists a constant C(e,r) > 0 such that
VneZy,Voel[-1+e1—¢], T ()| < Cle,r)n”

Proof. Recall that T,,(x) = cos(narccos(z)) for all z € [—1,1]. The desired result follows from the

fact that any given derivative of arccos is bounded on [-1 +¢,1 — ¢].
|
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It follows that generically in (20), as n — oo, the main term corresponds to m; = K, n; = L,
and all other coefficients equal to zero. We can prove the following lemma, where we define the
integral

Tep(en) = m /A <T7(1K+L) <coS(£L‘)—;-coS(y)) <—Si;1($)>K<_Si2n(y)>L>2dxdy.

Lemma 5. For any € > 0 we have

. 1 2
lim WK*L)/A (350%(90,9)) dedy — I (e,n) = 0.

n—oo Tr

Proof. Using the expression (20) and expanding the square, up to some factor not depending on n,
we end up with products of the form

(S me+Sne) (COS(:B) ;L cos(y)> S <Cos(ﬂc) ;cos(y)) (1)

where S0 tmy = K tm}, = K and Y1, fng = S, ¢n}, = L. According to Lemma 4, up to a
constant depending on ¢, K and L, the quantity (21) is bounded independently for (x,y) € A, by

TLZ me+my+y ng+n

which is negligible with respect to n25+L) unless the only nonzero coefficients are m; = m) =K
and n; = n] = L. The only potentially non-vanishing term in the integral is hence

e (5 (5 ()

and this leads to the announced convergence.

5.3.2 Second simplification

We do a second simplification by approximating the integral I 1,(¢,n). Applying Faa di Bruno’s
formula to the composition of 7}, with cosine, we get for any 6 € [0, 7],

X T, (cos()) = Z K+ L) it L) (o5 (9)) H <§k(9)>mk

mllmg!---mK L! k!
mi42maet (K+Lymg =K+L + ke[K+L]

By a similar argument as in Lemma 5, we have that when 0 in (0,7) and K, L € Z, are fixed then

lim |0~ 9EHLT, (cos(0)) — TEEHE) (cos(0)) (fsm(e))KH‘ = 0 (22)

n
n—oo

Alternatively, taking into account that 7;,(cos(#)) = cos(n#), we have that
n_(K+L)8£(+LTn(COS(0)) = n_(KH)@aKJrL cos(nf) = Ex+1.(nb)

Using some uniformity in the behavior (22) with respect to 6 away from 0 and 7, as in the proof
of Lemma 5, we deduce that for any fixed ¢ € (0, 1),

lim sin?X (z) sin?! (y) dedy = 0

n—oo A
£

2
(e~ v a5 ot
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with 6(x,y) the unique solution in [0, 7] of

cos(f(x,y)) = cos(ac)—zi—cos(y)' (23)

In particular we have

lim limsup|Ik (e,n) — Jx r(e,n)] = 0
e=0+ nooco

with
sin(x 2K sin 2L
sinw((:c,)y») <sm<e<(xy,)y>>> ey

_ 4 2 sin(x) 2K sin(y) 2L
= kD) /AEO[O,W]Q £K+L(n9(:n,y)) <sin(9($,y))) (sin(Q(w,y))> dwdy

where symmetries z — —z and y — —y were taken into account.
Combining all of the above claims, we get that

1
JrL(e,n) = 77222(I(+L)/A§%<+L(ng(x’y))<

Jlim T |aliercr] = Jicn(e,n)] = 0.

5.4 Integral as a second moment

In the final part of the proof we show that, as n — oo, the quantity Jg 1 (e,n) approximates the
second moment of some continuous measure . More specifically, we prove the following lemma.

Lemma 6. It holds that
. 2K . 2L
lim lim sup JK,L(Ean) = 1 / <Sll’1(l‘)> <SlI1(y)> dxdy.
[0,7]2 ) )

e=01  msoo w2 sin(f(z,y sin(f(z,y

It follows that we can define the measure v as the image of the measure %dmdy on [0,7]? by
the mapping ¥ defined by

LS @) o (siniiei(;)y»’ sins<ien<(xy,)y>>) ' 24)

In particular it appears that « is a probability measure, so that p = ~, as announced previously.
Combining the previous arguments, we see that lim, o vn[0K.1] = V[¢K L], as wanted.

Proof of Lemma 6

Let us rewrite the integral Jg 1,(¢,n) using the change of variables
F 0,753 (z,9) — (z,0(z,y)).
This is a bijection on its image, which is the set
Q = {(x,0) €[0,7)% : 2cos(f) — cos(x) € [-1,1]}. (25)

From the change of variables formula (see Lemma 7 at the end of this proof), we have that for any
measurable f : @ — R,

2sin(0)
V1= (2cos(f) — cos(x))?

dzdb. (26)

[, S E sy = [ 10)
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We can write the integral Jg r,(¢,n) in this form by noting that

7T222(K+L)JK,L (6, n)

B 9 0l sin(x) 2K (1—c082(y))L
- /|cos<e(m,y))§_ff<+“ o=9)) <sm<e<w,y>>> 7 (02, ))

_ 2 (% sin(z) 2K (1 — (2cos(0(z,y)) — cos(:c))2)L
- /| oo gy KO ) <sin<9<a:,y>>> L (0(z, )

= / fn(F(x,y)) dzdy
[0,7]2

dxdy

dxdy

where

Sin(g;))QK (1 — (2cos(f) — cos(:c))2)L

v ($,9) € Q, fn(xve) = ]1[0,1—5}(‘ COS(Q)’)&%(_FL(RH) <sin((9) Sin2L(9)

The change of variables (26) implies

2sin(0)

dxdf
)\/1 — (2cos(f) — cos(x))?

