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Introduction: The COVID-19 Disease Map project is a large-scale community

effort uniting 277 scientists from 130 Institutions around the globe. We use high-

quality, mechanistic content describing SARS-CoV-2-host interactions and

develop interoperable bioinformatic pipelines for novel target identification and

drug repurposing.

Methods: Extensive community work allowed an impressive step forward in

building interfaces between Systems Biology tools and platforms. Our framework

can link biomolecules from omics data analysis and computational modelling to

dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug

repurposing using text mining and AI-assisted analysis identified potential

drugs, chemicals and microRNAs that could target the identified key factors.

Results: Results revealed drugs already tested for anti-COVID-19 efficacy,

providing a mechanistic context for their mode of action, and drugs already in

clinical trials for treating other diseases, never tested against COVID-19.

Discussion: The key advance is that the proposed framework is versatile and

expandable, offering a significant upgrade in the arsenal for virus-host

interactions and other complex pathologies.
KEYWORDS

SARS-CoV-2, systems biology, disease maps, mechanistic models, dynamic models,
systems medicine, large-scale community effort
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1 Introduction

The COVID-19 global pandemic was caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel

virus, first identified in December 2019 in China, subsequently

spread worldwide. Globally, as of 8 November 2023, there have been

over 770 million confirmed cases of COVID-19 and nearly 7 million

deaths1. As of 5 November 2023, 13 534,474,309 vaccine doses have

been administered. On May 5 2023, the World Health Organisation

(WHO) declared that COVID-19 was no longer considered a public

health emergency, but the pandemic status remains, with the close

monitoring of emerging variants2. Moreover, the aetiology of the

prevalent long COVID syndrome is still unknown. Therefore, the

study of potential novel targeted therapies for COVID-19 is still

relevant and valuable.

Large-scale community efforts to study molecular mechanisms

of SARS-CoV-2 infection, including the COVID-19 Disease Map

(C19DMap) project, aim to build an open-access, computable

repository of COVID-19 molecular mechanisms (1). The

C19DMap comprises forty molecular pathways compliant with

systems biology standards, such as SBGN (2) and SBML (3). The

pathways were compiled from published COVID-19 research

through collective biocuration supported, where possible, by text

mining solutions, such as INDRA (4) and AILANI (https://

ailani.ai). The C19DMap computational framework is a structure

that includes tools and platforms for data integration, analysis, and

computational modelling (1, 5) that can be combined with the

diagrammatic content.

The map is an entry point for analytical and modelling

workflows to identify actionable targets for novel or repurposed

compounds that can mitigate the viral infection or alleviate

COVID-19 symptoms. Similar workflows have been used to study

immune and chronic diseases (6, 7–9), focusing either on omic data

analysis and integration, network analysis, mathematical modelling

or drug repurposing (Figure 1). This work presents a full range of

potential analyses enabled by C19DMap. It outlines how different

analytic approaches can be combined meaningfully and impactfully.

We use as an example the COVID-19 disease because it is the

perfect use case for showcasing start-to-end ways to employ

multimodal omic analysis and predictive modelling on a well-

curated mechanistic content.

First, we demonstrate how a static diagram can be the template

of data integration and computational modelling, leading to

predictions and suggestions about the possible outcomes of

multiple perturbations in a cell, tissue or even patient-specific

manner. Then, we employ text mining and AI-assisted analysis to

identify drugs for the retrieved targets, and we suggest selected
1 https://covid19.who.int/.

2 https://www.who.int/news/item/05-05-2023-statement-on-the-

fifteenth-meeting-of-the-international-health-regulations-(2005)-

emergency-committee-regarding-the-coronavirus-disease-(covid-

19)-pandemic.
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combinations with predictive efficacy. Finally, we demonstrate the

relevance of this work for future pandemic preparedness.
2 Results

2.1 Multi-omic data analysis

We analysed available omics data (microarray, bulk RNA-seq,

scRNA-seq, phosphoproteomic) to identify COVID-19-affected

biological processes in cell l ines, and patient-derived

bronchoalveolar lavage samples and nasopharyngeal swabs. These

datasets were not previously used for curating and generating the

C19DMap. Identified differentially expressed genes and implicated

active transcription factors were then delineated in the C19DMap to

determine their functional environment. Finally, mechanistic

pathway modelling was applied to assess the impact of the viral

infection on relevant cellular functions represented in C19DMap.

The methods and tools selected were complementary and brought

new insights into SARS-CoV-2 host interactions by combining

expression data and the mechanistic content. Footprint-based

analysis (6) combines transcriptomic and phosphoproteomic data

to identify active transcription factors (TFs). TFs can also be

identified by limitless arity multiple testing procedures (10). Both

types of analyses could identify TFs already present in the C19DMap

and inform on their pathway implication but also reveal new TFs

that were not included in the repository. We extended our analyses

to the WikiPathways and Reactome repositories, identifying

pathways and processes affected by the viral infection. We

employed the HiPathia approach (11) that effectively combines

RNAseq data with mechanistic diagrams and pathway modelling

to expand on patient data and use the available diagrams in

predicting active circuits. A small dataset of single-cell RNA data

from SARS-CoV-2 patients was also employed to demonstrate the

scalability and applicability of the framework (Figure 2).

We have performed complementary analyses at the level of cell

lines and patients’ samples. Table 1 recapitulates the type of analysis

and approach for the different datasets. We took advantage of the

plurality and complementarity of the tools and methodologies

developed in the C19DMap community to infer complementary

information regarding activated TFs, differentially expressed genes

(DEGs), and pathways in the context of SARS-CoV2 infection.

2.1.1 Identification of active kinases, TFs, causal
interactions, DEGs and affected pathways in
SARS-CoV-2 infected cell lines

First, we analyzed bulk RNA seq and phosphoproteomic data

from A549 and Normal Human Bronchial Epithelial (NHBE) cell

lines (12–14) to identify DEGs, kinases, active TFs and pathways

affected in the context of the SARS-CoV-2 infection. We employed

complementary tools and approaches to infer the maximum

information from the available data. We performed differential

expression analysis to identify DEGs and differentially

phosphorylated proteins between SARS-CoV-2-infected and

mock-treated A549 cells. DEGs were also detected between A549

and NHBE cell lines. Active TFs were identified using two
frontiersin.org
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approaches. For the A549 cells for which phosphoproteomic data

were available, the Carnival tool (15) with the COSMOS approach

(16) was used to contextualise signalling events perturbed during

the viral infection and infer a causal network. The best Carnival-

inferred causal network connected eight of the top ten deregulated

kinases with the top 30 deregulated TFs (TFs; Supplementary Figure
Frontiers in Immunology 04
S1A), including connecting intermediary genes. CARNIVAL takes

as input a predefined knowledge network based on OmniPath

resources (11) and a series of constraints - top deregulated TFs

and kinases in our case, subsequently computing the most likely

causal interactions through the resolution of an integer linear

programming problem. COSMOS extends this approach to
FIGURE 2

Multi-omics data analysis using available omics data to identify differentially expressed genes, active TFS, causal interactions and affected pathways in
samples from cell lines and SARS-CoV-2 patients.
FIGURE 1

The main workflow of the pipelines was developed to analyse the mechanistic content of the C19Dmap. We used it to suggest intervention points,
drug repurposing and novel hypotheses for in vitro testing.
frontiersin.org
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encompass multi-omics data. Regarding the DEGs detected

between A549 and NHBE cell lines, limitless arity multiple testing

procedures identified the TFs that statistically significantly regulate

them (LAMP; Supplementary Figure S2B) (10).

The results for A549 cells highlighted four kinases (TBK1,

IKBKE, TICAM1, MAPK3), four TFs (IRF3, ATF4, ATF6,

SMAD1), and one serine protease (MBTPS1) distributed among

seven sub-map diagrams of the C19DMap (Supplementary Figure

S1B, Supplementary Table S1). Activation of the MAP kinases in

SARS-CoV-2 infection has been reported previously (17, 18).

MAPK3 and SMAD1 take part in TGFbeta family signalling,

which may be related to the healing of the damaged lung tissue

and the consequent lung fibrosis, which has been reported in

COVID-19 (17, 19). Canonical signalling proteins (PIK3CA,

BRCA1, and RUNX1) are likely involved in the regulation of cell

growth and division (18, 20, 21), while the immune system-related

genes TICAM1, TBK1, IKBKE, and IRF3 are found in the

pathogen-associated molecular patterns (PAMPs) and Interferon-

1 pathways of the C19DMap. Lastly, ATF4, ATF6, and MBTPS1 are

part of the Endoplasmic Reticulum (ER) stress pathway. A higher

number of TFs and DEGs was detected for A549 than for NHBE

cells. Many TFs detected in both cell types were involved in immune

response, of which several were present in the C19DMap (IRF3,

BACH1, TBP, TCF12, TP53, STAT1, FOS, RELA, NFK1, JUN,

STAT2, IRF9, FOSL1), while others, such as ESR1 and KLF6, were

novel (Supplementary Table S2). The additional highlighted

pathways included Interferon lambda signalling, HMOX1

pathway, Pyrimidine deprivation, and kynurenine synthesis.

