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The gut microbiota and depressive
symptoms across ethnic groups

Jos A. Bosch 1,2 , Max Nieuwdorp 3, Aeilko H. Zwinderman4,
Mélanie Deschasaux 4,5, Djawad Radjabzadeh6, Robert Kraaij 6,
Mark Davids 3, Susanne R. de Rooij4,8 & Anja Lok 7,8

The gut microbiome is thought to play a role in depressive disorders, which
makes it an attractive target for interventions. Both the microbiome and
depressive symptom levels vary substantially across ethnic groups. Thus, any
intervention for depression targeting the microbiome requires understanding
ofmicrobiome-depression associations across ethnicities. Analysing data from
the HELIUS cohort, we characterize the gut microbiota and its associations
with depressive symptoms in 6 ethnic groups (Dutch, South-Asian Surinamese,
African Surinamese, Ghanaian, Turkish,Moroccan;N = 3211), living in the same
urban area. Diversity of the gut microbiota, both within (α-diversity) and
between individuals (β-diversity), predicts depressive symptom levels, taking
into account demographic, behavioural, and medical differences. These
associations do not differ between ethnic groups. Further, β-diversity explains
29%–18% of the ethnic differences in depressive symptoms. Bacterial genera
associatedwith depressive symptomsbelong tomulitple families, prominently
including the families Christensenellaceae, Lachnospiraceae, and Rumino-
coccaceae. In summary, the results show that the gut microbiota are linked to
depressive symptom levels and that this association generalizes across ethnic
groups. Moreover, the results suggest that ethnic differences in the gut
microbiota may partly explain parallel disparities in depression.

Depressive disorders affect an estimated 322 million people globally
and are a leading cause of disability, mortality, and economic
disparity1,2. Current treatment options are considered suboptimal and
a more complete understanding of etiology, as well as the identifica-
tion of effective interventional strategies, are urgently needed3. A
promising novel development in this area pertains to the potential role
of the gutmicrobiome, i.e., the diversemicrobial communities living in
the gut and their genetic material4. Research has demonstrated that

the composition of the intestinalmicrobiotamay impact cognition and
affect through multiple pathways, collectively known as the gut-brain
axis4. These novel insights have fueled the idea that modification of
microbial ecology may provide new options for the treatment and
prevention of depression5.

At present,muchof the supporting evidence still takes the formof
extrapolations from non-human research, whereas the human data
remains sparse and aremostly limited to small-scale studies4 that yield
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inconsistent findings6–9. While disappointing, such inconsistency
might be expected in light of the complex composition of the gut
microbiota, which is shaped by hundreds of bacterial species that
exhibit a marked diversity across groups and individuals10–16. This
complexity only adds to the similarly multi-determined and hetero-
geneous nature of depression17. Notably missing from the literature,
therefore, are adequately powered studies in well-characterized
populations that would allow more rigorous analyses of individual
differences.

Two large-scale population studies have been published that
would appear suitable to address the above issues12,13. The LifeLines
Study (N = 1135) showed that depression (based on self-reported
diagnosis) is significantly associated with β-diversity, indicating that
depressed individuals have a microbiota composition that is distin-
guishable from those without depression12. The Flemish Gut Flora
Project (N = 1068), in which a diagnosis of depression was obtained
from physician records13, replicates this association while adjusting for
age, sex, BMI, and gastro-intestinal parameters. Further, after exclud-
ing participants on antidepressivemedication and cross-validation in a
separate cohort (i.e., the aforementioned LifeLines Study)13, the study
identified two genera (Dialister and Coprococcus), both belonging to
the phylum Firmicutes, that were less abundant among those
depressed. Whilst lending credibility to the idea of links between
depression and the gut microbiome, both studies applied sparse
confounder adjustments, e.g., related to lifestyle and health. Thus,
uncertainties remain as to the exact interpretation of themicrobiome-
depression associations, which limits further progress towards diag-
nostic and clinical applications4.

An additional issue is that prior epidemiological associations are
established in ethnically homogenous populations of North-European
ancestry12,13. Demographic factors probably represent the largest
source of individual variation in the gut microbiome11,12,14,15,18. For
example, analyses of a large epidemiological survey (Healthy Life in an
UrbanSetting study,HELIUS) showed that ethnicity explained farmore
of the differences in gut microbiota than any of the other measures
collected, which included other demographic factors (e.g., age, sex),
lifestyle factors, and medical information14. It is unknown to what
extent microbiome-depression associations generalize across ethic
groups and this, too, limits interpretation, especially when considering
the parallel and substantial ethnic disparities in depression19.

In light of the preceding discussion, the present study investi-
gated associations between gut microbiota and depressive symptom
levels in a large (N = 3021) multi-ethnic cohort (the HELIUS study),
comprised of six ethnic groups living in the same urban geographic
area14,20,21. The primary aimwas to identifywhich taxonomic features of
the gut microbiota are linked to depressive symptom levels, while
adjusting for possible confounding by demographic, lifestyle, and
medical factors. For most individuals depression is transient, with a
median duration of three to six months. Auxiliary analyses therefore
also took pre-existingmarkers of depression risk into account, as these
may provide a window on the temporal specificity of associations
between the microbiota and current symptom levels; these included
prior depressive episodes, parental history of depression, and the
personality trait neuroticism (a generic risk marker for
psychopathology)22. The second aim was to determine if microbiota-
depression associations generalize across ethnic groups. Such gen-
eralizability would greatly broaden the potential applicability of
microbiome-based diagnostics and interventions23. Finally, the present
study aimed to assess if ethnic differences in gut microbiota may
account for ethnic disparities in depression. A parallel study24 provides
a large-scale epidemiological investigation of the relation between
fecal microbiota and depressive symptoms among subjects of Eur-
opean ancestry, cross-validating data from the Amsterdam HELIUS
cohort and the Rotterdam Study cohort.

