
HAL Id: hal-04454521
https://hal.science/hal-04454521

Preprint submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Singular points of UOV and VOX
Pierre Pébereau

To cite this version:

Pierre Pébereau. Singular points of UOV and VOX. 2024. �hal-04454521�

https://hal.science/hal-04454521
https://hal.archives-ouvertes.fr


Singular points of UOV and VOX

Pierre Pébereau
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Abstract. In this work, we study the singular locus of the varieties de-
fined by the public keys of UOV and VOX, two multivariate quadratic
signature schemes submitted to the additional NIST call for signature
schemes. Singular points do not exist for generic quadratic systems,
which enables us to introduce two new algebraic attacks against UOV-
based schemes. We show that they can be seen as an algebraic variant of
the Kipnis-Shamir attack, which can be obtained in our framework as an
enumerative approach of solving a bihomogeneous modeling of the com-
putation of singular points. This allows us to highlight some heuristics
implicitly relied on by the Kipnis-Shamir attack.
We give new attacks for UOV+̂ and VOX targeting singular points of
the public key equations. Our attacks lower the security of the schemes,
both asymptotically and in number of gates, showing in particular that
the parameters sets proposed for these schemes do not meet the NIST se-
curity requirements. More precisely, we show that the security of UOV+̂

was overestimated by factors 222, 236, 259 for security levels I, III, V re-
spectively.
We conclude the attack on VOX by showing that an attacker can perform
a full key recovery from one vector obtained in the previous attacks.

Keywords: Multivariate cryptography · Cryptanalysis · Singular points
· Bihomogeneous polynomial system

1 Introduction

Unbalanced Oil and Vinegar (UOV) is a multivariate signature scheme intro-
duced in 1999 by Kipnis, Patarin and Goubin [18] to counter the Kipnis-Shamir
attack [19] on Oil and Vinegar [22]. Since then, the scheme has suffered no major
attack and has been used as a basis for many multivariate signature schemes.

There is a strong belief that polynomial system solving remains a hard
task for quantum computers, and this motivated the submission of UOV-based
schemes to post-quantum standardisation contests. Among them, the NIST com-
petition for post-quantum cryptography has garnered the most attention from
the cryptographic community. Many multivariate signature schemes were sub-
mitted, in particular Rainbow [10] was a finalist in the third round. The crypt-
analysis of Rainbow [4] renewed the interest in UOV and its variants, and among
the 10 multivariate schemes submitted to the additional signature round, 7 are



closely related to UOV (either special cases or using modified UOV keys). These
submissions are MAYO [3], PROV [6], QR-UOV [17], SNOVA [25], T-UOV [9],
(plain) UOV [5] and VOX [7].

The main appeal of these schemes, compared with the NIST PQC standards
based on lattices, is the significantly shorter signature size they achieve: at NIST
security level I, UOV achieves signatures as short as 96 bytes, as opposed to
Falcon requiring 666 bytes. The drawback of these schemes is the very large key
size, which is mitigated by considering additional structure. For instance, the
MAYO submission achieves at the same security level a signature of 321 bytes
for a key size of 1168 bytes, where Falcon uses a 897 bytes public key.

Contribution

In this paper, we first study the singular locus of the UOV variety, in particular
its intersection with the secret subspace O and the expected dimension of this
intersection. The existence of a large singular locus is a very peculiar property
for a polynomial system, as it is generically empty (we use here the notion of
genericity induced by Zariski topology). These singular points may be targeted
by algebraic key recovery attacks. We propose two algebraic modelisations, each
leading to an attack. We also highlight the connection between these attacks and
the Kipnis-Shamir attack described in [18], providing an algebraic alternative to
this attack. This has several consequences: we are able to identify some heuristics
implicitly used in the Kipnis-Shamir attack, and our attacks do not suffer from
the field size, as opposed to the Kipnis-Shamir attack which is enumerative by
nature. Moreover, the Kipnis-Shamir attack relies on the existence of rational
singular points to succeed, whereas our attacks do not fail when there exists no
rational singular point.

As a second contribution, we apply this work to VOX, a UOV variant. VOX
[7] is a scheme based on UOV+̂ and utilizing the Quotient Ring (QR) transform
[17]. It has been submitted to the NIST call for additional signatures. We study

the vulnerability of this scheme to our attacks by considering UOV+̂, which is
equivalent to dismissing the additional structure provided by the QR-transform.

We prove that the +̂ structure does not prevent the attacker from targeting
the singular points of the underlying UOV key. The security model for UOV+̂

key recovery attacks previously estimated that such attacks can only be applied
after inverting the +̂ transform. Our work proves that this is not the case, and
we obtain cheaper attack costs than the estimates found in [12] and [7]. More
precisely, for the VOX parameters from [7], we gain factors 219, 226, 257 for se-
curity levels I,III,V respectively, bringing the security below the NIST target of
2143, 2207, 2272 gates. Asymptotically, we gain a factor qt for key recovery attacks
against these schemes, where q is the size of the field considered in VOX and t
is a parameter of the scheme.

We provide a method recovering the full VOX private key from a single
oil vector, generalizing a result of [23], by utilizing a MinRank instance solved
enumeratively. This allows an attacker to obtain a full key recovery attack from
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the previously mentioned singular point computation, but also to mount a new
key recovery attack.

Finally, we provide experimental results and the code used to obtain them,
to study the practical behavior of the different attacks and in particular compare
the theoretical bounds with practical results on small instances.

Related work

The Kipnis-Shamir attack [18] is an enumerative attack that repeatedly com-
putes eigenvectors of some linear maps related to the public key of a UOV
instance. It has been observed that this attack computes singular points in the
intersection of two quadrics that share a large isotropic subspace. This obser-
vation is due to Luyten [20] in the context of Oil and Vinegar, and has been
generalized to the case of UOV by Beullens and Castryck (private communica-
tion, July 2023). The difference in our approach is the focus on the properties
of the singular locus, in particular its dimension, and proposing an alternative
algebraic modeling of this computation.

VOX is a signature scheme based on UOV+̂ and utilizing the QR structure
introduced by [17]. The QR transform consists in using block matrices in the key
pair. Each block, of size ℓ×ℓ, represents an element of a field extension of degree
ℓ, allowing for smaller public keys but introducing a new security assumption.
Based on [16], Furue and Ikematsu attacked the parameters of the QR transform

used in VOX. This attack did not target the UOV+̂ scheme. In contrast, we show
that the unstructured security assumption, namely the security of the UOV+̂

scheme, is overestimated by the VOX specification.

Organisation of the paper

In Section 2, we define the UOV signature scheme and quadratic forms, and
recall some properties of these objects. In Section 3, we prove the existence of
the singular locus of the UOV variety, and give the dimension of its intersection
with O. We then exploit this structure to introduce key recovery attacks against
UOV. In Section 4, we apply the results of the previous sections to introduce
key recovery attacks against UOV+̂ bypassing the +̂ structure. To obtain a full
key recovery attack, we generalize the key recovery from one vector of [23] to the

case of UOV+̂. These results directly apply to VOX. In Section 5, we present
the experimental results supporting the theory presented throughout the paper.

