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Figure 1: Snapshots from the MUAD dataset showing different types of adverse conditions and
events to evaluate perception models (OOD : Out Of Distribution, i.e., not seen during training).

Abstract

Predictive uncertainty estimation is essential for safe deployment of Deep Neural
Networks in real-world autonomous systems. However, disentangling the different types
and sources of uncertainty is non trivial for most datasets, especially since there is no
ground truth for uncertainty. In addition, while adverse weather conditions of varying
intensities can disrupt neural network predictions, they are usually under-represented in
both training and test sets in public datasets. We attempt to mitigate these setbacks and

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

† Equal contribution.



2 MUAD: DATASET WITH MULTIPLE UNCERTAINTIES FOR AUTONOMOUS DRIVING

introduce the MUAD dataset (Multiple Uncertainties for Autonomous Driving), consist-
ing of 10,413 realistic synthetic images with diverse adverse weather conditions (night,
fog, rain, snow), out-of-distribution objects and annotations for semantic segmentation,
depth estimation, object and instance detection. MUAD allows to better assess the impact
of different sources of uncertainty on model performance. We conduct a thorough exper-
imental study of this impact on several baseline Deep Neural Networks across multiple
tasks, and release our dataset to allow researchers to benchmark their algorithm method-
ically in adverse conditions. More visualizations and the download link for MUAD are
available at https://muad-dataset.github.io/.

1 Introduction
In recent years, Deep Neural Networks (DNNs) have achieved remarkable results in various
computer vision tasks [9, 37, 55]. This has turned DNNs into an essential tool for effective
automatic perception. Although DNNs achieve outstanding performance across benchmarks
and tasks, there are still a few major bottlenecks to solve before a widespread deployment.
One of the most frequent and known criticisms of DNNs is related to their lack of reliability
under varying levels of shifts in the data distribution, and it became crucial to address this
limitation. To achieve this, we focus on studying the uncertainties of the DNN predictions for
computer vision tasks. The predictive uncertainty of a DNN stems from two main types of
uncertainty [32]: aleatoric and epistemic. The former is related to randomness of the world
and of the sensing system, typically instantiated as noise in the data. The latter concerns
finite size training datasets. The epistemic uncertainty captures the uncertainty in the DNN
parameters and their lack of knowledge on the model that generated the training data. In
spite of their simple and intuitive definitions, the sources of uncertainty are notoriously hard
to separate in most datasets, where data are typically curated and various outlier or noisy
samples are removed before annotation.

For autonomous driving, uncertainty estimation and reliability are essential for safely
deploying DNNs in real-world conditions. Here, DNNs are expected not only to reach high
predictive performance and real-time inference speed, but also to deal effectively with the
two types of uncertainty under various forms (noise, distribution shift, out-of-distribution
samples, sensor degradation, etc.). In the last years, numerous works have moved the needle
towards more reliable predictive uncertainty for DNNs [2, 4, 18, 22, 36, 38, 46, 47, 69].
However, evaluating such methods is not obvious as there is no ground truth for uncertainty
and the different sources of uncertainty are conflated due to prior data curation.

We introduce a new dataset to study uncertainty estimation methods for perception in
autonomous vehicles. While most datasets aim to improve the predictive performance of
DNNs [13, 24, 49, 72], only recently datasets addressed the robustness of DNNs under
unseen weather conditions [15, 59, 60] or objects [3, 7, 30]. However, these datasets are
either limited to only one task, typically semantic segmentation, or only focus on a single
type of uncertainty, or are not being precise enough in the different levels of uncertainties.
We address these limitations in our dataset that allows to quantify all levels of uncertainty in
the same conditions. Our dataset, MUAD (Multiple Uncertainties for Autonomous Driving)
is composed of 3,420 images for training, 492 for validation, and 6,501 for testing.