Results
After applying exclusion criteria (see description in “Methods” section)
and accounting for occasionalmissing data, a total of betweenN = 3211
(Regression Model 1) and N = 3088 (Regression Model 3) participants
were available for analyses. Table 1 provides summarydata of the study
sample and the main covariates.

Αlpha-diversity predicts depressive symptoms
As shown in Table 2, the Shannon Index predicted PHQ-9 depressive
symptom scores in linear regression analyses. Inclusion of demo-
graphic covariates (Model 1: age, sex, ethnicity, education) sub-
stantially attenuated the association between the Shannon Index and
the PHQ-9 sum scores (standardized β = –0.0738, p <0.001) while
improving the overall model fit (ΔR2 = 0.0597, p <0.001; total
R2 = 0.0736). Ethnicity hadby far the largest contribution to thismodel
fit: after adjustment for sex and age the contribution of ethnicity was
ΔR2 = 0.0431 (p <0.001), with amodest additional impact of education
(ΔR2 = 0.0015, p =0.024). After sequentially adding lifestyle factors
(Model 2: ΔR2 = 0.0087, p <0.001) and medical variables (Model 3;
ΔR2 = 0.0267), the Shannon index continued to predict depressive
symptom scores (standardized β-= –0.0597, p = 0.001 and –0.0422,
p =0.023, respectively). No significant ethnicity by alpha-diversity
interactionwasdetected in anyof the threemodels (Model 1;p = 0.232;
Model 2; p = 0.134; Model 3; p =0.325), indicating that the association
between alphadiversity anddepressive symptomsdidnotdiffer across
ethnic groups. Also, when results were stratified per ethnic group, the
I2 consistently approximated zero (see Supplementary Fig. 1). Repeat-
ing the above analyses for the Simpson index yielded comparable
results (see Supplementary Table 1).

To estimate the specificity of the above associations, analyses
were repeated while adjusting for parental history of depression,
number of prior depressive episodes, and neuroticism. α-diversity no
longer significantly predicted depressive symptoms after adjustment
for neuroticism. Conversely, α-diversity was significantly associated
with neuroticism after adjustment for depressive symptoms in all 3
regression models, indicating that the neuroticism was the stronger
predictor. Parental history and the number of prior depressive epi-
sodes only minimally attenuated the associations with depressive
symptoms (Model 3, standardized β > –0.0384, p <0.033).

Table 3 additionally presents the results of linear regression ana-
lyses using α-diversity (Shannon) as the outcome, i.e., reversing X and
Y. The fully adjusted model (Model 3) explained approximately 18% of
variance in α-diversity, which was mostly attributed to ethnicity
(ΔR2 = 0.1143, p <0.001, after inclusion of age and sex),whereby PHQ-9
scores remained a significant predictor of the Shannon index (see
Table 3).

Βeta-diversity predicts depressive symptoms
The principal coordinates (Principal Coordinate Analyses, PCoA)
derived from Bray-Curtis dissimilarity or weighted UniFrac distance
matrices were entered as predictors in linear regression (with PHQ-9
sum scores as the dependent variable). Forward selection of the first
20 coordinates yielded 6 coordinates that compiled information pre-
dictive of depressive symptom scores, and these coordinates were
used in subsequent regression analyses. Among these coordinates was
PCoA #2, which predicted 6.50% (Bray-Curtis) and 9.73% (Weighted
UniFrac) in microbiome composition. Notably, the multidimensional
information compiled in thisprincipal coordinate demonstrated ahigh
correlation (r =0.83) with the Shannon index, indicating that within
this statistical approach (and contrary to how α-diversity is typically
conceptualized) α-diversity is integral to β-diversity (see also Supple-
mentary Fig. 2C).

Figure 1A shows that the 6 principal coordinates jointly
explained between 1.5% (ΔR2 Model 1) and 0.5% (ΔR2 Model 3) of the
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variance in depression scores. The results presented in Fig. 1B further
revealed that fecal microbial composition explained between 28%
(Model 1) and 18% (Model 3) of the ethnic differences in depression
symptom scores. The β-diversity coordinates still significantly pre-
dicted depressive symptoms after adjustment for parental history of
depression, prior depressive episodes, or neuroticism (all analyses
(ΔR2 > 0.0036. p < 0.002). Replicating these analyses using weighted
UniFrac distances (instead of Bray-Curtis dissimilarity) yielded
equivalent results. The source data of Fig. 1 can be found in Supple-
mentary Data file 1.