Main results

The main result of this paper is the computation of the dimension of the inter-
section of the singular locus of the UOV variety with the secret subspace.

Theorem 1 Choose p1, . . . , pm uniformly at random among the quadratic forms
generating a radical ideal I = ⟨p1, . . . , pm⟩ such that V(I) contains an o−dimensional
linear subspace O. Let d = 2o +m − n − 1. If d ≥ 0, then the singular locus of
V(I) is non-empty and its intersection with O has dimension d.
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This enables us to obtain two new algebraic attacks against the UOV scheme.

We obtain a similar result for the UOV+̂ variety, which leads to a key recovery
attack against UOV+̂ that improves the previously known upper bounds for the
security of the scheme.

Theorem 2 Let P be a UOV+̂ public key chosen uniformly at random for pa-
rameters (q, n, o, t) with n > o. Then the UOV+̂ variety V(I) = {x ∈ Fq

n
,P(x) =

0} has a positive dimensional singular locus. More precisely, let r ≤ o − t,
d′ = 2o+ r − n− 1, d = d′ − t:

i. If d′ ≥ 0, the variety defined by r equations of the underlying UOV key has
a singular locus of dimension d′.

ii. If d ≥ 0, the variety defined by r equations of the UOV+̂ public key has a
singular locus of dimension d.

From one vector computed in the previous attack, we show how to complete
a key recovery by adapting a result of [23] to the case of UOV+̂.

Theorem 3 Let P be a UOV+̂ public key for parameters (q, o, v, t), let O be
the associated UOV secret subspace, and let x ∈ O. Then there exists an algo-
rithm taking as input x and P and outputting a basis of O, requiring at most
O (qt(n− o)ω) arithmetic operations in Fq.

2 Preliminaries

2.1 Notations

Let q = pe for p prime and e ∈ N>0. Let Fq denote the finite field with q elements.
We call p the characteristic of Fq. Vectors are assumed to be column vectors and
are denoted by bold letters: x,y,o, . . .. Matrices are denoted by capital letters,
and transposition is written AT . The kernel of a matrix A is denoted by ker(A)
and is a right kernel: x ∈ ker(A) ⇐⇒ Ax = 0. Given a field F and an integer n,
we denote by F[x1, . . . , xn] or F[x] the polynomial ring of F in n indeterminates.
The restriction of a function f to a set E is denoted by f|E . The canonical basis
of the vector space Fn

q is noted (e1, . . . , en).

2.2 Unbalanced Oil and Vinegar

A UOV key pair for parameters (n,m, q) is composed of a secret key (A,F) and
a public key P, with:

– A ∈ GLn(Fq) an invertible matrix,

– F = (F1, . . . , Fm) a quadratic map with Fi(ej) = 0 for 1 ≤ i, j ≤ m

– P = F ◦A = (P1, . . . , Pm) a quadratic map.
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In practice, we consider homogeneous quadratic maps: there are no constant and
linear terms. If we represent the quadratic maps with matrices, we have for all
1 ≤ i ≤ m:

Fi =

(
0 F

(1)
i

F
(2)
i F

(3)
i

)
(1)

Pi = ATFiA (2)

This idea was introduced by Patarin in [22] and the motivation was that the
secret system F(x) = t is linear in x1, . . . , xm:

F(x) = t ⇐⇒


xTF1x = t1

...

xTFmx = tm

(3)

These variables are distinguished from the rest of variables and are named “oil
variables”. The remaining ones are “vinegar variables”. The knowledge of A
allows the signer to efficiently solve P(x) = t using this property. Define the ideal
generated by the public key I = ⟨p1, . . . , pm⟩. The set of accepted signatures for
a message t ∈ Fm

q is an algebraic variety of dimension n − m generically. We
distinguish the case t = (0, . . . , 0) and define the UOV variety

V(I) = {x ∈ Fn
q ,P(x) = (0, . . . , 0)}

2.3 Quadratic forms

One of the key insights from the cryptanalysis of Oil and Vinegar [19] and
Rainbow [2] is the necessity to have a geometric perspective on the equations
defining the scheme. More precisely, we reformulate the UOV trapdoor in terms
of subspaces, which yields a better understanding of the relationship between
the public and private keys. We use the formalism of quadratic forms with the
following definitions. Let f be a homogeneous quadratic form over a vector space
Fn
q . In fields of odd characteristic, a homogeneous quadratic form f is character-

ized by its polar form f∗ := (x,y) 7→ f(x+y)−f(x)−f(y) which is a symmetric
bilinear form. As such, it admits a unique symmetric matrix representation in
Fn×n
q . We identify both f and f∗ to this matrix.
In fields of even characteristic, there is no longer an equivalence with sym-

metric bilinear forms. Instead, we can represent quadratic forms uniquely using
triangular matrices. Dense square matrices are valid representations, but there
are many dense matrices representing the same quadratic form. Changes of vari-
ables are not as straightforward with triangular representations, as the set of
triangular matrices is not stable by congruence: if F is upper triangular, and
A ∈ GLn(Fq), A

TFA is not necessarily upper triangular. Notice in particular
that the triangular representation of ATFA does not necessarily have the same
rank as F . In characteristic two, using triangular representation, we may there-
fore not refer to the “rank of the quadratic form” as it is not uniquely defined. It
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is uniquely defined in dense or symmetric representation by property of matrix
multiplication.

Therefore, when referring to the rank, we will assume that the matrices rep-
resenting the quadratic forms are either dense in characteristic two or symmetric
in odd characteristic. This way, we may define the rank of a quadratic form: we
say that f has rank r if the matrix associated to f has rank r. The rank is
preserved by linear changes of variables.

Finally, we recall the definition of isotropic subspaces which is the core of
the study of the UOV key pair. A subspace V ⊂ Fn is isotropic for f if there
exists x ∈ V such that f(x) = 0, totally isotropic if for all x ∈ V, f(x) = 0, and
anisotropic if for all x ∈ V \ {0}, f(x) ̸= 0.

The secret key of UOV may be characterized in terms of isotropic subspaces:

Lemma 1. The linear subspace O is a totally isotropic subspace of a quadratic
form f if and only if for all (x,y) ∈ O2, f∗(x,y) = f∗(y,x) = 0.

Let (o1, . . . ,om) be a basis of O, a totally isotropic subspace of f . Complete
(o1, . . . ,om) into B, a basis of Fn

q . Then a matrix representing f in basis B has
the secret UOV shape:

MatB(f) =

(
0 F (1)

F (2) F (3)

)
This shows that the secret key of UOV is a totally isotropic subspace of

dimension m shared by each of the public key quadratic forms. This observation
was made as early as the Kipnis-Shamir attack against OV in 1998 [19], with
the name “oil space”.

Observe that the dimension of a totally isotropic subspace of a quadratic
form of a certain rank is bounded:

Lemma 2. Let f be a quadratic form of rank n defined over a field K. Let O be
a totally isotropic subspace of f . Then O has dimension no greater than ⌊n

2 ⌋.

