
HAL Id: hal-04454523
https://hal.science/hal-04454523

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some algebraic properties of floating-point arithmetic
Jean-Michel Muller

To cite this version:
Jean-Michel Muller. Some algebraic properties of floating-point arithmetic. 4th Real Numbers and
Computers Conference, Apr 2000, Dagstuhl, Germany. �hal-04454523�

https://hal.science/hal-04454523
https://hal.archives-ouvertes.fr

Some algebraic properties of floating-point arithmetic

Jean-Michel Muller
CNRS-LIP

Projet CNRS-ENSL-INRIA Arenaire

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07

France

Abstract

Thanks to the IEEE-754 standard, floating-point arithmetic is now a well-defined
mathematical structure, on which it is possible to build proofs and algorithms. We
give some examples of properties (mainly closure properties) that can be proven.

Introduction

For many years, floating-point arithmetic has been a mere set of cooking recipes. The
consequences of this have sometimes been disastrous: numerical programs were not reliable
nor portable. Without a clear specification of the underlying arithmetic, it was not possible to
prove even simple properties of a sequence of operations, and the only way to feel comfortable
with an important numerical program was to perform intensive tests.

The IEEE-754 [3, 1] standard for binary floating-point arithmetic (and the radix indepen-
dent IEEE-854 [2, 5] standard that followed) put an end to this dangerous era. The IEEE-754
standard (we will later refer to it as “the IEEE standard” or “the standard”) clearly specifies
the formats of the floating-point representations of numbers, and the behaviour of the four
arithmetic operations.

Define Fn as the set of exponent-unbounded, n-bit mantissa, binary floating-point num-
bers (with n ≥ 1), that is:

Fn =
{
M × 2E, 2n−1 ≤M ≤ 2n − 1,M,E ∈ N

}
∪ {0}

Fn is not the set of the available floating-point numbers on an existing system. It is an
“ideal” system, with no overflows or underflows. We will show results in Fn. These results
will remain true in an actual systems that implement the IEEE standard, provided that
no overflows or underflows occur. The mantissa of a nonzero element M × 2E of Fn is the
number m(x) = M/2n−1.

The result of an arithmetic operation whose input values belong to Fn may not belong
to Fn (as a matter of fact, in general it does not). Hence that result must be rounded. The
standard defines 4 different rounding modes:

• rounding towards +∞, or upwards: ◦u(x) is the smallest element of Fn that is greater
than or equal to x;

• rounding towards −∞, or downwards: ◦d(x) is the largest element of Fn that is less
than or equal to x;

• rounding towards 0: ◦z(x) is equal to ◦u(x) if x < 0, and to ◦d(x) otherwise;

• rounding to the nearest even: ◦n(x) is the element of Fn that is closest to x. If x is
exactly halfway between two elements of Fn, ◦n(x) is the one for which M is an even
number.

The first three rounding modes are called directed rounding modes.
The standard requires that the user should be able to choose one rounding mode among

these ones, called the active rounding mode. After that, when performing one of the 4
arithmetic operations, or when computing square roots, the obtained result should be equal
to the rounding of the exact result.

We will denote these “correctly rounded” operations with a circle and a letter indicating
the rounding mode. For instance, when a and b belong to Fn, a ⊕u b = ◦u(a + b), whereas
a�n b = ◦n(a/b).

For a ∈ Fn, we define a+ as its successor in Fn, that is, a+ = min{b ∈ Fn, b > a}, and
ulp(a) as |a|+ − |a|. If a is not an element of Fn, we define ulp(a) as ◦u(a) − ◦d(a). The
name ulp is an acronym for unit in the last place. When x ∈ Fn, ulp(x) is the weight of the
last mantissa bit of x. We also define a− as the predecessor of a.

1 Floating-point reciprocals

Given a rounding mode t, we want to investigate whether an element x ∈ Fn has an FP-
reciprocal (Floating-Point reciprocal) for ⊗t, that is, whether there exists z ∈ Fn such that
x⊗t z = ◦t(xz) = 1. From the obvious properties:

x ∈ Fn, k ∈ Z ⇒ x2k ∈ Fn

λ ∈ R, k ∈ Z ⇒ ◦t(λ2k) = 2k ◦ t(λ)
x, z ∈ Fn, k ∈ Z, x⊗t z = 1 ⇒ (x2k)⊗t (z2−k) = 1

we can assume that 1 ≤ x < 2 (that is, it suffices to focus on reciprocals of the mantissas
of the elements of Fn). Before looking for FP-reciprocals, one can try to investigate whether
the “true” reciprocal of a given element of Fn may belong to Fn (or some other set Fq). The
answer, given by the following lemma, is quite straightforward.