Using the shared DEGs between the A549 and NHBE cells, and

the C19DMap pathways (23 pathways with 657 unique genes), a

pathway-gene network was constructed that consisted of 25 genes

linked to 19 pathways (Figure 3). Central genes in the pathway-gene

network were found to be IFIH1 (7 pathways), IL1B (6 pathways),
Frontiers in Immunology 05
and IRF9 (5 pathways). Interestingly, four genes (OAS1, OAS3, and

IFIT1 from the Interferon pathway and MAF from the HMOX1

pathway) had opposite expression profiles in the two cell lines.

Many of the shared DEGs (134 out of 159) are not part of the

C19DMap, implying that they were not included in the functional

studies used to construct the C19DMap, and thus providing an

essential resource for future research and curation efforts to

understand and map out processes affected by SARS-CoV-

2 infection.

2.1.2 Extended pathway analysis in SARS-CoV-2
infected NHBE and A549 cell lines

To enlarge the scope of the analysis and enrich the omics-based

pathway analysis, we combined pathways from C19DMap (1),

WikiPathways (22), and Reactome (23). The collection included

1,840 human pathways containing 12,037 unique genes in total. We

used this extended pathway database to identify altered COVID-19-

specific and general molecular pathways in (14) NHBE and A549 cells

(Supplementary Figure S3A). The analysis revealed 74 and 101 altered

pathways in NHBE and A549 cells, respectively, of which 11 were

changed in both, including several immune- and metabolism-related

pathways (Supplementary Figure S3B). Interestingly, SARS-CoV-2-

infected NHBE cells showed several altered C19DMap pathways,

including interferon and coagulation pathways (Supplementary

Figure S4), while A549 cells mainly showed changes in general

processes, such as cell cycle, DNA mismatch repair, and cholesterol

biosynthesis pathways (Supplementary Figure S5).

2.1.3 Identification of DEGs, pathways and active
circuits in COVID-19 patients’ samples

To investigate if the identified cell-line pathways and TFs were

relevant in patients infected with SARS-CoV2, we analyzed scRNA-

seq data of bronchoalveolar lavages from nine COVID-19 patients
TABLE 1 Type of omics data and analysis performed with the C19DMap repository.

Omics Data Cell line/
patient samples

TF
identification

DEG identification Kinase
identification

Pathway
identification

bulk phospho
proteomic

A549 Footprint analysis A549
infected/control

Footprint analysis A549
infected/control

Footprint analysis
A549 infected/control

C19DMap and network
inference using
CARNIVAL - use of
OmniPath resources

bulk RNA-seq A549 Footprint analysis A549
infected/control

Footprint analysis A549
infected/control

Footprint analysis
A549 infected/control

C19DMap and network
inference using
CARNIVAL - use of
OmniPath resources &
Extended pathway analysis
(C19DMap+
WikiPathways+Reactome)

bulk RNA-seq NHBE LAMP analysis A549 infected/
NHBE infected

Extended pathway analysis
(C19DMap+
WikiPathways+Reactome)

scRNA-seq patients
(bronchoalveolar samples)

sc analysis patients/control C19DMap

bulk RNA-seq patients
(nasal swabs)

Hipathia analysis patients/control C19DMap
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(GSE145926) (24) and epithelial cells isolated from the lungs of nine

healthy subjects (GSE160664) (25). Clustering analysis on the entire

matrix showed 44 distinct clusters as the best representation of cell

types (Supplementary Figure S6). Five epithelial cell types were

selected by cell sample size and marker genes (26). Differential

expression analysis was performed for each cell type between

COVID-19 and healthy controls. Among DEGs overexpressed in

each cell type in COVID-19 patients (Supplementary Table S3), 26

were common to all five lung epithelial cell types (Supplementary

Table S4). The C19DMap was analysed to evaluate the activation of

specific pathways by these 26 overexpressed genes. The most

affected pathway was type 1 IFN response (WP4868), with

overexpressed IFIH1, OAS1, STAT1, OAS2, OAS3, and IRF7

genes. Several other C19DMap pathways were affected, including

NLRP3 inflammasome activation, Interferon lambda pathway,

Virus replication cycle, PAMP signalling, TGF-beta signalling,

Endoplasmic reticulum stress, Apoptosis pathway, HMOX1

pathway and Renin-Angiotensin pathway.

To combine C19DMap with patient data and expand its utility

beyond pathway enrichment, we employed the HiPathia approach (27)

that effectively combines RNAseq data with mechanistic pathway

modelling. The Hipathia algorithm determines the cell functional

profile induced by gene expression changes in the studied condition

and supports testing perturbations. HiPathia conceptualises pathways

as directed graphs, linking molecular participants through activations

and inhibitions, similar to an electrical circuit representation. HiPathia

ascribes the activation level to protein nodes in the circuit based on gene

expression values of corresponding genes, enhancing understanding of

gene expression dynamics in the context of the C19DMap. A public

RNAseq dataset of nasopharyngeal swabs from 430 individuals with

SARS-CoV-2 and 54 negative controls (26) (GSE152075) and 16 of the

23 C19DMap pathways suitable for the HiPathia algorithm, converted

to 145 HiPathia circuits, were used for mechanistic pathway modelling.

Of the 145 C19DMap-derived HiPathia circuits, 46 were differentially
Frontiers in Immunology 06
activated (FDR adjusted p-value < 0.05) (Supplementary Table S5).

Almost all C19DMap pathways that contained the deregulated circuits

showed differential activity between infected and normal cells,

confirming the relevance of the C19DMap. Genes central to the

activity of each circuit are promising drug target candidates for

modulation of downstream processes.

As thoroughly described in the scientific literature, impaired

coagulation is one of the main complications of severe COVID-19,

leading to thrombosis and microthrombosis episodes (28). The

C19DMap Renin-angiotensin pathway (Figure 4A) was converted

into 12 circuits, with only one circuit being differentially activated in

infected cells. This circuit involves ACE2, widely associated with

SARS-CoV-2 infection (29), and its upregulated effector gene

MAS1. The upregulation of the MAS1 circuit is related to the

normal vascular system functioning (30), and the activation of this

axis may result from a vasoprotective response of the glycoproteins,

such as GPVI and vWF, involved in thromboembolism,

thromboinflammation, and other coagulopathies (31).

Hyperactivated platelets in COVID-19 show reduced glycoprotein

VI (GPVI) reactivity (32), consistent with our modelling results.

The C19DMap Interferon-1 pathway was highly activated, an

expected response to virus infection (Figure 4B).
2.2 Dynamical modelling of host-pathogen
interactions on a molecular, cellular, and
multicellular level

Next, we studied the impact of upstream regulators on the

functional outcome of pathways using dynamic computational

modelling, focusing primarily on the Interferon-1 pathway in two

different contexts: a pathway and cellular context integrated into a

macrophage model. We then integrated the macrophage model into

a multicellular context, including the SARS-CoV-2-induced
FIGURE 3

25 genes differentially expressed in both cell lines are linked to 19 pathways. C19DMap pathways are represented as grey diamonds, and shared
DEGs are coloured as rectangles following expression fold change.
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respiratory epithelium’s apoptosis and the virus’s influence on the

recruitment of immune cells by macrophages. The tool CaSQ (22)

was used to convert the mechanistic C19DMap diagrams into

Boolean models (Figure 4).

2.2.1 A dynamic Boolean model of type 1 IFN
responses in SARS-CoV-2 infection

Type 1 Interferon (IFN) signalling is an essential pathway of

host defence against viral attacks, and the corresponding C19DMap

pathway was shown to be significantly enriched/activated in all

analyses of cell lines and patient sample omics data. We used the

tool CaSQ and a previously described map-to-model translation

framework (33) to obtain an executable, dynamic Boolean model of

type 1 IFN signalling. The dynamic model contained 121 nodes,

including three drugs, namely 3,4-methylenedioxy-b-nitrostyrene
(MNS) (34), azithromycin (35), and GRL0617 (36) that were

included in the diagram by the curators (Supplementary Figure

S7). We performed simulations for seven scenarios derived from the
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scientific literature to evaluate the model’s ability to reproduce

established biological behaviour (Supplementary Table S6).

The sensitivity analyses were conducted based on partial correlation

coefficients using Cell Collective (37). The model could reproduce the

behaviour for five observations, partially reproduce the behaviour for one,

and fail to reproduce one biological scenario (Supplementary Table S6,

Supplementary Figure S8). Global environmental sensitivity analysis

results suggest that viral E protein has the highest impact on the

inflammation phenotype in the presence or absence of the drugs. Nsp3

shows a negative association with the body’s antiviral response. Sensitivity

analysis results in the presence of drugs show that treatment with MNS

could reduce inflammation, while azithromycin increases the antiviral

response (Supplementary Figure S9). Sensitivity analysis against knockout

and overexpression perturbations suggests that the overexpression of the

IFNB1 RNA has a significant role in the inflammatory process by

activating the AP-1 and p50_p65 complexes. The IFNB1 RNA

increases pro-inflammatory cytokines by activating the NLRP3

inflammasome, and MNS selectively inhibits it (34, 38). However,
B

A

FIGURE 4

Activation levels of significant C19DMap pathways in SARS-CoV-2-infected nasopharyngeal tissue; (A) Renin-Angiotensin pathway, and (B)
Interferon-1 pathway. Activation levels were calculated using GSE152075 transcriptional data and the HiPathia mechanistic pathway analysis
algorithm. Nodes represent genes (ellipses), metabolites/non-gene elements (circles), or functions (rectangles). Pathway-derived circuits connect
receptor genes/metabolites to effector genes/functions, simplifying functional interactions into inhibitions or activations. Red arrows indicate circuits
activated in infected cells. Node colours correspond to differential expression levels in SARS-CoV-2-infected vs. normal lung cells. Blue: down-
regulated elements, red: upregulated elements, white: elements not differentially expressed. HiPathia calculates the overall circuit activation and can
indicate deregulated interactions even if interacting elements are not individually differentially expressed.
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overexpression of p50_p65 stimulates the inflammatory cytokines via

nuclear reactions regardless of the NLRP3 inflammasome inhibition.