To summarize, our contributions are as follows: (1) We introduce MUAD: a new auto-
motive dataset with annotations for multiple tasks and multiple uncertainty sources. (2) We
perform a wide range of benchmarks on MUAD dataset for multiple computer vision tasks
and settings (semantic segmentation, depth estimation, object detection) to further support
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research in this area. (3) We conduct an extensive study on uncertainty quantification for 2D
output tasks for recent Transformer-based architectures.

2 Related work

2.1 Datasets
A variety of real-world datasets for autonomous driving have been recently released [6, 8, 13,
24, 33, 53, 61, 66, 72]. They have enabled tremendous progress in the area but they typically
focus on a single task, e.g., semantic segmentation [13, 53, 72], object detection [6, 24, 61],
motion prediction [8, 33] and do not have evaluation tracks for uncertainty and out-of-
distribution detection. Synthetic datasets, e.g., GTA-V [56], SYNTHIA [57], virtual KITTI
[21] can provide abundant training data alleviating the need for costly annotation of real im-
ages as well as privacy preservation concerns in the case of real data. Currently, they are
mostly designed and used for domain adaptation, typically imitating the content and classes
from a given real dataset. Several datasets have emerged towards meeting the reliability re-
quirement for self-driving vehicles [3, 7, 30, 51] and evaluate the performance of semantic
segmentation DNNs when facing out-of-distribution objects (OOD). Other datasets investi-
gate the robustness against different weather conditions, e.g., night [14, 15, 60], rain [60, 64],
fog [58, 60], however they are often acquired in different locations and conditions leading to
a performance drop that overlaps with the one from the difficult weather conditions.

In order to provide images of the same locations, to address the lack of diversity in real
environments and to evaluate better the impact on the epistemic uncertainty, some works
promoted inpainting of virtual objects [30] or synthesised weather conditions [63]. In this
setting however, questions may be raised about the veracity of the result. Therefore, the re-
cent ACDC dataset [60] is composed entirely of real images taken from the same locations,
and includes multiple sources of aleatoric uncertainty. However, not having any control on
the noise level makes it harder to quantify the link between noise and uncertainty. Acquiring
images with uncertainty corner cases is problematic as these cases are rare (long tail) and
also costly to annotate, e.g., 3.3 hours/image [60]. Given this scarcity, such images are better
used for validation as a small test set to assess the reliability of DNNs before deployment.
These system validation stages can be seen as stress tests with corner cases to mirror chal-
lenging real-world conditions. It is thus interesting even from a more applied standpoint to
have a synthetic dataset that mimics these rare conditions with some good fidelity constraint
to quantify the robustness of DNNs. Synthetic data is abundant and can allow us to mea-
sure finer drifts in the input distribution. In addition, most such datasets mainly focus on
semantic segmentation, while we propose to address multiple tasks (semantic segmentation,
monocular depth, object detection, and instance segmentation).

In Table 1 we provide a summary of the main existing uncertainty datasets. In this work,
we propose a fully synthetic dataset, called MUAD, integrating different weather conditions
with various intensities, and suitable for a multitude of vision tasks and for the comprehen-
sive characterisation of their uncertainty.

2.2 Uncertainty
Several works address the two types of uncertainty, in particular for the classification task.
Most approaches build upon Bayesian learning, frequently using Bayesian Neural Networks
(BNNs) [4, 16, 18, 19, 31, 43, 70], which estimate the posterior distribution of the DNN
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Foggy Driving[58] 101 ✓ - - - 19 - - ✓ -

