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Abstract—Preventive conservation is an important practice
in Cultural Heritage. The constant monitoring of the state of
conservation of an artwork helps us reduce the risk of damage
and number of necessary interventions. In this work, we propose
a probabilistic approach for the detection of alterations on the
surface of historical violins based on an a-contrario framework.
Our method is a one step NFA clustering solution which considers
grey-level and spatial density information in one background
model. The proposed method is robust to noise and avoids
parameter tuning and any assumption about the quantity of the
worn-out areas. We have used as input UV induced fluorescence
(UVIFL) images for considering details not perceivable with visible
light. Tests were conducted on image sequences included in the
“Violins UVIFL imagery” dataset. Results illustrate the ability of
the algorithm to distinguish the worn area from the surrounding
regions. Comparisons with state-of-the-art clustering methods
show improved overall precision and recall.

I. INTRODUCTION

Preventive conservation, a crucial procedure in Cultural
Heritage, consists in the constant monitoring of artworks and
monuments to reduce the risk of damages and to minimise
restorations [1], [2]. This practice is particularly complex and
requires an interdisciplinary approach to correctly interpret and
to manage the effects of chemical, physical and biological
alterations [3], [4], [5]. Historical wood musical instruments
(such as violins or violas) are a peculiar kind of artwork
because they are both held in museums and played (even
today), leading to a major risk of mechanical wear in the
areas in direct contact with the musicians. In particular, the
monitoring of historical violins presents various complexities:
(i) the instruments have undergone multiple restorations during
centuries, leading to a stratified surface difficult to analyse;
(ii) varnish wear can evolve in different ways depending on the
initial conditions of the surface and on the different substances
being present; (iii) the rounded morphology and the high
reflectance of the varnishes generate noisy reflections during
photo acquisition (almost impossible to avoid completely) that
can be confused with potential alterations; (iv) in order to
avoid damages to the varnishes, violins cannot be rigidly fixed
to a support, thus, slight misalignment between photographic
sessions can occur. If we consider the entire surface of an
instrument these last two issues are not critical; however, for
detecting small alterations (especially in the initial steps) we

need to focus on the areas always in contact with the musicians
(mainly top left and bottom right of the back plate), taking
close-up pictures of these details that are naturally more subject
to this kind of acquisition noise. The combined use of multiple
analytical techniques proved to be a valid approach for handling
these issues [6], [7], however, mixing more techniques is a very
slow and time-consuming process. A more efficient procedure
will consist of regular analysis of images in order to quickly
identify possible altered areas, and then apply only on them
spectroscopic techniques as confirmation.

In this study, we have used multi-temporal UV induced
fluorescence (UVF or UVIFL) images collected in the “Violins
UVIFL imagery” dataset1 [8]. UVIFL photography is a widely
adopted non-invasive diagnostic technique that allows to see
details not perceivable using visible light [9]. In particular, for
the study of historical violins, UVIFL images are generally
used to highlight possible restorations or interesting areas
[10] and to decide where to apply more precise but slower
diagnostic techniques, like X-Ray Fluorescence (XRF) [11]
or Fourier Transform Infrared (FTIR) spectroscopy [12]. The
possibility to see “hidden” details is particularly valuable in our
scenario since it potentially allows for an early detection of new
alterations. In fact, visible light can be deceptive. When a new
alteration is clearly identifiable under a standard illumination, it
is likely that an irreversible damage to the surface varnish has
already occurred. Moreover, substances used for cleaning the
instruments can temporarily hide the presence of alterations,
and, thus, slow down the detection. On the contrary, the
effectiveness of UVIFL photography to characterise variations
in varnishes is well known in the Cultural Heritage field [13].