Most taxa associated with depressive symptoms are Firmicutes
Shown in Fig. 2, out of 416 non-trivial ASVs, 117 showed a significant
unadjusted correlations with PHQ-9 scores (Rho, FDR < 0.05), with
most (99 ASVs) showing a negative correlation (indicating a relative
depletion). The source data for Table 2 is provided in the supplement
(Supplementary Data file 3), which shows a subset of data from
Supplementary Data file 3 (Supplementary Data file 3 is presented in
table format in Supplementary Data files 4, 5). Approximately 65%
identified the phylum Firmicutes (76 ASVs). To circumvent excessive
multiple testing, only significant associations obtained in unadjusted

Table 1 | Summary data of the study sample

Dutch South Asian
Surinamese

African
Surinamese

Ghanaian Turkish Moroccan Total sample

N 769 527 767 458 349 473 3211

1st generation? Yes N 489 703 450 288 408 2338

% 92.8% 91.7% 98.3% 82.5% 86.3% 90.8%

Gender Female N 376 281 460 248 168 240 1773

% 48.9% 53.3% 60.0% 54.1% 48.1% 50.7% 53.0%

Age Years M 52.1 52.9 52.8 48.5 45.1 46.8 50.4

SD 12.6 10.3 9.7 8.7 10.4 11.0 11.1

Education Primary or less N 26 110 41 145 116 167 605

% 3.4% 21.0% 5.4% 32.0% 33.6% 35.6% 18.2%

Secondary N 135 204 319 177 82 99 1016

% 17.6% 38.9% 41.8% 39.1% 23.8% 21.1% 30.6%

Vocational N 159 118 238 110 96 137 858

% 20.8% 22.5% 31.2% 24.3% 27.8% 29.2% 25.8%

College or University N 445 92 166 21 51 66 841

% 58.2% 17.6% 21.7% 4.6% 14.8% 14.1% 25.3%

BMI kg/m2 Mean 25.2 26.9 28.9 28.3 28.7 28.4 27.4

SD 3.9 4.6 5.4 4.6 4.5 4.6 4.8

Physical activity Min/wk by Mean 2592 2636 2810 2619 2154 2360 2574

Intensity SD 1327 1791 1926 2225 1592 1715 1776

Meeting N 170 209 262 210 190 232 1273

WHO criteria?a % 22.1% 39.7% 34.2% 45.9% 54.4% 49.3% 38.1%

Smoker Yes N 142 118 200 25 88 44 617

% 18.5% 22.5% 26.2% 5.5% 25.4% 9.3% 18.5%

Alcohol use Yes N 701 273 501 212 80 27 1794

% 91.2% 52.0% 65.6% 46.7% 23.1% 5.7% 53.9%

GI disease Yes N 31 36 36 8 24 39 174

% 4.0% 6.8% 4.7% 1.7% 6.9% 8.2% 5.2%

Diabetes Yes N 52 172 133 80 48 74 559

% 6.8% 32.6% 17.4% 17.5% 13.8% 15.6% 16.7%

Antibiotics Past 2 wks N 25 21 16 20 7 15 104

% 3.3% 4.0% 2.1% 4.4% 2.0% 3.2% 3.1%

PPI Yes N 60 92 74 29 62 84 401

% 7.8% 17.5% 9.6% 6.3% 17.8% 17.8% 12.0%

Diarrhea Past week N 76 64 89 15 34 55 333

% 10.3% 12.7% 12.0% 3.4% 10.3% 11.9% 10.4%

Alpha diversity Shannon Mean 4.41 3.83 4.13 4.03 4.03 4.15 4.13

SD 0.40 0.47 0.44 0.47 0.49 0.52 0.50

Richness Mean 527.57 375.59 443.90 435.11 441.90 474.98 455.36

SD 106.74 114.31 108.36 102.17 102.65 115.85 118.95

Chao1 Mean 772.94 574.38 660.75 642.76 646.64 680.59 671.81

SD 772.94 574.38 660.75 642.76 646.64 680.59 175.39

PD Mean 36.20 26.54 31.18 30.27 31.28 33.90 31.87

SD 6.74 6.97 7.04 6.29 6.48 7.38 7.54
aAt least 30min of moderate exercise, at least 5 days a week.
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analyses (FDR corrected) were further analyzed in subsequent
Models 1–3 (using rank-transformed dependent Y). Figure 2 shows
that 70 taxa remained significantly associated with PHQ-9 scores
after adjustment for age, gender and ethnicity. The vast majority (60
ASVs) of these belonged to the phylum Firmicutes, with a prominent
presence of the genus Christensenellaceae (group R7) and various
genera within the families Lachnospiraceae (e.g., Blautia, Lachnos-
piraceaeNK4A136,Marvinbryantia, Roseburia) and Ruminococcaceae
(e.g., Oscillibacter, Ruminicoccus 1, Ruminococcaceae NK4A214
group, Ruminococcaceae UCG-005). Less prominent phyla included
Bacteroidetes (e.g., genus Bacteroides) and Proteobacteria (genus
Desulfovibrio and Escherichia/Shigella). Further adjustment for
behavioral and medical variables (models 2 and 3) reduced the
number of significant associations, yielding respectively 48 and 23
taxa that remained significantly associated with depression scores
(see Fig. 2 and V).

The Supplementary Fig. 2 (panel A and B) provide a focused
overview of correlations between PHQ-9 scores and individual ASVs
(simultaneously plotted against correlations with alpha-diversity on

the y-axis). Notable from these supplementary Figures, as well as from
Fig. 2 (also see the corresponding source data), is that occasionally
ASVs within the same genus showed opposite associations with
depressive symptom scores, e.g., Blautia, Bacteroides, andOscillospira
(note that ASVs that the Greengenes database allocates to the single
genus Oscillospira are attributed to multiple genera in the Sylva
database, see the discussion). Whereas for other genera a more con-
sistent pattern of associations was observed (e.g., Christensenellaceae,
Desulvofibrio, Streptococcus).