Foggy Zurich [15] 40 ✓ - - - 19 - - - -

Nighttime Driving [14] 50 - ✓ - - 19 - - - -

Dark Zurich [59] 201 - ✓ - - 19 - - - -

Raincouver [64] 326 - ✓ ✓ - 3 - - - -

WildDash [75] 226 ✓ ✓ ✓ ✓ 19 - - - -

BDD100K [72] 1346 ✓ ✓ ✓ ✓ 19 - - - -

ACDC [60] 4006 ✓ ✓ ✓ ✓ 19 - ✓ ✓ -

Virtual KITTI 2 [5] 21260 ✓ - ✓ - 14 - ✓ ✓ ✓

Fishyscapes [3] 373 - - - - 19+2 ✓ - - -

LostAndFound [51] 1203 - - - - 19+9 ✓ - - -

RoadObstacle21 [7] 327 - ✓ - ✓ 19+1 ✓ - - -

RoadAnomaly21 [7] 100 - - - ✓ 19+1 ✓ - - -

Streethazard [30] 6625 - - - - 13+250 ✓ - - -

BDD anomaly [30] 810 ✓ ✓ ✓ ✓ 17+2 ✓ - - -

MUAD 10413 ✓ ✓ ✓ ✓ 16+9 ✓ ✓ ✓ ✓

Table 1: Comparative overview of the different datasets for uncertainty on autonomous driving.

weights to marginalize the likelihood distribution at inference time. Yet most BNNs are
difficult to train and scale to complex computer vision tasks that have been addressed, so
far, by fewer uncertainty estimation methods. Ensembles [38] and pseudo-ensembles [19,
22, 43] achieve state-of-the-art performance on various tasks, at the high cost of multiple
training and/or multiple forward passes at inference. Some approaches [36] formalize DNNs
to output a parametric distribution, and their goal is to estimate the distribution parameters.
These approaches can be applied to optical flow [34] and object detection [12], yet they
mainly focus on aleatoric uncertainty. Besides the additional challenges posed by complex
computer vision tasks, progress on uncertainty estimation in this area is hindered by the
lower number of datasets for properly assessing both the quality of the predictive uncertainty
and the predictive performance. With MUAD we hope to encourage research in this essential
area for practical applications with annotations and benchmarks for multiple tasks.

3 Multiple Uncertainties for Autonomous Driving
benchmark (MUAD)

According to the categorization of the uncertainty in line with the current works of the com-
munity [23] (summarized in the Supplementary Material), we propose to use the dataset to
better evaluate the results and uncertainty estimations given by the DNNs in the context of
autonomous driving. Let us link the two main types of uncertainty - aleatoric and epistemic -
to the specific context of our application. In the scenario of autonomous driving, we believe
that the aleatoric uncertainty of the DNNs will occur due to different weather conditions than
the ones present in the training set. The epistemic uncertainty of the DNNs should arise when
the class or the appearance of objects in the picture differ from those of the data provided
in the training set. The design of MUAD dataset is based on this hypothesized relationship
between uncertainty and autonomous driving scenarios. In the remainder of this section, we
will detail the composition of MUAD dataset.

The goal of MUAD is to confront DNNs to uncertain environments and to character-
ize numerically their robustness in adverse conditions, more specifically in the presence of
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Figure 2: Number of annotated pixels per class in MUAD.

rain, fog and snow. Photorealism is essential for guaranteeing that synthetic datasets are
challenging with respect to real-world conditions, and also for keeping them relevant for
use in industrial applications. This is particularly important for accommodating weather
artifacts [40, 63, 68]. Our dataset is generated using a physics based synthetic image ren-
dering engine to produce high-quality realistic images and sequences. The engine uses an
accurate light transport model [44, 67] and provides a physics description of lights, cameras
and materials. This allows for a detailed simulation of the amount of light that is reach-
ing the camera sensor. The camera sensor itself is simulated converting the energy coming
from the scene in the form of photons into electrons. Electrons are finally converted into
a voltage that is digitized to produce the digital values that represent the color image. We
provide the photorealistic rendering descriptions for different weather conditions in Section
3.3. For each sample in MUAD, the corresponding ground truth information contains the
semantic segmentation, the depth map, and for some specific classes (pedestrian, car, van,
traffic light, traffic sign) the instance segmentation with the corresponding bounding boxes.
We follow the standard data split strategy, however the training and validation set contain
only images with normal weather conditions and without some specific classes which are
denoted as OOD. The test set is organized into seven subsets following the intensity of the
adverse weather conditions:

• normal set: images without OOD objects nor adverse conditions, as in Figure 1a.
• normal set overhead sun: images without OOD objects nor adverse conditions, in

which we simulate the sun with a zenith angle of 0◦, that we denote for the sake of
simplicity as overhead sun.