Then, wear detection can be viewed as a semantic seg-
mentation problem with two semantic classes, namely the
intact areas and the wear region(s). However, wear features
are highly variable both in terms of radiometry and in terms of
geometric shape so that we would rather cast the wear detection
problem as a change detection problem assuming we have at
our disposal a reference image taken from the initial state of
the instrument. Then, a famous framework to handle 2-class
problems with one of the class unknown (the change one) is

1https://vision.unipv.it/research/UVIFL-Dataset/



the a-contrario framework [14]. It takes inspiration from the
statistical rejection tests with the null hypothesis (H0) being
“the pixel does not correspond to a change”. However, a-
contrario approaches differ on the two following points: (i) the
null hypothesis (i.e., the one to reject) is represented through
a “naive” model that corresponds to unstructured data; (ii) the
decision is taken based on the Number of False Alarms (or
significance). In this work, we describe a new method for early
detection of superficial alterations on historical violins based
on the a-contrario framework [15], [16]. This method can be
applied with minor modifications to any wooden instruments.
Also, by replacing the acquisition and pre-processing steps, we
can cover a wider variety of change detection problems. The
main contribution of the proposed approach is to encompass
in a single model both criteria that wear areas present: a high
density of pixels having different radiometry with respect to the
reference image. It also allows us to be free from any threshold
decision and cluster feature specification.

II. RELATED WORKS

The a-contrario framework introduced by Desolneux et
al. [15] has been used in image analysis in a variety of ap-
plications such as texture analysis [17], motion detection [18],
[19], edge and line detection [20], [21], [22], [23], or recon-
struction from motion [24]. In all these studies, the detection
is performed by rejecting a naive model which describes the
statistic of the unstructured data. At the same time, grouping
principles have been used for tasks related to the higher level
perceptual organization of scenes [25], [26], thanks to their
general nature.

In our case, we are interested in the applications dealing
with the detection of changed areas across multi-temporal
images. In early studies, the a-contrario framework and spectral
invariant features have been used to detect meaningful changes
between two satellite images of the same area taken at different
times [27]. An a-contrario approach has also been proposed
for change detection in three dimensional multi-modal medical
images such as Magnetic Resonance sequences [28]. In 2010,
Robin et al. use the a-contrario framework for the definition
of a criterion assessing the level of coherence in a sequence
of images for detecting sub-pixel changes in a time-series of
satellite images [29]. Flenner et al. further investigated this
approach by using exchangeable random variables instead of
relying on the independent and identically distributed (IID)
assumption [30]. All these works focus on the grey level values
(and their changes) so that the considered naive model deal with
grey level discrepancy.

Now, numerous works have been proposed to deal with ob-
jects characterized by their spatial feature consistency. Search-
ing for a pattern using a-contrario framework can be done either
by computing the significance of every pattern corresponding
to a parametric shape (e.g., circle [31], line, ellipse [32]) or
by checking possible clusters of points regardless of their
shape [33], [34]. In these works, even if one may consider
more complex models which allow for taking into account
dependence in the image [35], the usual naive model that

represents unstructured data is the uniform distribution, for
instance of the gradient orientations in [36] or simply of the
location of the 1-valued pixels in [15] and [37] that process
binary images.

Based on all previous cited works, a straightforward solution
considered in [22], [38] is to first use an a-contrario approach
to detect points that, according to their grey level values, are
likely to belong to a change area, to store these points as a
binary image, and then group these points (1-valued in the
binary image) together [16]. However, with such an approach
the two criteria on grey level values and spatial features of
the researched objects or areas are considered sequentially and
there is an implicit threshold (at the end of the first step) that
makes us lose the information about the intensity of the change.
Our proposal is then to combine both steps and cluster a grey-
level image by using a single naive model.

III. PROPOSED APPROACH

A. Notations and key idea

Let K ( N+ denote a set of indices, and let |K| = K
denote its cardinality. A series of images Ii, i ∈ K, are captured
from a wood sample with pre-defined time intervals. They are
in conventional RGB format. For notation convenience, in the
following we assume K = {0, . . . ,K − 1} so that I0 is the
original image which serves as a reference. Comparison of
each Ii, i ∈ {1, . . . ,K − 1} with I0 using a colour difference
formula [39] gives a difference map ∆Ii. ∆Ii is a grey-level
image defined on the pixel domain P ⊂ N2

Our problem boils down to segmenting each image ∆Ii,
i ∈ {1, . . . ,K − 1}, with respect to semantic classes, one
of which representing the wear area(s). Note that, even if,
according to expert knowledge the temporal evolution of the
wear areas includes some information, in the perspective of
the evaluation of a new change detection algorithm, it is
left aside for the wear estimation and only considered for
qualitative validation of our results. Now, as already said, we
will encompass both criteria characterising a wear area in ∆Ii
images (radiometric and spatial) in a single naive model.