Proof. By contradiction, assume that f has rank n and dim(O) = r > ⌊n
2 ⌋. Let

B be a basis of O, let B̂ be a completion of B into a basis of Kn. Then the
matrix representing f∗ in basis B̂ has a block of zeros of size r × r in the top
left corner. Therefore its rank is less than n, which is a contradiction. ⊓⊔

2.4 Cryptanalysis of UOV and its variants

Consider an instance of UOV with parameters (q, n,m) with a public key P.

The Kipnis-Shamir attack [18], [19] The Kipnis-Shamir attack on Oil and
Vinegar [19, Theorem 7] is a polynomial time algorithm retrieving a basis of O
when n = 2m. It motivated the “unbalanced” property of UOV introduced in
[18]. The attack has been generalized to UOV by [18, Theorem 4.2], in which
case it is no longer polynomial. We detail the attack on UOV below.
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Let (αi)1≤i≤m−1 ∈ Fm−1
q and define M =

∑m−1
i=1 αiPi. Then P−1

m M has an

invariant subspace included in O with probability greater than p = q3m−n−1
qm−1 . We

compute eigenvectors using the characteristic polynomial, which is computed in
time O(nω) and factored in time O(n log(n)) Therefore, after an expected qn−2m

draws of eigenvectors of such linear maps, each with a cost nω, an attacker
expects to have found a vector in O.

Key recovery from one vector [23] Lemma 1 shows that once one or more
vectors of the secret key have been obtained, one obtains linear equations char-
acterizing the remaining vectors. This formulation yields a polynomial time key
recovery from two vectors by solving a linear system.

In fact, one vector suffices for this task with the following observation:

x ∈ O =⇒ O ⊂ ker

xTP1

...
xTPm


This kernel has dimension n − m generically. Therefore, the restriction of the
UOV public key to this linear subspace is a UOV instance with less variables.
If n−m < 2m, by Lemma 2 the matrices composing the public key of this new
UOV instance are singular. The kernels of these matrices are linear subspaces
included in O that generically span O.

3 Key recovery attack against UOV: Singular points

As seen in the previous section, finding one vector in the secret subspace O is
enough to break UOV. This task is challenging, and motivates the search for
distinguished points in O. If such points exist, one may hope to compute them
more efficiently than generic points in O. This section focuses on this question,
proving that there exist a large number of singular points of the UOV variety in
the secret subspace. This leads to new key recovery attacks on UOV.

3.1 Singular points of V(I)

The goal of this subsection is to study the singular locus of the UOV variety,
in particular its dimension. We start by defining singular points of an algebraic
variety:

Definition 1. Let (p1, . . . , pm) be a collection of homogeneous polynomials over
K[x]. Let I = ⟨p1, . . . , pm⟩ be a radical ideal. We say that x ∈ V(I) \ {0} is a
singular point of V(I) if the Jacobian matrix JacP(x) ∈ K[x]m×n has rank less
than codim(I). The set of singular points of V(I) is noted Sing(V(I)).

For generic polynomial systems, there are no singular points. Note that the
determinantal ideal generated by the maximal minors of JacP(x) has dimension
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m− 1 when P is generic: there exist points that drop the rank of the Jacobian,
but they do not belong to the variety defined by the system generically.

In odd characteristic, we represent the UOV public key using symmetric
matrices P1, . . . , Pm. Notice that

1

2
JacP(x) =

xTP1

...
xTPm

 (4)

In even characteristic, using triangular matrices, we observe a similar property by
dismissing the diagonal terms. This is always possible as these entries correspond
to squares of variables x2

j which are linear due to the Frobenius endomorphism
x 7→ xp.

JacP(x) =

xTP1

...
xTPm

 (5)

A constant factor does not affect the ideals that we consider, therefore we will
also denote this matrix JacP(x) in odd characteristic.

Theorem 1 (Homogeneous singularities). Choose p1, . . . , pm uniformly at
random among the quadratic forms generating a radical ideal I = ⟨p1, . . . , pm⟩
such that V(I) contains an o−dimensional linear subspace O. Let d = 2o+m−
n− 1. If d ≥ 0, then the singular locus of V(I) is non-empty and its intersection
with O has dimension d.

Proof. This proof uses the shape of a UOV key.
Let P(x) = (p1(x), . . . , pm(x)). Let B = (b1, . . . , bn) be a basis of Fn

q such that
b1, . . . , bo is a basis of O. Let F(x) = P(Bx). This system has the shape of a
UOV secret key by Lemma 1: the equations depend linearly on x1, . . . , xo. This
implies that the partial derivatives with respect to any “oil” variable 1 ≤ j ≤ o
are linear forms in the “vinegar” variables xo+1, . . . , xn. Therefore, the Jacobian
of the system has a special shape: x1, . . . , xo do not appear in the first o columns
of the Jacobian. Thus, for all x ∈ Fo

q × {0}n−o (an “oil vector”), we have:

JacF (x) =


1 . . . o o+ 1 . . . n
0 . . . 0 1
...

...
...

0 . . . 0 m

J ′(x)


where J ′(x) is a matrix of (Fq[x1, . . . , xo])

m×(n−o) with entries that are generic
linear forms. Since n > m, notice that JacF (x) is not full rank if and only if J ′(x)
is not full rank since any minor containing one of the first o columns is zero. Thus,
following the terminology of [14], JacF (x) is not full rank if and only if x lies in
the variety of the determinantal ideal Jm−1 generated by them−minors of J ′. By
[14, Theorem 10] , this ideal has dimension d = o−(n−o−(m−1))(m−(m−1))
if d ≥ 0, or more succintly:

8



d = 2o+m− n− 1

By the chain rule, there is a one-to-one mapping from singular points of the
system F to singular points of the system P:

JacP(x) = JacF (B
−1x)B−1

Therefore dim Sing(V(I)) = d. ⊓⊔

This property distinguishes the UOV system of equations from random sys-
tems of equations since random systems of homogeneous quadratic equations
do not admit non-zero singular points. Notice that in this theorem, we make a
distinction between the values m and o, even though they are equal for UOV.
There are two reasons for this:

– There are schemes, such as MAYO and PrUOV, based on the same core
ideas as UOV but which distinguish these two values.

– This allows us to obtain different modelisations to compute singular points
leveraging the positive dimension of the singular locus.

Notice that by setting m = o and n = αm, Theorem 1 shows that the UOV
variety has a non-empty singular locus, which has an intersection of dimension
(3− α)m− 1 with O for the practical parameter range 2 < α ≤ 3.

We consider a zero-dimensional system by restricting to a subset of r equa-
tions from the key.

2o+ r − n− 1 ≥ 0 ⇐⇒ r ≥ n− 2o+ 1 = (α− 2)o+ 1

In particular, for r0 = ⌈(α− 2)o+ 1⌉, the singular locus is 0 dimensional.
We highlight the following hypothesis, that has been used implicitly by the

Kipnis-Shamir attack and that is supported by experiments on small instances.
We reuse the notations introduced above.

Hypothesis 1 Let V(I) = {x ∈ Fn

q , p1(x) = . . . = pm(x) = 0} be the vari-
ety defined by a generic collection of quadrics with a common totally isotropic
subspace O. Assume dim(O) = o. If 2o+m− n− 1 > 0, then Sing(V) ⊂ O.