• OOD set: images with OOD objects and without adverse conditions, as in Figure 1b.
• low adv. set: images with medium intensity adverse conditions (fog, rain or snow).
• high adv. set: images containing high intensity adverse conditions (fog, rain or snow).
• low adv. with OOD set: images containing both OOD objects and medium intensity

adverse conditions (fog, rain or snow), as in Figure 1c.
• high adv. with OOD set: images containing both OOD objects and high intensity

adverse conditions (fog, rain or snow), as in Figure 1d.
In Figure 3 and 4 we illustrate the instance segmentation and the semantic segmentation

of 3 images. The adverse weather conditions are realistic and challenging as they bring a
mix of difficult (unknown during training) environment conditions and perturbation of the
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(a) (b) (c)

(d) (e) (f)

Figure 3: Illustration of semantic segmentation images of MUAD dataset. The first row is com-
posed of the original images of the high adv. set. The second row is their corresponding ground truth.

(a) (b) (c)

Figure 4: Illustration of instance segmentation images of MUAD dataset. The three images are
selected from the high adv. set. We illustrated fog (4(a)), rain (4(b)), and snow (4(c)) conditions.

visibility in the scene. We argue that such settings are helpful for autonomous driving since
the autonomous system must face and be robust against a variety of weather conditions and
situations.

3.1 MUAD statistics

Our dataset contains 3,420 images in the train set, and 492 in the validation set. The test set
is composed of 6,501 images divided as follows: 551 in the normal set, 102 in the normal
set no shadow, 1,668 in the OOD set, 605 in the low adv. set, 602 in the high adv. set,
1,552 in the low adv. with OOD set and 1,421 in the high adv. with OOD set. All of these
sets cover day and night conditions with 2/3 of day images and 1/3 of night images. Test
datasets address diverse weather conditions (rain, snow, and fog with different levels), and
various OOD objects. The resolution of all images is 1024×2048.

The dataset aims to provide a general and consistent coverage for a typical urban and
suburban environment under different times of day and weather conditions. Ego-vehicle
poses are drawn randomly within a complex environment, and in a second stage the field
of view is populated stochastically with dynamic objects of interest following distributions
in compliance with their expected behaviour. The pose and context changes as well as the
variation of the models for the objects of interest ensure that content diversity is high, in
addition to images being photorealistic. The simulator makes use of approximately 300
different person models and 150 different vehicle models, which are sampled while varying
their visual characteristics.
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Cityscapes
classes MUAD classes nb. of images with

the annotations

Road
Bots, Tram Tracks, Crosswalk, Parking Area, Garbage - Road,
Road Lines, Sewer Longitudinal Crack, Transversal Crack, Road, Asphalt hole,
Polished Aggregate, Vegetation - Road, Sewer - Road, Construction Concrete

9,055

Sidewalk Lane Bike, Kerb Stone, Sidewalk, Kerb Rising Edge 8,948

Building
House, Construction Scaffold, Building, Air Conditioning, Construction Container,
TV Antenna, Terrace, Water Tank, Pergola Garden, Stairs, Dog House,
Sunshades, Railings, Construction Stock, Marquees, Hangar Airport

9,089

Wall Wall 1,101

Fence Construction Fence, Fences 8,622

Pole Traffic Signs Poles or Structure, Traffic Lights Poles, Street lights, Lamp 8,984

Traffic light Traffic Lights Head, Traffic Cameras, Traffic Lights Bulb (red, yellow, green) 8,222

Traffic sign Traffic Signs 2,672

Vegetation Vegetation 9,072

Terrain Terrain, Tree Pit 8,377

Sky Sky 8,591

Person Walker, All colors of Construction Helmet, All colors of Safety Vest, Umbrella, People 8,843