Lemma 1 Let x ∈ Fn. There exists q ∈ N, q ≥ 1 such that 1/x belongs to Fq if and only if
x is a power of 2.

Proof. The above remarks show that it suffices to assume that 1 ≤ x < 2. Define y = 1/x
and assume y ∈ Fq. This gives:

• X = 2n−1x ∈ N;

• Y = 2py ∈ N (since 1/2 < y ≤ 1).

The integer XY is equal to 2n+p−1. Therefore, in the prime number decomposition of X and
Y , 2 is the only prime number that can appear. �

1.1 Directed rounding modes

1.1.1 Unicity of FP-reciprocals

In general, an element of Fn may have more than one FP-reciprocal. Consider x = 27/16,
and the two values z1 = 19/32 and z2 = 5/8. All these values belong to F5, and x ⊗d z1 =
x⊗d z2 = 1.

Property 1 For any directed rounding mode, an element of Fn has at most 2 reciprocals.
Assuming rounding towards +∞ (⊗u), a nonnegative number has at most one FP-reciprocal.

Proof.
Assume x ∈ Fn, 1 < x < 2 (the case x = 1 is obvious, since x is its own unique

FP-reciprocal in any rounding mode). Define y = 1/x, and

z1 = ◦d(y)
z2 = ◦u(y).

We have:
1/2 < y < 1
1/2 ≤ z1 ≤ 1− 2−n

1/2 + 2−n ≤ z2 ≤ 1

Let us first assume rounding towards 0, or downwards. It is worth noticing that, since
x 6= 1, z1 < y. Hence for any z ∈ Fn that is less than or equal to z1, z ⊗d x = ◦d(z × x) ≤
z × x < xy = 1. Now, consider the case z ≥ z+2

+. The number z+2
+ is greater than or

equal to z2 + 2−n+1 (it can be larger if z2 = 1 or z+2 = 1). Therefore: xz ≥ xz2 + x2−n+1 ≥
xy + 2−n+1 = 1 + ulp(1) ∈ Fn. Hence x⊗d z = ◦d(xz) ≥ 1 + 2−n+1.

Now, let us assume rounding towards +∞, or upwards. Quite obviously (same reasoning
as for z1 and ◦d), for any z ∈ Fn that is greater than or equal to z2, z ⊗u z > 1. Now,
consider a number z ∈ Fn that is less than or equal to z−1 . Two cases may occur:

• if z1 > 1/2, then z−1 = z1 − 2−n. In such a case, xz ≤ xz1 − x2−n ≤ xy − 2−n =
1− 2−n ∈ Fn. Hence, x⊗ z ≤ 1− 2−n;

• if z1 = 1/2 then, since xz1 ∈ Fn, we have x⊗u z1 = xz1 < xy, since we have assumed
y 6= 1/2;

Hence, the only element of Fn that may be an FP-reciprocal of x is z1. �

1.1.2 Existence of FP-reciprocals

Property 2 Every nonnegative element of Fn has a FP-reciprocal in Fn for ⊗u.

An immediate consequence of this property is that every nonpositive element of Fn has
a FP-reciprocal in Fn for ⊗d.

Proof. Let x ∈ Fn, x > 0. We have to find z ∈ Fn such that x ⊗d z = 1. We assume
1 ≤ x ≤ 2. Define y = 1/x (y is a real number, it does not necessarily belong to Fn), and
consider z = ◦u(y). From 1/2 < y ≤ 1, since the roundings are monotonic functions, and
since 1/2 and 1 belong to Fn (and therefore are equal to their own roundings, for any of the
4 rounding modes), we deduce 1/2 < z ≤ 1. Two cases may occur:

• if z = 1, this means that 1−2−n < y ≤ 1. Hence, 1 ≤ x < 1+2−n +2−2n +2−3n + . . . ≤
1 + 2−n+1 = 1 + ulp(1) = 1+. From x ∈ Fn and 1 ≤ x < 1+, we deduce x = 1.
Therefore x⊗d z = ◦d(1× 1) = 1;

• if z < 1, then the binary representation of z has the form 0.z1z2 . . . zn, and we have:

y ≤ z < y + 2−n.