Here, genericity means that we choose the quadrics uniformly at random
among those that vanish on O. From a practical perspective, this is the key
generation process in UOV: we choose all coefficients of F at random, except for
the blocks of zeros that we impose.

This hypothesis is implicitly used in [18, Lemma 3] as the invariant subspace
H computed by the attack is one-dimensional. We detail the relationship between
these invariant subspaces and singular points in Section 3.5.

This hypothesis has a very interesting consequence that we can leverage in
attacks against UOV. If it holds, then the singular locus is entirely included in
O, a linear subspace.
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In particular, assuming the ideal is radical, there must be n−m linear forms
in a reduced Gröbner basis with respect to a graded ordering for the previous
ideal. Their kernels define n−m distinct hyperplanes, the intersection of which
is exactly O. The main consequence is that we do not need rational singular
points to obtain a key recovery attack against the scheme using an algebraic
approach. We detail this in the next result.

Proposition 1. Let O be a linear subspace of Fn
q of dimension o. Let I =

⟨p1, . . . , pm⟩ be a radical ideal of Fq[x] such that V(I) ̸= ∅ and V(I) ⊂ O.
Then, a Gröbner basis of I for any graded monomial ordering contains linear
equations H1(x), . . . ,Hn−o(x) such that

O = ∩n−o
i=1 Hi

Proof. By assumption, V(I) ⊂ O. Therefore, if H is a linear form such that
O ⊂ ker(H), then H(x) ∈ I(V(I)). By the Nullstellensatz (see [8, Theorem 6]),
this implies that H(x) ∈

√
I. Since I is radical by assumption, then

√
I = I and

H(x) ∈ I.
Next, let ≺ be a graded monomial ordering. On the first hand, a graded

monomial ordering is a monomial ordering which first compares the total degree
before breaking ties. Therefore, if p is a polynomial in Fq[x], then the leading
term of p with respect to ≺ has degree equal to the total degree of p.

On the other hand, a Gröbner basis of I for ≺ is a set G = {g1, . . . , gt} ⊂ I
such that

⟨LT≺(g1), . . . , LT≺(gt)⟩ = ⟨LT≺(I)⟩

This implies that a Gröbner basis of I must contain polynomials whose leading
terms are of minimal degree, in our case 1. The collection of linear equations
included in a Gröbner basis must have rank at least n − o, otherwise we could
find a linear equation in I linearily independent from the ones in the basis. We
add that in the reduced Gröbner basis for ≺, there are only independent linear
equations, otherwise the basis would not be reduced. ⊓⊔

3.2 Modeling singularities

Under Hypothesis 1, we use Theorem 1 to obtain key recovery attacks against
UOV by computing singular points of the variety defined by subsets of equations
of the UOV public key. Intuition suggests that including all the equations may be
too costly: a naive minors modeling would yield equations of degree m, far above
the degree of regularity of any competitive attack on UOV (see for instance [2]).

We propose two attacks based on two different modelings, one based on mi-
nors of the Jacobian, and a bihomogeneous modeling based on the “Lagrange
multiplier” method as it is known in polynomial optimization (this is closely
related to the Kipnis-Shamir approach to the MinRank problem). Both modeli-
sations are highly structured (the former spans a determinantal ideal and the
latter is bihomogeneous of bidegree (2,1)) and are suited for Gröbner basis ap-
proaches.
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Definition 2. Let P(x) be a UOV system of m equations in n variables. We
denote by JacP,r the Jacobian matrix of the system P(x) truncated to the first
r lines.

1. Minors modeling:

M(P, r) :


x ∈ Fn

q

P(x) = 0

Minorsm(JacP,r(x)) = 0

(6)

2. Bihomogeneous modeling:

B(P, r) :


x ∈ Fn

q ,y ∈ Fr
q

P(x) = 0

yT JacP,r(x) = 0

(7)

If they exist, solutions x of either of these systems are singular points of the
variety defined by ⟨p1, . . . , pm⟩ by construction.

In the case of Oil and Vinegar, Luyten [20] observed that solving the mi-
nors modeling system for r = 2 is a polynomial task in practice. The minors
modeling does not scale well in the case of UOV, due to the cost of computing
maximal minors (there are

(
n
r

)
maximal minors). This is why we introduce the

bihomogeneous system.
We analyze the complexity results associated to each modeling. Note that

any r lines of the Jacobian may be chosen to build JacP,r, the choice of the first
r ones is arbitrary.

3.3 Computing singular points using the minors modeling

Determinantal ideals are not semi-regular, and therefore the degree of regularity
of these ideals is obtained through a different Hilbert series than the usual semi-
regular case. The problem of computing critical points is well-studied and is
closely related to the problem of singular points. We use results from [1] to
obtain the Hilbert series of the ideal we consider.

Proposition 2. [1, Proposition 5 and paragraph 3.4] Let P(x) be a system of r
equations in n variables. The system M(P, r) is a system of r +

(
n
r

)
equations,

of which r are of degree 2 and
(
n
r

)
are of degree r. Let IM be the ideal generated

by the system M(P, r). The Hilbert series of Fq[x]/IM is

H(t) =

(
r−1∑
k=0

(
n− r − 1 + k

k

)
tk

)
(1 + t)r

Notice that if x ∈ O, then it satisfies the remaining equations of the pub-
lic key: pr+1(x) = . . . = pm(x) = 0. Assuming they are not zero-divisors

11



in K[x]/IM, the Hilbert series (in this case a polynomial) of the ideal I =
IM + ⟨pr+1, . . . , pm⟩ is:

HI(t) = H(t) · (1− t2)m−r = (

r−1∑
k=0

(
n− r − 1 + k

k

)
tk)(1 + t)m(1− t)m−r

The degree of regularity of the system is the first non-positive coefficient in this
polynomial [11]. Given the degree of regularity dreg, the number of arithmetic
operations is upper-bounded by:

C(n, dreg) = O

((
n+ dreg
dreg

)ω)
Figure 1 lists the number of field operations required for the minor modeling sys-
tems with r = m

2 +1 on modern UOV parameters. We also list the corresponding
degrees of regularity.

Parameter set
(n,m, q)

uov-Is
(160, 64, 16)

uov-Ip
(112, 44, 256)

uov-III
(184, 72, 256)

uov-V
(244, 96, 256)

log2 ops 382 266 426 564

dreg 38 27 42 55

Fig. 1: Cost of the singular point attack via minors modeling for UOV

We note that these costs are over twice the security levels expected of each
parameter set. The utility of this modeling and the one detailed in Section 3.4 is
that increasing the size of the field does not affect the number of field operations:
therefore the increase in the number of binary operations in a larger field is poly-
logarithmic. This makes these algebraic approaches suitable for large fields, such
as those that appear in the security assumptions behind QR-UOV [17].

3.4 Computing singular points using the bihomogeneous modeling

From a complexity perspective, we can obtain better bounds by considering the
bihomogeneous system described in Equation (7). From a practical perspective,
the improvement is significant. The results we rely on are described in detail in
[24, Chapter 6] and [13].