Therefore,MNSmay need to be combined with other drugs to reduce the

inflammation from nuclear reactions. The viral dsRNA and proteins

(Nsp13, Nsp14, andNsp15) can be significant drug targets since they have

potent antagonistic interferon effects. TLR7/9 and TREML4 are the most

significant viral binding proteins, suggesting TLR antagonistsmay be used

to control exaggerated inflammations via the MYD88_TRAM complex.

2.2.2 Calculating stable states of the IFN model
We used input propagation (39, 40) and control nodes to

regroup the model’s inputs and simplify the analysis. We

regrouped inputs into six categories: 3 meta-inputs that

correspond to Inflammatory stimulus, IFN response, and viral

stimulus, and three inputs representing the drugs present in the

model (GRL0617, Azithromycin, and MNS). We could identify 128

stable states and no oscillations using this modified model. All

signatures lack IFN secretion and exhibit either viral replication or

antiviral response. To investigate the model’s behaviour further, we

selected eight configurations for the inputs that cover different

biological scenarios of the type 1 IFN pathway with or without

infection and in the presence or absence of drugs (Table 2). We then

clustered the stable states according to the four outputs of interest:

viral replication, antiviral response, inflammation, and secretion of

IFNA1. We have a single attractor for each selected input condition

(after projection on the outputs; Table 2).

The results of the stable state analyses corroborate the results of

experimental studies in patients with COVID-19 with various

degrees of severity that showed hampered IFN-I responses in

patients with severe or critical COVID-19 (41). These patients

had low IFN-I and ISGs and increased tumour necrosis factor

(TNF-), IL-6-, and NFkB-mediated inflammation. The results of

input propagation can be visualised in a heatmap where columns

represent all 121 components of the system and rows represent the

eight selected input conditions (Supplementary Figure S10).
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2.2.3 Integration of the Type I IFN, the RA system,
and the NLRP inflammasome curated pathways
into a macrophage-specific Boolean model

The next step was integrating the IFN response into a relevant

cell model. The population of macrophages expands during SARS-

CoV-2 infection, and hyperactivation of these cells can lead to

severe immunopathologies (42). To computationally simulate the

effects of SARS-CoV-2 on selected C19DMap pathways in

macrophages, we extended a previously built macrophage

polarisation model to incorporate Type 1 IFN response, the

Renin-Angiotensin (RA) system, and the NLRP3 inflammasome

modules from the C19DMap (workflow is presented in Figure 5).

The resulting COVID19 Macrophage Model, named MacCOV

(https://gitlab.lcsb.uni.lu/computational-modelling-and-

simulation/macrophage-model), comprises 131 nodes and 271

edges manually verified against the macrophage-specific literature.

When an inflammatory microenvironment stimulus is simulated,

the model reaches a stable state with the respective signalling

cascades and inflammatory biomarkers rendered active

(inflammatory response; Figure 6). Infection with SARS-CoV-2

stimulates the RA system module , which potentiates

inflammation through specific mediators and effectors, like

AGTR1/2. Consistent with the literature (43, 44), the virus,

through an Orf3a_TRAF3 complex, also triggers the activation of

the NLRP3 inflammasome, thus leading to cleavage of proIL-1b and

proIL-18 into their functional forms. In addition, although the

inflammatory stimuli remain, the stable state analysis indicates that

the virus can directly activate the expression of pro-inflammatory

markers without activating the central signalling cascades. SARS-

CoV-2 itself is sufficient to trigger an inflammatory response in

macrophages. The virus can also block the type 1 IFN signalling at

different cascade levels, as demonstrated in the molecular-level

model. Lastly, the virus also blocks nodes from inflammatory

pathways, which crosstalk with the type 1 IFN pathway. By

binding to their cognate receptors, pro-inflammatory mediators
TABLE 2 Input configurations that cover eight different biological scenarios of the type 1 IFN pathway with or without infection and in the presence
or absence of drugs.

Input configurations C1 C2 C3 C4 C5 C6 C7 C8

Viral components 1 1 0 1 1 1 1 1

Immune response 0 0 1 1 1 1 1 1

IFN secretion 1 1 1 1 0 1 1 1

Azithromycin 1 0 0 1 0 0 0 0

GRL0617 1 0 0 0 0 0 1 0

MNS 1 0 0 0 0 0 0 1

Projection of the stable states to the four outputs C1 C2 C3 C4 C5 C6 C7 C8

ISG_expression_antiviral_response_phenotype 1 0 1 1 0 0 0 0

Viral_replication_phenotype 1 1 0 1 1 1 1 1

Proinflammatory_cytokine_expression_Inflammation 0 1 0 1 1 1 1 0

type_I_IFN_response_phenotype 0 0 0 0 0 0 0 0
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activate their downstream signalling effectors, which typically

converge on a core pathway (i.e. one that captures signalling from

other cascades) or a critical pro-inflammatory transcription factor

such as NFkB.

2.2.4 Multiscale and multicellular simulations of
SARS-CoV-2 infection uncover intervention
points to evade respiratory epithelium apoptosis
and increase immune cell recruitment.

Two Boolean models focusing on the effects of SARS-CoV-2 on

respiratory epithelium apoptosis and the recruitment of immune

cells by macrophages were incorporated into a multiscale simulator

of the infection of lung epithelium by SARS-CoV-2 (45) [https://git-

r3lab.uni . lu/computat ional-model l ing-and-s imulat ion/

pb4covid19] (Figure 7). CaSQ (33) was used to convert the

apoptosis map into a Boolean model.
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Models were analysed individually by studying each Boolean

model’s knockout (KO) (46) to identify potential drug targets. Two

perturbations were identified: one that evades apoptosis in infected

human host respiratory epithelial cells and one that increases the

immune response in macrophages (Supplementary Figure S11). The

first perturbation involved the inhibition of FADD, a downstream

actuator of FASLG reception upon T-cell activation promoting

apoptosis. In the FADD knockout simulation, CD8-T-cell-mediated

apoptosis was abrogated, but the cells could still undergo virus-

mediated apoptosis through activation of the apoptosome by the

virus (Supplementary Figure S12A). The second perturbation

inhibited the macrophages ’ p38, a MAP kinase that

phosphorylates various proteins in response to stress. The

knockout of p38 in this macrophage model increased the

recruitment of immune cells by 10% (Supplementary Figure

S12B). We studied the population of respiratory epithelial cells
FIGURE 6

Stable states from the macrophage Boolean model specific for SARS-CoV-2 infection. Model stable states upon different inputs (virus infection,
inflammatory conditions + virus infection, and inflammatory condition) are presented in the heatmap. Each input evolves into a unique stable state
(rows, delimited by white horizontal lines), where node activity is shown in orange when active and blue when inactive. Nodes, listed at the bottom
of the heatmap, are clustered (delimited with white vertical lines) by their relation with specific modules, with the activation of macrophage
phenotypes, or with biological processes.
FIGURE 5

Dynamical modelling workflow of the C19DMap pathways. In this section, we include pathway-level modelling, focused on the Type 1 IFN pathway
of the C19DMap, cellular-level modelling, focusing on macrophages, and multicellular level modelling combining macrophages, T-cells and
epithelial cells in an Agent-Based Model.
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and their status (Supplementary Figure S13A) and the recruitment

of immune cells (Supplementary Figure S13B).

The effect of the mutations was incorporated in the multiscale

simulation. In the multiscale model, FADD KO behaviour

corresponded to the expected behaviours observed in the Boolean

model as it reduced the commitment of respiratory epithelial cells to

apoptosis (Supplementary Figure S13C). In the multiscale model,

p38 KO did not substantially change immune cell recruitment by

macrophages (Supplementary Figure S13D). The 10% increase in

the recruitment of immune cells in the signalling model was

insufficient to see consistent differences when replicating

conditions in the multiscale simulation.
2.3 Drug target enrichment and
pharmacogenomics analysis

We identified 54 targets from the integrative omics data

analyses, and the computational modelling is already included in

the C19DMap diagrams (Supplementary Table S7, Supplementary

Figure S14). Two AI assistants, INDRA and AILANI, were used to

compile a list of drugs and drug targets using the repository’s

content and information from various external sources such as

Clinical trials DB, Drug Bank (47), ChEBI (48), mirTarBase (49)
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and scientific literature. From an initial list of 3,573 proteins

extracted from the C19DMap and the drug-target information

compiled for the C19DMap, we obtained 1,476 drugs associated

with 1,120 drug targets to populate our C19DMap drug-target

database. Using the C19DMap drug-target database, we inferred

1,429 drugs, chemicals, and miRNAs that target the identified nodes

(Supplementary Table S8). If we remove viral proteins and focus

only on drugs and chemicals, there are 228 unique drugs/chemicals

for 46 targets, as shown in Figure 8.