Supplementary Data 4, 5 (and the corresponding Supplementary
Data source data file 3) provide a heatmap depicting the correlations
between individual ASVs, depressed mood and relevant depression
risk factors and covariates. Heatmap inspection revealed that taxa that
showed a strong correlation with depressive symptoms also tended to
exhibit stronger correlations with selected covariates as well as with
markers of alpha-diversity. As a further visualization, Supplementary
Fig. 3 shows several examples of such associations in pair-wise scat-
terplots (these are based on the same source data files as Supple-
mentary Data files 3, 4, 5).

Ethnicity PHQ9 
depression

β diversity
(Bray-Cur�s)

A. 

B.

Model 1a
Model 1b

Model 2
Model 3

β diversity predic�ng PHQ9-depression (ΔR2)  

Without ethnicity in model With ethnicity in model

Model 1a
Model 1b

Model 2
Model 3

Ethnicity predic�ng PHQ9-depression (ΔR2)

Direct With mediator

29.2%

22.7%

23.0%

18.1%

Variance explained
by mediator

0 0.01 0.02 0.03          0.04 0.05 0.06

0 0.01 0.02          0.03 0.04 0.05          0.06

Fig. 1 | Beta-diversity is linked with ethnic differences in depressive symptom
scores. A Beta-diversity predicting PHQ9 depression. It presents results of linear
regression analyses that model β-diversity as a predictor of depressive symptom
levels. Panel (A) horizontal bars present ΔR2 after progressive adjustments for
confounders (models 1a to 3), and respectively without andwith ethnicity included
in each regression model. B Ethnicity predicting PHQ9 depression. It presents
results of linear regression in which β-diversity is modeled as a mediator of the
association between ethnicity and depressive symptom levels (see lower figure).
Bars presentΔR2 the prediction of PHQ9 by ethnicity after progressive adjustments

(models 1a to 3). Blue bars present ΔR2 without β diversity incorporated as a
mediator in the model, and the orange bars present ΔR2 when mediation is
assumed. The % in the table (right) indicate the attenuation of the direct effect by
mediation. Regression models: We used two-sided linear regression analyses, no
adjustments were made for multiple comparisons. Model 1a adjusted for age and
gender; Model 1b added education; Model 2 further added behavioral factors
(alcohol, smoking, exercise, BMI); Model 3 added GI disease, Diabetes, PPI use,
Recent antibiotics, Diarrhea. All ΔR2 p ≤0.001, except for ethnicity-inclusive Model
3 (p =0.023).
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Associations are mostly invariant across ethnic groups
Applying each of the 3 regression models, only a small proportion of
ASV’s (<6%) exhibited a significant ethnicity by ASV interaction
(unadjusted for multiple testing), which thus approximated an
expected Type 1 error rate. Ethnicity-stratified analysis of the age and
gender-adjusted associations showed that most standardized regres-
sion coefficients (81%; N = 337) had a I2 below 30% and only 15 corre-
lations (3.6% of total) showed a substantial ethnic heterogeneity
(I2 > 50%) (see Supplementary Data files 4, 5 and corresponding source
data Supplementary data file 3).

Core microbiota similarly associate with depressive symptoms
It is proposed that ‘core taxa’, i.e., bacteria with a near ubiquitous
presence,may exhibit a stronger relevance to health25. Hence, auxiliary
analyses compared the results obtained for all ASV to the results
obtained for a core subset of taxonomic units (defined as ASVs with a
≥75%prevalence across ethnic groups). Because these highly prevalent
core taxa are minimally zero-inflated, these comparisons additionally
function as sensitivity analyses for zero-inflation bias. Comparisons
between core and non-core taxa revealed no differenceswith regard to
the proportion of significant associations with depression, the average
or distribution of effect sizes, robustness to covariate adjustments, or
ethnic heterogeneity (I2) in the associations with depression.

Discussion
A primary aim of the current study was to identify which taxonomic
featuresof the gutmicrobiota are linked todepressive symptom levels.
This investigation involved the largest study cohort to date examining
microbiome-depression associations, and is the first to study ethnicity
as a potentially relevant factor in this association. Consistent associa-
tions between the gutmicrobiota and depressive symptom levels were
confirmed at multiple levels of analysis, ranging from global para-
meters of microbiota diversity (i.e., α-diversity, β-diversity) to the
relative abundances of specific taxa. These associations withstood
adjustment for a broad range of sociodemographic, behavioral, and
medical covariates. Analyses further revealed that these associations
were largely invariant across ethnic groups, notwithstanding the sub-
stantial ethnic differences in both depressive symptom levels and
compositionof the gutmicrobiota14,18,19.Moreover, ethnicdisparities in
depressive symptom levels were partly explained by between-subject
differences in microbiota composition (i.e., β-diversity)19.

Inspection of (mutually adjusted) regression coefficients revealed
α-diversity predicted depressive symptoms with effect sizes compar-
able to several other established risk factors of depression, such as
alcohol consumption, exercise, smoking, and BMI26. Conversely, the
ability of depressive symptoms to statistically predict α-diversity was
in the same range as being diagnosed with, for example, diabetes or a
GI disorder11–16. By implication, then, these analyses suggest that con-
ditions and interventions that influence the gut microbiomemay have
the potential to impact well-being on a population-level.