Definition 3. Let x = (x1, . . . , xn),y = (y1, . . . , ym) two sets of variables. Let
p a polynomial in K[x,y]. We say that p is bihomogeneous of bidegree (d1, d2)
with respect to x,y if

∀(λ, µ) ∈ K2, p(λx, µy) = λd1µd2p(x,y)

12



We can slightly improve the formulation of Equation 7: y is any element of
the one-dimensional1 left kernel of the Jacobian evaluated on a singular point.
Thus, for each x ∈ Sing(V(I)), there exist q choices of y in (Fq)

r. We may
normalize either to y1 = 1 or y1 = 0 and for some i ̸= 1, yi = 1 to obtain
a unique solution. In doing so, we dehomogeneize the system, allowing us to
consider an affine bihomogeneous system.

We may choose r such that the system B(P, r) is a bihomogeneous system
of n + m equations in n + r − 1 variables defining a zero-dimensional ideal.
It is bihomogeneous of bidegree (2,1) in the variables (x1, . . . , xn), (y2, . . . , yr).
More precisely, the n Lagrange multiplier equations yT JacP(x) = 0 ∈ Fn

q are
bilinear of bidegree (1,1) and the “public equations” P(x) = 0 ∈ Fm

q only involve
(x1, . . . , xn) and therefore have bidegree (2,0). Using [13, Theorem 6.1], this
zero-dimensional affine bilinear system has degree of regularity min(n+ 1, r) =
r. This value matches the experiments performed on small instances of UOV.
Therefore, the number of arithmetic operations required to obtain a Gröbner
basis is dominated by:

O

((
n+ 2r − 1

r

)ω)

Remark 1. This formula is valid in the zero-dimensional case: using it to evaluate
the cost of a hybrid approach is pessimistic.

We give in Figure 2 the estimated number of arithmetic operations required
to solve the bihomogeneous system using a generic Gröbner basis algorithm.

Parameter set
(n,m, q)

uov-Is
(160, 64, 16)

uov-Ip
(112, 44, 256)

uov-III
(184, 72, 256)

uov-V
(244, 96, 256)

log2 ops 370 256 419 558

dreg 33 23 37 49

Fig. 2: Cost of the singular point attack via bihomogeneous modeling for UOV

3.5 Revisiting the Kipnis-Shamir attack [19]

Bihomogeneous modeling - y−Enumeration. Consider a hybrid approach
to the bihomogeneous system defined in Equation (7), where we enumerate over
all possible values of y. In this case, we will have n linear equations in x, having
evaluated all the y variables in Fq. Let us consider this case more carefully, by

1 This kernel must but of dimension at least one by definition of a singular point,
and of dimension no greater than one as the dimension of the determinatal ideal
Jm−2 of the m − 1 minors of the Jacobian from Theorem 1 is negative: d = m −
(n− (n−m− (m− 2))) (m− (m− 2)) = −4 for n = 5

2
m.
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rewriting the modeling:

∃x,y |

{
yT JacF (x) = 0

P(x) = 0
⇐⇒ ∃x,y |

(
m∑
i=1

yiPi)x = 0

P(x) = 0
(8)

Instead of using a Gröbner basis algorithm, observe that the linear equations
entirely determine x, and there are no x solutions unless the linear combination∑m

i=1 yiPi is singular. If x is a solution to the linear system, we check whether
it is a solution to the quadratic system simply by evaluating P(x). Such a point
will be singular for the system {p1(x), . . . , pm(x)} by (8).

Since the quadratic system is homogeneous, it does not matter which solution
of the linear system we choose, as we expect only a dimension 1 kernel. Denote
M(y) =

∑m
i=1 yiPi.

Since the matrices are square, and the target rank is n− 1, we may consider
Equation (8) as a MinRank instance where the only equation is the determinant
of the matrix M(y). Guessing all the y variables is an enumerative method for
this MinRank instance.

To estimate the complexity of this approach, we count the number of choices
of y corresponding to singular points. For each singular point x, there exists
q − 1 vectors y ∈ ker(JacP(x)) as the rank defect of the Jacobian is only 1. Let
S = |Sing(V(I))| be the number of rational singular points of the UOV variety.
This yields (q − 1)S valid choices of y out of qm possibilities. We delay the
estimation of S, and focus on the cost of finding a valid value of y.

We can improve the previous approach by noticing that we did not use the
equation defined by the determinant of M(y): we only checked whether it was
canceled. If we only guess m−1 variables, then we can consider the determinant
as a univariate polynomial in the remaining variable. We may solve this univari-
ate equation with a fast finite field algorithm to find the values of yr such that
the determinant vanishes. Computing the determinant of a univariate matrix is
a polynomial task with efficient algorithms in practice1. To summarize, for each
guess of the m− 1 variables, we proceed as follows:

– Compute M(y) a sum of m n× n matrices in Fq[y]≤1 O(mn2)

– Compute det(M(y)), a determinant in Fq[y] Õ(nω)
– Solve det(M(y)) = 0 in Fq. O(n log n)
– For each of the ℓ roots, solve an n× n linear system O(ℓnω)
– Check if any solution vanishes the quadratic system O(ℓn2)

Denote ℓ the expected number of rational roots of a univariate polynomial Q of
degree n in Fq. By [15], if Q is square-free, we have:

ℓ =

n−2∑
i=0

(
−1

q

)i

≤ 1

1 Precomputing this determinant as a multivariate polynomial in y does not seem to
be a good idea because of its very large size - even evaluating it will be costly with(

n
m−1

)
monomials.
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which tends to q
q+1 when n tends to infinity. We are interested in the roots of

det(M(y)), therefore if it is not square-free, we consider without loss of generality
its square-free part, which has degree less than n. In this case, we still upper
bound the expected number of rational roots ℓ by 1. This gives the following
complexity for each guess:

O(mn2)

Assuming S is non-zero, the expected complexity of computing singular
points enumeratively is:

C(q, n,m) = O(
qm−1

S
mn2) (9)

Kipnis-Shamir attack. The Kipnis-Shamir attack computes singular points
in the intersection of two quadrics that share a large isotropic subspace. This
observation is due to Luyten [20], and Beullens and Castryck (private commu-
nication, July 2023). We can derive the same result with the tools introduced
earlier. The Kipnis-Shamir attack studies the characteristic polynomial of the
matrix P−1

m M , where M is a random linear combinations of public key matrices

M =
∑m−1

i=1 yiPi.

Lemma 3. Assume Pm is invertible. If x is an eigenvector of P−1
m

∑m−1
i=1 yiPi,

then JacP(x) has a rank defect.

Proof. Let χP−1
m M be the characteristic polynomial of P−1

m M .

χP−1
m M (λ) = det(P−1

m M − λI)

Therefore:
det(Pm) · χP−1

m M (λ) = det(M − λPm)

In the previous section, we solved det(M − λPm)(y) = 0 to compute yr. This
shows that eigenvectors of P−1

m M associated to an eigenvalue λ0 induce a rank
defect in JacP by Equation (8), and an associated element of the left kernel of
JacP is (y1, . . . , ym−1,−λ0). ⊓⊔

In particular, this shows that if an eigenvector of P−1
m M lies in the variety V(I),

then by Hypothesis 1, it must lie in O.
To obtain the cost of the Kipnis-Shamir attack, the following hypothesis is

used in [18, Note above Theorem 4.2].