Pharmacogenomic information for the drug targets in the

C19DMap was collected from the public domain, and the frequency

of these genomic variants was assessed. The “Cumulative Allele

Probability” (CAP) and the “Drug Risk Probability” (DPR) scores

were used to summarise the data (Figure 9). We focused on 79 genes

with available pharmacogenomic information and allelic frequency

data in PharmGKB and gnomAD, respectively, and (Supplementary

Table S9) calculated CAP scores using gnomAD global exomic

information (Supplementary Figure S15). The individual CAP scores

for the drug target genes were aggregated by drug (Supplementary

Figure S16).

Losartan, an antagonist of the angiotensin II receptor, type 1

(AGTR1), is used for hypertension treatment (51). Two AGTR1

genomic variants to losartan response are annotated in PharmGKB

(rs5186 and rs12721226). The variant rs5186 was associated with an
B C

A

FIGURE 7

Multiscale simulation workflow. (A) Overview of the top-level interaction model that integrates virus infection, host respiratory epithelial cell demise,
and the response of different immune cells. (B) The apoptosis model from C19DMap (https://fairdomhub.org/models/712). (C) The modified version
of the apoptosis model was included in each respiratory epithelial cell type.
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increased response to losartan in a cohort of European ancestry (52).

The other variant, rs12721226, a missense variant with very low

frequency across populations, is associated with a decreased affinity

to losartan, which could impair the drug’s clinical efficacy (53). INDRA

and AILANI analysis retrieved additional drugs and miRNAs, besides

losartan, able to target AGTR1. Pharmacogenomics data was also

available for identified IKBKE, CASP7, and EGFR targets. For IKBKE,

the CAP score is very low across all populations. INDRA analysis

retrieved many chemicals and two drugs, amlexanox and sunitinib

malate, that target IKBKE, while AILANI analysis retrieved the

miRNAs hsa-miR-124-3p, hsa-miR-155-5p and hsa-miR-296-5p
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(Supplementary Figure S16). Amlexanox, used in four clinical trials

targeting type 2 diabetes and obesity, has no pharmacogenomic data.

Regarding CASP7, the CAP score is very high for East Asians, both

male and female and very low for African/African American

populations. INDRA analysis retrieved spermine, 1,4-benzoquinone,

melatonin, apigenin, zinc, cisplatin, ac-asp-glu-val-asp-h, NAC, fica

and emricasan, while AILANI analyses retrieved eight miRNAs that

can target CASP7. Pharmacogenomic data were only available for

cisplatin. Cisplatin has a higher DRP score for Latino/Admixed

Americans, both sexes, and a lower DRP score across Ashkenazi

Jewish and East Asian populations (Supplementary Figure S16).
FIGURE 8

Diagram of the identified targets and the corresponding targeting entities (drugs, chemicals, mirRNAs, small molecules).
FIGURE 9

The CAP score estimates the likelihood of a particular gene carrying pharmacogenomic variants, while the DPR score estimates the likelihood of the
response to a drug being affected by pharmacogenomic variants (50). The CAP score depends on the number of pharmacogenomic variants and
their population frequency.
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Emricasan was tested in 18 clinical trials targeting liver diseases and has

recently been tested for its efficacy in COVID-19 in 13 patients with

mild symptoms, but no results have been published3

Lastly, EGFR’s CAP score is very low across all populations

slightly higher for African/African American populations. Using

our internal drug-drug target database, we retrieved two drugs:

zanubrutinib and abivertinib. Zanubrutinib is being tested in

clinical trials for treating lymphoma (88 clinical trials in

ClinicalTrials.gov). Abivertinib has been tested in 11 clinical trials

for lymphoma, prostate, and lung cancers and recently evaluated in

two completed clinical trials for COVID-19, according to

ClinicalTrials.gov.
2.4 AI-assisted map updating
and expanding

The multimodal data analysis described in this work

highlighted new molecules and pathways, with key functions

regarding the progression of the SARS-CoV-2 infection, not yet

annotated and wired in the C19DMap repository. We now have an

extensive list of TFs, pathways and DEGs identified as active in

SARS-COV-2 infection that would need to be incorporated into a

2nd-generation C19DMap. We use two text mining and AI-

assistants to keep the context up to date and further expand and

enrich it with new knowledge. One of the major problems in wiring

new molecules in the diagrams is the need for mechanistic details.

AILANI and INDRA (Integrated Network and Dynamical

Reasoning Assembler) were used to infer interactions to link new

molecules into the diagrams.

The AILANI COVID-19 research assistant (https://www.

labvantage-biomax.com/products/ailani-for-semantic-integration-

and-search-2/) is based on a previously developed natural language

processing and machine learning-based text mining pipeline (54)

and a novel artificial intelligence-based question-answering system.

The AILANI assistant continuously mines Medline abstracts, public

PubMedCentral full-text articles, COVID-19 specific collections

from bioRxiv/medRxiv, Elsevier, and the Allen Institute for AI

COVID-19 (CORD-19), ClinicalTrials.gov and relevant newsfeeds

(e.g., WHO, CDC, NIH). The AI is based on deep neural networks

trained to identify objects and, therefore, can provide novel insights

and associations that are not (yet) part of explicit semantic

networks. We also used INDRA (4), an open-source automated

knowledge assembly system integrating information from

published literature and biological pathway databases to enrich

the C19DMap diagrams. We systematically aligned the C19DMap

with assembled INDRA Statements to enrich (i.e., find additional

literature evidence for interactions already incorporated) and

extend (i.e., find relevant interactions that have not yet been

incorporated) the C19DMap. We provide two small examples

that showcase how new interactions and biomolecules can be

integrated into the repository. Table 3 provides an example of
3 https://clinicaltrials.gov/ct2/show/NCT04803227?term=emricasan

&draw=4&rank=4.
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new interactions for molecules already included in the C19DMap

repository, while the second example describes the wiring of newly

identified TFs.

Regarding information about new TFs and DEGs highlighted

from the multi-omics data analysis, AI assistants can provide

information for their wiring through direct and indirect links. For

example, TF activity analysis revealed a set of TFs common for

A549 and NHBE cells (Supplementary Table S2). KLF6 was among

the TFs not yet present in the C19DMap repository. The AI-assisted

analysis revealed two possible interactions with CDKN1A and

PDFGA. CDKN1A and PDFGA are not yet included in the

C19DMap database; however, both molecules have been identified

as potential interactors for numerous biomolecules in the

repository, providing an indirect way of wiring the TF- interactor

pairs. Moreover, CDKN1A is present in the T-cell activation SARS-

CoV-2 (Homo sapiens) WP5098, which will be included in the

pathway collection in the next update scheduled for March 2024.
2.5 Graphical exploration and
topological analysis

To cope with the size and complexity of the ever-growing

content of the mechanistic pathways, we developed and

implemented a concept for the hierarchical exploration of the

C19DMap and performed a comprehensive analysis of node

centralities on two levels: individual pathways level for all three

platforms (MINERVA, WikiPathways, and Reactome) and on the

level of an aggregated network combining all individual pathways.

The implementation is based on the biological network analysis

tools Vanted (55), SBGN-ED (56) and LMME-DM, a customised

version of LMME (Large Metabolic Model Explorer)

(57) (Figure 8).

The centrality analysis was performed on all networks

combined in a bipartite graph (individual pathways and

aggregated network). An aggregated centrality value was

computed (see Materials and Methods) to identify the top-ranked

instances of the C19DMap bipartite graph (Supplementary Table

S10) from a topological perspective. Not surprisingly, the top ten

proteins were viral proteins and ACE2 that act as a receptor for the

SARS-CoV-2 spike protein.

Topological analyses can highlight targets and hubs, providing a

basis for linking pathway structure with key findings from text

mining, omic data analysis, and modelling pipelines. For the five

representative C19DMap pathways, namely Itype 1 IFN, Interferon

lambda, coagulation, apoptosis, and renin-angiotensin, we used the

aggregated ranks to create a high-level view of the pathways,

visualising their connections and also creating nested nodes to

handle complexity (Figure 10). Of the 54 highlighted targets

(Supplementary Table S7), nine are characterised as structurally

important in the respective pathways, namely TBK1, IKBKE, IRF3,

MAS1, IRFNB, CASP7, FADD, AKT1, and AGTR1/2, as they

appear in the top ten instances of the five individual pathways in

the C19DMap bipartite graph (Supplementary Tables S11–S15).

The topological features for the aggregated network (unified

content across the three platforms, MINERVA, WikiPathways,
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and Reactome) were not always easy to calculate due to

incompatibilities that will be addressed in the future versions of

the repository (e.g. different naming for the same protein complex,

such as AP-1 or AP1, different spelling or capitalization of node

names, such as nsp13 or Nsp13). Clean topological features were

available for 26 of the 54 targets. Among these, 11 targets were

considered structurally important as they were in the top 30% of

instances of the aggregated network by aggregated centrality values

(Supplementary Table S16). The minor inconsistencies in the data,

for example, different names for the same molecule or the use of

names of complexes instead of names of the complex components,

as showcased in the examples above, were resolved using the

UniProt IDs. There are a few cases where this was not possible.