The basic idea is to extend the meaningfulness concept
specifying that a cluster is all the more significant that it is very
dense (i.e., its points are ‘surprisingly’ close) not only spatially
but also in terms of grey-level differences. Now, considering
grey-level differences, low values correspond (mainly) to no
change and extended high values (mainly) to changes, so that
a grey-level transform is required to meet the assumption that
a change can be detected as surprisingly structured or dense
values. Then, using the cluster NFA based on distance, the
proposed method also needs the specification of the considered
distance. These two points are presented in the next subsections
before the NFA computation and cluster detection algorithm.

B. Grey-level transformation

Let us first enumerate the desirable properties for the re-
searched grey-level transformation for ∆ pixel values: after
transformation, (i) grey level values of pixels belonging to
unchanged areas shall be stretched, (ii) grey level values of



pixels belonging to change areas shall be similar and (iii) close
to zero. This last property aims at controlling not only the
relative values of grey-level differences but also their absolute
value. Then, the grey-level function (f ) that we can consider
has to:
• be decreasing;
• spread no significant grey-level differences so that uniform

distribution will be acceptable.
In this study, two reasonable f functions were evaluated:

the inverse function and the tanh function, with satisfactory
results. Both provide expected discrepancy of the grey-value
cloud as shown in Fig. 1.

(a) (b) (c)

Fig. 1: 3D point cloud (a) before applying the function f ,
(b) after applying f(x) = 1

x and (c) after applying f(x) =
tanh(th − x). The vertical axis represents the (transformed)
grey-level values while the other two axes are for the spatial
data

C. Distance between two points

The cluster detection using a-contrario is based on point
distance calculation [40]. In order to take into account both
spatial distance and (transformed) grey-level differences, the
handled distance is a weighted sum of two terms: the 2D
spatial proximity and a term representing the modified grey-
level of each point. In this way, we can enforce that points with
higher (f -transformed) grey-level values are considered closer
together compared to points with lower grey-level. Since the
grey-level values and spatial distance are inherently in different
scales, we use the constant scale factor c to make them of
the same order of magnitude. Note that, even if appearing as
a parameter, this factor c is very easy to set based on image
resolution features (spatial and radiometric). Denoting by yi the
value at pixel i ∈ P , and by Dsp(i, j) the 2D spatial distance
between location of pixels i and j, ∀(i, j) ∈ P2,

D(i, j) =

√
(Dsp(i, j))

2
+ c×

(
(f (yi))

2
+ (f (yj))

2
)

(1)

Finally, for any distance value d, a cluster C ⊆ P is a set

of points i such that ∀i ∈ C,
{
∃j ∈ C s.t. D(i, j) ≤ d,
∀j′ ∈ P \ C, D(i, j′) > d.

Note that for a given d there may be several distinct clusters
Ci verifying previous definition. Inversely, for a given cluster

C, there is a range of distances leading to C that allows us to
associate an inner border and an outer border to cluster C. In
the following, we denote dmin(C) and dmax(C) the bounds of
this interval.

D. Number of False Alarms

The Number of False Alarms (NFA) is based on the con-
sidered naive model. In our case, this latter is the uniform
distribution:

Definition 1 (Naive modelM). The set of points S is a random
set of |S| independent uniformly distributed variables over the
3D (2D+Greylevel) space of the image.

Note that a keypoint of a-contrario approaches is that the
naive model has not to be exact, but it has only to be
contradicted in the case of the researched structured data (wear
in our application).

The Number of False Alarms is computed extending the NFA
proposed in [16], defined for 2D cluster detection. Considering
here a 3D space, the 2D surface areas are replaced by 3D
volumes and the 2D distance by the distance defined in Eq. (1),
so that, for any cluster C of 3D (2D+Greylevel) points,

NFAM(C,M) = Ntest

M∑
i=k

(
M

i

)
V i
C(1− V C)

M−i (2)

where k is the number of points in the cluster, M is the total
number of points and V C and V C are the lower and upper
bounds of the relative volume of the cluster compared to the
whole image cube. These regions are obtained by performing
morphological operations on the union of every point in the
cluster [16]. In our application, for simplicity of computation,
we estimate both V C and V C by utilising the area of the 2D
surfaces associated with these 3D regions:V C = AC ×max

i∈C
(f(yi)) /VP

V C = AC ×max
i∈C

(f(yi)) /VP
(3)

where yi is the grey-level of point i, f is the transformation
function, VP is the volume of the image cube, and AC (AC)
is the upper (lower) bound of the area of the cluster in the 2D
image.

