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ABSTRACT

Unlike for other brain tumors, there has been little work on the automatic segmentation of primary central
nervous system (CNS) lymphomas. This is a challenging task due the highly variable pattern of the tumor
and its boundaries. In this work, we propose a new loss function that controls border irregularity for deep
learning-based automatic segmentation of primary CNS lymphomas. We introduce a border irregularity loss
which is based on the comparison of the segmentation and it smoothed version. The border irregularity loss is
combined with a previously proposed topological loss to better control the different connected components. The
approach is general and can be used with any segmentation network. We studied a population of 99 patients
with primary CNS lymphoma. 40 patients were isolated from the very beginning and formed the independent
test set. The segmentations were performed on post-contrast T1-weighted MRI. The MRI were acquired in
clinical routine and were highly heterogeneous. The proposed approach substantially outperformed the baseline
across the various evaluation metrics (by 6 percent points of Dice, 40mm of Hausdorff distance and 6mm of
mean average surface distance). However, the overall performance was moderate, highlighting that automatic
segmentation of primary CNS lymphomas is a difficult task, especially when dealing with clinical routine MRI.
The code is publicly available here: https://github.com/rosanajurdi/LymphSeg.
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1. INTRODUCTION

Primary central nervous system (CNS) lymphoma (PCNSL) is a rare and aggressive type of cancer that primarily
affects the brain and spinal cord. It accounts for approximately 4% of newly diagnosed primary CNS tumors
and 1% of all non-Hodgkin lymphomas (NHL). Magnetic resonance imaging (MRI) suggests its diagnosis, is
needed for tumor biopsy planification, and has a pivotal role in PCNSL post-treatment assessment. Precise
tumor quantification is highly desirable, and one first needed step to promote better patient care. It could aid
in pre-surgical planning and in objective tumor response evaluation.1 Manual segmentation is time-consuming
and is partly subjective.

A large number of methods have been proposed for automated segmentation of brain tumors.2–11 However,
while many papers have dealt with other types of tumors such as gliomas,12 only a limited number of studies
have focused on brain lymphomas. Some works focused on classification13,14 or survival analysis.15 Automatic
segmentation of PCNSL from MRI data has been performed in a few publications.16,17 However, these works
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were not specific to lymphoma and included also gliomas for training or validation. Moreover, they did not
report distance-based metrics for evaluation which is critical when dealing with lymphomas which have complex
boundaries and multiple components.

PCNSL has an extremely heterogenous MRI appearance. Lesions can be single or multiple. Several mor-
phologies, topographies, and mass effect patterns can (co)exist. As a result, tumor size, shape and boundary can
considerably vary between patients.

These variations pose significant challenges in accurately segmenting lymphomas. Convolutional neural net-
work (CNN)-based segmentation approaches are widely used but often produce errors near boundaries. To
address this issue, prior knowledge integration methods at the level of the loss function have been explored to
enhance the plausibility of automatic segmentations.18

In this paper, we propose a novel prior-based loss that integrates border irregularity attributes of the tumor in
order to improve segmentation performance. The proposed method was trained and validated for segmentation
of PCNSL on post-contrast T1-weighted MR images using a dataset of 99 patients.

The rest of the paper is organized as follows. Section 2 describes the dataset and pre-processing. In Section 3,
we introduce the proposed loss. Section 4 is devoted to experiments and results. The discussion is provided in
Section 5.