Hypothesis 2 Among a collection of qn−2m distinct linear maps of the form
P−1
j M , the number of eigenspaces of dimension 1 that lie in O is at least 1.

Since each eigenspace included in O corresponds exactly to a single singu-
lar point of the variety, this hypothesis allows for an estimate of S, such that
Equation (9) matches the complexity of the Kipnis-Shamir attack:

C(q, n,m) = O(qn−2mmn2) (10)

15



Note that in the litterature this cost is identified as O(qn−2mnω) by neglicting
the cost of summing m n× n square matrices, but this is a negligible difference
for current UOV parameters.

In conclusion, an enumerative approach to the computation of singular points
provides an algebraic interpretation of the Kipnis-Shamir attack from [18]. Fur-
thermore, we highlight two hypotheses used in the original Kipnis-Shamir attack
of [18], and reproduce the experiments of [18] in low dimension in a new algebraic
framework. This also shows that the Kipnis-Shamir attack fails when n ≥ 3m
by Theorem 1.

We point out that the algebraic approach has an advantage over the Kipnis-
Shamir attack: under Hypothesis 1, it does not fail if no rational singular points
exist. In the next section, we use the properties of this algebraic formulation to
study the security of schemes derived from UOV.

4 Application to UOV+̂ and VOX

VOX [7] is a signature scheme submitted to the first round of the NIST call
for additional signatures. It relies on the same core principles as UOV, but
adds random quadratic equations to the public key. These equations are used to
hide the structure of the UOV trapdoor in the form of “noise” by mixing them
with the UOV public key equations. This is the “hat plus” (noted +̂) transform
[12]. This allows the signer to use smaller parameters at the cost of solving a
polynomial system for each signature instead of a linear system. VOX also relies
on an additional structure, the Quotient Ring (QR) transform [17], which is akin
to the construction of structured lattices.

4.1 Definition of UOV+̂

We dismiss this additional structure for now, and work in the general case:
we consider that the VOX secret matrices are dense and random instead of
structured. This is equivalent to working directly on UOV+̂ or Full-VOX (FOX,
introduced in the same specification), by multiplying the parameters o, v by the
“QR factor” c. Note that VOX uses prime fields with q > 2.

A UOV+̂ key pair for parameters (o, v, t, q) is composed of a secret key
(S,A,F) and a public key P, with:

– A ∈ GLo+v(Fq)

– S =

(
It S′

0 Io−t

)
, S′ ∈ F(o−t)×t

q , S ∈ GLo(Fq)

– F = (F1, . . . , Fo) a quadratic map with Fi(ej) = 0 for i > t and j ≤ o.
– P = S ◦ F ◦A a quadratic map

Let n = o + v and let F̂ = (Ft+1, . . . , Fo) be the underlying UOV secret key.

The (truncated) UOV key pair underlying the UOV+̂ key is (F̂ , A), P̂ = F̂ ◦A.
These polynomials are called “oil polynomials” in analogy with “oil variables”.
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The “vinegar polynomials” are p1, . . . , pt and they define the vinegar variety
Vt = {x ∈ Fq

n
, p1(x) = . . . = pt(x) = 0}.

Figure 3 includes the parameter sets submitted at NIST for VOX in [7], and
new parameters following an attack on the QR transform (see [16], [21]). The
initial VOX parameters were the parameter sets VOX I, III, V . Notice that in
every case, the underlying UOV instance is unbalanced by a small term c.

Variant Security level q o/c v/c c t

I

2143

251 8 9 6 6
Ia 251 4 5 13 6
Ib 251 5 6 11 6
Ic 251 6 7 9 6

III

2207

1021 10 11 7 7
IIIa 1021 5 6 15 7
IIIb 1021 6 7 13 7
IIIc 1021 7 8 11 7

V

2272

4093 12 13 8 8
Va 4093 6 7 17 8
Vb 4093 7 8 14 8
Vc 4093 8 9 13 8

Fig. 3: VOX parameters in [7] and [21].

4.2 Singular points of the UOV+̂ variety

We now apply the work of Section 3 to UOV+̂. The core idea is to study, as
previously for UOV, how singular points of the secret key are mapped by the
secret change of variables, and in turn deduce non-generic properties of the public
key. In the case of UOV, all singular points of the secret key were mapped to
singular points of the public key by the one-to-one map A.

In the case of UOV+̂, the singular locus of the underlying UOV key is in-
tersected by the variety defined by the vinegar polynomials to obtain singular
values of the public key. Still, singular values of the public system are elements of
O, the UOV secret of the UOV+̂ key. The choice of nearly-balanced parameters
o ≈ v implies that singular point computations are significantly more efficient
than in the case of UOV.

Theorem 2. Let P be a UOV+̂ public key chosen uniformly at random for pa-
rameters (q, n, o, t) with n > o. Then the UOV+̂ variety V(I) = {x ∈ Fq

n
,P(x) =

0} has a positive dimensional singular locus. More precisely, let r ≤ o − t,
d′ = 2o+ r − n− 1, d = d′ − t:

i. If d′ ≥ 0, the variety defined by r equations of the underlying UOV key has
a singular locus of dimension d′.
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ii. If d ≥ 0, the variety defined by r equations of the UOV+̂ public key has a
singular locus of dimension d.

Proof. We construct the Jacobian matrices of all intermediate keys to highlight
the way the singular points of the secret key are mapped throughout the process.
Let F ′ = (P1 ◦ A−1, . . . , Pt ◦ A−1, Ft+1, . . . , Fo). Let x ∈ O be a singular point
of F̂ , the underlying UOV secret key.
We obtain, as in Theorem 1, the shape of the secret UOV+̂ Jacobian:

JacF ′(x) =



1 . . . o o+ 1 . . . n
1
...
t

0 . . . 0 t+ 1
...

...
...

0 . . . 0 o

J1(x)

J2(x)


Since x is a singular point of F̂ , J2(x) has rank at most o − t − 1. Therefore,
JacF ′(x) has rank at most o− 1. We move on to the next intermediate key, and
deduce the Jacobian from the chain rule:

P ′ = F ′ ◦A

JacP′(y) = JacF ′(Ay) ·A (11)

Notice that these operations cannot increase the rank of the Jacobian matrix,
and that the right product with A acts on the columns of the Jacobian.

JacP′(y) =



1 . . . o o+ 1 . . . n
1
...
t
t+ 1
...
o

J1(Ay)A

J2(Ay)A


In particular, we have that JacP′(A−1x) has rank at most o − 1. Finally, we

apply the linear map S to obtain the full UOV+̂ public key, again with the chain
rule.

P = S ◦ P ′

JacP(y) = S · JacP′(y) (12)
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Again, this left product cannot increase the rank of the matrix.