Thus
1 ≤ xz < 1 + x2−n < 1 + 2−n+1.

This implies
◦d(1) = 1 ≤ x⊗d z < ◦d(1 + 2−n+1) = 1+,

therefore x⊗d z = 1.

�

1.2 Rounding to the nearest

1.2.1 Unicity of FP-reciprocals

In rounding to the nearest mode, a number may have more than one FP-reciprocal. Consider
for instance x = 3/2, as an element of F5. The two following elements of F5, z1 = 21/32 and
z2 = 11/16 satisfy x ⊗n z1 = x ⊗ z2 = 1. This is the maximum number of FP-reciprocals a
number can have.

Property 3 In rounding to the nearest mode, the only numbers that can be FP-reciprocals
of x ∈ Fn are ◦d(1/x) and ◦u(1/x).

The proof is ommitted, since it is very similar to the proof of the corresponding property
for the directed roundings.

1.2.2 Existence of FP-reciprocals

It is worth noticing that some elements of Fn do not have an FP-reciprocal for ⊗n. An
exhaustive test shows that if n ≤ 5, all elements of Fn have an FP-reciprocal. The only
element of F6 between 1 and 2 with no FP-reciprocal is 29/16 = 1.11010. Hence all elements
of F6 with no reciprocals have the form 29×2k, k ∈ Z. The only element of F7 between 1 and
2 with no FP-reciprocal is 59/32. Table 1 gives the number γ(n) of elements of Fn between
1 and 2 with no FP-reciprocal for small values of n.

Although the problem seems more complicated than for directed rounding modes, we can
anyway give a conjecture and a few results.

Conjecture 1 The proportion γ(n)/2n−1 of elements of Fn without a FP-reciprocal con-
verges toward 1

2
− 3

2
log(4/3) = 0.06847689 . . .

n γ(n) γ(n)/2n−1

n ≤ 5 0 0
6 1 0.03125
7 1 0.015625
8 6 0.046875
9 12 0.046875

10 28 0.0546875
11 55 0.0537109375
12 140 0.068359375
13 284 0.0693359375
14 551 0.06726074219 . . .
15 1074 0.06555175781 . . .
16 2182 0.06658935547 . . .
17 4441 0.06776428223 . . .
18 8849 0.06751251221 . . .
19 17933 0.06840896606 . . .
20 35682 0.06805801391 . . .
21 71263 0.06796169281 . . .
22 143467 0.06841039658 . . .
23 286165 0.06822705269 . . .

Table 1: Number γ(n) of elements of Fn between 1 and 2 with no FP-reciprocal (for ⊗n),
for small values of n. We also give the proportion γ(n)/2n−1 of elements of Fn without
a FP-reciprocal. We conjecture that this proportion converges toward 1

2
− 3

2
log(4/3) =

0.06847689 . . .

The idea behind the conjecture is the following: saying that y ∈ Fn, 1 ≤ y < 2 has
no reciprocal for ⊗n is equivalent1 to saying that there is no z ∈ Fn such that yz ∈ [1 −
2−n−1, 1 + 2−n]. This means, if we define integers Y = y2n−1 and Z = z2n that Y Z is not
in the interval [22n−1 − 2n−2, 22n−1 + 2n−1], i.e., that 22n−1 + 2n−1 = Y Z + ρ, where ρ is not
in [0, 2n−2 + 2n−1]. A value y ∈ Fn without a reciprocal therefore corresponds to an integer
Y ∈ [2n−1, 2n] such that 22n−1 + 2n−1 modulo Y is larger than 3× 2n−2. There is obviously
no such Y that is less than 3× 2n−2. For larger values, assuming that the “probability”2 of
having 22n−1 + 2n−1modY = k is 1/Y , we can approximate the number of values without
reciprocal by: ∑2n

k=2n−1+2n−2
Y−3.2n−2

Y

= 2n−2 + 1− 3.2n−2∑2n

k=3.2n−2 1/Y.

By approximating the last sum by log(2n)− log(3.2n−2) = 2 log(2)− log(3), we get the con-
jecture. �

Property 4 Every element of Fn whose absolute value of the mantissa is between 1 and 3/2
has a FP-reciprocal in Fn for ⊗n.