However, to be consistent with the dataset used in other analysis

steps, we did not try to resolve these cases before the topological

analysis. The main findings of the topological analysis are

not impacted.
Frontiers in Immunology 13
2.6 FAIRness and availability for proper
data management

An ongoing effort is aligning our work with the four FAIR

principles: Findability, Accessibility, Interoperability, and

Reusability (58).

Findability: Our resources are publicly available via our git and

dedicated repositories. The tools implemented in our ecosystem

are published and indexed on PubMed and searchable online. We

invest efforts in advancing, communicating and exchanging with

other Systems Biology communities, especially regarding the

annotation and curation of models (59, 60). Furthermore,

besides providing the source files, we will also make the models

obtained available in various model repositories, such as the Cell

Collective (37), GINsim (61), and BioModels (62), with the

publication of this manuscript. Appropriate metadata associated

with each of the analyses and modelling results presented in the
TABLE 3 Example of new interactions between pathways and within the same pathway for a given node, inferred using the two AI assistants, AILANI
and INDRA.

Identified node
in the
C19DMap
repository

Submaps,
including the
node
in C19DMap

Identified
interactor
Uniprot
ID

Identified
interactor
HGNC

AI-
assistant

Submaps of the
C19DMap, including
the identi-
fied interactor

Type
of information

MAS1 Coagulation pathway;
Renin-Angiotensin

P05231 IL6 INDRA
(EMMAA)

Coagulation pathway; Interferon
lambda pathway; Nsp14
and metabolism

Link between pathways,
new interaction within
the same pathway

MAS1 Coagulation pathway;
Renin-Angiotensin

Q14116 IL18 INDRA
(EMMAA)

NLRP3 inflammasome activation;
HMOX1 pathway

Link between pathways

MAS1 Coagulation pathway;
Renin-Angiotensin

Q9UI12 ATP6V1H AILANI Nsp4 and Nsp6
protein interactions

Link between pathways
FIGURE 10

Hierarchical exploration of centrality values in the disease map using LMME-DM. The following pathways are detailed: Coagulation: yellow;
Apoptosis: red; Interferon 1: blue; Interferon lambda: green; Renin-Angiotensin: orange. The aggregated centrality values are mapped to the node
sizes in the detail view.
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art ic le is registered and indexed on FairdomHub to

facilitate discovery.

Accessibility: All tools are open access except for AILANI (54)

which requires registration. WikiPathways (22), REACTOME (23),

MINERVA (63), INDRA (4), and CellCollective (37) also provide

open-access APIs. The developed maps and models are available on

Gi tLab (h t tp s : / / g i t - r3 l ab .un i . l u / cov id /mode l s / ) and

FAIRDOMHub (64).

Interoperability: We have worked on tool interoperability and

promoting community standards; therefore, most input formats are

GML, SIF or SBML, and SBML Qual files to enhance model

reusability (65).

Reusability: All maps and models are available under a CC-

BY licence.

We have also built the C19DMap-Neo4j graph database by

integrating the content of the C19DMap diagrams available in

MINERVA into the Neo4j framework. This database is available

for online exploration at https://c19dm-neo4j.lcsb.uni.lu and is used

as a backend solution for efficient access to the resource data.

Biological concepts from the C19DMap diagrams available in

MINERVA (such as macromolecules and processes) are stored in

the database under Neo4j nodes. In contrast, relationships between

these concepts (such as consumption and catalysis) are stored as

Neo4j relationships. In addition, annotations, such as UniProt

identifiers and PubMed publication IDs, are stored as individual

nodes that we can easily query (for example, see Supplementary

Figure S17).
3 Discussion

We have explored the high-quality, manually curated

mechanistic content of host-pathogen interactions of the

C19Dmap using severa l bio informat ics analyt ic and

computational systems biology tools that are now combined in

interoperable pipelines. To further prioritise targets and

contextualise the mechanistic content with different layers of

biological data, a set of different omics data was used, ranging

from infected cell lines to bulk RNAseq and single-cell omic data

from patients affected with SARS-CoV-2. In summary, we used

omics data following SARS-CoV-2 infection to infer a causal

network describing signalling events perturbed after viral

infection. We identified the MAPK protein family as a critical

mediator of the referred signalling events. Our omics-based

approach captured several genes in the pathways manually

curated by the C19DMap community.

Furthermore, we found additional causal interactions

suggesting the potential mechanism behind the crosstalk between

some of the most relevant pathways upon SARS-CoV-2 infection,

such as EGFR, PI3K, and the PAMPs/interferon-1 pathway.

Regarding transcription factors, the analysis revealed new

transcription factors not yet included in the C19DMap. Their

inclusion may provide an opportunity to reveal more detailed

mechanisms of gene regulation hijacked by coronavirus infection.

The results showed that, among the drugs targeting transcription

factors detected in both cells, 47 were already in external clinical
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trials, including drugs evaluated for their effectiveness against

COVID-19. In addition, we also retrieved 160 drugs that have not

yet been tested in clinical trials or tested for efficacy against COVID-

19 and could represent potential candidates for further evaluation

(Supplementary Table S17). Lastly, the over-representation analysis

revealed 58 affected pathways in NHBE cells and 39 enriched

pathways in A549 cells, including pathways relevant to immune

response, the NFkB pathway, glucocorticoid receptor and MAPK

signalling pathways, and pathways related to interferon.

The single-cell RNAseq data analysis of a small group of

patients confirmed some of the previously identified TFs, DEGs

and altered pathways the cell line analysis pointed out. However, the

number of patients in this analysis was relatively small. To expand

our analysis, we used an extensive dataset of 450 patients and the

HiPathia modelling algorithm to identify affected circuits in the

mechanisms described in the repository. Mechanistic models of

signalling pathways provide a conceptual framework for

interpreting gene expression or genomic variation data. These

methods have been developed to associate gene activity with their

consequences over downstream processes and phenotypic

responses, which are highly relevant for studying disease

progression or drug response, especially in complex diseases.We

found pathways, such as apoptosis, to be systematically up or

downregulated, which means that the whole pathway is relevant

to the progression of the disease. Moreover, more extensive

pathways showed differential activation in a few or even one of

the circuits, which may indicate that, despite the involvement of the

whole pathway in the disease progression, only a few processes

reflected in the deregulated circuits are critical to the mechanism of

infection. These specific key processes may support finding new

therapeutic targets.

The extensive integrative omic data analysis using bulk RNA-

seq, scRNA-seq and the pathway resources revealed interesting TFs,

DEGs, and altered pathways after the SARS-CoV-2 infection in the

two studied cell lines and patient data. The methodologies used for

this step were complementary, covering a wide range of state-of-

the-art pipelines and bringing forward two significant points: the

coverage and relevance of the C19DMap repository regarding the

COVID-19 disease and identifying additional regulators that would

need to be included in the resource.

The C19DMap can also be analysed using computational

modelling approaches to help elucidate mechanisms deregulated

at molecular, cellular, and multicellular levels, thus gaining insight

into COVID-19’s underlying processes. Type 1 IFN signalling is an

essential pathway of host defence against viral attacks, as

highlighted in previous omics data analyses in cell lines and

patients’ samples. We used our repository’s executable, dynamic

model of type 1 IFN signalling for in-silico experimentation. The

computational modelling results showed a complete lack of IFN

signatures under relevant conditions matching the experimental

results that showed hampered IFN-I responses in patients with

severe or critical COVID-19 (36). These patients had low IFN-I and

ISGs and increased TNF-, IL-6-, and NF-kB-mediated

inflammation. Adding the IFN response, Renin-Angiotensin

mechanism, and NLRP3 pathways from the C19DMap to an

existing macrophage polarisation model helped elucidate the
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innate immune response that macrophages trigger upon acute

COVID-19, in addition to highlighting their contribution to the

disease’s pathology. Lastly, integrating both pathway and cell

models in a multicellular-multiscale model helped reveal the

impact of mutations of FADD and p38 on the cellular death of

epithelial cells upon infection and the recruitment of immune cells.

Whereas these results demonstrate the value of COVID-19 disease

logical models for generating new hypotheses and understanding of

disease mechanisms, they also provide an important tool set for

preclinical discovery and testing of targeted drugs and drug

combinations, as demonstrated in several studies (7, 66–68). In-

silico model simulations can prescreen many drug combinations,

with the best-performing candidates advancing to further

preclinical testing. In vitro validation of the models’ prediction

can accelerate preclinical testing by narrowing down the number of

candidates and combinations, improve the performance of

computational models by addressing failures, and guide

experimental design.

To expand the content, AI-assisted text mining systems, such as

INDRA and AILANI, were employed to infer from the vast

literature the drugs, miRNAs and chemicals that target

biomolecules included in the diagrams of the C19DMap. Besides

expanding the content, text mining and AI solutions provide

directions to fill knowledge gaps. Furthermore, integrating

publicly available data from the C19DMap, PharmGKB, and

gnomAD allowed us to determine the presence of variants with

pharmacogenomic impact and their frequency in human

populations. We thus estimated the genomic variability of genes

from the C19DMap involved in drug response across different

populations and sexes. We retrieved pharmacogenomic

information for about 79 genes in the repository, four of which

were identified as potential targets. Topological analyses revealed

important information about hubs and shared molecules among

pathways that could help us better understand the potential

upstream and downstream effects of targeting them. We are

aware of minor inconsistencies in the unified database, for

example, name variations for the same molecule or the use of

names of complexes instead of names of the components of the

complex. While the main findings of the topological analysis remain

unaffected, we aim to harmonize the content as much as possible

during the following repository content updating. The C19DMap

project is an ongoing effort, and our goal is to maintain the

repository and keep it updated with improved content.