Rider Cyclist, Biker 3,470

Car Car, Beacon Light, Van, Ego Car 9,026

Truck Truck 5,533

Bus Bus 0

Train Train, Subway 2,240

Motorcycle Motorcycle, Segway, Scooter Child 2,615

Bicycle Bicycle, Kickbike, Tricycle 2,816

Animals Cow, Bear, Deer, Moose 603

Objects anomalies Food Stand, Trash Can, Garbage Bag 352

Background Others -

Table 2: Overview of annotated classes

3.2 Class labels
The class ontology of MUAD is presented in Table 2. MUAD comprises 155 different classes
that we have regrouped into 21 classes. The first 19 classes are similar to the CityScapes
classes [13], then we added object anomalies and animals to have more diversity in the
anomalies. In addition to ensuring high content diversity, this ontology facilitates the map-
ping of MUAD to specific environments which require or impose a lower number of more
generic classes. Consequently, trained models are easily transferable for existing datasets,
and we provide the mapping towards the 21 classes widely used by the community, e.g.,
[11, 13, 56, 57]. The dataset statistics for the 21 classes are presented in Figure 2. For
the evaluation of OOD detection, we have excluded nine classes (train, motorcycle, bicy-
cle, bears, cow, deers, moose, food stand, garbage bags) from the training and validation
sets. These classes are present in the test set as OOD objects. DNNs that process samples
belonging to one of these nine classes are expected to have a low confidence score.

3.3 Photorealistic rendering
Our physically based approach simulates the weather conditions taking into consideration the
amount of ozone, the humidity, among other factors. Regarding the sky, the renderer uses
a physical model of the light coming from the sky. The amount of ozone and humidity in the
atmosphere changes the emissive spectral profile of the sky, impacting the color of the objects
in the scene. Apart from ozone and humidity, there are other factors that the render takes
into account, for instance, turbidity and scattering asymmetry. Regarding the rain and the
snow, the simulation of every raindrop allows us to model physical dispersion. For improved
realism we choose the falling speed and size of raindrops according to observed real rain
[1, 48]. For snow, the same principle applies, but changing in this case the material and the
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Methods Architectures normal set low adv. without OOD set high adv. without OOD set
mIoU ↑ ECE ↓ mIoU ↑ ECE ↓ mIoU ↑ ECE ↓

Baseline (MCP) [29] DeepLab v3+ [10] 68.90% 0.0138 38.77% 0.3238 22.51% 0.4567

Baseline (MCP) [29] SegFormer-B0 [71] 69.04% 0.0135 48.67% 0.1004 30.0% 0.2396

MC-Dropout [22] DeepLab v3+ [10] 65.33% 0.0172 42.08% 0.2587 27.68% 0.3846

MC-Dropout [22] SegFormer-B0 [71] 68.55% 0.0119 45.01% 0.0758 26.59% 0.1594

Deep Ensembles [38] DeepLab v3+ [10] 69.80% 0.0129 42.81% 0.2444 23.91% 0.4500

Deep Ensembles [38] SegFormer-B0 [71] 70.00% 0.0115 49.10% 0.0837 31.67% 0.3167

Methods Architectures OOD set low adv. with OOD set high adv. with OOD set
mIoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR ↓ mIoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR ↓ mIoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR ↓

Baseline (MCP) [29] DeepLab v3+ [10] 57.32% 0.0607 0.8624 0.2604 0.3943 31.84% 0.3078 0.6349 0.1185 0.6746 18.94% 0.4356 0.6023 0.1073 0.7547

Baseline (MCP) [29] SegFormer-B0 [71] 58.91 % 0.06465 0.8578 0.21576 0.4106 40.22% 0.1544 0.7448 0.1361 0.5876 27.51 % 0.6564 0.6564 0.1071 0.7011

MC-Dropout [22] DeepLab v3+ [10] 55.62% 0.0645 0.8439 0.2225 0.4575 33.38% 0.1329 0.7506 0.1545 0.5807 20.77% 0.3809 0.6864 0.1185 0.6751

MC-Dropout [22] SegFormer-B0 [71] 58.81% 0.0574 0.8811 0.2535 0.3435 39.64% 0.1172 0.7698 0.1557 0.5498 26.52% 0.1771 0.6965 0.1237 0.6633