This property is immediately deducible from the sentence “There is obviously no such Y
that is less than 3× 2n−2” in the justification of Conjecture 1.

2 Division and reciprocation algorithms

We aim at being able to retreive correctly rounded quotients from approximations of them
(obtained for instance using Newton-Raphson or Goldschmidt iterations). We assume that
the “fused multiply-and-accumulate”, MAC function is available with correct rounding, i.e.
that we are able to compute, from three elements a, b and c of Fn, the number ◦(ab + c),
where ◦ is any of the four rounding modes, the following results are presented in [4].

Theorem 1 (Cornea-Hasegan, Golliver and Markstein, 1999) Let x ∈ Fn, let z ∈
{◦d(1/x), ◦u(1/x)}. We assume that x is not a power of 2. The following calculations
(requiring fused MACs only)

ε = ◦n(1− xz)
z′ = ◦n(z + εz)

gives a value z′ equal to ◦n(1/x).

Theorem 2 (Cornea-Hasegan, Golliver and Markstein, 1999) Let x, y ∈ Fn, let z =
◦n(1/x), let q ∈ {◦d(y/x), ◦u(y/x)}. The following calculations (requiring fused MACs only)

r = ◦n(y − xq)
q∗ = ◦n(q + rz)

gives a value q∗ equal to ◦n(y/x).

1By neglecting the case when a value is exactly the middle of two consecutive elements of Fn, but we can
easily show that this case never occurs.

2Of course, there is a serious lack of rigor here. This is not a proof, just a quick justification of the
conjecture.

These two theorems allow to get correctly rounded quotients from the result of a Newton-
Raphson iteration that approximates 1/x. Some other iterations (such as the Goldschmidt
iteration) directly compute a quotient a/b, without the preliminary computation of a recip-
rocal.

Kahan [6] explains that the fused MAC allows to compute remainders exactly. Let us
show how it works. Let a, b, q ∈ Fn, such that

q ∈ {◦d(a/b), ◦u(a/b)} .

Without loss of generality, we assume

1 ≤ a < 2
1 ≤ b < 2

Define q∗ = ◦n(a/b).

Property 5 q∗ can be computed as follows.

1. compute r = ◦n(a− bq). Define an integer

K =

{
n+ 1 if q ≤ 1
n if q > 1

2. get

q∗ =

q− if r < −2−Kb
q+ if r > 2−Kb
q otherwise

Proof
It suffices to notice that r is a multiple of 2−n−K+2 that is less than 2−K+1b. This suffices

to show that r ∈ Fn. Hence, it is computed exactly.

Conclusion

We have given some examples of properties that one can show using the correct rounding
property of good floating point arithmetic implementations. Such properties allow to derive
algorithms and proofs.

References

[1] American National Standards Institute and Institute of Electrical and Electronic Engi-
neers. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard, Std
754-1985, New York, 1985.

[2] W. J. Cody. A proposed radix and word length independent standard for floating-point
arithmetic. ACM SIGNUM Newsletter, 20:37–51, January 1985.

[3] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski,
J. Palmer, F. N. Ris, and D. Stevenson. A proposed radix-and-word-length-independent
standard for floating-point arithmetic. IEEE MICRO, 4(4):86–100, August 1984.

[4] M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein. Correctness proofs outline for
newton-raphson based floating-point divide and square root algorithms. In I. Koren and
P. Kornerup, editors, Proceedings of the 14th IEEE Symposium on Computer Arithmetic
(Arith-14, Adelaide, Australia, April 1999), pages 96–105. IEEE Computer Society Press,
Los Alamitos, CA, 1999.

[5] American National Standards Institute, Institute of Electrical, and Electronic Engineers.
Ieee standard for radix independent floating-point arithmetic. ANSI/IEEE Standard, Std
854-1987, New York, 1987.

[6] W. Kahan. Lecture notes on the status of IEEE-754. Postscript
file accessible electronically through the Internet at the address
http://http.cs.berkeley.edu/∼wkahan/ieee754status/ieee754.ps, 1996.

[7] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup
and D. W. Matula, editors, Proceedings of the 10th IEEE Symposium on Computer
Arithmetic (Arith-10), pages 132–144, Grenoble, France, June 1991. IEEE Computer
Society Press, Los Alamitos, CA.