IV. IMPLEMENTATION

The implementation process (Figure 2) begins with an ap-
plication dependent step. This step can be switched out to
adapt our proposed algorithm to new applications. Once the
acquisition is complete, it is imperative to make sure the two
images we compare are spatially registered and have the same
general lightness level. Indeed, the images can be taken in
different conditions and by different operators. The algorithm
should remain robust to these changes.

Next, we compute a difference map between a given frame
and the reference frame (t0). The difference map between t0
and ti, i ∈ {1, . . . ,K − 1}, is created by computing the color



difference between the corresponding pixels. We have utilized
the CIEDE2000 formula, after transforming the RGB values
into the CIELAB color space.

It is worth noting that other approaches may also be used to
create the difference map for the rest of the detection process,
from a simple Euclidean distance between RGB values to more
complicated color difference models. However, in our case the
employed difference provides consistent results which agree
with the expected wear areas.

Application 
dependent steps

Image acquisition

Illumination correction

Spatial Registration

Difference map

Color difference

Transformation

Change 
detection and 

clustering

NFA computation

Gray level 
image

Two RGB 
images

Ranked
Clusters

Time 0 and i

Fig. 2: General steps of the proposed algorithm

The difference image is then used for finding the clusters
and computing their significance. First, we create a minimum
spanning tree of the points in the difference image based on the
distances computed by Eq. (1). Each sub-tree then is considered
a potential cluster and by computing the meaningfulness value
we decide which ones to keep and which ones to discard.
Algorithm 1 describes the process step by step.

Calculating the Eq. (1) can be difficult without an approxi-
mation. In images with small pixel numbers (around 1000 or
lower) we can calculate the exact values using BigInt data
types. In other cases, an approximation can be viable if we
restrict the area possible for a cluster compared to the whole
image. Since the wear area is not covering the image, this
restriction will not hinder the process.

V. RESULTS

A. Dataset

The “Violins UVIFL imagery” dataset is a public dataset
containing multi-temporal UVIFL images of historical and
sample violins. The former regularly acquired during a short
period of use, the latter artificially altered in laboratory to
simulate various possible alterations over a long-term use. Cur-
rently, the dataset includes image sequences of two historical
violins held in Museo del Violino in Cremona (Italy), “Carlo
IX” (c.1566) made by Andrea Amati and “Vesuvio” (1727)
made by Antonio Stradivari, and two artificially created sample
sequences. The alterations were created scrubbing the surface
with a cloth damped with alcohol to reproduce, as faithfully as
possible, the effect of mechanical wear during playing.

For creating the first artificial sequence, called WSO1 (Figure
3(a) and (b)), a wood sample was slowly altered several times
to simulate an alteration in an area with intact varnish. This set
contains one reference image of the initial state of the sample
and 20 altered frames.

The second sequence, called SV01 (Figure 3(c) and (d)),
contains images of the lower part of the back plate of a sample
violin. This set simulates the growing of wear starting from an

Algorithm 1 Change detection between frame i and the
reference frame

1: Perform the pre-processing
2: Compute the color difference map ∆I between Ii and I0
3: for each pixel j in ∆I do
4: ∆I(j) = f(∆I(j))
5: end for
6: Normalize ∆I between 0 and 255
7: Compute the distance Dsp between each pair of points in

∆I
8: for each pair of pixels j and j′ in ∆I do
9: Compute D(j, j′) according to Eq. (1)

10: end for
11: Compute the minimum spanning tree T for the points in

∆I
12: for each subtree in T defining a cluster C do
13: Compute V C and V C according to Eq. (3)
14: M ← the total number of points in the spanning tree
15: k ← the number of points in C
16: Compute NFA value (up to scale owing to Ntest)

according to Eq. (2) using values k, M , V C and V C
17: end for
18: Find disjoint sub-trees with maximum NFA
19: Sort sub-trees according to their NFA

area already ruined and consists of one reference image and 20
altered frames.