It is important to note, that besides the inconsistencies

regarding the diagrammatic content of the repository, the omics

data integration and modelling approaches come also with certain

limitations. Regarding data analysis and preprocessing, we used the

same package and preprocessing steps to obtain results as

harmonized as possible. However, we have used data from

various sources and while the main findings do not change, some

TFs or DEGs might be context specific. Our logic-based modelling

approaches may oversimplify the interactions between molecular

entities. This simplification could potentially obscure some insights

that the data might otherwise reveal, particularly in the complex

interplay of different biological pathways. As our models are
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qualitative, we lack ways to address quantitative questions,

especially in the context of drug simulations. Additionally, while

our transcriptomic analysis serves as a proxy for protein activity, we

acknowledge that overexpression of genes does not directly equate

to active protein function. Such limitations in our methods should

be considered when interpreting the findings and may point to the

need for more nuanced approaches in future research to fully

understand the mechanisms at play in the progression of

the disease.

As mentioned in our previous report (1), most of the diagrams

of the CD19DMap repository were initially built using the scientific

literature on SARS-CoV-1 and other coronaviruses available during

the onset of the pandemic. This corpus provided the foundation for

rapid curation and a literature triage approach. Annotations for the

SARS-CoV-1 viral infection process, including the viral life cycle,

host interactions, and therapeutic pathways, were built on this

foundation. After more than two and a half years since the

appearance of the SARS-CoV-2 virus, the body of scientific

literature specific to this type of coronavirus has reached a point

where it can now be used to curate complete mechanisms. With the

continuous update of pathway information and new datasets related

to SARS-CoV-2, reproducible and automated data analysis

workflows can be rerun to provide more accuracy and specificity.

Generation of Reactome’s SARS-CoV-2 pathway leveraged the

database’s foundational manual curation, orthoinference

projection, and the collaborative resources of the C19DMap

project. The SARS-CoV-2 infection pathway emerged from a

computationally generated rough draft via orthoinference from

the manually curated, peer-reviewed Reactome SARS-CoV-1

infection pathway (see Materials and Methods). The community

can adopt this approach that identifies SARS-CoV-2-specific

interactions to increase viral specificity in the mechanisms

included in the C19DMap repository.
4 Conclusions

We made considerable efforts to increase interoperability and

communication across three different platforms, MINERVA,

WikiPathways, and Reactome, support Systems Biology standards

such as SBGN (69) and SBML (3), and promote scientific openness

with the use of public repositories and the adoption of FAIR

(Findability, Accessibility, Interoperability, and Reusability) Data

principles (58).

We have successfully built workflows to use high-quality,

curated mechanistic content for integrative analysis and

computational modelling. The interoperable pipelines developed

and demonstrated here are highly adaptable to new challenges due

to standardised formats, can support the testing of combinatorial

therapies, as multiple drugs and targets are suggested, and offer a

canvas for evaluating the repurposing of existing drugs to fight new

waves of COVID-19 or other pandemics, and contribute to

elucidating the etiologies of post-acute Covid Symptoms (PASC).

By comparing the mechanisms and drug targets, we can further

look into the comorbidities of the disease. Moreover, our
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approaches directly apply to other pathologies, for which

mechanistic content and omics data analyses can be combined to

identify new druggable points. This combinatorial approach is

helpful for rare diseases, where the data is scarce and integrative

methodologies can help fill the data gaps.

All pipelines, workflows, tools, and methodologies that

comprise the C19DMap computational framework are freely

available to the scientific community (See Material and Methods

section, and Data availability statement). While we acknowledge the

complexity of the C19DMap ecosystem, which stems from the

plurality of resources, we remain committed to improving

interoperability and standards to facilitate integrated, start-to-end

bioinformatics and modelling analyses. We aim to help leverage

technological and methodological advancements and lower the

accessibility barrier for several tools, methods and approaches

that otherwise would remain far off reach for a substantial

number of end-users.
5 Materials and methods

5.1 Using the mechanistic diagrams for
omics data analysis

5.1.1 Footprint analysis
We obtained the transcriptomics dataset from the GEO

database with accession number GSE147507 (12). We extracted

series five from the dataset, consisting of 2 conditions: A549 cells

either mock-treated or infected with SARS-CoV-2, measured in

triplicate 24 hours after infection. Differential analysis of the

transcript abundances was performed using DESeq2 (70). The

resulting t-values of the differential analysis were used as inputs

to estimate pathway activity deregulation using Progeny (71). The

differential analysis t-values were also used to estimate the

deregulation of TF activities using Dorothea (72) as a source of

TF-target regulon and the Viper algorithm (73) to estimate the TF

activity score. Phosphoproteomic data of mock-treated and SARS-

CoV-2 infected cells were extracted from (13). Phosphosite

differential analysis log2FC was used to estimate the deregulation

of kinase activities using https://github.com/indralab/protmapper

as a source of kinase-substrate interactions and a z-test to estimate

kinase activity score (74, 75). Finally, we used Carnival (15) with the

COSMOS approach (16) to connect the top 10 deregulated kinases

with the top 30 deregulated TFs with a Prior Knowledge Network

assembled from OmniPath resources (11). Progeny pathway

activity scores were used to weigh the PKN and facilitate the

optimal network search to connect kinases and TFs. To place our

results in the context of the whole study, we matched the genes

obtained in carnival results with those included in the curated

pathways by the C19DMap community (https://covid.pages.uni.lu/

map_contents). In addition, we matched our results with a

harmonised list containing drug targets. All code and analysis are

available here: https://gitlab.lcsb.uni.lu/computational-modelling-

and-simulation/footprint-based-analysis-and-causal-network-

contextualisation-in-sars-cov-2-infected-a549-cell-line.
Frontiers in Immunology 16
5.1.2 TF activity and drug target identification
This analysis inferred the gene regulatory systems hijacked by

COVID-19, especially the target transcription factors. In order to

infer the target transcription factors, we detected transcription

factors that statistically significantly regulate the genes whose

expression changes were induced by COVID-19. First, the gene

groups whose expression changes were induced by COVID-19 in

NHBE cells and A549 cells were detected as the DEGs using DESeq2

(70) for the GSE147507 dataset (12, 14), described above (DEGs;

adjusted p-value < 0.05). Next, we extracted all the regulatory

relationships with Confidence “A”, “B”, and “C” from DoRothEA

(72) as information on the regulatory relationships of transcription

factors to each of these DEGs for NHBE cells and A549 cells. The

transcription factors that regulated each of these DEGs for NHBE

cells and A549 cells were detected by LAMP (10) (significance level

< 0.05). Next, to gain insight into the biological phenomena affected

by the detected transcription factors, i.e. the transcription factors

hijacked by COVID-19, gene ontology enrichment analysis of

DEGs under the control of these transcription factors was

performed using the GOstats package (76) in R (significance level

a = 0.05). In order to verify whether these transcription factors are

included in the publicly available C19DMap (1), we performed a

search based on the HGNC ID of each transcription factor against

the SBML file of each Disease Map. Finally, we searched for and

picked up the drugs targeting each transcription factor for NHBE

cells and A549 cells in the clinical trials in anticipation of their later

usefulness in treating COVID-19. To find the drugs targeting the

above transcription factors, we searched against GeneCards

(https://www.genecards.org/) (77) based on the HGNC IDs of the

transcription factors. After that, we performed another search based

on those drugs against the list of the drugs in External Clinical

Trials for COVID-19 and Related Conditions in the COVID-19

Dashboard of DrugBank (https://go.drugbank.com/covid-19) (78).

Only approved drugs were listed as candidate drugs in the final

results. Finally, to identify gene regulatory systems affected by

COVID-19 independent of cell type, DEGs, transcription factors,

enriched GO terms, and drug targets detected were classified as

NHBE-, A549-specific, or shared to both cell types. All code and

analysis are available here: https://gitlab.lcsb.uni.lu/computational-

modelling-and-simulation/generegulationanalysis.

5.1.3 Pathway and network analysis in SARS-CoV-
2 infected NHBE and A549 cells

We demonstrate an automated and reproducible workflow for

transcriptomics data analysis using pathway- and network-based

approaches (see our GitLab repository for details; https://

gitlab.lcsb.uni.lu/computational-modelling-and-simulation/

pathway-analysis-and-extension). The analyses are fully automated

in R with clusterProfiler (79) and RCy3 (80) to connect to the widely

adopted network analysis software Cytoscape (81) for network

visualisation. We obtained the transcriptomics dataset from the

GEO database with accession number GSE147507 (12). We

extracted series numbers 1 (NHBE) and 5 (A549) from the

dataset, consisting of 4 conditions in triplicate, NHBE and A549

cells treated with mock (two controls), and NHBE and A549
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infected with SARS-CoV-2, measured 24 hours after infection. Pre-

processing and differential gene expression analysis were performed

in R using the DESeq2 package (70). Next, a combined pathway

collection of the C19DMap [21 pathways (82)], WikiPathways [597

pathways (22)] and Reactome [1,222 pathways (23)] were created.