2. MATERIALS

2.1 Participants and MRI data

We studied 118 patients with primary CNS lymphoma. The study was approved by the Institutional Ethical
Committee (Pitié Salpêtrière Hospital, Ile-de-France VI, n° DC-2009-957) and by the French Data Protection
Authority (CNIL, Commission Nationale de l’Informatique et des Libertés, DR 2013-279). According to French
regulation, consent was waived as these images were acquired as part of the routine clinical care of the patients.
Each patient had a T1-weighted MRI after injection of gadolinium. The images were acquired as part of clinical
routine and were thus not harmonized. They were acquired on different scanners and at different field strengths
(57 at 3T, 54 at 1.5T, and 7 at 1T). The MRI scan was either 3D or 2D. Manual segmentations were performed
by a trained radiologist (L.N.) who also rated the difficulty of the segmentation process. The segmentation was
considered difficult when the lymphoma tissue was less extended, when the lesions boundary were difficult to
visualize, and/or, in rarer cases, when there were hemorrhagic remnants that are spontaneously T1 hyperintense
and that can therefore mimic tumors. Furthermore, the radiologist noted whether the images presented substan-
tial artifacts. This led to partition the dataset into four subsets: D1, D2, D3, D4 according to these two criteria
(D1: easy, no artifact; D2: easy, artifacts; D3: difficult, no artifact; D4: difficult, artifacts).

We applied the following preprocessing. All images were converted from DICOM to NIfTI using dicom2niix19∗

and organized according to the Brain Imaging Data Structure (BIDS) standard.20 Using FSL FLIRT,21 we
linearly registered each image to the MNI-152 template which is 1mm isotropic and of dimensions 181 × 217 ×
181.22,23 We applied a brain mask in order to remove unnecessary information like the skull, nose, and ears.
Pydra was used to implement the preprocessing steps.24 We visually checked the preprocessing results and found
that preprocessing failed for 19 patients (9 in D1, 3 in D2, 3 in D3 and 4 in D4). These were excluded from the
study. The characteristics of the studied patients and the corresponding subsets are presented in Table 1.

2.2 Splits

From D1 and D3, 26 participants (30%) were isolated for testing (21 participants from D1, 5 from D3). The
remainder of D1 and D3 were separated into training (80% of the remaining participants) and validation sets
(20%). This resulted in 47 participants for training (39 from D1, 8 from D3) and 12 for validation (10 from D1,
2 from D3). D2 and D4 were used only for testing (n = 14).

∗https://github.com/rordenlab/dcm2niix
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Subset Total Sex Age 3D acquisition 1T 1.5T 3T
D1 70 40 F (57.14%) 61.64± 20.28 50 3 36 31
D2 10 4 F (40.00%) 52.60± 29.21 9 - 1 9
D3 15 7 F (46.66%) 63.20± 20.81 11 1 8 6
D4 4 2 F (66.66%) 47.75± 32.37 3 - 2 2
Total 99 53 F (54.08%) 60.40± 21.84 73 4 47 48

Table 1. Characteristics of the study population. Age (in years) is reported as mean±standard-deviation. The age was
missing for 8 patients (4 of them were part of D1, 2 of D2, 1 of D3, and 1 of D4). The sex was missing for one patient from
D4. The table reports the number of patients for which a 3D acquisition was available (the others had a 2D acquisition).
1T, 1.5T or 3T indicates the MRI magnetic field strength.

3. PROPOSED METHOD

3.1 Proposed border irregularity loss

In order to include it in a loss function, one needs to be able to quantify the border irregularity of an object. One
approach is to smooth the segmentation map, via a Gaussian filter of a kernel size s and standard deviation σ, until
it becomes more uniform in shape, and then compare the smoothed segmentation and the original segmentation.25

A segmentation with a greater degree of irregularity would require stronger smoothing, resulting in a higher index
of border irregularity. Conversely, a smoother segmentation would yield a lower index of irregularity. Applying
a Gaussian filter with to a segmentation map is a well-established technique in computer vision for achieving
smoothness and extracting the global structure of a segmentation map without generating new irregularities,

indentations, or protrusions. The irregularity index is defined as BI = |A∗∪A|−|A∗∩A|
|A∗| = |A∗|+|A|−2|A∗∩A|

|A∗|

where A∗ and A are the smoothed and non-smoothed segmentation maps. The border irregularity index
represents the level of dissimilarity between the smoothed and non-smoothed segmentations. Another way to
express dissimilarity between two segmentations is via the complement of the Dice coefficient. Specifically, the
Dice coefficient can be used to derive a border irregularity index as Ib = 1− 2 A∗∩A

|A∗|+|A| .