A notable finding was that both Bray-Curtis and weighted UniFrac
Principal Component #2 shared substantial variance with α-diversity
(Shannon). This finding indicates that α-diversity (a measure of within-
subject microbial diversity) also meaningfully characterized between-
subject diversity (beta-diversity); in other words, taxa that correlate
highlywithα-diversity are unevenly distributed across individuals. This
is a pertinent observation because exactly these taxa also tended to
correlate with depressive symptom scores, as well as established risk
factors of depression (e.g., BMI, inflammation, diabetes)27–29. The latter

replicates prior findings12,30–32. Taken together, then, these results are
consistent with the idea of α-diversity as a generic biomarker of health
and vulnerability33,34 (including depression), as well as with the notion
of a common set of bacteria that tend to non-specifically respond to
disease and poor health35.

The association of α-diversity with depression dissolved after
adjustment for the personality trait neuroticism, which is a constitu-
tional and generic risk factor for commonmental disorders, including
depression22. This dominant effect of neuroticism might help clarify
the observation that disruptions in the gut microbiome have been
associated with a rather broad range of psychological disorders with-
out concomitant evidence of taxonomic specificity (i.e., whereby
specific taxa differentiate specific disorders)4,8,36. Of note, the other
principal components of β-diversity appeared impervious to adjust-
ment by neuroticism, and these might thus identify the more
depression-specific features of microbiota composition.

Unadjusted analyses of relative abundances initially yielded 117
ASVs (identifying 59 genera, mostly belonging to the phylum Firmi-
cutes) that correlated with depressive symptom scores. Significantly,
many of those taxa have also been linked to other domains of
health32,35,37–41, including health factors associated with increased
depression risk (e.g., BMI). A prominent example was the genus
Christensenellaceae (R-7 group), which likewise showed a negative
association with depressive symptoms in the Rotterdam study
cohort24. Further, and replicating prior research, Christensenellaceae
abundances were additionally correlated with lower BMI and relatively
depleted in the presence of diabetes and gastro-intestinal diseases42.
These links with medical outcomes may therefore explain why most
associations with Christensenellaceae became nonsignificant after
adjustment for the medical covariates.

After full adjustment (i.e., Model 3), 23 ASVs identifying at least 15
genera remained significantly associated with depression scores.
These included a negative association with the abundant genus
Coprococcus (designated GCA-900066575 in the Silva database),
hereby confirming results from two independent population cohorts13

and the Rotterdam study24. This genus harbors many butyrate-
producing species and has been ascribed anti-inflammatory
properties43, both of which have been (inversely) linked to depres-
sion. Our analyses showed a positive associations with the genus
Dialister13, whichASVwecouldmaponto theoral pathogenD. invisus44.
This observation is in step with data showing that poor oral health is a
correlate of depression45,46 and a possible upstreamdeterminant of the
gut microbiota47.

Other bacteria relatively depleted in relation to depressive
symptoms were the Bacteriodetes genus Bacteroides, Ruminococcaea
UCG005, Ruminococcus 1, Peptococcus, Holdemanella (sp. H. biformis),
various genera in the family Lachnospiraceae, e.g., Lachnospiraceae
groups FCS020 and NK4A136, Marvinbryantia (sp. M. formatexigens),
Blautia (among which the species B. obeum, which was until recently
classified under the genus Ruminicoccus and exhibits overlapping
physiological characteristics48), Roseburia (sp. R. inulinivorans), and
the Proteobacteria genusDesulfovibrio. Simultaneously,fiveASVswere
enriched in those with high symptom levels. These included the
Blautia species B. caecimuris and B. producta, the genera Lachnoclos-
tridium and Oscilibacter, and the aforementioned Dialister invisus.
Overall, a majority of associations were within the phylum Firmicutes.
Random forest analyses, using the Rotterdam Study as training cohort
and HELIUS as the testing cohort24, replicated associations for several
including Ruminococcaceae UCG005, Coprococcus, Lachnoclostridium,

Fig. 2 | Selection of ASVs (rows) that were significantly associated with
depressive symptom levels in unadjusted analyses (Model 0) and results of
subsequent adjusted analyses (Models 1–3). Bars indicate effect size (standar-
dized regression coefficient). Green bars indicating a positive and Red bars

indicating a negative association (plotted range 0.10≥ β ≥ –0.10). Checkmark
indicate p <0.05. The column “Core” highlights ASVs with >75% overall prevalence
in the sample population (indicated by green check mark).
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Eggerthella, Sellimonas, Roseburia,Bacteroides,Blautia,Veillonella, and
Desulfovibrio, of which several were also retained in their adjusted
analyses24.

Unexpectedly, ASVs identifying the genus Bifidobacterium
showed a positive correlation with depression36, including the abun-
dant species B. longum (greengenes database) that has been tested in
multiple probiotic studies for its potential to enhance mood49–51. In
parallel, we found that B. longum was negatively associated with α-
diversity, which replicates observations from another large cohort12,
while simultaneously showing the (expected) negative associations
with some markers of poor health32. The Bifidobacterium genus is
highly diverse52 and it therefore conceivable that the previously
reported beneficialmood effects of supplementation are highly strain-
specific. Probiotic trials using this genus have yielded inconsistent
results whereby a majority have failed to establish beneficial mood
effects49–51. The results presented here may help identify other candi-
dates for psychobiotic interventions.