All the images were acquired following our previously
defined acquisition protocol [41], using a Nikon D4 full-frame
digital camera with a 50 mm f/1.4 Nikkor objective, 30s
exposure time, aperture f/8, ISO 400 and two wood lamp tubes
(Philips TL-D 36 W BBL IPP low-pressure Hg tubes, 40 Watt,
emission peak ∼ 365nm) as UV-A lighting source.

For the purpose of this paper we focused only on the two
artificial sequences, since the period of examination for the
two historical violins was relatively short and only “Vesuvio”
showed a very slight alteration on its back plate.

B. Outputs

Figure 4 shows the result of clustering for four sample frames
of WS01. As we can see, small noises change from frame to
frame, big artefacts have a constant size and location, and the
wear area grows over time. In all cases, small noises have been
ignored and significant high change areas have been identified.

C. Evaluation

For the purpose of evaluation, we need a viable existing
process as an alternative for our proposal. As mentioned
before, our proposal deals with a certain set of limitations
and assumptions; so, it is imperative that the comparison is
made with a process which can also work in those conditions.
Therefore, we are looking for these features:

• Segmentation should be done using both the grey-level
and the density information.



(a) (b) (c) (d)

Fig. 3: Samples UVIFL images contained in the dataset: (a) and (b) from set WS01, (c) and (d) from set SV01.

(a) (b) (c) (d)

Fig. 4: Clustering output from frames 3, 9, 15 and 20 of set WS01 using the proposed NFA clustering.

(a)

(b)

Fig. 5: Precision-Recall plot for WS01 (a) and SV01 (b). For a
given algorithm (indicated by the color), each point highlights
the performance at a specific timestep of the sequence.

• The available number of images in the problem domain is
very limited.

• Number of clusters is unknown beforehand.

• The general shape of a wear cluster is unknown.
• There is no clear threshold between background and

foreground.
• The data contains noise and artifacts.
• The process should be automatic and not interactive.
• There should be a way to rank the resulted clusters.
For separating the background from the foreground, we use

FRFCM proposed by Lei et al. [42], which is a modified fuzzy
cmeans algorithm. They incorporate local spatial information
by using morphological reconstruction, which improves the
classic fuzzy cmeans to help dealing with the different types
of noise. Applying this method gives us consistently good
separation between background and foreground which makes
it a good candidate for the evaluation of our algorithm.

To spatially cluster the points produced from FRFCM we
have chosen a density based algorithm proposed by Campello
et al.[43]. HDBSCAN (or Hierarchical Density-Based Spatial
Clustering, with Application with Noise) is a framework for
density-based cluster analysis. The algorithm produces a com-
plete clustering hierarchy of all possible density based clusters
and - crucially for us - it also provides a global, optimal
non-hierarchical solution which maximizes the overall stability
of the proposed clusters. This means we can evaluate our
automatic process (for the number of clusters) with a direct
comparison of resulted clusters from both methods.

For the comparison to be fair, we also need to rank the pro-
duced clusters based on a specific feature. The meaningfulness
value which we assign to each cluster does not directly translate
to the grey-level value or shape of the cluster; but it can be
mimicked generally by the area of the cluster. Therefore, we
sort the results of HDBSCAN based on the number of pixels
in each cluster in descending order.

The ground truth for each frame has been created manually
with our best estimation as to where the wear region is. In the
absence of any exact (due intrinsically to the wear construction
process and to the inability to apply physico-chemical analysis



TABLE I: Comparison of the result of proposed NFA clustering, FRFCM+HDBSCAN clustering and the ground truth for
examples drawn from set WS01.

No. Ground truth NFA clustering FRFCM+HDBSCAN
S1 : 9

S1 : 15

S1 : 20

on a large scale) knowledge on the boundaries of wear regions,
they have been defined intentionally very loose.

We directly compared our k(k ≤ 4) most significant clusters
with the first k clusters we get from the mentioned process in 4
separate comparisons. The ideal scenario is that the wear region
appears as the rank 1 cluster; but depending on the position of
the image in the series and on the amount of artifacts being
present, we may get lower rank wear regions.