Deep Ensembles [38] DeepLab v3+ [10] 58.29% 0.0588 0.871 0.2802 0.3760 34.91% 0.2447 0.6543 0.1212 0.6425 20.19% 0.4227 0.6101 0.1162 0.7212

Deep Ensembles [38] SegFormer-B0 [71] 59.50% 0.05928 0.8843 0.2611 0.3342 40.00 % 0.1400 0.6933 0.1198 0.6290 25.89 % 0.3305 0.5939 0.0959 0.7287

Table 3: Comparative results for semantic segmentation on MUAD. The mIoU is related to the
main task performance, while the rest of the metrics evaluate the uncertainty quality when the model
is confronted with different types of perturbations.

dynamics. Regarding the fog, we use a full volumetric approach for the simulation where
scattering effects are considered. Regarding the level of noise, to the best of our knowledge,
there is no standard procedure to measure the intensity of adverse weather conditions for
driving scenarios. We empirically selected the number of raindrops, snowflakes, and fog
intensity from a human point or view. All the efforts mentioned above improved our dataset
realism. A study [45] was performed that confirmed that our render enhances the realism of
MUAD compared to SYNTHIA.

4 Experiments

4.1 Semantic segmentation experiments
Our semantic segmentation study consists of two experiments. Firstly, we evaluate on
MUAD the uncertainty quantification of three benchmarks (MCP [29], Deep Ensembles
[38], MC Dropout [22]), by taking advantage of the OOD/adverse weather splits. The sec-
ond experiment evaluates the quality of transfer learning from MUAD to Cityscapes [13] and
the quality of the uncertainty quantification on Cityscapes. We aim here to verify whether
MUAD can be used for unsupervised domain adaptation.

For the first experiment, we train a DeepLabV3+ [10] network with ResNet50 encoder
[28] and a SegFormer-B0 [71] on MUAD. Table 3 shows the results of our three baselines.
The first criterion we use is the mIoU [35], and the second criterion is the expected calibration
error (ECE) [26] that measures how the confidence score predicted by a DNN is related to
its accuracy. Finally, we use the AUPR, AUROC, and the FPR-95-TPR defined in [29]
that evaluate the quality of a DNN to detect OOD data. We can see that Deep Ensembles
outperform other strategies, especially when mixed with Transformers. Yet, MC Dropout
seems to have better performance on more complicated sets. Hence MUAD is well suited
for quantifying the uncertainty evaluation of different DNNs.

For the second experiment, we train a DeepLabV3+ [10] segmentation network on MUAD
and evaluate it on Cityscapes. Results reported in Table 4 show that models trained on
MUAD images modified with simple histogram matching [62]1 with Cityscapes images
achieve the same performance as models trained on the much larger GTA dataset [56].

1We use the scikit-image [65] implementation: https://scikit-image.org/docs/dev/api/
skimage.exposure.html#skimage.exposure.match_histograms
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Training set mIoU ↑
Baseline trained on Cityscapes 76.84%

Baseline trained on MUAD 16.71%

Baseline trained on MUAD with histogram eq. 32.12%

Baseline trained on GTA [56] 32.85%

Baseline trained on SYNTHIA [57] 29.45%

Table 4: Comparative results for semantic segmentation simple domain adaptation from MUAD
to Cityscapes. First row is the original baseline, the second row is the performance of the model
trained directly on MUAD and the third row is the performance of the model trained on MUAD with
histogram matching technique.