The present results suggested that the custom of analysing bac-
teria at an aggregate level (e.g., genus, OTU) may be a potential cause
of inconsistent findings in microbiome-depression studies53. It may
thus also clarify some variance with the study of Radjabzadeh et al.24,
which used closed reference OTU clustering instead of ASVs. For
example, we observed that ASVs identifying the genus Blautia, Bac-
teroides, or Oscillospira exhibited both significant positive and sig-
nificant negative correlations with depressive symptom levels. Such
potentially biologicallymeaningful associationsmay average outwhen
aggregated on a genus level. For example, heterogeneous associations
within the same genus may reflect interspecific competition as ecolo-
gical competition is known to be especially fierce within the same
genus54, i.e., indicating that depression is associated with a gut envir-
onment conducive to some species while disadvantageous to
others55,56. Imprecisions in taxonomic allocation could likewise
account for heterogeneous associations57,58. For example, the notably
heterogeneous pattern of associations between depression and 10
ASVs that Greengenes maps onto the genus Oscillospira disappeared
when utilizing the Silva database (which assigned these 10 ASVs to 8
different genera). Together these observations align with the bur-
geoning view that ASVs are preferred as the standard unit of marker-
gene analysis and reporting53,59.

In closing several strengths and limitations warrant mentioning.
The present analyses pertained to ethnic groups living in the same
urban area, hereby preventing confounding by geographical effects15.
While ethnic differences in the gut microbiota may involve both
genetic and environmental factors, the balance of evidence seems to
indicate that the latter may dominate60–62. More fine-grained analyses,
e.g., comparing 1st with 2nd generation immigrants, or comparing the
history of local acculturation among 1st generation migrants, may
further identify the specific role of environmental exposures. Another
advancement is that the present study applied an unprecedented
confounder adjustment. Future studies may still consider additional
explanatory factors (e.g., diet63,64). We may add that the attenuation of
effect sizes with progressive covariate adjustments should not be
taken as indicative of spurious associations, since somecovariatesmay
be on the causal pathway65. We note that rating instruments like the
PHQ-9 do not provide a clinical diagnosis of depression, although
these assessment approaches tend tobehighly correlated66. The useof
a continuous symptom-score ismore in step with contemporary views
of depression as a continuum67. Depression is a heterogenous con-
struct with different subtypes based on symptom profile. This aspect
warrants further research in light of evidence that such subtypes may
exhibit distinct biological profiles68,69.

Three additional statistical considerations warrant mentioning
also: a strength is that key analyseswere cross-validated usingdifferent
methods, e.g., utilizing multiple parameters of alpha-diversity and
beta-diversity, the comparative use of two data bases for taxonomic

allocation, and performing both meta-analysis and GLM to determine
ethnic heterogeneity. The fact that these different approaches yielded
a comparable pattern of results supported the robustness of the pre-
sent findings. Further, in the context of p-value testing and small effect
sizes, the observation that one study or subsample shows a significant
association and the other does not, cannot immediately be taken as
evidence of a non-replication or inconsistency (e.g., see Radjabzadeh
et al.24 as well as Supplementary Fig. 1 in the current paper), but may
reflect normal between-sample variation and Type 2 error. Large-scale
aggregate analyses of multiple cohorts may be a relevant approach
therefore. Finally, although depression symptoms were modeled as
the outcome variable in most analyses, causal inferences obviously
remain speculative at this point.

In summary, analyses of a large and ethnically diverse population
demonstrated robust associations between the gut microbiota and
depressive symptoms. These associations were largely invariant across
ethnic groups and withstood adjustment for a uniquely large set of
relevant confounders, which included demographic, behavioral, and
medical factors. The study findings identified potential targets for
psychobiotic interventions thatwarrant further investigation, andmay
positively impact depression and well-being at an individual or
population level.

Methods
Procedures and participants
The HELIUS (Healthy Life in an Urban Setting) study is a multi-ethnic
cohort study among citizens of Amsterdam, The Netherlands20,21. The
city proper is amoderately sized area (219.49 km²)with approximately
900,000 inhabitants, and is the national capitol. The full study pro-
tocol is described elsewhere20,21. In short, participants aged 18–70
years were randomly sampled, stratified by ethnic origin, through the
municipal registry of Amsterdam (participation N = 24,789, response
rate 28%). Data were collected through physical examination and by
questionnaire, which was either self-administered or collected by
interview using an ethnically matched interviewer. The HELIUS study
was complied with all relevant ethical regulations and in accordance
with the Declaration of Helsinki (6th, 7th revisions). Written informed
consent was obtained from all participants prior to inclusion. The
study was approved by the Institutional Review Board of the Amster-
dam University Medical Centers, location AMC.

At the time of the present analyses, fecal 16 S rRNA data were
available for a total of 3.343 participants belonging to 8 ethnic groups.
Becauseof small numbers, those identifying as Indonesian-Surinamese
background (N = 46) and “another or unknown ethnicity” (N = 63) were
excluded. Applying these criteria, and excluding thosewithout data on
depressive symptoms (PHQ-9, see below;N = 93), yielded the following
6 ethnic groups; Dutch (N = 769), African Surinamese (N = 767), South-
Asian Surinamese (N = 527), Turkish (N = 349),Moroccan (N = 473), and
Ghanaian (N = 458). Ethnic groups were classified on the basis of
migratory background14,20,21. Accordingly, a person was considered to
be of non-Dutch ethnicity when meeting one of the following two
criteria: (1) born outside the Netherlands and at least one parent born
outside the Netherlands (i.e., first generation), or; (2) born in the
Netherlands with both parents born outside the Netherlands (second
generation). For participants with a Surinamese ethnicity further sub-
groups were identified according to self-described ethnic origin14,20.
For the Dutch sample, we only invited people who were born in the
Netherlands and whose parents were born in the Netherlands.