If in BI, we normalize by |A + A∗| instead of |A∗|, it is equivalent to Ib. In this paper, we will use Ib
as a measure of border irregularity at the loss function level, since it leads to a direct implementation of a
differentiable and smooth gradient loss function. We optimize the difference between the ground-truth border
irregularity index Ib and the predicted border irregularity index Îb. The impact of the smoothing procedure
on the segmentation is determined by two factors: the smoothing level (σ) and the border irregularity. When
dealing with a segmentation map that exhibits severe irregularity, a more intense smoothing is needed, leading
to a higher σ value, and conversely. Conversely, a smoother segmentation would result in a lower σ measure of
irregularity. In this work, the smoothing maps for the ground-truth segmentations are obtained statically prior
to the training process and fed to the framework in order to compute the border irregularity of the prediction
maps.

The process can be summarized as follows: 1) irregularities are gradually smoothed out in a systematic
manner by applying a variable σ. Smaller irregularities are first eliminated, followed by the larger ones. As some
indentations or protrusions are smoothed, they may reveal the presence of a larger irregularity in their respective
locations. This larger irregularity is considered global irregularity, while the smaller ones are regarded as ”local”
irregularities. Consequently, a hierarchical structure of irregularities is established given varying σ values.

3.2 Segmentation smoothing module

Implementation of the smoothing module was carried out using a Gaussian kernel of size k = {5, 10} and a
standard deviation of σ. A variable standard deviation σ = 2x for x ∈ {0, 1, 2, 3, ...10} was iteratively applied.
The smoothed segmentation map is obtained when the value obtained for Ib saturates reaching a fixed value
over two iterations. This means that the smoothing process has reached a stable state, and further iterations
may not improve the result. The stopping conditions ensure that the smoothing process is performed until a
desirable outcome is achieved or until further iterations do not significantly affect the result. They help control
the iterations and prevent unnecessary computations, improving the efficiency of the smoothing process.



3.3 Model and implementation details

We zero-padded the data to a size of (184, 220, 184).26 The MRI scan intensities were normalized between
0 and 1. The border irregularity loss was either used in conjunction with the Dice loss only (corresponding
results are denoted as BIL) or in combination with our previously proposed topological loss27 and the Dice loss
(results denoted as BIL-Topo). The proposed approaches were compared to a baseline which used the Dice loss
(corresponding results are denoted as Baseline). Each 3D volume processed as a stack of independent 2D images.
The network architecture was a 2D U-net28 which architecture has been used in previous publications.29,30

The architecture is a 3-stage structure composed of convolutional, de-convolutional blocks, bottleneck and
skip connections. The encoder part is composed of an ensemble of convolutional and batch normalization layers,
whereas the decoder part is composed of 2 consecutive convolutional blocks and an upsampling layer in each of
the 3 stages. The bottleneck is composed of 2 convolutional blocks separated by a residual block.31

The optimizer was Adam and the learning rate was 0.001. The learning rate was halved if the validation
performances did not improve over 20 epochs as proposed by.32 We used batches of 8.

At inference, we predict for each slice independently and then stack the slices belonging to the same patient
to form a 3D prediction.

Subset Method Dice HD MASD
D1+D3 BIL-Topo 64.97 [56.23, 73.08] 20.15 [13.61, 27.77]∗ 4.07 [2.37, 6.77]*
+D2+D4 BIL 63.99 [56.68, 70.85] 61.99 [53.12, 70.72] 10.39 [8.26, 12.72]
(n = 40) Baseline 58.63 [50.83, 66.19] 57.28 [47.05, 67.99] 10.41 [7.99, 13.08]
D1 BIL-Topo 68.0 [58.42, 77.02] 19.86 [10.41, 31.98]* 2.81 [1.99, 3.81]*
(n = 21) BIL 67.85 [60.22, 75.15] 64.12 [50.5, 77.2] 10.53 [7.54, 13.93]