Pathway enrichment analysis was performed using the

clusterProfiler R package (79). Differentially expressed genes

(DEGs; p-value < 0.05 and absolute fold change > 1.5) were used

for the over-representation analysis. The analysis was performed

separately for NHBE and A549 cells, and the overlap in enriched

pathways was analysed. Selected pathways were visualised in

Cytoscape using the WikiPathways app (83). A pathway-gene

network for the shared pathways was created to study pathway

crosstalk and overlap. Next, the harmonised bipartite graph created

a pathway-gene network for all C19DMap pathways. By overlaying

information about shared differentially expressed genes, we used the

network to identify relevant biological processes and molecular

mechanisms that may be missing in our current pathway

collections. All code and analysis are available here: https://

gitlab.lcsb.uni.lu/computational-modelling-and-simulation/

pathway-analysis-and-extension.

5.1.4 Single-cell transcriptomic data analysis in
lung epithelial cells of COVID-19 patients

In this section, we provided scRNA-seq gene expression

analysis results to explore DEGs in specific lung epithelial cell

populations in the COVID-19 patient group (moderate, severe,

and critical cases), comparing with corresponding epithelial cell

types isolated from the lungs of healthy subjects. The gene

expression data was derived from scRNA-seq analysis of

bronchoalveolar lavages from nine COVID-19 patients (three

moderate, one severe, and five critical) (GSE145826) from (24).

scRNA-seq data of epithelial cells (DAPI-, CD45-, CD31-, CD326+)

isolated from control lung explant tissue of nine healthy subjects

was used as a healthy control specific for lung epithelial cell types

(25). All filtered samples were merged in one filtered gene-barcode

matrix and analysed with the R package Seurat v.3 (84). The first 50

dimensions of canonical correlation analysis (CCA) and principal

component analysis (PCA) were used in parameter settings.

Moreover, the filtered gene-barcode matrix was first normalised

using ‘LogNormalize’ method with default parameters. UMAP was

performed on the top 50 PCs to visualise the cells, while clustering

was performed on the PCA-reduced data for clustering analysis

with Seurat v.3. The resolution was set to 0.5. A UMAP embedding

represents the distribution of primary cell types in the scRNA-seq

database (Supplementary Figure S6). The lung epithelial cell group

(TPPP3, KRT18), directly infected by SARS-CoV-2, was analysed

for every patient group. At first, the classification was provided,

following these gene markers, as reported in (24): macrophages

(CD68), neutrophils (FCGR3B), myeloid dendritic cells (mDCs;

CD1C, CLEC9A), plasmacytoid dendritic cells (pDCs; LILRA4),

natural killer (NK) cells (KLRD1), T cells (CD3D), B cells (MS4A1),

plasma cells (IGHG4) and epithelial cells (TPPP3, KRT18). For the

finest cell annotation of epithelial cell types, specific gene markers
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were used as reported in the Human Protein Atlas database (https://

www.proteinatlas.org/), and markers of health epithelial cells

reported by Deprez and colleagues (85) (10.1164/rccm.201911-

2199OC) and extracted. In particular, ciliated cells (CFAP157,

FAM92B; SARS-CoV-2-infected cells 15.5%), Secretory cells

(BPIFB1, SCGB1A1, SCGB3A1; SARS-CoV-2-infected cells 6.4%),

Suprabasal cells (KRT5, SERPINB4, KRT19, COVID19 cells 37.7%),

Alveolar Type 1 cells (AGER, CAV1, EMP2, SARS-CoV-2-infected

cells 6%), Basal cells (KRT5, KTR15, COVID19 cells 11.2%).

Alveolar Type 2 cells were not included because of an unbalanced

ratio of cell sample size between COVID-19 cases and healthy

control (SARS-CoV-2-infected cells <2%; see Supplementary Table

S4 for a detailed summary of all cell types). The balanced sample

size of cells allowed us to compare these two groups. Differential

gene expression analysis between patients and specific cell control

was performed for epithelial cell groups. A differential gene

expression analysis for all clusters was performed using the

FindMarkers function in Seurat v.3, imposing a statistical

threshold of 0.05% FDR, average |logFC| > 1 and the difference

between PCs>0.25 to increase confidence in the results. All code and

analysis are available here: https://gitlab.lcsb.uni.lu/computational-

modelling-and-simulation/single-cell-transcriptomic-data-

analysis-in-epithelial-cell-types-of-covid-19-patient-groups-with-

different-severity-profiles.

5.1.5 Integrative pathway modelling using
C19DMap diagrams and RNAseq data from
COVID-19 patients

The HiPathia algorithm allows modelling the behaviour of

signalling pathways, described as directed graphs that connect

receptor proteins to effector proteins through a chain of

activations and inhibitions exerted by intermediate proteins.

HiPathia treats the pathways as if they were composed of

elementary circuits, each circuit defined as the sub-pathway, or

chain of proteins, connecting receptors to effectors. HiPathia uses

expression values of genes as proxies of the activation levels of the

corresponding proteins in the circuit (86). To estimate the activity

of a given circuit, a signal value of 1 is transmitted through the

nodes and modulated by the activity values of the intervening

proteins until it reaches the final effector protein, which is

annotated with the functions it triggers in the cell (27). These

circuit activation values can be assessed between conditions to

obtain differential signalling and functional activity profiles. The

first version of the C19DMap has been implemented in the CoV-

HiPathia version (87). In addition, extracted SIF files from SBML

qual files using CaSQ (33) can be imported to HiPathia containing

the Activity Flow (AF) structure of the Process Description (PD)

diagrams, enabling new disease maps to be modelled as they are

built, thus permitting their exploration and analysis. In order to test

the methodology, a public RNAseq dataset of nasopharyngeal swabs

from 430 individuals with SARS-CoV-2 and 54 negative controls

(26) (GSE152075) was used. First, the RNA-seq gene expression

data were normalised with the Trimmed mean of M values (TMM)

normalisation method using the edgeR R package (88). Then,
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within the CoV-Hipathia web tool (87), the HiPathia algorithm

requires the expression data to be rescaled between 0 and 1 to

calculate the signal. Finally, quantile normalisation was done using

the preprocessCore R package (86). The normalised gene expression

values were used to calculate the level of activation of the sub-

pathways, and then a case/control contrast with aWilcoxon test was

used to assess differences in signalling activity between the two

conditions: SARS-CoV-2-infected and normal control

nasopharyngeal tissue (FDR adjusted p-value < 0.05). Data and

code available: https://gitlab.lcsb.uni.lu/computational-modelling-

and-simulation/Hipathia_IFN1_Renin-Angiotensin_analysis.
5.2 Dynamical modelling at the molecular,
cellular, and multicellular levels

5.2.1 Dynamical modelling of type 1 IFN
responses in SARS-CoV-2 infection
5.2.1.1 Type 1 IFN model development and
computational validation

We used the type 1 IFN molecular map as a scaffold and auto-

generated the dynamic model using the CaSQ tool. We evaluated

the model’s behaviour using seven biological scenarios from the

scientific literature.

5.2.1.2 Global sensitivity analysis

We simulated themodel in Cell Collective (37) using varying activity

levels of each input. We determined the input-output association using

activity levels of 1000 randomly-generated simulations as previously

used by our group (89). We performed probabilistic global sensitivity

analysis based on the partial correlation coefficient (PCC) using the

“sensitivity” package (https://cran.r-project.org/web/packages/sensitivity/

sensitivity.pdf) in R (R Core Team, 2016) on data obtained from Cell

Collective. It shows the impact of change in the input variable

(independent variable) on the output variable (dependent variable)

while considering and removing the linear effect of other input

variables on the output variable (90). The script used in this analysis is

available in our shared GitLab repository (https://git-r3lab.uni.lu/

computational-modelling-and-simulation/analysis/-/blob/master/

IFN1_modelling/Global_Sensitivity_analysis_of_IFN_model.R).

5.2.1.3 Sensitivity analysis against overexpression
and knockouts

The sensitivity of biomolecules was calculated against knockout

and overexpression perturbations. The sensitivity values were

quantified in macro values for each biomolecule. The bitwise

distances were calculated for each biomolecule in the same macro

class. The highest sensitivity values were then simulated in Cell

Collective. The methodology of the algorithm used to calculate the

sensitivities against knockout and over-expression perturbations is

described in FairdomHub (https://fairdomhub.org/data_files/4090),

and the used script that generates the result is available in our shared

GitLab repository (https://git-r3lab.uni.lu/computational-modelling-

and-simulation/analysis/-/blob/master/IFN1_modelling/

IFN1_sensitivity_against_mutations.R).
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5.2.1.4 Input propagation for calculating stable states

The IFN model has 55 input components. These input

components maintain their activity level as they have no upstream

regulators, and their initial configuration plays a vital role in the

potential outcome. We consider that all inputs representing viral

components share a common state to eliminate unrealistic input

configurations. To encode this constraint, we introduce an additional

input node controlling this group of components. We applied the

same approach to the immune response and IFN secretion inputs. In

the resulting model, only six inputs remain, these three meta-inputs

and three components representing drugs (GRL0617, Azithromycin,

andMNS). Using this modified model, we identified 128 stable states.