JacP(y) =



1 . . . o o+ 1 . . . n
1
...
t
t+ 1
...
o

J1(Ay)A

(S ′J1 + J2)(Ay)A


Since the rank may not increase at any step, singular points of the underlying
UOV key drop the rank of the UOV+̂ public Jacobian.

rank(JacP(x)) ≤ rank(JacP̂(x)) + t

In particular, if A−1x also vanishes the vinegar polynomials, then A−1x is a
singular point of the full UOV+̂ public key. We give the dimension estimates
below.

i. Let Jr be the ideal generated by (P̂(x),Minorsr(JacP̂(x))). By construction,

P̂ is a truncated UOV public key with r equations which vanish on the linear
subspace O of dimension o. By Theorem 1, we have:

d′ = dimJr = 2o+ r − n− 1

ii. Since p1(x), . . . , pt(x) are random quadratic equations, we can assume they
define generic hypersurfaces, and the ideal Jr + ⟨p1(x), . . . , pt(x)⟩ has di-
mension dim(Jr) − t. Notice that by the previous observations, if x is a

singular point of the underlying UOV key, then the Jacobian of the UOV+̂

public system is also rank deficient. Therefore, if x is singular for the un-
derlying UOV key and x ∈ Vt, then P(x) = 0 and therefore x is singular

for the UOV+̂ public system.

⊓⊔

The UOV+̂ (and VOX) security estimates rely on the idea that one cannot
attack the partial UOV key without first guessing the coefficients of the S map
on at least two equations, therefore multiplying the cost of any attack on the
partial key by a factor q2t. This assumption allows VOX and UOV+̂ to use UOV
parameters that would otherwise be weak to key recovery attacks.

In Theorem 2, we show that this estimate is optimistic: we target the partial
UOV key by computing singular points of the UOV+̂ key without knowing S,
since the singular locus of the partial key generically intersects the vinegar variety
if the quantity d′ is non-negative. In light of Section 3.5, this proves that the
Kipnis-Shamir attack directly works on the UOV+̂ public key since it computes
rational singular points of the variety generated by a collection of quadratic
equations.
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We use Equation (9), which predicts the cost of the Kipnis-Shamir attack
interpreted as an enumerative singular point computation, along with Hypothesis
2 to estimate the number of rational singular points. We have dimSingV(I) =
3o−n− 1− t, therefore we have the following cost for the Kipnis-Shamir attack
against UOV+̂:

C(q, n, o, t) = O(qn−2o+ton2) (13)

This cost was previously identified as O
(
qn−2o+2tnω

)
in [12], [7], which we im-

prove by a factor qt.

We give below log2(field operations) estimates, using ω = 2.81. We add the

previous best attacks that target UOV+̂ and the Full VOX key, as described in
[12], [7]. Multiplication cost is taken to be 2 log(q)2 + log(q) gates. In [7], costs
were given in number of arithmetic operations, therefore we use the previous
cost to convert to gate counts, as per NIST methodology.

Security level 143 207 272

Parameters I III V

log2 gates 121 167 221

Previous 142 206 280

Fig. 4: Computational cost of our version of the Kipnis-Shamir attack on VOX
parameters submitted to NIST [7].

We consider the cost of the attack on the original UOV+̂ parameters. This
scheme is not concerned by the rectangular MinRank attack of [16]. As this
paper was used as a foundation for VOX, it is not surprising that the cost is
almost equal.

Security level (λ) 143 (128) 207 (192) 272 (256)

Parameters (q, o, v, t) (26, 48, 56, 8) (29, 64, 72, 8) (212, 88, 96, 8)

log2 ops 120 171 221

Fig. 5: Computational cost of our version of the Kipnis-Shamir attack on UOV+̂

[12].

New parameters for VOX have been proposed in [21], to protect the QR
transform used in the scheme. We give an analysis of our attack against these
parameters in Figure 6.
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Security level 143 207 272

Parameters Ia Ib Ic IIIa IIIb IIIc Va Vb Vc

log2 ops 177 161 145 248 228 208 329 293 281

Previous 145 151 150 209 219 215 287 276 293

Fig. 6: Computational cost of our version of the Kipnis-Shamir attack for VOX
parameters proposed in [21].

In the next section, we show how to recover the rest of the secret key using
a single secret vector. This will also highlight a method to lower the complexity
of attacks against UOV+̂ independently of improvements to the Kipnis-Shamir
attack against UOV.

4.3 Key recovery from one vector against UOV+̂

Once we have obtained a vector in O, we wish to complete a full key recovery
attack. A polynomial-time key recovery from one vector against UOV is intro-
duced in [23], by studying the kernel of the Jacobian of the system evaluated on
an element of the secret subspace. In [23, Section 4], these tools are applied to

VOX, interpreted as UOV+̂: the underlying UOV public key may be targeted
once the map S is inverted. Using t vectors of the UOV secret key, one inverts
the map by solving a linear system. The author concludes that the method does
not apply out of the box, and instead requires t vectors of O to break the scheme.

In this section, we show that [23, Theorem 7] may be generalized to UOV+̂

without inverting S, and thus show how to perform a key recovery against UOV+̂

and VOX using a single oil vector.

Lemma 4. Let P = (P1, . . . , Pm) be a UOV+̂ public key for parameters (q, o, v, t),
let O be the associated UOV secret subspace, let Vt = {x ∈ Fq, p1(x) = . . . =
pt(x)} be the vinegar variety of P. If x ∈ O, then ker(JacP(x)) ∩O has dimen-
sion at least o− t as a linear subspace.

Proof. Recall that

JacP(x) =

xTP1

...
xTPo


Furthermore, by definition of S the chain rule yields:

JacP(x) = S · JacP̂(x)

Since S is injective, the right kernels of JacP̂(x) and JacP(x) are equal. The
observation of [23] is that

O ⊂ ker

xT P̂t+1

...

xT P̂o
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Therefore in our case

O ∩ ker

xTP1

...
xTPt

 ⊂ ker(JacP(x))

This intersection has dimension at least o − t. By genericity of P1, . . . , Pt, we
expect this to be an equality in most cases. This concludes the proof. ⊓⊔

We obtain a key recovery from one vector by restricting the VOX public key
to this kernel, and by considering the properties of this new UOV+̂ instance.

Theorem 3. Let P be a UOV+̂ public key for parameters (q, o, v, t), let O be the
associated UOV secret subspace, and let x ∈ O. Then there exists an algorithm
taking as input x and P and outputting a basis of O, using at most O (qt(n− o)ω)
arithmetic operations in Fq.

Proof. Notice that ker(JacP(x)) has dimension n − o for generic points, and
dimension n − o + 1 for singular points. We assume that x is singular. Indeed,
when x is not singular, the dimension becomes n− o and the problem is easier
to solve. Let B be a basis of ker(JacP(x)).

Following the methodology of [23], we restrict the UOV+̂ public key to this
kernel.

Pi|B := BT · Pi ·B for 1 ≤ i ≤ o

We also define the restriction of the underlying UOV key for clarity:

P̂i|B := BT · P̂i ·B for t+ 1 ≤ i ≤ o

The collection P|B = (P1|B , . . . , Po|B) can be considered as the public key of

a generalized UOV+̂ instance with the same number of equations o, in dimension
n′ = n − o + 1, and with an UOV trapdoor of dimension o − t by Lemma 4.
Notice that P̂|B , the underlying UOV key, is composed only of singular matrices
as n − o + 1 < 2(o − t), using Lemma 2. In particular, as observed in [23], the
UOV matrices P̂i|B have rank r = 2 · (n−2o+ t+1), which is significantly lower
than n− o+ 1 for all proposed parameter sets.