W222(K+L)JK’L(€’n) _ /fn(%g
0
Note that

2

, Iieos(22) it p = (2]
Vre Z+, Vze [Oa 7T], gr (z) e 1—cos(2z) i
— L ifr=1[2]

Consider the function g defined on € via

sin(w)>2K (1 — (2cos(f) — cos(x))Q)L 2sin(6)
sin(6) sin?F(6) V1= (2cos(f) — cos(x))?

Y (z,0) € Q, g(z,0) = (
so that

27T222(K+L)JK,L(E,TL) = /

A (1 + (—1)EFL COS(2n9)) g(x,0)1 1 (cos(0)) dxdd

For ¢ € (0,1) still fixed, the mapping Q > (z,0) — g(z,0)1jy;_.(cos(f)) is integrable with
respect to the Lebesgue measure on 2. We can apply the Riemann-Lebesgue theorem to get

o292 K+L) lim Jx,z(e,n) = / 9(z,0) L1 (cos(9)) dzdo,
n—oo 0
and by monotone convergence we have

lim [ g(z,0)1,1—(cos(0)) dzdd = /g(x,ﬁ)dacd&.
Q

e—04 0

Finally, note that the previous change of variable computations can be reversed, and yields

R O = <sinsiien<§i)y>>)% <smskien<(xy,)y>>>u e

This proves Lemma 6.

The following result gives the details for the change of variables formula used in Formula (26).
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Lemma 7. We have for any measurable f : Q@ — R,

2sin(0)
F )) dzd dzdf.
/[077@2 fF (e, Y / fle \/1 — (2cos(0) — cos(z))?

Proof. In addition to the set 2 defined in (25), for given 6 € [0, 7], denote

Qg = {ze0,n]: (z,0) €}

Thus for any measurable and non-negative mapping g : 2 — Ry, we have by the change of
variables formula

/ g(F(z,y))|det(Jac(F))|(z,y) dedy = /g(az,Q) dxdf (27)
[0,7]? Q

where Jac(F') is the Jacobian matrix associated to F'.

We have
Jac(F(z,y)) = ((1) gﬁg:%)

Differentiating (23) with respect to y, we get, when 0(x,y) & {0, 7} (i.e. (z,y) & {(0,0), (m,7)}),
B sin(y)
N E N

so that

|det(Jac(F))[(z,y) = [0y0(z,y)|
|sin(y)|
2| sin(0(z,y))|
1 — cos?(y)
25in(0(r, )
V1= (2cos(0(x,y)) — cos(z))?
ZSin(H(:c,y))

Formula (27) rewrites

\/1— 2cos(0(z,y)) — cos(x))? . B ) )
/[OwPQ( 28111(9(96 y)) drdy = /Qg( ,0) dzdf

or

2sin(0)
F ) dzd dxdf
/[07,,]2 f(F @, Y / Us \/1 — (2 cos(#) — cos(z))?

where g was replaced by the non-negative and measurable mapping f given by

\/1 — (2cos(f) — cos(z))?

vV (2,0) € @\ {(0,0), (m, m)}, f(z,0) = 25111(9)
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Remark 1. The fact that vy is a probability implies (in fact, is equivalent to) the convergence

lim Z aip’q = (1) =1

n—oo
p,q€[0,n]

(compare with Corollary 1), which also amounts to

lim E a? =1
oo n,D,q
p,q€[1,n]

according to (17).

6 Discussion and future work

We discussed how quantum walks on graphs can be interpreted as solutions of a discrete wave
equation on the corresponding graph. This naturally gives rise to a description of the quantum
walk dynamics using Chebyshev polynomials. We then used the analysis of Chebyshev polynomials
to prove a weak limit on the spreading behavior of quantum walks on lattices.

The main open direction of this work is to use Chebyshev polynomials for studying quantum
walk spreading and mixing on more general graphs. The analysis that we did for the lattice seems to
naturally extend to lattices of higher dimensions, or Cayley graphs of Abelian groups more generally.
An interesting example out of this category, while still bearing some similarity with the lattice, is
the Cayley graph of the Heisenberg group (as studied e.g. in [BDH'17]). Preliminary simulations
indicate a faster spreading rate of quantum walks, yet we are not aware of a proof of this.

Exploring the connection with the wave equation on graphs by Friedman and Tillich [FT04] is
another open direction. These authors associate to a Markov generator Ag (so that I — Ag is a
transition matrix, where [ is the identity matrix) on a discrete graph G a diffusion generator Ag
on the geometric realization G of GG, where the edges have been replaced by segments of length
1 on which usual one-dimensional Laplacian operators are acting. The domain of Ag consists of
functions satisfying some conditions at the vertices. Friedman and Tillich then relate the eigenvalues
of Ag and Ag, a feature which enables them to interpret Ty (I — A¢g) as an operator related to the
evolution of the wave equation associated to Ag (see their Theorem 4.9). We leave it as an open
question whether this interpretation of the action of the Chebyshev polynomials on a transition
matrix can be used to deduce our weak convergence result.
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