The absence of other stable patterns suggests that this model does not

generate stable oscillations. We selected four output components to

assess the obtained phenotypes (viral replication, antiviral response,

inflammation, and secretion of IFNA1). The projection of the 128

stable states on these four outputs gave six distinct signatures among

the 16 possibilities. All signatures lacked IFN secretion and exhibited

either viral replication or antiviral response (or both). We then

studied in more detail a set of 8 input conditions that cover

different biological scenarios of the type 1 IFN pathway with or

without the infection and in the presence or absence of drugs

(Supplementary Table S2). In these conditions, the propagation of

the input values was sufficient to control most components of the

model, particularly all selected output components. Studies in

patients with COVID-19 with various degrees of severity showed

hampered IFN-I responses in patients with severe or critical COVID-

19. These patients had low levels of IFN-I and ISGs and increased

production of TNF-, IL-6-, and NF-kB-mediated inflammation. All

code and analysis are available here: https://gitlab.lcsb.uni.lu/

computational-modelling-and-simulation/analysis.

5.2.2 Integration of the Type I IFN, the ACE-ACE2
axis, and the NLRP3 inflammasome curated
pathways into a macrophage-specific
Boolean model

Three diagrams in the C19DMap repository were selected: the

Type I IFN, the ACE-ACE2 axis, and the NLRP3 inflammasome.

These diagrams were converted into SMBL qual formats using the

CaSQ tool (33) and then processed in GINsim (61). Once processed,

the pathway modules were integrated into a COVID-19-specific

macrophage model. Phenotypic nodes were added to link the

biomarkers with a biological process easily using an associated

GO term name. Next, the functionality and behaviour of the

COVID-19 macrophage model were evaluated in a stable state

analysis (attractors) performed with the following stimulatory

conditions: inflammatory microenvironment, virus infection, and

both. https://gitlab.lcsb.uni.lu/computational-modelling-and-

simulation/macrophage-model.

5.2.3 Multiscale and multicellular simulation
We incorporated two Boolean models into a multiscale simulator

that consists of the infection of a patch of lung epithelium by SARS-

CoV-2 and the immune cells that are recruited (45): macrophages,

neutrophils, dendritic cells, CD4- and CD8-T-cells. We expanded this
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simulator with our tool, PhysiBoSS (91), which incorporates MaBoSS

(92), a tool that stochastically simulates Boolean models, into PhysiCell

(93), a tool that uses agent-based modelling to simulate cells and their

surrounding environment, and their interplay. Two Boolean models

were used: first, the epithelial apoptosis model was converted from the

map to the model using CaSQ (33) and the C19DMap project (https://

fairdomhub.org/models/712) (82).Wemodified the apoptosis model to

capture mechanisms such as BAX activating the apoptosome complex

and included output nodes as readouts. We also connected inputs and

outputs to different variables in the population model, such as the

Virus_inside node, which depends on the number of virions inside a

cell, or the Tcell_attached node, which depends on the attachment of a

T-cell to the epithelial cell (Figure 7C). Second, we included the

macrophage-specific Boolean model developed for this work. As with

the apoptosis model, we connected the models’ inputs and outputs to

relevant variables from the agents. For instance, we activated the

Apoptotic_cell node upon encountering an apoptotic epithelial cell,

activated the SARS_CoV_2 node upon encountering a virion, or

activated the interferon Boolean nodes when the interferon roaming

in the environment was above the detection threshold. Likewise, when

Neutrophil_recruitment, CD4_Tcell_activation or CD8_Tcell_activation

nodes are ON, pro-inflammatory cytokines are released. We found

perturbations in the Boolean model that enhanced the recruitment of

immune cells and the commitment to apoptosis using our pipeline of

tools (46) that uses MaBoSS to simulate stochastic trajectories. All code

and analysis are available here: https://gitlab.lcsb.uni.lu/computational-

modelling-and-simulation/pb4covid19.
5.3 Pharmacogenomic analysis

We obtained the list of proteins in the C19DMap as well as lists

of proteins targeted by drugs and chemicals from annotations from

the AILANI COVID-19 research assistant (https://ailani.ai) based on

an NLP pipeline (54), INDRA (Integrated Network and Dynamical

Reasoning Assembler) (4), and from the Clinical Trials DB. We used

information from the cross-references from DrugBank (78) to map

ChEBI and PubChem identifiers to DrugBank identifiers.We further

enriched the list of drug/chemical targets using the information from

DrugBank (accessed June 2022). A list of 16 drugs used to treat

COVID-19 was obtained from (94), and their targets were obtained

fromDrugBank. After merging the lists, a final dataset of 1,476 drugs

and chemicals (identified by DrugBank IDs) and 1,120 drug targets

(identified by NCBI Gene ID) was obtained. Information on

pharmacogenomic variants for the drug targets was retrieved from

PharmGKB (95) (accessed on Feb 14, 2021). For each gene that

encodes a drug target, the list of variants with pharmacogenomic

annotations that are significant and are annotated to a dbSNP

identifier was retrieved. We used the cross-references from

PharmGKB to map the PharmGKB drug accessions to DrugBank

identifiers. Data on the allelic frequency of the pharmacogenomic

variants were retrieved from The Genome Aggregation Database

(gnomAD) (96) (version 2.1.1). gnomAD is a resource developed by

an international coalition of investigators to aggregate and

harmonise exome and genome sequencing data from various

large-scale sequencing projects and make summary data available
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for the broader scientific community. To aggregate the data on the

pharmacogenomic impact and allelic frequency of the variants, we

computed a modified version of the Cumulative Allele Probability

(CAP) and the “Drug Risk Probability” (DRP) score (50). The CAP

score considers the number of pharmacogenomic variants and their

frequency in the population for a specific gene. The DRP score

combines the CAP scores for all drug target genes for a specific drug.

The code to compute the CAP and DRP scores is available at https://

github.com/jpinero/pharmacogenomics_covid19_minerva_map/.
5.4 AI-assisted map updating
and expanding

All INDRA code and analyses are provided here: https://

github.com/indralab/covid-19/tree/master/covid_19/disease_maps.

AILANI results have been integrated into the resources files:

https://git-r3lab.uni.lu/covid/models/-/tree/master/Resources/

Expand%20the%20diagrams.
5.5 Topological analysis

We calculated values for 17 network centrality measures for

each available pathway as implemented in Vanted’s Centilib

extension (97). Taking into account the results of correlation

analysis and the requirements of centrality calculation on the

network structure, such as connectivity, we restricted the 17

measures to a base set of 10 measures (Eccentricity, Degree,

Eigenvector, HITSAuths, Current Flow Betweenness, Radiality,

Stress, Shortest Path Betweenness, Centroid Rank, Closeness)

(98). We calculated the values for each network node (excluding

reactions) for these measures and provided rankings of nodes for

each measure per network. Additionally, we computed aggregated

rankings using the residual sum of squares for each node per

network and on the aggregated network. The results from our

centrality calculations can also be explored and put in context using

the software LMME-DM (https://github.com/LSI-UniKonstanz/

lmme-dm) developed as part of the C19DMap project. It follows

an overview and detail approach, showing an overview graph

containing one node per pathway and a detailed pathway view,

including the detailed crosstalks. The centrality values can now be

mapped on the nodes’ size and colour (see Figure 9). All code and

analysis are available here: https://gitlab.lcsb.uni.lu/computational-

model l ing-and-s imulat ion/graphica l -explorat ion-and-

topological-analysis.
5.6 C19DM-Neo4j database

The input maps were gathered from the COVID-19 Disease

Map curation repository (https://git-r3lab.uni.lu/covid/models,

October 2020, commit a705765a). All stable maps stored in the

CellDesigner format were considered for 21 maps. The maps were

first converted from the CellDesigner format to SBGN-ML using

the CD2SBGML tool. The conversion resulted in 19 maps (maps
frontiersin.org
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“ETC_stable.xml” and “E_protein_stable.xml” could not be

converted by CD2SBGNML). These maps were then stored in the

Neo4j database using StonPy (99). All code and analysis are

available here: https://gitlab.lcsb.uni.lu/computational-modelling-

and-simulation/c19dm-neo4j-db.
5.7 Orthoinference process for converting
from SARS-CoV-1 to SARS-CoV-
2 diagrams

The standard orthoinference process is used in the Reactome

database to infer reactions electronically in fifteen evolutionarily

divergent eukaryotic species for which high-quality whole-genome

sequence data are available. Eligible reactions are checked to

determine whether each involved protein has at least one

homologous protein in the reaction’s input, output, and (if

present) catalyst in the organism undergoing inference. If a

human reaction involves a complex, at least 75% of the

accessioned protein components of the human complex must

have homologous proteins in the model organism. The first (V74)

draft of this SARS-CoV-2 pathway consists of 101 reactions

involving 489 molecular entities (279 proteins, 12 RNAs, and 198

others) and is supported by citations from 227 publications.

Reactome developed a computational triaging strategy to review

and identify publications appropriate for manual curation (66,100

SARS-CoV-2 articles on PUBMED, tallied on 30/October/2020).
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