Therefore, once this restriction has been computed, the attacker may deter-
mine (si,j)j for any fixed i by solving a MinRank instance:

rank(Pi|B +

t∑
j=1

si,jPj|B) ≤ 2(n− 2o+ t+ 1)

Denote M(s) = Pi|B +
∑t

j=1 si,jPj|B . This MinRank instance has t variables
over a matrix of dimension n′ × n′ and a target rank r = 2 · (n− 2o+ t+ 1).

If we solve this instance by enumerating all values of (si,j)1≤j≤t, the cost is
qt(n− o+ 1)ω, which achieves the announced upper bound.

Once we have found one collection (si,j)1≤j≤t for some i, we obtain P̂i|B , and

the kernel of P̂i|B has dimension n− o+1− 2(n− 2o+ t+1) = 3o− n− 2t and
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is entirely included in O. This value is greater than t, and therefore this yields a
free family of vectors of O that allows to retrieve S using the method presented
in [23], and therefore yields the remaining vectors required to form a basis of O
in polynomial time.

Let us look at the complexity of this process:

1. Compute B a basis of ker(JacP(x)) O(nω)
2. Compute Pt+1|B O(nω)
3. Find (st+1,j)1≤j≤t O(qtn′ω)
4. Invert S O(nω)
5. Retrieve O O(nω)

The total cost is dominated by O (qt(n− o)n′ω). ⊓⊔

Notice that the MinRank instance presented in the proof of Theorem 3 is
solved very naively. Let T (q, n, o, t) be the cost of solving this MinRank instance.
This work provides the upper bound T (q, n, o, t) < qt(n − o + 1)ω. Notice that
this yields a test “x ∈ O?” with the same complexity: if there exists t+1 ≤ i ≤ o
such that no family (si,j)j can be found, then x ̸∈ O, otherwise x ∈ O.

For larger field sizes, we may improve the complexity by solving this MinRank
instance using a Gröbner basis approach.

4.4 Combining singular point computations with “x ∈ O?”

By combining our study of the singular points from Section 4.2 with the one
vector key recovery from Section 4.3, we can obtain a novel attack on UOV+̂

and VOX.
The Kipnis-Shamir attack computes vectors that drop the rank of the Jaco-

bian of a UOV public key among eigenvector of some linear maps. For each such
vector x, it checks whether P(x) = 0, in which case the attacker concludes that
they have computed a point of O.

For UOV+̂, vectors of O do not vanish the public key equations. Therefore,
we may replace this step of the attack by using the key recovery from one vector
(Theorem 3) as a test “x ∈ O?”. In this case, we pay a factor T (q, n, o, t) for each
point computed: these points are among the points that drop the rank of the
public Jacobian by Theorem 2. This yields a more obvious separation between
the cost of attacking the +̂ transformation versus the security of the underlying
UOV key:

O
(
qn−2oon2 × T (q, n, o, t)

)
The first part of the formula corresponds to the security of UOV against the
Kipnis-Shamir attack, while the second part is the cost of solving a MinRank
instance that is related to the +̂ transform. Compared with the Kipnis-Shamir
attack described in Section 4.2, this is only worse by a polynomial factor (n −
o+ 1)ω using the algorithm introduced in Section 4.3. Any improvement to the
key recovery from one vector would yield improved complexity for this attack.
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4.5 Consequences for UOV+̂ and VOX

We have shown that the hat plus structure only improves the security of UOV by
a factor at most qt asymptotically against the Kipnis-Shamir attack, as opposed
to the factor q2t claimed in [7]. The new VOX parameters introduced in [21]
for VOX increase the value c, which is directly equal to n− 2o, compared with
the previous parameter sets. Therefore, even though this change was made to
protect the QR transform, it significantly improves the security of the scheme
against our attacks as well.

5 Experimental results

We verified our results on the singular locus of the UOV variety with various
experiments in low dimensions (m ≤ 10) and for the field F251. The size of the
field does not significantly affect Gröbner basis algorithms.

Dimension of the singular locus

To study the properties of the singular locus, we use the bihomogeneous mod-
eling defined in Equation (7). The minors modeling is highly impractical to
manipulate: computing the minors is already a hard task due to their number:(
n
r

)
.
We also point out that the statement of Theorem 1 is homogeneous: to ob-

tain a useful result from a Gröbner basis algorithm, one must dehomogeneize
the equations (typically done by setting x1 = 1). In doing so, we reduce the
dimension of the singular locus by one compared with the homogeneous result,
as this is equivalent to intersecting the variety with an arbitrary hyperplane.

Another important remark is that Gröbner basis algorithms are efficient in
the zero-dimensional case: therefore, when we expect the variety to have di-
mension d, we add d random linear forms in the x variables to obtain a zero-
dimensional variety. This is not entirely equivalent to setting d variables to ar-
bitrary values, as in doing so one assumes that there exists a rational solution
with these specific coordinates.

This is essential in our case, as singular points are not always rational, but
their existence (in an extension) will always allow to mount an algebraic attack
against the scheme. This means that in cases where there are no rational singular
points, the Kipnis-Shamir attack will fail, while our attacks will not. We demon-
strate this property using the Gröbner bases computed in our experiments.

We can study experimentally the degree and dimension of the variety using
the computation of a Gröbner basis. More precisely, the dimension is the degree
of the denominator of the Hilbert series and the degree is the evaluation of the
numerator of the series at 1.

Let P be the public key of a UOV instance for parameters n,m, q, let d =
3m − n − 1 (as in Theorem 1), and choose f a collection of d − 1 linear maps
uniformly at random. These linear maps define the hyperplanes with which we
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intersect our variety. The zero-dimensional system we solve to perform a key
recovery attack (without a hybrid approach) is the following:

x ∈ Fn
q , x1 = 1,y ∈ Fm

q , y1 = 1


P(x) = 0 ∈ Fm

q

yT JacP(x) = 0 ∈ Fn
q

f(x) = 0 ∈ Fd
q

(14)

The dimensions obtained experimentally match Theorem 1. In every case,
the Gröbner basis contains exactly n−m linear polynomials defining O, which
supports Hypothesis 1.

We list in Figure 7 the results obtained on UOV systems. We provide code
to reproduce our experiments.

m,n Dimension Degree of the variety Degree of regularity

4, 8 2 4 3
4, 9 1 10 4
4, 10 0 20 5

5, 10 3 5 4
5, 11 2 15 4
5, 12 1 35 5
5, 13 0 70 6

6, 12 4 6 4
6, 13 3 21 5
6, 14 2 56 6
6, 15 1 126 6
6, 16 0 252 7

7, 14 5 7 4
7, 15 4 28 5
7, 16 3 84 6
7, 17 2 210 7

Fig. 7: Experimental computation of Gröbner bases for bihomogeneous modeli-
sations of the singularities of UOV systems in F251.
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