Baseline 60.37 [52.24, 68.44] 61.32 [44.7, 77.77] 11.68 [7.96, 15.91]
D2 BIL-Topo 80.44 [69.15, 89.16] 8.32 [4.89, 11.97]* 1.33 [0.78, 1.99]*
(n = 10) BIL 75.7 [65.99, 84.6] 53.23 [42.31, 64.88] 7.47 [4.69, 11.21]

Baseline 72.86 [57.65, 85.34] 46.51 [34.46, 58.58] 6.16 [3.38, 10.59]
D3 BIL-Topo 28.57 [9.94, 47.19] 29.93 [16.75, 44.58] 6.61 [4.07, 9.0]
(n = 5) BIL 36.99 [18.76, 52.41] 54.97 [29.65, 78.28] 11.56 [4.74, 18.38]

Baseline 27.96 [9.46, 44.61] 42.1 [24.54, 57.5] 11.16 [5.11, 17.2]
D4 BIL-Topo 55.9 [19.03, 84.38] 39.06 [15.49, 61.27]* 14.41 [1.88, 36.32]
(n = 4) BIL 48.21 [21.25, 75.16] 81.44 [60.44, 104.64] 15.42 [12.8, 17.15]

Baseline 52.23 [24.46, 76.14] 81.98 [68.06, 106.17] 13.39 [9.4, 17.37]

Table 2. Results on the whole test set and separately for D1, D2, D3 and D4 test sets. Results are presented as mean
and confidence interval (computing using bootstrapping with 15,000 resamplings). D1+D2+D3+D4 refers to the union
of the test sets of D1 and D3 together with D2 and D4. HD: 95% 3D Hausdorff distance. MASD: mean average surface
distance. n is the number of samples. Best result in each case is in bold. ∗ indicates that the improvement over the
baseline is statistically significant.

4. EXPERIMENTS AND RESULTS

4.1 Evaluation framework

We chose the following performance metrics, based on the recommendations of Reinke et al,33 the 3D Dice
coefficient, the 95% 3D Hausdorf distance, and the mean average surface distance (MASD)†. The results are
reported as the mean values along with their corresponding confidence intervals, which were computed using
bootstrapping with 15,000 resamplings.

Since the dataset is constituted of 3D and 2D MRI scans, we report the mean and the 95 % confidence
interval obtained via bootstrapping via 15000 resamples for each of the 2D and 3D patients both combined and
separately.

†Performance metrics were computed using this code: https://github.com/deepmind/surface-distance

https://github.com/deepmind/surface-distance
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Figure 1. Examples of segmentations (ground truth, baseline and proposed methods). Red boxes are tumor parts that
have been missed by the models.

4.2 Results

Table 2 presents the results on the whole test set as well as on the different subsets. The proposed method
(BIL-Topo) outperformed the baseline across all performance metrics (improvement of about 6 percent points of
Dice, 40mm of HD and 6mm of MASD). Confidence intervals are quite wide due to the relatively small size of the
test set (n=40)29 but the difference was statistically significant for the boundary-based metrics (HD, MASD).
For the BIL alone, the mean Dice over the entire test set was substantially higher than for the baseline (5 points)
and similar to that of the BIL-Topo. On the other hand, the boundary-based metrics were substantially better
with the BIL-Topo, demonstrating the added value of the topological loss. Results in the different subsets are
consistent with those on the entire set. One can observe that performances tend to be lower in subsets for which
the segmentation was considered difficult by the rater (D3 and D4). Some examples of segmentation are shown
on Figure 1.

Table 3 presents separately the results obtained on 2D vs 3D acquisitions. For both 2D and 3D acquisitions,
the BIL-Topo method achieved higher Dice, lower HD and MASD a compared to the baseline. The improvement
was statistically significant for HD and MASD.