Depressive symptoms, sociodemographic, behavioral, and
medical variables
Depressive symptoms were recorded using the 9-item Patient Health
Questionnaire-9 (PHQ-9)66,70. The PHQ-9 boasts good psychometric
properties and has been shown to measure the same concept (i.e., is
invariant) across all six ethnic groups included in this study19,66,71. Each
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of the PHQ-9 items evaluates the presence of one of the nine DSM-IV
symptom criteria experienced during the past 2 weeks, utilizing a four-
point Likert-scale (not at all - almost every day). The severity of
depressed mood was assessed by the sum score (ranging between 0
and 27). In case of a single missing item the mean score of the
remaining items was used to replace the missing item; with >1 missing
items the entire PHQ-9 was considered missing18.

Data on sociodemographic, behavioral, and medical variables
were collected by self-report or physical examination20. Demographic
data included ethnicity, sex, age, educational level. The latter com-
prised 4 categories ranging between ‘elementary education or less’ and
‘advanced vocational or university education’ (i.e., BA/BSc or higher).
Analyses of behavioral factors focused on physical activity (i.e., min-
utes per week times the intensity activity of each minute-activity; as
categorized in 3 METs groups as based on the compendium of
Ainsworth)72, smoking (yes/no), alcohol (alcohol consumption and
alcohol-related problem behaviors, as assessed by the 10-item Alcohol
Use Disorders Identification Test73), and body mass index (BMI).
Medical covariates included a (self-reported) diagnosis of a gastro-
intestinal disorder and diabetes. The latter was established using a
Boolean algorithm whereby caseness was classified as a self-reported
clinical diagnosis, or increased fasting glucose (≥7mmol/l), or
increased HbA1c (≥48mmol), or the use of glucose-lowering medica-
tion. Medication and supplement intake were also recorded and
included the use of proton pump inhibitors, antidepressants, and use
of antibiotics (past 2 weeks), as well as use of probiotics. Participants
also reported symptoms of diarrhea experienced over the past week.
Data on inflammatory activity (plasma C-reactive protein) were avail-
able for a subset of participants (N = 975) and only used in auxiliary
analyses. Approximately 26% of questionnaires was filled out with
support of an interviewer-assistant at the assessment center. This
entailed that an ethnically and language-matched person was present
at the assessment center to provide clarification due to language or
reading problems. These assistants were trained to ensure standardi-
zation. Follow-up studies yielded no response differences by either
administration modus (paper-pencil, digital, assistant supported) or
ethnicity on the main outcome variable (GHQ-9)19. Further, analyses
showed minimal ethnic and socio-economic differences between
participants and those who declined or did not respond21.

Stool sample collection
Participants were given a stool collection tube and a safety bag (for
transport) either throughmail before assessment center visit or at the
end of the visit, as preferred. They were asked to bring a ‘fresh’ stool
sample to the assessment center within 6 h after collection. If not
possible, participants were instructed to keep the stool sample in their
home freezer overnight and to bring it in frozen to the research
location the next morning. All samples were immediately frozen at
−20 °C at each assessment center, and transported within 1 to 4 weeks
to theUniversitymedical Center and frozen at−80 °Cuntil processing.
The time period each sample was stored locally at −20 °C was not
logged. During the physical examination, asked if (1) they used pro-
biotics (frequency, type), (2) used antibiotics in the past three months
or two weeks, (3) had experienced diarrhea in the past week. Stan-
dardized procedures were used at the collection sites using written
SOPs and training of research personnel. Quality checks on the staff/
procedures were done at regular intervals during the data collection
period.

Bioinformatics
Fecal microbiota composition was profiled by sequencing the V4
region of the 16S rRNA gene on an IlluminaMiSeq instrument (llumina
RTA v1.17.28; MCS v2.5) with 515F and 806R primers designed for dual
indexing74 and the V2 Illumina kit (2 × 250bp paired-end reads)14. 16S
rRNA genes from each sample were amplified in duplicate reactions in

volumes of 25μl containing 1x Five Prime Hot Master Mix (5 PRIME
GmbH), 200 nM of each primer, 0.4mg/ml BSA, 5% DMSO, and 20ng
of genomic DNA. PCR was carried out under the following conditions:
initial denaturation for 3min at 94 °C, followed by 25 cycles of dena-
turation for 45 s at 94 °C, annealing for 60 s at 52 °C and elongation for
90 s at 72 °C, and a final elongation step for 10min at 72 °C. Duplicates
were combined, purifiedwith the NucleoSpinGel and PCRClean-up kit
(Macherey-Nagel) and quantified using the Quant-iT PicoGreen dsDNA
kit (Invitrogen). Purified PCR products were diluted to 10 ng/μl and
pooled in equal amounts. The pooled amplicons were purified again
using Ampure magnetic purification beads (Agencourt) to remove
short amplification products. Raw sequencing reads were quality
checked using FastQC. USEARCH (v11.0.667 64-bit Linux version)75 was
used to process the raw reads. Read pairs were merged with 30 max-
imum accepted differences and 80% minimum overlap identity, then
filtered using a threshold of maximum 1 expected error per merged
contig. Reads passing the filter were subsequently dereplicated.
Sequences occurring at least 8 times in the entire dataset were used to
infer biological sequences with the UNOISE3 algorithm (α-parameter
set to 2.0)76. All merged reads (including reads that failed quality fil-
tering) weremapped back to the inferred Amplicon SequenceVariants
(ASVs) in order to construct an ASVs table59. Taxonomy was assigned
to the ASVs with the SINTAX algorithm77 using Greengenes v.13.5 and
Silva 13278. TheASV tablewas rarefied to 14,942 counts per sample. ASV
sequences were then used as input for MAFFT (v.7.427)79,80 in order to
obtain a multiple sequence alignment, based on which a phylogenetic
tree was constructed using IQ-TREE (v. 1.6.11)48. The phylogenetic tree
was midpoint-rooted using the “phytools” R package (Revell, 2012).
The “phyloseq” R package81 was used to integrate the ASV counts,
taxonomy assignments, phylogenetic tree and sample metadata. The
above analyses identified 1438ASVs of which418weredeemed to have
a non-trivial counts (>0.02%, corresponding to approximately 3 counts
per sample out of 14,942 reads). A core microbiota subset was defined
on the basis of ASVs that were present in at least 75% of the cohort,
yielding 109 ASVs.