Tables I and II show three sample frames from each dataset:
their ground truth and output of each method. A qualitative
consideration of the results indicates:

• The proposed method has segmented the difference image
with regards to both grey-level values and spatial density
in one step. The background separation is done seamlessly
and correctly.

• We have successfully dealt with background noise and
artifacts from UV reflections in the majority of cases.
For example, in dataset two, reflections on the border of
the violin are very close to the actual wear region. The
NFA clustering has managed to avoid them completely
or to a significant degree while FRFCM+HDBSCAN
have group them together with the wear in a few cases.
Inherently the NFA clustering allows for controlling the
number of false alarms. This results in globally better wear
detection (lower false positive values by accepting more
false negative values).

• The wear region has been identified without any prior
assumption about its position or shape. In addition, the
most significant clusters have been detected without the
need for number of clusters as an input.

For quantitative evaluation, precision and recall are computed
regarding three cases: our proposal, the FRFCM [42], and the
combination of FRFCM[42] and HDBSCAN[43] as mentioned
before.

Figure 5 shows the precision/recall charts for sequences
WS01 and SVO1. For these plots the first cluster in the ranked
order has been considered. In both sets, the proposed NFA
clustering has better precision while maintaining an acceptable
recall in most cases:

• For set WS01, in average, we achieve 87% precision
and 89% recall which is higher than the average scores
for FRFCM+HDBSCAN (50% precision and 75% recall).
Number of failures to identify the wear region in rank one
is one for NFA and three for FRFCM+HDBSCAN.

• For set SV01, which contains more noise and artifacts,
on average, we achieve 77% precision and 69% recall
as opposed to 46% precision and 90% recall for FR-
FCM+HDBSCAN. The number of failures to identify the
wear region in rank one is zero for NFA and one for
FRFCM+HDBSCAN.



TABLE II: Comparison of the result of proposed NFA clustering, FRFCM+HDBSCAN clustering and the ground truth for
examples drawn from set SV01.

No. Ground truth NFA clustering FRFCM+HDBSCAN
S2 : 9

S2 : 15

S2 : 20

VI. CONCLUSION

In this paper, we introduced a probabilistic method for
detecting significant changes located in clusters within a series
of images. The proposed method performs an automatic clus-
tering process directly on the grey-level difference image, while
dealing with the background noise and artifacts. Comparisons
with recent clustering methods show meaningful improvements
while having the benefit of an inherent ranking criterion for the
produced clusters.

This approach can be used in preventive conservation as a
fast, preliminary examination of the surface of a violin able
to identify the most likely altered areas. Thus, a verification
using more precise but slower techniques (like spectroscopic
analyses) will be done only on the detected areas, optimising
the monitoring procedure.

For future studies, we intend to perform a long-term monitor-
ing process considering real historical violins which are played
weekly. Beside creating a valuable dataset for our community,
this will allow us to validate our algorithm as well on real wear
patterns.

Lastly, while in the current work we have only used one pair
of images at a time to track the changes, it is interesting and
useful to incorporate time information in our model. Inherently,
the evolution of the wear region through time is different
from that of artifacts being present in the image; this can
help us differentiate wear regions better. Also, in an ongoing

monitoring process it can help us detect a newly created wear
at an earlier stage.

REFERENCES

[1] S. Bradley, “Preventive conservation research and practice at the british
museum,” Journal of the American Institute for Conservation, vol. 44,
no. 3, pp. 159–173, 2005.

[2] E. Lucchi, “Review of preventive conservation in museum buildings,”
Journal of Cultural Heritage, vol. 29, pp. 180 – 193, 2018.

[3] N. Ghedini, I. Ozga, A. Bonazza, M. Dilillo, H. Cachier, and C. Sab-
bioni, “Atmospheric aerosol monitoring as a strategy for the preventive
conservation of urban monumental heritage: The florence baptistery,”
Atmospheric Environment, vol. 45, no. 33, pp. 5979 – 5987, 2011.

[4] R. Ortiz and P. Ortiz, “Vulnerability index: A new approach for preven-
tive conservation of monuments,” International Journal of Architectural
Heritage, vol. 10, no. 8, pp. 1078–1100, 2016.
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