Methods
normal set low adv. without OOD set high adv. without OOD set normal set overhead sun

Depth results Uncertainty results Depth results Uncertainty results Depth results Uncertainty results Depth results Uncertainty results

d1 ↑ AbsRel ↓ RMSE ↓ AUSE
RMSE ↓

AUSE
Absrel ↓ d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓ d1 ↑ AbsRel ↓ RMSE ↓ AUSE
RMSE ↓

AUSE
Absrel ↓ d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓
Baseline 0.922 0.114 3.357 - - 0.786 0.147 5.005 - - 0.632 0.207 6.989 - - 0.951 0.090 3.646 - -

Deep Ensembles [38] 0.929 0.111 3.199 0.291 0.060 0.767 0.156 4.892 0.740 0.105 0.566 0.243 7.498 1.182 0.153 0.955 0.083 3.479 0.336 0.055

MC Dropout [22] 0.919 0.119 3.209 0.634 0.061 0.798 0.151 4.580 1.063 0.098 0.657 0.207 6.278 1.382 0.128 0.948 0.092 3.407 0.786 0.058

Single-PU [36] 0.905 0.132 3.230 0.313 0.081 0.773 0.159 4.865 0.789 0.112 0.571 0.248 7.680 1.740 0.171 0.946 0.105 3.546 0.358 0.079

SLURP [73] 0.922 0.114 3.357 0.467 0.048 0.786 0.147 5.005 1.167 0.090 0.632 0.207 6.989 1.707 0.128 0.951 0.090 3.646 0.525 0.033

Methods
OOD set low adv. with OOD set high adv. with OOD set

Depth results Uncertainty results Depth results Uncertainty results Depth results Uncertainty results

d1 ↑ AbsRel ↓ RMSE ↓ AUSE
RMSE ↓

AUSE
Absrel ↓ d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓ d1 ↑ AbsRel ↓ RMSE ↓ AUSE
RMSE ↓

AUSE
Absrel ↓

Baseline 0.896 0.125 3.616 - - 0.713 2.637 4.764 - - 0.555 0.459 6.916 - -

Deep Ensembles [38] 0.903 0.114 3.447 0.427 0.074 0.709 1.810 4.707 0.692 0.129 0.521 0.331 7.411 1.072 0.151

MC Dropout [22] 0.893 0.145 3.432 0.724 0.080 0.744 3.925 4.364 0.927 0.206 0.610 0.545 6.176 1.245 0.314

Single-PU [36] 0.888 0.132 3.463 0.447 0.095 0.714 4.349 4.716 0.744 0.482 0.529 0.351 7.627 1.347 0.156

SLURP [73] 0.896 0.125 3.616 0.721 0.068 0.713 2.637 4.764 1.072 0.212 0.555 0.459 6.916 1.564 0.151

Table 5: Comparative results for monocular depth on MUAD. We use NeWCRFs [74] as the based
DNN for monocular depth task.

4.2 Monocular depth experiments

We provide results for monocular depth using NeWCRFs [74], which is one of the SOTA
on KITTI dataset [24]. NeWCRFs does not output uncertainty by default. Similarly to
[34, 36, 50], we modify the DNN to output the parameters of a Gaussian distribution (i.e.,
the mean and variance). We denote the result as single predictive uncertainty (Single-PU).
Based on this modification we train a Deep Ensembles [38] with 3 DNNs. We also provide
the results from SLURP [73], which needs 2 DNNs to predict the depth and the uncertainty
respectively, and MC-Dropout [22]. For depth evaluation, we use the same metrics as Eigen
et al. [17] which are used in many following works [39, 74]. For uncertainty quality evalua-
tion, we follow the implementation of Poggi et al. [52]. More details on implementation and
evaluation criteria are provided in the Supplementary Material.

Table 5 lists some of the depth and uncertainty results of the above techniques on our
dataset due to the space limit. We observe that in the presence of OOD, the uncertainty results
of Deep Ensembles are comparatively better, while MC-Dropout provides more robust depth
estimations under different perturbation. Additionally, we provide self-supervised monocu-
lar depth results using left-right image consistency [25], along with the full supervised results
in Supplementary Material. We also propose a baseline method for depth domain adaptation
from MUAD to KITTI and report its performance in Table 6. Compared to the direct adap-
tation from Virtual KITTI 2 [21], which is specifically designed based on the target dataset
KITTI [24], the model trained on MUAD can achieve competitive performance.