Covariate selection
To avoid overfitting, covariates were selected a priori, as informed by
prior epidemiological analyses (mainly11,12,82 and insofar available in our
dataset). The selected covariates involved sociodemographics (ethni-
city, age, sex, education), behavioral/lifestyle (smoking, alcohol,
exercise, bodyweight (BMI), andmedical variables (diabetes, diagnosis
of GI disorder, proton-pump inhibitor (PPI) use, recent antibiotic use,
recent diarrhea; see “Statisticalmethods” section). Never-smokers and
former smokers were categorized as non-smokers. Post hoc analyses
yielded comparable results when former smokers were omitted from
analyses (results not shown here). To ascertain that no important
medical covariates were overlooked, exploratory analyses were per-
formed to identify variables with additional explanatory value in the
fully adjusted models. Among the variables tested were presence of
metabolic syndrome and its components83, glucocorticoid medica-
tion, statins, beta-blockers, inflammatory diseases. None of these were
retained in the final analyses on the basis of failing to significantly alter
the association between predictor and main outcome. In follow-up of
recent recommendations13, the small number of antidepressant users
were excluded from the main analyses (N = 132). Auxiliary analyses
included covariates that reflect pre-existing psychological risk factors
for depression, for which we selected parental history of depressive
disorders, number of prior depressive episodes, and neuroticism.

Statistical methods
Statistical analyseswereperformed inR version4.0.1, SPSS v27, or JASP
0.13.1.Multiple linear regressionwas used to determine the association
between α-diversity or β-diversity and depressed mood (PHQ-9 sum
scores), with the latter as the outcome variable. Covariates (see above)
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were added in a stepwise fashion yielding 3 models; Model 1 was
adjusted for sociodemographics (age, sex, ethnicity, education),
Model 2 additionally adjusted for health-related behaviors (smoking,
alcohol, exercise, BMI), Model 3 further incorporated medical vari-
ables (diabetes, self-reported diagnosis of GI disorder, use of proton
pump inhibitors, antibiotic use past 2 weeks, diarrhea past week).

Αlpha- and Beta-diversity indexes were calculated using the
‘vegan’ package in R84 (see above). The Shannon index was used as the
primary marker of α-diversity, but analyses were repeated for other
measures of α-diversity (i.e., Phylogenetic Diversity, Chao1,
Abundance-based Coverage Estimator Observed, Simpson index). For
β-diversity, principal coordinate analyses (PCoA) were performed
using weighted UniFrac metrics and Bray-Curtis distances. The first 20
principal coordinates were selected for inclusion in multivariable
regression analyses by applying forward selection, and the resulting
coordinates were used as predictor variables in linear regression (see
further description in the results section), utilizing the same 3
regressionmodels described above. The three regressionmodels were
also used to examine association between individual ASVs and
depressed mood. For these analyses both the predictor (PHQ-9 sum
scores) and independent variables (relative abundances) were rank-
ordered to yield a more robust estimate. P-values were FDR-corrected
formultiple testing (Benjamini-Hochberg)85; a corrected P-value < 0.05
was considered statistically significant.

Possible heterogeneous between-ethnic associations were exam-
ined by two methods: First, GLM (SPSS UNIANOVA) was used to
determine significant interactions between ethnicity and each ASV
(FDR adjusted85). As a second method, the associations were stratified
by ethnicity and the heterogeneity of microbiota-depression associa-
tions was quantified as I2 (i.e., comparable to a meta-analysis). Asso-
ciations showing a I2 > 30% and>50%across ethnicity are considered to
reflect moderately or high heterogeneity, respectively86.

Mediation analyses were used to test if beta-diversity (i.e.,
microbial diversity between individuals) may statistically account for
ethnic disparities in depressive symptom levels, following the infer-
ential steps as described by Kenny and Baron87.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequence data (Illumina MiSeq 16S rRNA sequencing, V4 hyper-
variable region) can be found at https://ega-archive.org/datasets/
EGAD00001004106. The HELIUS data are owned by the Amsterdam
University Medical Centers, located at the AMC in Amsterdam, The
Netherlands. Any researcher can request the data by submitting a
proposal to the HELIUS Executive Board as outlined at http://www.
heliusstudy.nl/en/researchers/collaboration, accessed on 28 March
2022, by email: heliuscoordinator@amsterdamumc.nl. The HELIUS
ExecutiveBoardwill checkproposals for compatibilitywith the general
objectives, ethical approval and informed consent formsof theHELIUS
study. There are no other restrictions to obtaining the data and all data
requests will be processed in the same manner.

Code availability
Software description and syntax of analyses can be found at https://
amcmc.github.io/HELIUS_depression/.
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