Subset Method DSC HD MASD

2D BIL-Topo 73.03 [59.9, 85.42] 14.0 [3.49, 30.43]* 2.38 [1.11, 3.99]*
(n = 7) BIL 65.78 [52.78, 76.06] 78.65 [62.66, 95.43] 13.28 [8.76, 18.39]

Baseline 63.23 [51.14, 74.48] 84.68 [66.57, 102.08] 14.32 [10.04, 19.07]
3D BIL-Topo 63.26 [53.25, 72.58] 21.45 [14.17, 30.16]* 4.43 [2.42, 7.59]
(n = 33) BIL 63.61 [55.24, 71.42] 58.45 [48.75, 68.11] 9.77 [7.49, 12.3]

Baseline 57.65 [48.45, 66.44] 51.47 [40.88, 62.46] 9.58 [6.86, 12.59]

Table 3. Results on test set depending on whether the acquisition was 2D or 3D. Results are presented as mean and
confidence interval (computing using bootstrapping with 15,000 resamplings). HD: 95% 3D Hausdorff distance. MASD:
mean average surface distance. n is the number of samples. Best result in each case is in bold. ∗ indicates that the
improvement over the baseline is statistically significant.

5. DISCUSSION

The paper introduces a novel border irregularity loss for automatic segmentation of brain lymphomas. It considers
border information and combines it with a topological loss to better handle multiple connected components.



Results demonstrate the usefulness of the proposed approaches. The BIL and topological losses capture border
characteristics, improve boundary delineation, and enhance segmentation performance. They both resulted in
improvement in terms of Dice score over the baseline. The topological loss provided additional improvements
in boundary metrics. Nevertheless, the overall performances remain moderate. The average Dice is around
65% which corresponds to a moderate spatial agreement. The relatively high Hausdorff distance mainly reflects
the fact that in several cases, some tumor components are missed while erroneous connected components are
detected. This highlights that automatic segmentation of brain lymphomas is a very difficult task, in particular
when dealing with clinical routine MRI data of heterogeneous quality. Therefore, further work in needed on
this application. The present work remains preliminary and has several limitations. Firstly, the BIL exhibits
sensitivity towards small connected components. Also, the smoothing parameters are chosen in an ad-hoc
manner. Future work should propose more general ways to set these parameters. Finally, it will be necessary to
assess the impact of the BIL when associated with other segmentation architectures.

In future work, the aim is to address these limitations. Specifically, efforts will be made to decouple the
BIL loss from its reliance on the topological loss, enabling it to effectively handle very small objects and multi-
connected components.
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[26] Pérez-Garćıa, F., Sparks, R., and Ourselin, S., “Torchio: A python library for efficient loading, preprocess-
ing, augmentation and patch-based sampling of medical images in deep learning,” Computer Methods and
Programs in Biomedicine 208, 106236 (2021).

[27] Fu, G., Jurdi, R. E., Chougar, L., Dormont, D., Valabregue, R., Lehéricy, S., and Colliot, O., “Introducing
Soft Topology Constraints in Deep Learning-based Segmentation using Projected Pooling Loss,” in [SPIE
Medical Imaging 2023 ], (Feb. 2023).



[28] Ronneberger, O., Fischer, P., and Brox, T., “U-Net: Convolutional networks for biomedical image segmen-
tation,” in [MICCAI ], 234–241, Springer (2015).

[29] Jurdi, R. E. and Colliot, O., “How precise are performance estimates for typical medical image segmentation
tasks?,” in [Proc. IEEE International Symposium on Biomedical Imaging - IEEE ISBI 2023 ], (2023).

[30] El Jurdi, R., Petitjean, C., Cheplygina, V., and Abdallah, F., “A Surprisingly Effective Perimeter-based
Loss for Medical Image Segmentation,” (2021).

[31] Zhang, Z., Liu, Q., and Wang, Y., “Road extraction by deep residual U-Net,” IEEE Geoscience and Remote
Sensing Letters 15, 749–753 (May 2018).

[32] Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., and Ben Ayed, I., “Boundary loss for
highly unbalanced segmentation,” in [Medical Imaging with Deep Learning ], 102, 285–296 (July 2019).

[33] Reinke, A., Maier-Hein, L., Christodoulou, E., Glocker, B., Scholz, P., Isensee, F., Kleesiek, J., Kozubek,
M., Reyes, M., Riegler, M. A., Wiesenfarth, M., Baumgartner, M., Eisenmann, M., Heckmann-Nötzel, D.,
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