4.3 Object detection experiments

For the object detection task, we trained a Gaussian YOLOV3 [12] and a Faster-RCNN
[54] on the training data. The Faster R-CNN are trained with ResNet101 and ResNet50
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KITTI
Training set d1↑ d2↑ d3↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ SILog↓
KITTI [24] 0.975 0.997 0.999 0.052 0.148 2.072 0.078 6.9859

Virtual KITTI 2 [5] 0.835 0.957 0.989 0.129 0.706 4.039 0.177 15.534

MUAD 0.731 0.927 0.983 0.187 1.059 4.754 0.227 18.581

Table 6: Comparative results for monocular depth estimation simple domain adaptation from
MUAD to KITTI eigen-split [17]. First row is the original baseline, the second and the third rows are
the performance of the model trained directly on Virtual KITTI 2 [21] and MUAD respectively.

Evaluation data normal set low adv. without OOD set high adv. without OOD set OOD set low adv. with OOD set high adv. with OOD set
mAP ↑ AP50 ↑ PDQ ↑ mAP ↑ AP50 ↑ PDQ ↑ mAP ↑ AP50 ↑ PDQ ↑ mAP ↑ AP50 ↑ PDQ ↑ mAP ↑ AP50 ↑ PDQ ↑ mAP ↑ AP50 ↑ PDQ ↑

Faster R-CNN
(ResNet101) 39.91% 54.91% 16.88% 25.00% 36.89% 8.61 13.97% 22.01% 0.041 35.85% 48.9% 14.33% 24.73% 35.70% 8.49% 12.41% 19.66% 3.86%

Faster R-CNN
(ResNet50) 38.43% 53.13% 15.02% 25.19% 37.38% 8.18% 13.29% 21.53% 0.0389% 34.52% 47.63% 12.96% 23.93% 34.51% 7.95% 12.11% 19.46% 3.64%

Gaussian
YOLOV3 [12] 20.81% 32.84% 2.22% 8.79% 16.40% 0.57% 3.28% 6.30% 0.22% 17.44% 28.16% 1.52% 10.80% 18.71% 0.64% 3.21% 6.15% 0.26%

Table 7: Comparative results for object detection on MUAD. The first criteria are the mAP AP50
[41] related to the accuracy, and the second criterion is the PDQ [27] that measures how well detectors
probabilistically localise objects in an image.

backbones with FPN [42]. All the results are presented on Table 7. We can see that Faster R-
CNN’s performance drops with the adversarial conditions, which confirms that considering
the adversarial behavior is important when designing algorithms.

4.4 Discussion
The experiments show that the best main task contender might not always be the most suited
against different sources of uncertainty, thus it is important to test thoroughly and adapt the
processing pipeline to the expected type of perturbations. The similar ranking of methods on
our synthetic dataset and on real data (see [20, 30]) is encouraging as it allows us to general-
ize the analysis performed on MUAD to actual scenarios. An additional benefit of synthetic
datasets is related to the reduced data privacy concerns and regulations that typically affect
real world datasets, in particular in urban settings that include pedestrians. All these traits al-
low for faster validation of new algorithms before their deployment in in real-world settings.
Finally, a potential different usage of MUAD concerns unsupervised domain adaptation from
synthetic to real domains. Our preliminary results are encouraging.

5 Conclusion
Previous research in deep learning and autonomous cars has established that it is essential to
robustify DNNs. In this paper, we present MUAD, a synthetic but highly realistic dataset in-
corporating multiples sources of uncertainties for autonomous driving, that provides insight
into the robustness of DNNs for various applications. Based on MUAD, we provide a set of
baselines for three fundamental computer vision tasks. Uncertainty is related to events that
occur rarely; synthetic data is very valuable for dealing with infrequent events. We hope that
our dataset can improve the reliability of DNNs, especially in autonomous driving scenarios.
We are the first, to our knowledge, to provide a dataset with such noise dichotomies present
in automotive applications. Our extensive benchmarks show the greater than ever impor-
tance of considering uncertainty quantification in addition to accuracy, for decision making
systems in sensitive applications.
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